LINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS

N. NYAMORADI AND H. R. ZOHOURI ZANGENEH*

Communicated by Henrik Shahgholian

Abstract. We consider the number of zeros of the integral $I(h)=$ $\oint_{\Gamma_{h}} \omega$ of real polynomial form ω of degree not greater than n over a family of vanishing cycles on curves $\Gamma_{h}: y^{2}+3 x^{2}-x^{6}=h$, where the integral is considered as a function of the parameter h. We prove that the number of zeros of $I(h)$, for $0<h<2$, is bounded above by $2\left[\frac{n-1}{2}\right]+1$.

1. Introduction

Let $H=H(x, y)$ be a polynomial in x, y of degree $m \geq 2$, and the level curves $\Gamma_{h} \subset\{(x, y): H(x, y)=h\}$ from a continuous family of ovals $\left\{\Gamma_{h}\right\}$, for $\Sigma=\left\{h_{1}<h<h_{2}\right\}$ (as a maximal interval of existence of Γ_{h}). Consider a polynomial 1-form $\omega=f(x, y) d x-g(x, y) d y$, where $\max \{\operatorname{deg}(f), \operatorname{deg}(g)\}=n \geq 2$. Arnold in [1, 2] proposed the following problem:

[^0]For fixed integers m and n find the maximum number $Z(m, n)$ of (isolated) zeros of the Abelian integrals

$$
\begin{equation*}
I(h)=\oint_{\Gamma_{h}} \omega . \tag{1.1}
\end{equation*}
$$

Recall that an Abelian integral is the integral of a rational 1-form along an algebraic oval. The general result of solving the weakened Hilbert 16th problem was achieved by Varchenko [14] and Khovanskii [4], who proved independently the existence of $Z(m, n)$, but no explicit expression of $Z(m, n)$ has been obtained. Ilyashenko, Yakovenko and Novikov proved in $[5,6,7,15]$ that for the set of "good" $H(x, y)$ there exists a constant $c(H)<+\infty$ such that the number of real isolated zeros of $I(h)$ in Σ does not exceed $\exp (c(H) n)$. Zhao and Zhang [16] gave an explicit upper bound $Z(4, n) \leq 7 n+5$. Their proof exploited the properties of the Picard-Fuchs system satisfied by the four basic integrals, which are the generators of the module of complete Abelian integrals over polynomial rings. Petrov in $[9,10,11]$ gave the explicit upper bounds $Z(4, n) \leq 2[(n-1) / 2]+1$ and $Z(4, n) \leq n+[(n-1) / 2]$. That proof exploits the argument principle by the three basic integrals which are the generators of the module of complete Abelian integrals over polynomial rings. The number of zeros of $I(h)$ was estimated in $[9,10,11,12]$, and most of these results were proved by Petrov's method.
In particular, here using Petrov's method in [9], we solve the problem of zeros of the integral $I(h)=\oint \omega$ of real polynomial form ω of degree not greater than n over a family of vanishing cycles on curves $y^{2}+3 x^{2}-x^{6}=h$, where the integral is considered to be a function of the parameter h. Our main result is the following.

Theorem 1.1. The sum of the number of zeros of the elliptic integral (1.1) in the plane-region with cuts along rays $\{h \leq 0\}$ and $\{2 \leq h\}$, defined for a family of cycles vanishing for $h=0$ (the minimal critical value of polynomial $y^{2}+3 x^{2}-x^{6}$), and the number of zeros in this region of integral (1.1) of the same form ω, defined for a family of cycles vanishing for $h=2$ (the maximal critical value of $y^{2}+3 x^{2}-x^{6}$), is less than $2[(n-1) / 2]+1$.

The remainder of our work is organized as follows. In Section 2, $I(h)$ is expressed as a linear combination of three basic integrals I_{0}, I_{1} and I_{2} with polynomial coefficients. In Section 3, we derive a Picard-Fuchs system and asymptotic expansions of Abelian integrals of I_{0}, I_{1} and
I_{2}. Using these results, in Section 4 we reduce the initial problem to counting the number of zeros of certain Abelian integrals..

2. The algebraic structure of $I(h)$

In this section, we are going to express $I(h)$ as a combination of three basic integrals. But, first we need to introduce some notations.

The Hamiltonian $H(x, y)=y^{2}+3 x^{2}-x^{6}$ has a center at $P_{0}(0,0)$ and two saddles at $P_{1}(1,0), P_{2}(-1,0)$. The ovals around P_{0} are defined for $h \in \sum=(0,2)$.
By partial integration, $I(h)$ can be expressed as

$$
I(h)=\oint_{\Gamma_{h}} P(x, y) d x=\oint_{\Gamma_{h}} \sum_{k+j \leq n} a_{k j} x^{2 k} y^{j} d x
$$

Hence, in the rest of this paper, we represent $I(h)$ as above instead of (1.1). Let we denote

$$
\begin{align*}
I_{k, l}(h) & =\oint_{\Gamma_{h}} x^{2 k} y^{l} d x \tag{2.1}\\
I_{0}(h) & =I_{01}(h), \quad I_{1}(h)=I_{11}(h), \quad I_{2}(h)=I_{21}(h), \quad h \in \Sigma \tag{2.2}
\end{align*}
$$

Then, the following statement holds.
Lemma 2.1. For $d \geq 3$ and $k+l=d, I_{k, l}$ can be expressed as the linear combination of $I_{i j}$ (where, $i+j=d-1$) and $h I_{i j}$ (where, $i+j=d-2$, $i=0,1,2)$.

