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DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT
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Abstract. We focus on the use of two stable and accurate explicit
finite difference schemes in order to approximate the solution of
stochastic partial differential equations of Itö type, in particular,
parabolic equations. The main properties of these deterministic
difference methods, i.e., convergence, consistency, and stability, are
separately developed for the stochastic cases.

1. Introduction

Stochastic partial differential equations, or SPDEs, describe the dy-
namics of stochastic processes defined on space-time continuum. These
equations have been widely used to model many applications in engi-
neering and mathematical sciences.
A number of numerical methods have been developed to solve stochastic
partial differential equations. We provide two methods for solving linear
parabolic SPDEs based on the Saul’yev method and a higher order finite
difference scheme. The deterministic theory of these methods are impor-
tant subjects in order to approximate the solutions of partial differential
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equations because of their advantages in terms of numerical stability and
computation accuracy, respectively. For instance, the Saul’yev scheme
converts a seemingly implicit scheme into a explicit scheme. The main
advantage of this scheme is that it is unconditionally stable and explicit
in nature. This method is very useful in higher dimensions since it re-
duces the required computation by a large amount. The other method
that we will investigate refers to the undetermined coefficients which
enable us to obtain higher order approximations with better accuracy.
Hence, it is natural to verify the stochastic difference scheme, and ap-
proximate the stochastic partial differential equations. In this article,
we try to extend the deterministic Saul’yev method and propose a fi-
nite difference scheme for solving parabolic differential equations to the
stochastic case in order to approximate the solutions of parabolic Itô
equations of the form

ut(x, t) = γuxx(x, t) + σu(x, t)dW (t), 0 ≤ t ≤ T(1.1)

u(x, 0) = u0(x), 0 ≤ x ≤ 1

u(0, t) = u(1, t) = 0,

where t is the time variable, x is the space coordinate, ∂t and ∂x denote
derivatives with respect to t and x, respectively. The function u(x, t),
for example, describes the electrical potential current along cylindrical
cable. The random noise dW (t) is Gaussian with zero mean.
The remainder of our work is structured as follows: A review of the
Saul’yev and the higher order finite difference schemes for determin-
istic parabolic differential equations and their stability conditions are
stated in Section 2. In Section 3, we extend these two finite difference
methods to the stochastic case for approximation of stochastic linear
parabolic differential equations. In addition, convergence, consistency
and stability, important properties of a deterministic difference scheme,
are developed for the stochastic schemes. Numerical results are given in
Section 4.

2. Finite difference deterministic schemes

Several physical phenomena are modeled by diffusion equations. Prob-
lems of this type arise in chemical diffusion, heat conduction, medical
science, biochemistry and certain biological processes.
In this section, the numerical solution of the diffusion equation based on
the deterministic Saul’yev and the higher order finite difference schemes
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is considered.
First, consider the following parabolic partial differential equation:{

ut(x, t) = γuxx(x, t)
u(x, 0) = u0(x) t ∈ [0 , T ] , x ∈ [0 , X].

(2.1)

The finite difference methods are universal applicable numerical meth-
ods for the solution of partial differential equations (PDEs). Basically,
these schemes discretize the continuous space and time into an evenly
distributed grid system, and the values of the state variables are eval-
uated at each node of the grid. Introducing a uniform space grid ∆x
and a uniform time grid ∆t, one gets a time-space lattice, for which one
can attempt to approximate the solution of the above equation at the
points of the lattice. Notationally, unk will be defined as a function at
the point (k∆x, n∆t) or at the lattice point (k, n), where n and k are
integers. The function unk will be an approximation of the solution at
the point (k∆x, n∆t), where we set u0k = u0(k∆x).
In the following, the formulations of the Saul’yev and the higher order
finite difference schemes are reviewed:

2.1. The Saul’yev scheme. Alternating direction explicit finite-
difference methods make use of two approximations that are imple-
mented for computations proceeding in alternating directions, e.g., from
left to right and from right to left, whith each approximation being ex-
plicit in its respective direction of computations [1], [2]. First, we sketch
the idea of deterministic Saul’yev methods.
Alternating direction explicit methods were first introduced by Saul’yev
for solving initial value problems involving the one-dimensional heat
diffusion equation. The principle is to employ two finite difference equa-
tions, of which one is explicit when the computation proceeds in one
directions, while the other is explicit for calculations carried out in the
opposite direction. Applied to the parabolic equations, the Saul’yev
technique is unconditionally stable and because it is explicit, it does not
require the solution of large system of simultaneous equations at each
time step, unlike most other unconditionally stable methods.
In applying the Saul’yev method to the one dimensional diffusion equa-
tion, the time derivative is approximated by the usual forward-difference
expression

Ut(x, t) ≈
Un+1
k − Un

k

∆t
,
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and the space derivative is approximated alternately by

Uxx(x, t) ≈
Un+1
k−1 − Un+1

k − Un
k + Un

k+1

∆x2
,

with the calculations proceeding in the direction of increasing x, i.e.,
from left to right, and

Uxx(x, t) ≈
Un+1
k+1 − Un+1

k − Un
k + Un

k−1

∆x2
,

with the calculations proceeding in the direction of increasing x, i.e.,
from right to left.
The difference equations that approximate the diffusion equation are

(2.2) (1 + γρ)Un+1
k = (1− γρ)Un

k + γρ(Un+1
k−1 + Un

k+1)

(2.3) (1 + γρ)Un+1
k = (1− γρ)Un

k + γρ(Un+1
k+1 + Un

k−1),

where ρ = ∆t
∆x2 .

