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Abstract. We consider the number of zeros of the integral I(h) =∮
Γh

ω of real polynomial form ω of degree not greater than n over a

family of vanishing cycles on curves Γh : y2 + 3x2 − x6 = h, where
the integral is considered as a function of the parameter h. We
prove that the number of zeros of I(h), for 0 < h < 2, is bounded
above by 2[n−1

2
] + 1.

1. Introduction

Let H = H(x, y) be a polynomial in x, y of degree m ≥ 2, and the
level curves Γh ⊂ {(x, y) : H(x, y) = h} from a continuous family of
ovals {Γh}, for Σ = {h1 < h < h2} (as a maximal interval of existence
of Γh). Consider a polynomial 1-form ω = f(x, y)dx− g(x, y)dy, where
max{deg(f), deg(g)} = n ≥ 2. Arnold in [1, 2] proposed the following
problem:
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For fixed integers m and n find the maximum number Z(m,n) of (iso-
lated) zeros of the Abelian integrals

I(h) =

∮
Γh

ω.(1.1)

Recall that an Abelian integral is the integral of a rational 1-form along
an algebraic oval. The general result of solving the weakened Hilbert
16th problem was achieved by Varchenko [14] and Khovanskii [4], who
proved independently the existence of Z(m,n), but no explicit expres-
sion of Z(m,n) has been obtained. Ilyashenko, Yakovenko and Novikov
proved in [5, 6, 7, 15] that for the set of “good” H(x, y) there exists a
constant c(H) < +∞ such that the number of real isolated zeros of I(h)
in Σ does not exceed exp(c(H)n). Zhao and Zhang [16] gave an explicit
upper bound Z(4, n) ≤ 7n + 5. Their proof exploited the properties
of the Picard-Fuchs system satisfied by the four basic integrals, which
are the generators of the module of complete Abelian integrals over
polynomial rings. Petrov in [9, 10, 11] gave the explicit upper bounds
Z(4, n) ≤ 2[(n− 1)/2] + 1 and Z(4, n) ≤ n+ [(n− 1)/2]. That proof ex-
ploits the argument principle by the three basic integrals which are the
generators of the module of complete Abelian integrals over polynomial
rings. The number of zeros of I(h) was estimated in [9, 10, 11, 12], and
most of these results were proved by Petrov’s method.
In particular, here using Petrov’s method in [9], we solve the prob-
lem of zeros of the integral I(h) =

∮
ω of real polynomial form ω of

degree not greater than n over a family of vanishing cycles on curves
y2 + 3x2 − x6 = h, where the integral is considered to be a function of
the parameter h. Our main result is the following.

Theorem 1.1. The sum of the number of zeros of the elliptic integral
(1.1) in the plane-region with cuts along rays {h ≤ 0} and {2 ≤ h},
defined for a family of cycles vanishing for h = 0 (the minimal critical
value of polynomial y2 + 3x2 − x6), and the number of zeros in this
region of integral (1.1) of the same form ω, defined for a family of cycles
vanishing for h = 2 (the maximal critical value of y2 + 3x2−x6), is less
than 2[(n− 1)/2] + 1.

The remainder of our work is organized as follows. In Section 2, I(h)
is expressed as a linear combination of three basic integrals I0, I1 and
I2 with polynomial coefficients. In Section 3, we derive a Picard-Fuchs
system and asymptotic expansions of Abelian integrals of I0 , I1 and



Linear estimate of the number of zeros of abelian integrals 103

I2. Using these results, in Section 4 we reduce the initial problem to
counting the number of zeros of certain Abelian integrals..

2. The algebraic structure of I(h)

In this section, we are going to express I(h) as a combination of three
basic integrals. But, first we need to introduce some notations.

The Hamiltonian H(x, y) = y2 + 3x2−x6 has a center at P0(0, 0) and
two saddles at P1(1, 0), P2(−1, 0). The ovals around P0 are defined for
h ∈

∑
= (0, 2).