Proof. Multiplying $H(x, y)=y^{2}+3 x^{2}-x^{6}=h$ by $x^{2 k} y^{l-2}$ and integrating over Γ_{h}, yields

$$
\begin{equation*}
I_{k, l}+3 I_{k+1, l-2}-I_{k+3, l-2}=h I_{k, l-2} . \tag{2.3}
\end{equation*}
$$

By taking derivative of $H(x, y)=y^{2}+3 x^{2}-x^{6}=h$ with respect to to x, we get

$$
\begin{equation*}
y d y+\left(3 x-3 x^{5}\right) d x=0 \tag{2.4}
\end{equation*}
$$

Multiplying (2.4) by $x^{2 k-5} y^{l}$ and integrating over Γ_{h} gives by part

$$
\begin{equation*}
I_{k, l}=-\frac{2 k-5}{3(l+2)} I_{k-3, l+2}+I_{k-2, l} . \tag{2.5}
\end{equation*}
$$

The equality (2.5) shows

$$
\begin{equation*}
I_{k+3, l-2}=-\frac{2 k+1}{3 l} I_{k, l}+I_{k+1, l-2} . \tag{2.6}
\end{equation*}
$$

Substituting (2.6) into (2.3), we get

$$
\begin{equation*}
\frac{3 l+2 k+1}{3 l} I_{k, l}+2 I_{k+1, l-2}=h I_{k, l-2} . \tag{2.7}
\end{equation*}
$$

We use (2.7), with $k=0,1,2$, and (2.5), with $k=3,4, \ldots, d-1, d$, respectively to obtain:

$$
\begin{aligned}
\frac{3 d+1}{3 d} I_{0 d} & =-2 I_{1, d-2}+h I_{0, d-2}, \\
\frac{3 d}{3(d-1)} I_{1, d-1} & =-2 I_{2, d-3}+h I_{1, d-3}, \\
\frac{3 d-1}{3(d-2)} I_{2, d-2} & =-2 I_{3, d-4}+h I_{2, d-4}, \\
I_{3, d-3} & =-\frac{1}{3(d-1)} I_{0, d-1}+I_{1, d-3}, \\
I_{4, d-4} & =-\frac{3}{3(d-2)} I_{1, d-2}+I_{2, d-4}, \\
\vdots & \\
I_{d, 0} & =-\frac{2 d-5}{6} I_{d-3,2}+I_{d-2,0} .
\end{aligned}
$$

Then, we obtain a linear algebraic system of the form

$$
A J=B, A=\left(\begin{array}{cc}
A_{3} & 0 \tag{2.8}\\
0 & E_{d-2}
\end{array}\right),
$$

where $J=\operatorname{col}\left(I_{0, d}, I_{1, d-1}, I_{2, d-2}, \ldots, I_{d, 0}\right), E_{d-2}$ is a unit matrix of order $d-2$, and

$$
A_{3}=\left(\begin{array}{ccc}
\frac{3 d+1}{3 d} & 0 & 0 \\
0 & \frac{d}{d-1} & 0 \\
0 & 0 & \frac{3 d-1}{3(d-2)}
\end{array}\right)
$$

Since $\operatorname{det} A_{3} \neq 0$, for $d \geq 3$, and B contains only the integral $I_{i j}, i+j=$ $d-1$ and $h I_{i j}, i+j=d-2, i=0,1,2$, the statement in the lemma is true.

A straightforward computing by induction yields the following lemma.
Lemma 2.2. For $n \geq 3$, the Abelian integral $I(h)$ can be expressed as:

$$
\begin{equation*}
I(h)=\alpha(h) I_{0}(h)+\beta(h) I_{1}(h)+\gamma(h) I_{2}(h), \tag{2.9}
\end{equation*}
$$

where $\alpha(h), \beta(h)$, and $\gamma(h)$ are polynomials of h, deg $\alpha(h) \leq\left[\frac{n-1}{2}\right]$, $\operatorname{deg} \beta(h) \leq\left[\frac{n-2}{2}\right]$, deg $\gamma(h) \leq\left[\frac{n-3}{2}\right]$, and $[s]$ denotes the largest integer less than s.

Proof. By substituting $k=0, l=3, k=3, l=1$ and $k=1, l=3$ in (2.5), (2.7), we have

$$
\begin{align*}
I_{03} & =\frac{9}{10} h I_{0}-\frac{9}{5} I_{1} \\
I_{13} & =-\frac{3}{2} I_{2}+\frac{3}{4} h I_{1} \tag{2.10}\\
I_{31} & =-\frac{1}{9} I_{03}+I_{11}=-\frac{1}{10} h I_{0}+\frac{6}{5} I_{1} .
\end{align*}
$$

Then, for $n=3$, we have

$$
\begin{aligned}
I(h) & =\oint_{\Gamma_{h}} \sum_{k+j \leq n} a_{k j} x^{2 k} y^{j} d x \\
& =\left(\frac{9}{10} a_{03} h+a_{01}\right) I_{0}+\left(a_{11}-\frac{9}{5} a_{03}\right) I_{1}+a_{21} I_{2}
\end{aligned}
$$

and, for $n=4$, we have

$$
\begin{aligned}
I(h) & =\oint_{\Gamma_{h}} \sum_{k+j \leq n} a_{k j} x^{2 k} y^{j} d x \\
& =\left(\frac{9}{10} a_{03} h+a_{01}-\frac{1}{10} a_{31} h\right) I_{0}+\left(a_{11}-\frac{9}{5} a_{03}+\frac{6}{5} a_{31}+\frac{3}{4} a_{13} h\right) I_{1} \\
& +\left(a_{21}-\frac{3}{2} a_{13}\right) I_{2}
\end{aligned}
$$

which implies that the result holds for $n=3$ and $n=4$.
Suppose for $n \leq d-1, \operatorname{deg} P(x, y)=n$ in (1.1) and $I^{n}(h)=\oint_{\Gamma_{h}} P(x, y) d x$ can be expressed as

$$
\begin{equation*}
I^{n}(h)=\alpha^{n}(h) I_{0}+\beta^{n}(h) I_{1}+\gamma^{n}(h) I_{2}, \tag{2.11}
\end{equation*}
$$

where $\operatorname{deg} \alpha^{n}(h) \leq\left[\frac{n-1}{2}\right], \operatorname{deg} \beta^{n}(h) \leq\left[\frac{n-2}{2}\right]$ and $\operatorname{deg} \gamma^{n}(h) \leq\left[\frac{n-3}{2}\right]$.
For $n=d$,

$$
I(h)=\oint_{\Gamma_{h}} \sum_{k+j \leq n} a_{k j} x^{2 k} y^{j} d x=\sum_{k+j \leq d-1} a_{k j} I_{k j}+\sum_{k+j=d} a_{k j} I_{k j} .
$$