The Saul’yev scheme can be shown to be unconditionally stable using
the Von Neumann method of stability analysis as follows: Let Ûn

k =

Û(k∆x, n∆t) be the numerical solution of the finite difference equations

(2.2) and (2.3) and Ũn(κ) be its Fourier transform. Then, the transform

of Ûn
k+1 is eiκ∆xŨn(κ). Taking the Fourier transform of (2.2) and (2.3)

gives, in each case, an equation of the form

Ũn+1
k (κ) = A(κ∆x)Ũn(κ),

where A(κ∆x) is the amplification factor of the computation. For a
fixed γρ, the condition for stability is that |A| ≤ 1. In this way, we find
that the amplification factor for the left to right step is

A1 =
1− γρ+ γρeiκ∆x

1 + γρ− γρe−iκ∆x
,

while the one for the right to left step is

A2 =
1− γρ+ γρe−iκ∆x

1 + γρ− γρeiκ∆x
.

Since |A1| ≤ 1 and |A2| ≤ 1, for all ρ, κ, and ∆x, the scheme is uncon-
ditionally stable in both cases.
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2.2. Higher order finite difference scheme. The method of unde-
termined coefficient enables us to find approximation of the derivatives
to any order desired. It can be shown that it is not possible to ap-
proximate uxx to the fourth order using only the points x = k∆x and
x = (k ± 1)∆x. As we develop the difference approximation of uxx, we
will see that it is possible to obtain a fourth order approximation of uxx
if we use the points x = k∆x, x = (k±1)∆x and x = (k±2)∆x. Hence,
we consider the approximation of uxx as

∆4uk = c1uk−2 + c2uk−1 + c3uk + c4uk+1 + c5uk+2

where c1, · · · , c5 are yet to be determined. Expanding ∆4uk in a Taylor’s
series expansion about x = k∆x, regrouping the terms in the expansion,
and continuing the calculations, the five coefficients are obtained [5]. In
fact, ∆4uk is an order ∆x4 approximation of uxx, and thus we have

(2.4) uxx(x, t) ≈
1

∆x2
(− 1

12
u(x− 2∆x, t) +

4

3
u(x−∆x, t)− 5

2
u(x, t)

+
4

3
u(x+∆x, t)− 1

12
u(x+ 2∆x, t)),

with the truncation error being O(∆x4).
Again, we approximate the time derivative by the forward-difference
expression

ut(k∆x, n∆t) ≈
un+1
k − unk

∆t
.

Hence, for (2.1), a finite difference method will be

un+1
k = unk + γρ∆4ukn

= unk + γρ

(
− 1

12
unk−2 +

4

3
unk−1 −

5

2
unk +

4

3
unk+1 −

1

12
unk+2

)
,

where ρ = ∆t
∆x2 . This method is consistent and conditionaly stable with

γρ ≤ 2
5 and γ > 0. Therefore, it is a conditionaly convergent method,

by the Lax-Richtmyer theorem.

3. Stochastic difference schemes

Consider the following stochastic partial differential equation of the
first order,

(3.1) ut(x, t) = γuxx(x, t) + σu(x, t)dW (t),
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with u(x, 0) = u0(x), t ∈ [0, T ], x ∈ R1. This equation should be read as

(3.2) u(x, t)− u0(x)− γ

∫ t

0
uxx(x, s)ds− σ

∫ t

0
u(x, s)dW (s) = 0,

where the stochastic integral is the usual Itô-Integral with respect to an
R1-valued Wiener’s process (W (t), Ft)t∈[0,T ] defined on a complete prob-
ability space (Ω, F, P ), adapted to standard filtration(Ft)t∈[0,T ]. Now,
we introduce the following difference equation for the stochastic Saul’yev
scheme:
(3.3)

un+1
k =unk+γ

∆t

∆x2
[unk+1−unk−un+1

k +un+1
k−1 ]+σunk [W ((n+1)∆t)−W (n∆t)].

This equation can be written as:

(1 + γρ)un+1
k = (γρ)unk+1 + (1− γρ)unk + (γρ)un+1

k−1(3.4)

+ σunk [W ((n+ 1)∆t)−W (n∆t)].