By partial integration, I(h) can be expressed as

I(h) =

∮
Γh

P (x, y)dx =

∮
Γh

∑
k+j≤n

akjx
2kyjdx.

Hence, in the rest of this paper, we represent I(h) as above instead of
(1.1). Let we denote

Ik,l(h) =

∮
Γh

x2kyldx,(2.1)

I0(h) = I01(h), I1(h) = I11(h), I2(h) = I21(h), h ∈ Σ.(2.2)

Then, the following statement holds.

Lemma 2.1. For d ≥ 3 and k+ l = d, Ik,l can be expressed as the linear
combination of Iij(where, i+ j = d− 1) and hIij (where, i+ j = d− 2,
i = 0, 1, 2).

Proof. Multiplying H(x, y) = y2 + 3x2 − x6 = h by x2kyl−2 and inte-
grating over Γh, yields

Ik,l + 3Ik+1,l−2 − Ik+3,l−2 = hIk,l−2.(2.3)

By taking derivative of H(x, y) = y2 + 3x2 − x6 = h with respect to to
x, we get

ydy + (3x− 3x5)dx = 0.(2.4)

Multiplying (2.4) by x2k−5yl and integrating over Γh gives by part

Ik,l = − 2k − 5

3(l + 2)
Ik−3,l+2 + Ik−2,l.(2.5)

The equality (2.5) shows

Ik+3,l−2 = −2k + 1

3l
Ik,l + Ik+1,l−2.(2.6)
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Substituting (2.6) into (2.3), we get

3l + 2k + 1

3l
Ik,l + 2Ik+1,l−2 = hIk,l−2.(2.7)

We use (2.7), with k = 0, 1, 2, and (2.5), with k = 3, 4, . . . , d − 1, d,,
respectively to obtain:

3d+ 1

3d
I0d = −2I1,d−2 + hI0,d−2,

3d

3(d− 1)
I1,d−1 = −2I2,d−3 + hI1,d−3,

3d− 1

3(d− 2)
I2,d−2 = −2I3,d−4 + hI2,d−4,

I3,d−3 = − 1

3(d− 1)
I0,d−1 + I1,d−3,

I4,d−4 = − 3

3(d− 2)
I1,d−2 + I2,d−4,

...

Id,0 = −2d− 5

6
Id−3,2 + Id−2,0.

Then, we obtain a linear algebraic system of the form

AJ = B,A =

(
A3 0
0 Ed−2

)
,(2.8)

where J = col(I0,d, I1,d−1, I2,d−2, . . . , Id,0), Ed−2 is a unit matrix of order
d− 2, and

A3 =

 3d+1
3d 0 0

0 d
d−1 0

0 0 3d−1
3(d−2)

 .

Since detA3 6= 0, for d ≥ 3, and B contains only the integral Iij , i+ j =
d − 1 and hIij , i + j = d − 2, i = 0, 1, 2, the statement in the lemma is
true. �

A straightforward computing by induction yields the following lemma.

Lemma 2.2. For n ≥ 3, the Abelian integral I(h) can be expressed as:

I(h) = α(h)I0(h) + β(h)I1(h) + γ(h)I2(h),(2.9)
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where α(h), β(h), and γ(h) are polynomials of h, deg α(h) ≤ [n−1
2 ],

deg β(h) ≤ [n−2
2 ], deg γ(h) ≤ [n−3

2 ], and [s] denotes the largest integer
less than s.