By the equality (2.11), we have

$$
\sum_{k+j \leq d-1} a_{k j} I_{k j}=\alpha^{d-1}(h) I_{0}+\beta^{d-1}(h) I_{1}+\gamma^{d-1}(h) I_{2},
$$

and by Lemma 2.1, we obtain:

$$
\begin{aligned}
\sum_{k+j=d} a_{k j} I_{k j} & =\sum_{k+j=d-1} b_{k j} I_{k j}+\sum_{k+j=d-2} c_{k j} I_{k j}+\sum_{k+j=d-2} e_{k j} h I_{k j} \\
& =\left(b_{0}^{d-1}(h) I_{0}+b_{1}^{d-1}(h) I_{1}+b_{2}^{d-1}(h) I_{2}\right) \\
& +\left(c_{0}^{d-2}(h) I_{0}+c_{1}^{d-2}(h) I_{1}+c_{2}^{d-2}(h) I_{2}\right) \\
& +h\left(e_{0}^{d-2}(h) I_{0}+e_{1}^{d-2}(h) I_{1}+e_{2}^{d-2}(h) I_{2}\right) .
\end{aligned}
$$

Then, $I(h) \equiv \alpha(h) I_{0}+\beta(h) I_{1}+\gamma(h) I_{2}$. Therefore,

$$
\begin{aligned}
\operatorname{deg} \alpha(h) \leq & \max \left\{\operatorname{deg} \alpha^{d-1}(h), \operatorname{deg} b_{0}^{d-1}(h), \operatorname{deg} c_{0}^{d-1}(h), 1+\operatorname{deg} e_{0}^{d-1}(h)\right\} \\
\leq & \max \left\{\left[\frac{d-1-1}{2}\right],\left[\frac{d-1-1}{2}\right],\left[\frac{d-2-1}{2}\right],\right. \\
& \left.1+\left[\frac{d-2-1}{2}\right]\right\} \\
= & {\left[\frac{d-1}{2}\right], }
\end{aligned}
$$

which implies $\operatorname{deg} \alpha(h) \leq\left[\frac{n-1}{2}\right]$, for arbitrary n. Similarly, $\operatorname{deg} \beta(h) \leq$ $\left[\frac{n-2}{2}\right]$ and $\operatorname{deg} \gamma(h) \leq\left[\frac{n-3}{2}\right]$.

3. The Picard-Fuchs system and asymptotic expansions of the Abelian integrals

In this section, we first derive the Picard-Fuchs equations satisfied by $I_{0}(\mathrm{~h}), I_{1}(h)$ and $I_{2}(h)$. Further more, we obtain the asymptotic expansion of the Abelian integrals $I_{0}(\mathrm{~h}), I_{1}(h)$ and $I_{2}(h)$ near $h=0$, $h=2$ and $h=\infty$.
Let $I_{k}(h)$ be defined as before by

$$
\begin{equation*}
I_{k}(h)=\oint_{\Gamma_{h}} x^{2 k} y d x, \quad k=0,1,2, \ldots \tag{3.1}
\end{equation*}
$$

Consider the following Hamiltonian of degree 6:

$$
\begin{equation*}
H(x, y)=y^{2}+3 x^{2}-x^{6}, \tag{3.2}
\end{equation*}
$$

which is associated with a Newtonian mechanical system. Taking $y=$ $y(x, h)$ on Γ_{h}, the equation $H(x, y)=h$ implies that $\frac{\partial y}{\partial h}=\frac{1}{2 y}$. Thus,

$$
\begin{equation*}
I_{k}(h)=\oint_{\Gamma_{h}} x^{2 k} \frac{\partial y}{\partial h} d x=\oint_{\Gamma_{h}} \frac{x^{2 k}}{y} d x \tag{3.3}
\end{equation*}
$$

Along the curve Γ_{h}, we have $y^{2}=h-3 x^{2}+x^{6}$. Therefore,

$$
\begin{align*}
I_{k}(h) & =\oint_{\Gamma_{h}} x^{2 k} y d x \tag{3.4}\\
& =2 \oint_{\Gamma_{h}} \frac{x^{2 k}}{2 y}\left(h-3 x^{2}+x^{6}\right) d x \\
& =2 h \oint_{\Gamma_{h}} \frac{x^{2 k}}{2 y} d x-6 \oint_{\Gamma_{h}} x^{2 k+2} y d x+2 \oint_{\Gamma_{h}} x^{2 k+6} y d x \\
& =2 h I_{k}^{\prime}(h)-6 I_{k+1}^{\prime}(h)+2 I_{k+3}^{\prime}(h) .
\end{align*}
$$

On the other hand, by integrating by parts, we have

$$
\begin{align*}
I_{k}(h) & =\oint_{\Gamma_{h}} x^{2 k} y d x \tag{3.5}\\
& =\frac{1}{2 k+1} \oint_{\Gamma_{h}} y d x^{2 k+1}=\frac{-1}{2 k+1} \oint_{\Gamma_{h}} x^{2 k+1} d y \\
& =\frac{-1}{2 k+1} \oint_{\Gamma_{h}} x^{2 k+1}\left(\frac{-6 x+6 x^{5}}{2 y}\right) d x \\
& =\frac{1}{2 k+1}\left(6 I_{k+1}^{\prime}-6 I_{k+3}^{\prime}\right)
\end{align*}
$$