In a similar way, the stochastic higher order finite difference scheme
can be considered to be

(3.5) un+1
k = unk + γρ

(
− 1

12
unk−2 +

4

3
unk−1 −

5

2
unk +

4

3
unk+1 −

1

12
unk+2

)
+ σunk [W ((n+ 1)∆t)−W (n∆t)] .

we intend to approximate the solution of (3.2) by the random variable unk
defined by (3.3) and (3.5), which are respectively the stochastic version
of Saul’yev and the higher order finite difference methods.

Remark 3.1. For all the proposed schemes, the increments of Wiener’s
process are independent of the state unk .

3.1. General concerns. Convergence, consistency and stability are im-
portant properties of interest in deterministic theory for the stochastic
case and we aim to appropriate them to the stochastic case. Conver-
gence is the most important property of a scheme to be useful. It means
that the solution of the difference scheme approximates the solution of
the corresponding differential equation and that the approximation im-
proves as the grid spacings ∆t and ∆x tend to zero. To get a higher
degree of generality in the following definitions, it is useful to introduce
the following notations. We consider a stochastic partial differential
equation, say

Lv = G,
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where L denotes the differential operator and G ∈ L2(R) is an inhomo-
geneity. Furthermore, we have an initial condition. Let us assume that
an approximate solution unk and an inhomogeneity Gn

k are obtained such
that Ln

ku
n
k = Gn

k . As before, n corresponds to the time step and k refers
to the spatial mesh point. For convergency, stability and consistency,
we will need a norm. Hence, for a sequence x = {· · · , x−1, x0, x1, · · · },
the sup-norm is defined as ∥x∥∞ =

√
supk |xk|2[3].

We refer to the paper by Roth [3], for the following definitions of a
stochastic difference scheme (SDS).

Definition 3.2. (Convergence of an SDS)
A stochastic difference scheme Ln

ku
n
k = Gn

k approximating the stochastic
partial differential equation Lv = G is convergent in mean square at
time t, if, as (n+ 1)∆t converges to t,

E∥un+1 − vn+1∥2 → 0, for (n+ 1)∆t = t, ∆x → 0 and ∆t → 0,

where un+1 and vn+1 are infinite dimensional vectors

un+1 = (..., un+1
k−2 , u

n+1
k−1 , u

n+1
k , un+1

k+1 , u
n+1
k+2 , ...)

T

and
vn+1 = (..., vn+1

k−2 , v
n+1
k−1 , v

n+1
k , vn+1

k+1 , v
n+1
k+2 , ...)

T .

Definition 3.3. (Consistency of an SDS)
The finite stochastic difference scheme Ln

ku
n
k = Gn

k is pointwise consis-
tent with the stochastic partial differential equation Lv = G at point
(x, t), if for any continuously differentiable function Φ = Φ(x, t),

E∥(LΦ −G)nk − [Ln
kΦ(k∆x, n∆t)−Gn

k ]∥2 −→ 0

in mean square, as ∆x → 0,∆t → t, and (k∆x, (n+ 1)∆t) converges to
(x, t).

Remark 3.4. consistency implies that the solution of the stochastic
partial differential equation, if it is smooth, is an approximate solution of
the finite difference. Consistency is a necessary criterion for a scheme
to be convergent, but it is not sufficient.

Definition 3.5. (Stability of an SDS)
A stochastic difference scheme is said to be stable with respect to a norm
in mean square if there exist some positive constants ∆x0 and ∆t0 and
constants K and β such that

(3.6) E∥un+1∥2 ≤ KeβtE∥u0∥2,
for all 0 ≤ t = (n+ 1)∆t, 0 ≤ ∆x ≤ ∆x0 and 0 ≤ ∆t ≤ ∆t0.
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Definition 3.6. A difference scheme is called unconditionally stable if
no restriction on the relationship between ∆x and ∆t are needed and it
is called conditionally stable otherwise.

Remark 3.7. one interpretation of stability of a difference scheme is
that, for stable difference schemes, small errors in the initial conditions
causes small errors in the solutions. The definition allows the errors to
grow, but limits them to grow not faster than exponentially.

Remark 3.8. The reason to consider numerical schemes and also sto-
chastic numerical schemes is to approximate the solution on a computer.
This does not make sense, if there appear infinitely many spatial steps.
Therefore, if we want to approximate the solution on a time interval
[0, T ] and a space interval [0, 1], we introduce a uniform grid, with the
grid spacing ∆x = 1

M such that xk = k∆x, k = 0, ...,M . Then, the
space is an M − 1, M or M + 1 dimensional space, depending on the
boundary value conditions are used at each end of interval. Of course,
∆t −→ 0 and ∆t must approach zero in such a way that ∆t and ∆x
satisfy their stability conditions.

3.2. Stability analysis for stochastic difference schemes.

3.2.1. Stability of the stochastic Saul’yev scheme.

Theorem 3.9. The stochastic Saul’yev scheme with

(n+ 1)∆t = t

and 0 ≤ γ(∆t/∆x2) =: γρ ≤ 1 is stable with respect to ||.||∞ =
√
supk |.|2.