Proof. By substituting k = 0, l = 3, k = 3, l = 1 and k = 1, l = 3 in
(2.5), (2.7), we have

I03 =
9

10
hI0 −

9

5
I1

I13 = −3

2
I2 +

3

4
hI1(2.10)

I31 = −1

9
I03 + I11 = − 1

10
hI0 +

6

5
I1.

Then, for n = 3, we have

I(h) =

∮
Γh

∑
k+j≤n

akjx
2kyjdx

= (
9

10
a03h+ a01)I0 + (a11 −

9

5
a03)I1 + a21I2,

and, for n = 4, we have

I(h) =

∮
Γh

∑
k+j≤n

akjx
2kyjdx

= (
9

10
a03h+ a01 −

1

10
a31h)I0 + (a11 −

9

5
a03 +

6

5
a31 +

3

4
a13h)I1

+ (a21 −
3

2
a13)I2,

which implies that the result holds for n = 3 and n = 4.
Suppose for n ≤ d−1, degP (x, y) = n in (1.1) and In(h) =

∮
Γh
P (x, y)dx

can be expressed as

In(h) = αn(h)I0 + βn(h)I1 + γn(h)I2,(2.11)

where degαn(h) ≤
[
n−1

2

]
, deg βn(h) ≤

[
n−2

2

]
and deg γn(h) ≤

[
n−3

2

]
.

For n = d,

I(h) =

∮
Γh

∑
k+j≤n

akjx
2kyjdx =

∑
k+j≤d−1

akjIkj +
∑
k+j=d

akjIkj .

By the equality (2.11), we have∑
k+j≤d−1

akjIkj = αd−1(h)I0 + βd−1(h)I1 + γd−1(h)I2,
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and by Lemma 2.1, we obtain:∑
k+j=d

akjIkj =
∑

k+j=d−1

bkjIkj +
∑

k+j=d−2

ckjIkj +
∑

k+j=d−2

ekjhIkj

=
(
bd−1
0 (h)I0 + bd−1

1 (h)I1 + bd−1
2 (h)I2

)
+

(
cd−2

0 (h)I0 + cd−2
1 (h)I1 + cd−2

2 (h)I2

)
+ h

(
ed−2

0 (h)I0 + ed−2
1 (h)I1 + ed−2

2 (h)I2

)
.

Then, I(h) ≡ α(h)I0 + β(h)I1 + γ(h)I2. Therefore,

degα(h) ≤ max{degαd−1(h), deg bd−1
0 (h), deg cd−1

0 (h), 1 + deg ed−1
0 (h)}

≤ max

{[
d− 1− 1

2

]
,

[
d− 1− 1

2

]
,

[
d− 2− 1

2

]
,

1 +

[
d− 2− 1

2

]}
=

[
d− 1

2

]
,

which implies degα(h) ≤ [n−1
2 ], for arbitrary n. Similarly, deg β(h) ≤

[n−2
2 ] and deg γ(h) ≤ [n−3

2 ]. �

3. The Picard-Fuchs system and asymptotic expansions of the
Abelian integrals

In this section, we first derive the Picard-Fuchs equations satisfied
by I0(h), I1(h) and I2(h). Further more, we obtain the asymptotic
expansion of the Abelian integrals I0(h), I1(h) and I2(h) near h = 0,
h = 2 and h =∞.
Let Ik(h) be defined as before by

Ik(h) =

∮
Γh

x2kydx, k = 0, 1, 2, . . . .(3.1)

Consider the following Hamiltonian of degree 6:

H(x, y) = y2 + 3x2 − x6,(3.2)
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which is associated with a Newtonian mechanical system. Taking y =
y(x, h) on Γh, the equation H(x, y) = h implies that ∂y

∂h = 1
2y . Thus,

Ik(h) =

∮
Γh

x2k ∂y

∂h
dx =

∮
Γh

x2k

y
dx.(3.3)

Along the curve Γh, we have y2 = h− 3x2 + x6. Therefore,

Ik(h) =

∮
Γh

x2kydx(3.4)

= 2

∮
Γh

x2k

2y
(h− 3x2 + x6)dx

= 2h

∮
Γh

x2k

2y
dx− 6

∮
Γh

x2k+2ydx+ 2

∮
Γh

x2k+6ydx

= 2hI ′k(h)− 6I ′k+1(h) + 2I ′k+3(h).