Eliminating $I_{k+3}^{\prime}(h)$ from (3.4) and (3.5), we find that

$$
\begin{equation*}
18(k+2) I_{k}(h)=54 h I_{k}^{\prime}(h)-108 I_{k+1}^{\prime} . \tag{3.6}
\end{equation*}
$$

Taking $k=0,1,2$ in (3.5), we have

$$
\begin{align*}
36 I_{0}(h) & =54 h I_{0}^{\prime}-108 I_{1}^{\prime}(h) \tag{3.7}\\
54 I_{1}(h) & =54 h I_{1}^{\prime}-108 I_{2}^{\prime}(h), \tag{3.8}\\
72 I_{2}(h) & =54 h I_{2}^{\prime}-108 I_{3}^{\prime}(h) \tag{3.9}
\end{align*}
$$

Taking $k=0$ in (3.5), we have

$$
\begin{equation*}
I_{3}^{\prime}(h)=I_{1}^{\prime}(h)-\frac{1}{6} I_{0}(h) . \tag{3.10}
\end{equation*}
$$

Substituting 3.10 into (3.9) leads to

$$
72 I_{2}(h)=-108 I_{1}^{\prime}(h)+54 h I_{2}^{\prime}(h)-18 h I_{3}^{\prime}(h) .
$$

If we set $J(h)=\operatorname{column}\left(I_{0}(h), I_{1}(h), I_{2}(h)\right)$, then (3.7), (3.8) and (3.10) can be written in the matrix form

$$
\begin{equation*}
A J(h)=(54 h E+B) J^{\prime}(h), \tag{3.11}
\end{equation*}
$$

where E is the identity matrix and

$$
A=\left(\begin{array}{ccc}
36 & 0 & 0 \tag{3.12}\\
0 & 54 & 0 \\
-18 & 0 & 72
\end{array}\right), \quad B=\left(\begin{array}{ccc}
0 & -108 & 0 \\
0 & 0 & -108 \\
0 & -108 & 0
\end{array}\right)
$$

yielding the following Picard-Fuchs equation:

$$
G(h) J^{\prime}(h)=\left(\begin{array}{ccc}
36\left(h^{2}-6\right) & 108 h & 288 \tag{3.13}\\
-36 h & 54 h^{2} & 144 h \\
-18 h^{2} & 108 h & 72 h^{2}
\end{array}\right) J(h)
$$

where $G(h)=54 h\left(h^{2}-4\right)$.
Lemma 3.1. $I_{0}(h), I_{1}(h)$ and $I_{2}(h)$ have the following asymptotic expansion, as $h \rightarrow+\infty$,
(3.14) $I_{0}(h)=2 C_{1} h^{2 / 3}-3 C_{2}+2 C_{3} h^{-2 / 3}+O\left(h^{-4 / 3}\right)$,
(3.15) $I_{1}(h)=C_{2} h-4 C_{3} h^{1 / 3}+O\left(h^{-1 / 3}\right)$,

$$
\begin{equation*}
I_{2}(h)=C_{3} h^{4 / 3}+C_{1} h^{2 / 3}-\frac{9}{4} C_{2}+\frac{5}{2} C_{3} h^{-2 / 3}+O\left(h^{-4 / 3}\right), \tag{3.16}
\end{equation*}
$$

where C_{1} and C_{2} are real constant.
Proof. We find asymptotic expansions of (3.14)-(3.16) using the methods developed in [8]. We consider the system (3.13) which can be reduced to the following system

$$
\begin{equation*}
\frac{d J}{d h}=h^{q} A(h) J(h) \tag{3.17}
\end{equation*}
$$

where $q=-1$ and

$$
A(h)=\left(\begin{array}{ccc}
\frac{2}{3}\left(1-\frac{2}{h^{2}-4}\right) & \frac{2 h}{h^{2}-4} & \frac{16}{3\left(h^{2}-4\right)} \\
\frac{-2 h}{3\left(h^{2}-4\right)} & 1+\frac{4}{h^{2}-4} & \frac{8}{3\left(h^{2}-4\right)} \\
-\frac{1}{3}\left(1+\frac{4}{h^{2}-4}\right) & \frac{2 h}{h^{2}-4} & \frac{4}{3}\left(1+\frac{4}{h^{2}-4}\right)
\end{array}\right) .
$$

Now, it is clear that, as $h \rightarrow+\infty$, we have

$$
\begin{aligned}
\frac{1}{h^{2}-4} & =\frac{1}{4}\left(\frac{1}{h-2}-\frac{1}{h+2}\right) \\
& =\frac{1}{4 h}\left(\sum_{n=0}^{\infty}\left(\frac{2}{h}\right)^{n}-\sum_{n=0}^{\infty}\left((-1)^{n} \frac{2}{h}\right)^{n}\right)
\end{aligned}
$$

$$
=\sum_{n=0}^{\infty}\left(1-(-1)^{n}\right) 2^{n-2} h^{-n-1}
$$

Thus, $A(h)=\sum_{m=0}^{\infty} A_{m} h^{-m}$, as $h \rightarrow \infty$, where
$A_{0}=\left(\begin{array}{ccc}\frac{2}{3} & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{3} & 0 & \frac{4}{3}\end{array}\right), A_{1}=\left(\begin{array}{ccc}0 & 2 & 0 \\ -\frac{2}{3} & 0 & \frac{8}{3} \\ 0 & 2 & 0\end{array}\right), A_{2}=\left(\begin{array}{ccc}-\frac{4}{3} & 0 & \frac{16}{3} \\ 0 & 4 & 0 \\ -\frac{4}{3} & 0 & \frac{16}{3}\end{array}\right)$.
The eigenvalues of the matrix A_{0} are $\sigma_{1}=2 / 3, \sigma_{2}=1$ and $\sigma_{3}=4 / 3$, with the eigenvectors

$$
u_{01}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right), u_{02}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), u_{02}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Now, by taking $J=h^{\sigma} \Sigma_{m=0}^{\infty} u_{m} h^{-m}$ in (3.17) and equating the coefficients of the terms with equal powers, we find that the scalar σ and the column vectors U_{m} satisfy the following recursive formulas:

$$
\begin{equation*}
A_{0} u_{0}=\sigma u_{0}, \quad(\sigma-m) u_{m}=\Sigma_{i=0}^{\infty} A_{i} u_{m-i} ; \quad m=1,2,3, \ldots \tag{3.18}
\end{equation*}
$$

In other words, σ is an eigenvalue and u_{0} is an eigenvector associated with σ for the matrix A_{0}. Since A_{0} has three distinct eigenvalues, the linear combination of corresponding solutions of the system (3.18) gives the general solution of (3.17), as $h \rightarrow+\infty$.