Proof. Applying E|.|2 to (3.4) and using the independence of the Wiener
increments, we get

E |(1 + γρ)un+1
k − (γρ)un+1

k−1 |
2

= E|(γρ)unk+1 + (1− γρ)unk + σunk(W ((n+ 1)∆t)−W (n∆t)|2

= E|(γρ)unk+1 + (1− γρ)unk |2 + σ2∆tE|unk |2

= ((γρ)2E|unk+1|2 + 2|γρ||1− γρ|E|unk+1.u
n
k |+ (1− γρ)2E|unk |2)

+ σ2∆tE|unk |2

≤ ((|γρ|+ |1− γρ|)2 sup
k

E|unk |2) + σ2∆t sup
k

E|unk |2.

Therefore,
(3.7)
E|(1 + γρ)un+1

k − (γρ)un+1
k−1 |

2 ≤ ((|γρ|+ |1− γρ|)2 + σ2∆t) sup
k

E|unk |2.
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Now, with 0 ≤ γ(∆t/∆x2) =: γρ ≤ 1, we get

E|(1 + γρ)un+1
k − γρun+1

k−1 |
2 ≤ (1 + σ2∆t) sup

j
E|unj |2,

This holds for all k, and so, we have

sup
k

E|(1 + γρ)un+1
k − (γρ)un+1

k−1 |
2 ≤ (1 + σ2∆t)∥un∥2∞

(|1 + γρ| − |γρ|)2 sup
k

E|un+1
k |2 ≤ (1 + σ2∆t)∥un∥2∞

sup
k

E|un+1
k |2 ≤ (1 + σ2∆t)∥un∥2∞.

With the assumption (n+ 1)∆t = t, we obtain:

E∥un+1∥2∞ ≤ (1 +
σ2t

n+ 1
)E∥un∥2∞

E∥un+1∥2∞ ≤ (1 +
σ2t

n+ 1
)n+1E∥u0∥2∞

E∥un+1∥2∞ ≤ eσ
2tE∥u0∥2∞.

So, the left to right Stochastic Saul’yev Scheme is stable for 0 ≤ γρ ≤ 1,
according to Definition 3.5 , with K = 1 and β = σ2. □

3.2.2. Stability of stochastic higher order finite difference scheme.

Theorem 3.10. The stochastic scheme in the form (3.5), with assump-
tions γρ < 2

5 and γ > 0, is stable in mean square with respect to ∥.∥∞.

Proof. Consider
(3.8)

E|un+1
k |2 = E|unk + γρ

(
− 1

12
unk−2 +

4

3
unk−1 −

5

2
unk +

4

3
unk+1 −

1

12
unk+2

)
+σunk (W ((n+ 1)∆t)−W (n∆t)) |2.

since {W (., t) − W (., s)} is normally distributed with mean zero and
variance t− s, and increments of the Wiener process are independent of
unk , we will have
(3.9)

E|un+1
k |2 = E|unk+γρ

(
− 1

12
unk−2 +

4

3
unk−1 −

5

2
unk +

4

3
unk+1 −

1

12
unk+2

)
|2

+σ2∆tE|unk |2.
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By using γρ < 2
5 and γ > 0, we have

E|un+1
k |2 ≤ (1− 5

2
γρ)2 sup

k
E(unk)

2 +
4

144
(γρ)2 sup

k
E(unk)

2

+
64

9
(γρ)2 sup

k
E(unk)

2 + 4(1− 5

2
γρ)(

γρ

12
) sup

k
E(unk)

2

+ 4(1− 5

2
γρ)(

4

3
γρ) sup

k
E(unk)

2 + 8(
γρ

12
)(
4γρ

3
) sup

k
E(unk)

2

+ σ2∆t sup
k

E(unk)
2

=

(
1 +

1

9
(γρ)2 +

2

3
(γρ) + σ2∆t

)
sup
k

E(unk)
2.

It is enough to select λ such that 1
9(γρ)

2+ 2
3(γρ)+σ2∆t ≤ λ2∆t holds,

for all k. Therefore,
(3.10)
sup
k

E(un+1
k )2 ≤ (1+λ2∆t) sup

k
E(unk)

2 ≤ · · · ≤ (1+λ2∆t)n+1 sup
k

E(u0k)
2,

and by substituting ∆t with t
n+1 ,

(3.11) E∥un+1∥2∞ ≤ (1 +
λ2t

n+ 1
)n+1E∥u0∥2∞ ≤ eλ

2tE∥u0∥2∞.

Hence, the scheme is conditionally stable with β = λ2and K = 1. □

3.3. Consistency condition of stochastic difference schemes.

3.3.1. Consistency of stochastic Saul’yev scheme.

Theorem 3.11. The stochastic Saul’yev scheme is consistent in mean
square in the sense of Definition 3.3.