By taking $\sigma=2 / 3$ in (3.18), we obtain

$$
u_{0}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right), u_{1}=\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right), u_{2}=\left(\begin{array}{c}
-1 / 3 \\
0 \\
-25 / 4
\end{array}\right), \ldots
$$

and by taking $\sigma=1$ in (3.18), we obtain

$$
u_{0}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), u_{1}=\left(\begin{array}{c}
-3 \\
0 \\
-9 / 4
\end{array}\right), u_{2}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \ldots
$$

Also, by taking $\sigma=4 / 3$ in (3.18), we obtain

$$
u_{0}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), u_{1}=\left(\begin{array}{c}
0 \\
-4 \\
0
\end{array}\right), u_{2}=\left(\begin{array}{c}
2 \\
0 \\
5 / 3
\end{array}\right), \ldots
$$

Finally, we derive three linearly independent asymptotic solutions for the system (3.17), as $h \rightarrow+\infty$, as follows:

$$
\begin{aligned}
& J_{1}(h)=h^{2 / 3}\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)+h^{-1 / 3}\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)+h^{-4 / 3}\left(\begin{array}{c}
-1 / 3 \\
0 \\
-25 / 4
\end{array}\right)+O\left(h^{-7 / 3}\right), \\
& J_{2}(h)=h\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{c}
-3 \\
0 \\
-9 / 4
\end{array}\right)+h^{-1}\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)+O\left(h^{-2}\right), \\
& J_{2}(h)=h^{4 / 3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+h^{1 / 3}\left(\begin{array}{c}
0 \\
-4 \\
0
\end{array}\right)+h^{-2 / 3}\left(\begin{array}{c}
2 \\
0 \\
5 / 3
\end{array}\right)+O\left(h^{-5 / 3}\right) .
\end{aligned}
$$

Thus, as $h \rightarrow+\infty$, the general solution of the system (3.17) has the form

$$
\begin{equation*}
J(h)=C_{1} J_{1}(h)+C_{2} J_{2}(h)+C_{3} J_{3}(h) . \tag{3.19}
\end{equation*}
$$

Now, from (3.19), we get the result.
Lemma 3.2. The Abelian integral I_{0}, I_{1} and I_{2} have the following asymptotic expansions, as $h \rightarrow 2^{-}$:

$$
\begin{aligned}
I_{0}(h) & =3.95087+(3.4641 \ln (n)-15.4056) n+0.96225 n^{3 / 2} \\
& +(2.88675 \ln (n)+0.585364) n^{2}+O\left(n^{5 / 2}\right), \\
I_{1}(h) & =0.830186+(3.4641 \ln (n)+0.397857) n-v 0.19245 n^{3 / 2} \\
& +(4.73266-0.57735 \ln (n)) n^{2}+O\left(n^{5 / 2}\right), \\
I_{2}(h) & =0.365079+(3.4641 \ln (n)+5.37897) n-1.34715 n^{3 / 2} \\
& -(0.57735 \ln (n)+5.65964) n^{2}+O\left(n^{5 / 2}\right),
\end{aligned}
$$

where $n=\frac{2-h}{12} \rightarrow 0^{+}$.
Proof. Let $h=2-12 n$ and $x=1-z$. Then, $y^{2}+3 x^{2}-x^{6}=h$ implies that $z^{2}-\frac{5}{3} z^{3}+\frac{5}{4} z^{4}-\frac{1}{2} z^{5}+\frac{1}{12} z^{6}=n$, and hence, as $z \rightarrow 0^{+}$, we have

$$
\begin{equation*}
z^{2}=n\left(1+\frac{5}{3} z+\frac{55}{36} z^{2}+\frac{26}{27} z^{3}+O\left(z^{4}\right)\right) \tag{3.20}
\end{equation*}
$$

To find the positive solution of (3.20), first we consider the successive equations $z^{2}=n, z^{2}=n\left(1+\frac{5}{3} z+\frac{55}{36} z^{2}\right)$, and so on, and then solve the first equation and substitute the solution in the right hand side of the
second equation and continue this process to obtain
(3.21) $z=1-a(n)=\sqrt{n}\left(1+\frac{5}{6} \sqrt{n}+\frac{10}{9} n+\frac{379}{216} n \sqrt{n}+O\left(n^{2}\right)\right)$.