Proof. Let Φ(x, t) be a smooth function (at least continuously differen-
tiable in x and continuous in t). Then, we have

L(Φ)|nk = Φ(k∆x, (n+ 1)∆t)− Φ(k∆x, n∆t)

− γ

∫ (n+1)∆t

n∆t
Φxx(k∆x, s)ds− σ

∫ (n+1)∆t

n∆t
Φ(k∆x, s)dW (s)

and

Ln
k(Φ) = Φ(k∆x, (n+ 1)∆t)− Φ(k∆x, n∆t)

− γ
∆t

∆x2
[Φ((k + 1)∆x, n∆t)− Φ(k∆x, n∆t)
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− Φ(k∆x, (n+ 1)∆t) + Φ((k − 1)∆x, (n+ 1)∆t)]

− σΦ(k∆x, n∆t)(W ((n+ 1)∆t)−W (n∆t)).

Therefore, in mean square, we obtain:

E|L(Φ)|nk − L(Φ)|nk |2 ≤ 2γ2E|
∫ (n+1)∆t

n∆t
Φxx(k∆x, s)

− 1

∆x2
[Φ((k + 1)∆x, n∆t)− Φ(k∆x, n∆t)− Φ(k∆x, (n+ 1)∆t)

+ Φ((k − 1)∆x, (n+ 1)∆t)] ds|2 + 2σ2E|
∫ (n+1)∆t

n∆t
(Φ(k∆x, s)

− Φ(k∆x, n∆t))dW (s)|2 ≤ 2γ2E|
∫ (n+1)∆t

n∆t
Φxx(k∆x, s)

− 1

∆x2
[Φ((k + 1)∆x, n∆t)− Φ(k∆x, n∆t)− Φ(k∆x, (n+ 1)∆t)

+ Φ((k − 1)∆x, (n+ 1)∆t)]ds|2

+ 2σ2

∫ (n+1)∆t

n∆t
|Φ(k∆x, s)− Φ(k∆x, n∆t)|2d(s).

Since Φ(x, t) is only a deterministic function and 0 ≤ γρ ≤ 1, we have

(3.12) E|L(Φ)|nk − Ln
k(Φ)| → 0

when n, k → ∞. This proves the consistency. □

3.3.2. Consistency of stochastic higher order finite difference
scheme.

Theorem 3.12. The stochastic finite difference in the form (3.5) is
consistent in the mean square sense.

Proof. Assume that Φ(x, t) is a smooth function. Then

L(Φ)|nk = Φ(k∆x, (n+ 1)∆t)− Φ(k∆x, n∆t)

− γ

∫ (n+1)∆t

n∆t
Φxx(k∆x, s)ds− σ

∫ (n+1)∆t

n∆t
Φ(k∆x, s)dW (s)

and

Ln
kΦ = Φ(k∆x, (n+ 1)∆t)− Φ(k∆x, n∆t)

− γρ

(
− 1

12
Φ((k − 2)∆x, n∆t) +

4

3
Φ((k − 1)∆x, n∆t)
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− 5

2
Φ(k∆x, n∆t) +

4

3
Φ((k + 1)∆x, n∆t)− 1

12
Φ((k + 2)∆x, n∆t)

)
− σΦ(k∆x, n∆t) (W ((n+ 1)∆t)−W (n∆t)) .

In the mean square sense, we get

E
(
|L(Φ)|nk − Ln

kΦ|
2
)
≤ 2γ2E

[∫ (n+1)∆t

n∆t
Φxx(k∆x, n∆t)

− 1

∆x2

(
− 1

12
Φ((k − 2)∆x, n∆t) +

4

3
Φ((k − 1)∆x, n∆t)

−5

2
Φ((k)∆x, n∆t)

+
4

3
Φ((k + 1)∆x, n∆t)− 1

12
Φ((k + 2)∆x, n∆t)

)
ds

]2
+2σ2E

[∫ (n+1)∆t

n∆t
(Φ(k∆x, s)− Φ(k∆x, n∆t)) dW (s)

]2

.

Also, Φ(x, t) is deterministic, and thus we have

E
(
|L(Φ)|nk − Ln

kΦ|
2
)
≤ 2γ2

[∫ (n+1)∆t

n∆t

(
∂2

∂x2
Φ(k∆x, s)

− 1

∆x2
[− 1

12
Φ((k − 2)∆x, n∆t) +

4

3
Φ((k − 1)∆x, n∆t)

− 5

2
Φ((k)∆x, n∆t)

+
4

3
Φ((k + 1)∆x, n∆t)− 1

12
Φ((k + 2)∆x, n∆t)]

)
ds

]2
+2σ2

[∫ (n+1)∆t

n∆t
|Φ(k∆x, s)− Φ(k∆x, n∆t)|2 ds

]
.