Now, by using (3.21) and for $0<2-h \ll 1$, we can write

$$
\begin{aligned}
I_{0}(h) & =\oint_{H=h} y d x=4 \int_{0}^{a(n)} \sqrt{\left(1-x^{2}\right)^{2}\left(x^{2}+2\right)-12 n} d x \\
& =4 \int_{0}^{a(n)}\left(1-x^{2}\right) \sqrt{x^{2}+2} \sqrt{1-\frac{12 n}{\left(x^{2}-1\right)^{2}\left(x^{2}+2\right)}} d x \\
& =4 \int_{0}^{a(n)}\left(1-x^{2}\right) \sqrt{x^{2}+2}\left(1-\frac{6 n}{\left(x^{2}-1\right)^{2}\left(x^{2}+2\right)}\right. \\
& \left.-\frac{18 n^{2}}{\left(x^{2}-1\right)^{4}\left(x^{2}+2\right)^{2}}+O\left(n^{3}\right)\right) d x \\
& =4 \int_{0}^{a(n)}\left(1-x^{2}\right) \sqrt{x^{2}+2} d x-24 n \int_{0}^{a(n)} \frac{d x}{\left(1-x^{2}\right) \sqrt{x^{2}+2}} \\
& -72 n^{2} \int_{0}^{a(n)} \frac{d x}{\left(1-x^{2}\right)^{3}\left(x^{2}+2\right)^{3 / 2}}+O\left(n^{3}\right) \\
& =\left(x\left(1-x^{2}\right) \sqrt{x^{2}+2}+6 \sinh ^{-1}\left(\frac{x}{\sqrt{2}}\right)-\frac{24 n}{\sqrt{3}} \tanh ^{-1}\left(\frac{x \sqrt{3}}{\sqrt{2+x^{2}}}\right)\right. \\
& \left.+\frac{2 n^{2} x\left(2 x^{4}+3 x^{2}-8\right)}{\left(x^{2}-1\right)^{2} \sqrt{x^{2}+2}}-\frac{20 n^{2}}{\sqrt{3}} \tanh ^{-1}\left(\frac{x \sqrt{3}}{\sqrt{2+x^{2}}}\right)\right)\left.\right|_{0} ^{a(n)}+O\left(n^{3}\right) \\
& =6 \sinh ^{-1}\left(\frac{1}{\sqrt{2}}\right)-\left(\frac{9 \sqrt{3}}{2}+4 \ln (3)-2 \ln (n)\right) n+\left(\frac{20}{3}-\frac{55}{3 \sqrt{3}}\right) n^{3 / 2} \\
& +\left(\frac{20}{3}-\frac{8}{\sqrt{3}}-\frac{10}{\sqrt{3}} \ln (3)+\frac{5}{\sqrt{3}} \ln (n)\right) n^{2}+O\left(n^{5 / 2}\right) .
\end{aligned}
$$

Similarly, we can obtain the result for $I_{1}(h)$ and $I_{2}(h)$.
Lemma 3.3. $I_{0}(h), I_{1}(h)$ and $I_{2}(h)$, for $H(x, y)=y^{2}+3 x^{2}-x^{6}$, have the following asymptotic expansions, as $h \rightarrow 0^{+}$,

$$
\begin{aligned}
I_{0}(h) & =I_{0}^{\prime}(0)\left[h+O\left(h^{3}\right)\right], \\
I_{1}(h) & =I_{0}^{\prime}(0)\left[\frac{1}{12} h^{2}+O\left(h^{3}\right)\right], \\
I_{2}(h) & =I_{0}^{\prime}(0)\left[\frac{1}{72} h^{3}+O\left(h^{4}\right)\right] .
\end{aligned}
$$

Proof. Since $I_{k}(0)=0$ and $I_{k}(h)$, for $k=0,1,2$, is analytic by [13] at $h=0$, then by putting

$$
I_{0}(h)=\sum_{n=1}^{\infty} a_{n} h^{n}, \quad I_{1}(h)=\sum_{n=1}^{\infty} b_{n} h^{n}, \quad I_{2}(h)=\sum_{n=1}^{\infty} c_{n} h^{n},
$$

into (3.13) (the Picard-Fuchs equation) and equating the coefficients of the terms with the same degree, we get the result.

4. Number of zeros of the Abelian integrals

In this section, by the Petrov method, we solve the problem of zeros of the integral $I_{\omega}=\oint \omega$ of real polynomial form ω of degree not greater than n over a family of vanishing cycles on curves $y^{2}+3 x^{2}-x^{6}=h$, where the integral is considered as a function of the parameter h.
By using the methods developed in [3], we define the vanishing cycles. Consider a holomorphic function $f: \mathbb{C}^{n} \rightarrow \mathbb{C}, z \mapsto t$. Inside the ball U, f has exactly μ critical points a_{1}, \ldots, a_{μ}, with pairwise distinct critical values $\alpha_{1}=f\left(a_{1}\right), \cdots, \alpha_{\mu}=f\left(a_{\mu}\right)$; moreover, all the α_{i} lie inside a disk $T \subset \mathbb{C}$ and the level sets $V_{t}=f_{\varepsilon}^{-1}(t) \bigcap U$ are transverse to the boundary ∂U of U. Take a noncritical value α_{*} on the boundary of the disk T and the corresponding nonsingular level manifold $V_{*}=V_{\alpha_{*}}$. In disk T, consider a path $\varphi(\tau), \tau \in[0,1]$, connecting the marked point $\alpha_{*}=\varphi(0) \in \partial T$ with one of the critical values $\alpha_{i}=\varphi(1)$; assume that, for $\tau<1$, the path φ avoids all the critical values of f. By the Morse lemma, in a neighborhood U of the critical point a_{i} there is a coordinate system in which

$$
f(z)=\alpha_{i}+z_{1}^{2}+\cdots+z_{n}^{2}
$$

These coordinates allow us to single out in the nonsingular fibre $V_{\varphi(\tau)}$, for τ close to 1 , the sphere

$$
S_{\tau}=\sqrt{\varphi(\tau)-\alpha_{i}} S^{n-1}
$$

As $\tau \rightarrow 1, S_{\tau}$ degenerates to a point.
Definition 4.1. The homology class $\triangle_{\varphi} \in H_{n-1}\left(V_{*}\right)$, defined by the sphere S_{0} in the nonsingular fibre V_{*}, is called a vanishing cycle (along the path φ).

First, we shall define a continuous family of cycles on curves $y^{2}+$ $3 x^{2}-x^{6}=h$, vanishing for $h=0$ (respectively, $h=2$), and forming a basis in the space of homologies of families of cycles, vanishing for this value of parameter h.

Now, we consider the consecutive real roots of the polynomial $3 x^{2}-$ $x^{6}-1$, indexed in increasing order: $x_{0}<x_{1}<x_{2}<x_{3}$. For $i=0,1,2$, we define a cycle γ_{i} on the curve $y^{2}+3 x^{2}-x^{6}=1$ in $\mathbb{C}^{2}=(x, y)$ as a cycle whose natural projection on the x-plane circles points x_{i} and x_{i+1} once, and such that the normalization condition is fulfilled: the integral of the form $y d x$ over this cycle is positive. For each value of h in the plane-region with cuts along rays $\{h \leq 0\}$ and $\{2 \leq h\}$, we consider the path lying in this region and connecting the value of h with the point 2. A continuous change of parameter τ along this path gives a continuous deformation of the curves $y^{2}+3 x^{2}-x^{6}=\tau$ and defines a homotopy of curves $y^{2}+3 x^{2}-x^{6}=1$ and $y^{2}+3 x^{2}-x^{6}=h$ (not depending on the choice of the path in the region). The image of the cycle γ_{i} for this homotopy is, by definition, the cycle $\gamma_{i}(h)$. It is clear that a continuous family of cycles $\gamma_{1}(h)$ (respectively, families of cycles $\gamma_{0}(h)$ and $\gamma_{2}(h)$) is a family (are families) of cycles vanishing at $h=0$ (at $h=2$). In this connection, each family of cycles $\gamma(h)$, continuously depending on a parameter h which varies on the plane with cuts $\{h \leq 0\}$ and $\{2 \leq h\}$, vanishing for $h=2(h=0)$, is homologous, for each fixed h, to a linear combination $\alpha \gamma_{0}(h)+\beta \gamma_{2}(h)$ (cycle $\left.\rho \gamma_{1}(h)\right)$ with constants α and β (constant ρ) not depending on h.

We introduce some notations. For the integral $I_{\omega}=\oint \omega$, over cycle $\gamma_{i}(h)$, we denote $I_{\omega^{i}}(h)$.
Finally, we denote

$$
\begin{aligned}
& D=\mathbb{C} \backslash(\{h \in \mathbb{R} ; h \leq 0\} \cup\{h \in \mathbb{R} ; h \geq 2\}), \\
& D^{+}=\mathbb{C} \backslash\{h \in \mathbb{R} ; h \geq 2\}, \\
& D^{-}=\mathbb{C} \backslash\{h \in \mathbb{R} ; h \leq 0\} .
\end{aligned}
$$

We consider the integrals $I_{\omega^{0}}, I_{\omega^{1}}$ and $I_{\omega^{2}}$ of form ω of degree not greater than n (see definitions) and denote by α the number equal to $[(n-1) / 2]+2 / 3$.
In order to use the Argument principle to $I(h)$, we define $G=G_{R, \epsilon} \subset D$ (a simply connected region) with $\partial G=C=C_{R, \epsilon}$, a simple closed curve,

$$
C_{R, \epsilon}=C_{R} \cup C_{\epsilon}^{1} \cup C_{\epsilon}^{2} \cup L_{ \pm}^{1}(R, \epsilon) \cup L_{ \pm}^{2}(R, \epsilon),
$$

where $C_{R}=\{z \in ;|z|=R \gg 1\}, C_{\epsilon}^{1}=\{z \in ;|z-2|=\epsilon \ll 1\}$, $C_{\epsilon}^{2}=\{z \in ;|z|=\epsilon \ll 1\}, L_{ \pm}^{1}(R, \epsilon)=\{z \in \mathbb{R} ; 2+\epsilon \leq z \leq R\}$ and $L_{ \pm}^{2}(R, \epsilon)=\{z \in \mathbb{R} ;-R \leq z \leq-\epsilon\}$.

Lemma 4.2. The quotient $I_{\omega^{1}}(h) / h^{\alpha}$ (quotients $I_{\omega^{0}}(h) / h^{\alpha}$ and $I_{\omega^{2}}(h) / h^{\alpha}$) uniformly converges to a constant (constants), as $h \rightarrow \infty$, in region $D^{+}\left(D^{-}\right)$.

Proof. By Lemma 2.2, we have

$$
\begin{equation*}
I_{\omega^{1}}(h)=\alpha(h) I_{0}(h)+\beta(h) I_{1}(h)+\gamma(h) I_{2}(h) \tag{4.1}
\end{equation*}
$$

where $\alpha(h), \beta(h)$, and $\gamma(h)$ are polynomials of h, $\operatorname{deg} \alpha(h) \leq\left[\frac{n-1}{2}\right]$, $\operatorname{deg} \beta(h) \leq\left[\frac{n-2}{2}\right]$ and $\operatorname{deg} \gamma(h) \leq\left[\frac{n-3}{2}\right]$. And by Lemma 3.1 we have $I_{0}(h)=O\left(h^{2 / 3}\right), I_{1}(h)=O(h), I_{2}(h)=O\left(h^{4 / 3}\right)$.

Lemma 4.3. Integral $I_{\omega^{1}}$ (integrals $I_{\omega^{0}}$ and $I_{\omega^{2}}$) is holomorphic in D^{+} $\left(D^{-}\right)$and continuously extends to the upper and lower sides of cut $L_{ \pm}^{1}$ $\left(L_{ \pm}^{2}\right)$. In this connection, on the cut $L_{ \pm}^{1}\left(L_{ \pm}^{2}\right)$, the functions $\operatorname{Im} I_{\omega^{1}}$ and $I_{\omega^{0}}\left(I m I_{\omega^{0}}\right.$ and $\left.I_{\omega^{1}}\right)$ are proportional to a non-null coefficient.