Therefore, we have E
(
|L(Φ)|nk − Ln

kΦ|
2
)
→ 0, as n, k → ∞. □

3.4. Convergence of Stochastic Difference Schemes. By consid-
ering the theorems proved for stability and consistency of the Saul’yev
and the higher order finite difference stochastic difference schemes, and
according to the stochastic version of the Lax-Richtmyer theorem, both
proposed methods are conditionally convergent for ∥.∥∞ [4].
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In spite of the above, in the following theorem, we investigate the
convergency condition for the stochastic Saul’yev scheme directly.

Theorem 3.13. Let v ∈ H3. The stochastic Saul’yev scheme is conver-
gent for the ∥.∥∞ − norm, for 0 ≤ γ(∆t/∆x2) =: γρ ≤ 1 .

Proof. The Saul’yev scheme is given by

un+1
k = unk+γ

∆t

∆x2
[unk+1−unk−un+1

k +un+1
k−1 ]+σunk [W ((n+1)∆t)−W (n∆t)].

The exact solution vn+1
k can be represented by the Taylor expansion

vxx(x, s) with respect to the space variable as

vn+1
k = vnk + γ

∫ (n+1)∆t

n∆t
vxx(x, s)|x=xk

ds+ σ

∫ (n+1)∆t

n∆t
v(k∆x, s)dW (s)

= vnk + γ

∫ (n+1)∆t

n∆t
(
vnk+1 − vnk − vn+1

k + vn+1
k−1

(∆x)2

+γvxxx(k∆x+ ν∆x, s)(
∆t

∆x
)) ds+ σ

∫ (n+1)∆t

n∆t
v(k∆x, s)dW (s),

where ν ∈ (0, 1).

Let znk = vnk − unk and 0 ≤ γ(∆t/∆x2) =: γρ ≤ 1. We get

zn+1
k = vnk+1 − un+1

k

= vnk + γ

∫ (n+1)∆t

n∆t
vxx(x, s)|x=xk

ds+ σ

∫ (n+1)∆t

n∆t
v(k∆x, s)dW (s)

− unk − γ
∆t

∆x2
[unk+1 − unk − un+1

k + un+1
k−1 ]− σunk [W ((n+ 1)∆t)

−W (n∆t)]

= znk + γ

∫ (n+1)∆t

n∆t
(vxx(k∆x, s)−

[unk+1 − unk − un+1
k + un+1

k−1 ]

∆x2
)ds

+ σ

∫ (n+1)∆t

n∆t
(v(k∆x, s)− unk)dW (s).

Then, we have

E|zn+1
k |2 ≤ 2E|znk + γ

∫ (n+1)∆t

n∆t
(vxx(k∆x, s)

−
[unk+1 − unk − un+1

k + un+1
k−1 ]

∆x2
)ds|2
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+ 2σ2

∫ (n+1)∆t

n∆t
E|(v(k∆x, s)− unk)|2 ds

or

E|zn+1
k |2 ≤ 2E|znk + γ

∫ (n+1)∆t

n∆t

vnk+1 − vnk − vn+1
k + vn+1

k−1

∆x2

−
unk+1 − unk − un+1

k + un+1
k−1

∆x2
+ γρ vxxx((k + ν)∆x, s)∆xds|2

+ 2σ2

∫ (n+1)∆t

n∆t
E|(v(k∆x, s)− unk)|2 ds.

Assume Ak = γρ vxxx((k + ν)∆xk, s) < ∞. Then, we continue the
estimate

E|zn+1
k |2 ≤ 2E|znk + γ

∫ (n+1)∆t

n∆t
(
vnk+1 − vnk − vn+1

k + vn+1
k−1

∆x2

−
unk+1 − unk − un+1

k + un+1
k−1

∆x2
+Ak∆x)ds|2

+ 2σ2

∫ (n+1)∆t

n∆t
E|(v(k∆x, s)− unk)|2ds

E|zn+1
k |2 ≤ 2E|znk + γρ(znk+1 − znk − zn+1

k + zn+1
k−1 ) +Ak∆x∆t|2

+ 4σ2

∫ (n+1)∆t

n∆t
E|(v(k∆x, s)− vnk )|2ds+ 4σ2

∫ (n+1)∆t

n∆t
E|vnk − unk |ds.

We have the following estimation for the first integral term [3]:∫ (n+1)∆t

n∆t
E|(v(k∆x, s)− vnk )|2 ds ≤ D2∆t.

Therefore,

E|zn+1
k |2 ≤ 2E|znk + γρ(znk+1 − znk − zn+1

k + zn+1
k−1 ) +Ak∆x∆t|2

+4σ2∆tE|znk |2 +D2∆t

≤ 4E|znk + γρ(znk+1 − znk − zn+1
k + zn+1

k−1 )|
2 + 4E|Ak∆x∆t|2

+4σ2∆tE|znk |2 +D2∆t

≤ 4E|znk + γρ(znk+1 − znk − zn+1
k + zn+1

k−1 )|
2 + 4σ2∆tE|znk |2

+D1∆x∆t+D2∆t

≤ 4E|(1− γρ)znk + (γρ)znk+1 + γρ(zn+1
k−1 − zn+1

k )|2
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+4σ2∆tE|znk |2 +D3∆t

≤ 8E|(1− γρ)znk + (γρ)znk+1|2 + 8(γρ)2E|zn+1
k−1 − zn+1

k |2

+4σ2∆tE|znk |2 +D3∆t

≤ 8[(|1− γρ|+ |γρ|)2 + σ2∆t] sup
k

E|znk |2

+8(γρ)2E|zn+1
k−1 − zn+1

k |2 +D3∆t.