Proof. Family of cycles $\gamma_{1}(h)$ (families $\gamma_{0}(h)$ and $\gamma_{2}(h)$) is a family (families) of cycles not vanishing at $h=0(h=2)$. Therefore the, integral $I_{\omega^{1}}$ (integrals $I_{\omega^{0}}$ and $I_{\omega^{2}}$) is (are) holomorphic to a neighborhood of the point $h=0(h=2)$, and therefore holomorphically extends to region $D^{+}\left(D^{-}\right)$. We shall prove the second part of the lemma. The function $I_{\omega^{0}}$ is complex-conjugate and therefore on any side of the real cut $L_{ \pm}^{2}$ the function $I m I_{\omega^{0}}$ is proportional to the difference of the values of the integral $I_{\omega^{0}}$ on its upper and lower sides. But, the difference of these values at a point on the cut $L_{ \pm}^{2}$ is the integral of form ω over the difference of cycles $\gamma_{0}(h)$ defining the values of the integral at this point on the upper and lower sides of the cut. This difference of cycles is homologous to the cycle $\gamma_{1}(h)$. From this, the assertion of the lemma follows for the integral $I_{\omega^{1}}$. The assertion for the integral $I_{\omega^{0}}$ is proved analogously.

Proof of the Theorem: We denote by $r_{+}\left(r_{-}\right)$the number of zeros of integral $I_{\omega^{1}}$ (integral $I_{\omega^{0}}$) on D , by $p_{+}\left(p_{-}\right)$the number of zeros of $I_{\omega^{1}}$ $\left(I_{\omega^{0}}\right)$ on $L_{ \pm}^{2} \cup C_{\epsilon}^{2}\left(L_{ \pm}^{1} \cup C_{\epsilon}^{1}\right)$, and finally, by $q_{+}\left(q_{-}\right)$the number of zeros of the function $\operatorname{Im} I_{\omega^{1}}$ (function $\operatorname{Im}_{\omega^{0}}$) on any of the sides of $L_{ \pm}^{1}\left(L_{ \pm}^{1}\right)$. First, let us compute the rotation number of $I_{\omega^{1}}$ on D^{+}. By Lemma 3.2 , the number of complete turns of $I_{\omega^{1}}$ on C_{ϵ}^{1}, when ϵ goes to 0 , tends to zero. By the previous notation, the number of zeros of $\operatorname{Im} I_{\omega^{1}}$, for $h \in L_{ \pm}^{1}$, is at most $2 q_{+}$. Since each complete turn of $I_{\omega^{1}}$ forces at least two zeros of $\operatorname{Im} I_{\omega^{1}}$, we get that the number of complete turns on this two segments is at most $q_{+}+1$ (we add less than one half turn on
each bank). Finally, from Lemma 4.2, the number of complete turns on C_{R} is at most α. Putting all the results together, we obtain that the number of turns is at most $\alpha+q^{+}+1$. Since $\operatorname{Im}_{\omega^{1}}$ always has a zero for $h=0$, then we have the inequality $p_{+}+r_{+}+1 \leq q_{+}+\alpha+1$. Completely analogously for the integral $I_{\omega^{0}}$ and by Lemma 3.3, we have $p_{-}+r_{-}+1 \leq q_{-}+\alpha+1$. But, $p_{-}=q_{+}, p_{+}=q_{-}$(Lemma 4.3), from which after adding he inequalities, we get $r_{+}+r_{-} \leq 2 \alpha$.

Acknowledgments

The authors thank Isfahan University of Technology for the support.

References

[1] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1983.
[2] V. I. Arnold, Ten problems, Adv. Soviet Math. 1 (1990) 1-8.
[3] V. I. Arnold, V. V. Goryunov, V. A. Vassiliev and O. V. Lyasko, Singularity Theory.I. Local and Global Theory, Dynamical Systems. V.I. Encyclopaedia of Mathematical Sciences, Vol 6, Springer-Verlag, Berlin ,1993.
[4] A. Khovanskii, Real analytic manifolds with finiteness properties and complex Abelian integrals, Funct. Anal. Appl. 18 (1984) 119-128.
[5] Yu. S. Il'yashenko and S. Yakovenko, Double exponential estimate for the number of zeros of complete Abelian integrals, Invent. Math. 121(3) 1995) 87-105.
[6] Yu. S. Il'yashenko and S. Yakovenko, Counting real zeros of analytic functions satisfying linear ordinary differential equations, J. Differential Equations 126 (1996) 613-650.
[7] D. Novikov and S. Yakovenko, Simple exponential estimate for the number of real zeros of complete Abelian integrals, Ann. Inst. Fourier 45 (1995) 897-927.
[8] A. H. Nayfeh, Perturbation Methods, John Wiley, New York, 1973.
[9] G. S. Petrov, Complex zeros of an elliptic integral, Funct. Anal. Appl. 21 (1987) 87-88.
[10] G. S. Petrov, Complex zeros of an elliptic integral, Funct. Anal. Appl. 23 (1989) 88-89.
[11] G. S. Petrov, Nonoscillation of elliptic integrals, Funct. Anal. Appl. 24 (1990) 45-50.
[12] C. Rousseau and H. Zoladek, Zeroes of complete elliptic integrals for 1:2 resonance, J. Differential Equations 94 (1991) 42-54.
[13] R. Roussaria, Bifuratin of Planar Vector Fields and Hilbert Problem, Porgress in Mathematics, Birkhauser, 1998.
[14] A. N. Varchenko, Estimate of the number of zeros of Abelian integrals depending on parameters and limit cycles, Funct. Anal. Appl. 18 (1984) 98-108.
[15] S. Yakovenko, Complete Abelian integrals as rational envelopes, Nonlinearity 7 (1994)1237-1250.
[16] Y. Zhao and Z. Zhang, Linear estimate for the number of zeros of Abelian integrals with quartic Hamiltonians, J. Differential Equations 155 (1999) 73-88.

Nemat Nyamoradi

Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111 Isfahan, Iran
Email:nyamoradi@math.iut.ac.ir
Hamid Reza Zohouri Zangeneh
Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111
Isfahan, Iran
Email:hamidz@cc.iut.ac.ir

[^0]: MSC(2000): Primary: 34C07; Secondary: 34C08, 37G15, 34M50.
 Keywords: Zeros of Abelian integrals, Hilbert's 16th problem, limit cycles. Received: 3 October 2008, Accepted: 16 November 2008.
 *Corresponding author
 (c) 2011 Iranian Mathematical Society.