If we consider 0 ≤ γρ ≤ 1, then

E|zn+1
k |2≤8(1 + σ2∆t) sup

j
E|znj |2 + 8(γρ)2E|zn+1

k−1 + zn+1
k |2 +D3∆t

≤8(1 + σ2∆t)E∥zn∥2∞ + 8(γρ)2E|zn+1
k−1 + zn+1

k |2 +D3∆t

≤8(1 + σ2∆t)E∥zn∥2∞ + 16(γρ)2 sup
k

E|zn+1
k |2 +D3∆t.

This holds for all k, and so we have

sup
k

E|zn+1
k |2 ≤ 8(1 + σ2∆t)E∥zn∥2∞ + 16(γρ)2 sup

k
E|zn+1

k |2 +D3∆t

(1− 16(γρ)2) sup
k

E|zn+1
k |2 ≤ 8(1 + σ2∆t)E∥zn∥2∞ +D3∆t.

Therefore, we have

E∥zn+1∥2∞≤ 8

1− 16(γρ)2
(1 + σ2∆t) E∥zn∥2∞ +

8

1− 16(γρ)2
D3∆t

≤ 8

1− 16(γρ)2
(1 + σ2∆t) E∥zn∥2∞ +D4∆t

≤
n∑

j=1

(1 +
σ2t

n+ 1
)j(

8D4∆t

1− 16(γρ)2
)j +D4∆t

≤ (1 +
σ2t

n+ 1
)n+1

n∑
j=1

(
8D4∆t

1− 16(γρ)2
)j +D4∆t.

For a sufficiently small grid, that is, for a large enough n (n∆t = t),

with 8D4∆t
1−16(γρ)2

≤ 1, we have

E∥zn+1∥2∞ ≤8(n− 1)(1 +
σ2t

n+ 1
)n+1(

8D4∆t

1− 16(γρ)2
)2

+8(1 + (1 +
σ2t

n+ 1
)n+1)(

D4∆t

1− 16(γρ)2
)2
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≤ 8

1− 16(γρ)2
(1 + (1 + t)eσ

2t)D2
4∆t → 0,

as ∆t → 0 or n → ∞. □
Theorem 3.14. The stochastic scheme in the form (3.5), with the as-
sumptions ργ < 2

5 and γ > 0 , is convergent in the ∥.∥∞-norm.

Proof. According to Theorem 3.10 and Theorem 3.12 and the stochas-
tic version of Lax-Richtmyer theorem, the stochastic higher order finite
difference scheme is conditionally convergent in ∥.∥∞ [4].

Note that here we have only considered the left to right Saul’yev
scheme for approximating the solution of the stochastic diffusion equa-
tion; the right to left case can be investigated similarly.

4. Numerical results

In this section, the performance of the numerical methods described
in the previous sections are considered by their application to two test
examples. Also, the convergency and stability of the Saul’yev and the
higher finite difference schemes are numerically investigated. For compu-
tational purposes, it is useful to consider the discrete Brownian motion,
where W (t) is specified at discrete t values.

Example 1:
We examine the performance of the proposed left to right Saul’yev

scheme for a linear stochastic parabolic equation. Consider the equation

(4.1) ut(x, t) = 0.01uxx(x, t) + u(x, t)dW (t), t ∈ [0, 1] , x ∈ [0, 1],

subject to the following initial condition

u(x, 0) = x2(1− sin(
π

2
x)2), x ∈ [0, 1],

with the boundary conditions

u(0, t) = u(1, t) = 0.

Therefore, the difference scheme for the Saul’yev method can be written
as:
(4.2)
un+1
k = unk+0.01ρ(unk+1−unk−un+1

k +un+1
k−1)+σunk(W (n+1)∆t−W (n∆t)).

Let M and N be the total number of grid points for the space and
time discretizations, respectively. The convergence of the scheme at the
end of time interval t = 1, for the fixed space grid points M = 200 and
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Figure 1. Numerical approximation with the left to
right Saul’yev scheme using six different values

various time grid points N = 350, 380, 400, 420, 450, 500 is considered.
In our experiments, we have adjusted the variable time step ∆t and the
space step ∆x according to the conditions expressed in the theorems to
ensure the stability and convergence of the numerical scheme.

It is clear from Figure 1 that the numerical solution obtained for the
stochastic parabolic equation for the different time steps is convergent
at time t = 1.

In Figure 2, we presented the stability of the stochastic scheme with
∆x and ∆t selected according to the stability condition. If we consider

E∥un+1∥2 = KeβtE∥u0∥2,

Then we have

(4.3) ln
E∥un+1∥2

E∥u0∥2
= ln(K) + βt.

In these tests, we estimate β and K for different values of M and
N . The top figure presents the approximation of β = −.272208 and
K = 1.002080, for M = 200 and N = 400, and in the same way for the
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Figure 2. Stability of the left to right Saul’yev scheme
and estimation of β and K, for M = 200 and N = 400
(top) and N = 500 (bottom) in (4.3)

second case (the bottom figure), β = −0.268733 and K = 1.005249, for
M = 200 and N = 500, are estimated.

To demonstrate the effect of randomness, we have considered the sto-
chastic problem (4.1) subject to the following initial condition,

u(x, 0) = x2(1− sin(
π

2
x))2 x ∈ [0, 1],

and compared the mean solution with its corresponding deterministic
solution in Figure 3. In this problem and other test examples, by a de-
terministic solution we mean the numerical solution of the unperturbed
problems, i.e, σ = 0 in (1.1). It is clear from Figure 3 that the numeri-
cal solution obtained for the stochastic and the deterministic parabolic
equations are different, but in general the stochastic result is in a good
agreement with the result obtained for the deterministic case.
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Figure 3. Comparison between deterministic and sto-
chastic numerical solution of (4.1) using the Saul’yev
scheme

Example 2:
Consider

ut(x, t) = 0.001uxx(x, t)− u(x, t)dW (t), t ∈ [0 1] , x ∈ [0 1],

with u0(x) = x2(1− x)2 as the initial condition and the boundary con-
ditions u(0, t) = u(1, t) = 0. The discrete form with the higher order
finite difference scheme is

un+1
k = unk +

ρ

1000

(
− 1

12
unk−2 +

4

3
unk−1 −

5

2
unk +

4

3
unk+1 −

1

12
unk+2

)
−unk(W ((n+ 1)∆t)−W (n∆t)),

where ∆t = 1
N and ∆x = 1

M , for some positive integer N and M .

The above form is conditionally stable with β = λ2 and K = 1 and
for γρ < 2

5 , γ ≥ 0. Therefore, if M = 150, then for the stability (or

convergency) condition, we must have ∆t ≤ 1
58 or N ≥ 58. We have

shown this in Figure 4. In the proof of Theorem 3.10, we assumed that
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Figure 4. Representation of conditional convergence,
u(x, 1) for different values of N

1
9(γρ)

2+ 2
3(γρ)+σ2∆t ≤ λ2∆t, and for different values of N , we obtained

the least value of λ2 in Table 1.

Table 1. λ2 for stability

N 50 58 60 120 250 500 1000
λ2 17.1250 16.9698 16.9374 16.3750 16.2250 16.1124 16.0562

On the other hand, in (3.11) we had
(4.4)

E∥un+1∥2∞≤eλ
2tE∥u0∥2∞ ⇒ y = ln

(
E∥un+1∥2∞
E∥u0∥2∞

)
≤λ2t , (n+1)∆t = t.

According to (4.4) and Figure 5 (or Figure 4) and Table 1, the stability
condition is satisfied for N ≥ 58. In Figure 6, we investigate the con-
vergency of the solutions. We do not have the exact solution for this
example, and so the numerical approximation at t = 1, for N = 120, is
chosen as a basic fixed solution (Figure 6, left). The right hand side of
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Figure 5. Figures of y in (4.4) against t

Figure 6, gives the log-scale of the difference between the numerical ap-
proximations with N = 60 and N = 500 having the basic fixed solution
at the mesh points.
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Figure 6. Log difference numerical approximation
(right figure) for N = 60 and N = 500 with N = 120
(left figure) and common value M = 150
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5. Conclusion

Two numerical methods for approximating the solution of linear sto-
chastic parabolic equations using the Saul’yev and a higher order finite
difference schemes were provided. The Saul’yev scheme was uncondi-
tionally stable and explicit, and so it did not need to solve simultaneous
equations in each time step in the comparison with other uncondition-
ally stable implicit methods. On the other hand, the higher order finite
difference scheme seemed to be advantageous because of its high accu-
racy. So, the main idea in this approach is to extend these explicit finite
difference methods for approximating the solution of linear parabolic
SPDEs. Stability conditions, convergence and consistency as most im-
portant properties of finite difference schemes were studied and proved
for the stochastic cases. In the numerical results, the performance of
these two numerical schemes for stochastic parabolic equations were dis-
cussed.
An open question is how to extend other main methods of solving de-
terministic partial differential equations to the stochastic case. For ex-
ample, it seems that method of lines or adaptive methods for stochastic
initial-boundary value problems can be applied and the performance of
these methods can be examined with test problems such as stochastic
advection-diffusion problem or stochastic Burger’s equation.
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