On the other hand, by integrating by parts, we have

Ik(h) =

∮
Γh

x2kydx(3.5)

=
1

2k + 1

∮
Γh

ydx2k+1 =
−1

2k + 1

∮
Γh

x2k+1dy

=
−1

2k + 1

∮
Γh

x2k+1(
−6x+ 6x5

2y
)dx

=
1

2k + 1
(6I ′k+1 − 6I ′k+3).

Eliminating I ′k+3(h) from (3.4) and (3.5), we find that

18(k + 2)Ik(h) = 54hI ′k(h)− 108I ′k+1.(3.6)

Taking k = 0, 1, 2 in (3.5), we have

36I0(h) = 54hI ′0 − 108I ′1(h),(3.7)

54I1(h) = 54hI ′1 − 108I ′2(h),(3.8)

72I2(h) = 54hI ′2 − 108I ′3(h).(3.9)

Taking k = 0 in (3.5), we have

I ′3(h) = I ′1(h)− 1

6
I0(h).(3.10)

Substituting 3.10 into (3.9) leads to

72I2(h) = −108I
′
1(h) + 54hI

′
2(h)− 18hI

′
3(h).
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If we set J(h) = column(I0(h), I1(h), I2(h)), then (3.7), (3.8) and (3.10)
can be written in the matrix form

AJ(h) = (54hE +B)J ′(h),(3.11)

where E is the identity matrix and

A =

 36 0 0
0 54 0
−18 0 72

 , B =

 0 −108 0
0 0 −108
0 −108 0

 ,(3.12)

yielding the following Picard-Fuchs equation:

G(h)J ′(h) =

 36(h2 − 6) 108h 288
−36h 54h2 144h
−18h2 108h 72h2

 J(h),(3.13)

where G(h) = 54h(h2 − 4).

Lemma 3.1. I0(h), I1(h) and I2(h) have the following asymptotic ex-
pansion, as h→ +∞,

I0(h) = 2C1h
2/3 − 3C2 + 2C3h

−2/3 +O(h−4/3),(3.14)

I1(h) = C2h− 4C3h
1/3 +O(h−1/3),(3.15)

I2(h) = C3h
4/3 + C1h

2/3 − 9

4
C2 +

5

2
C3h

−2/3 +O(h−4/3),(3.16)

where C1 and C2 are real constant.

Proof. We find asymptotic expansions of (3.14)-(3.16) using the methods
developed in [8]. We consider the system (3.13) which can be reduced
to the following system

dJ

dh
= hqA(h)J(h),(3.17)

where q = −1 and

A(h) =


2
3(1− 2

h2−4
) 2h

h2−4
16

3(h2−4)
−2h

3(h2−4)
1 + 4

h2−4
8

3(h2−4)

−1
3(1 + 4

h2−4
) 2h

h2−4
4
3(1 + 4

h2−4
)

 .

Now, it is clear that, as h→ +∞, we have

1

h2 − 4
=

1

4

( 1

h− 2
− 1

h+ 2

)
=

1

4h

( ∞∑
n=0

(
2

h
)n −

∞∑
n=0

((−1)n
2

h
)n
)
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=

∞∑
n=0

(1− (−1)n)2n−2h−n−1.

Thus, A(h) =
∑∞

m=0Amh
−m, as h→∞, where

A0 =

 2
3 0 0
0 1 0
−1

3 0 4
3

 , A1 =

 0 2 0
−2

3 0 8
3

0 2 0

 , A2 =

 −4
3 0 16

3
0 4 0
−4

3 0 16
3

 .

The eigenvalues of the matrix A0 are σ1 = 2/3, σ2 = 1 and σ3 = 4/3,
with the eigenvectors

u01 =

 2
0
1

 , u02 =

 0
1
0

 , u02 =

 0
0
1

 .

Now, by taking J = hσΣ∞m=0umh
−m in (3.17) and equating the coeffi-

cients of the terms with equal powers, we find that the scalar σ and the
column vectors Um satisfy the following recursive formulas:

A0u0 = σu0, (σ −m)um = Σ∞i=0Aium−i; m = 1, 2, 3, . . . .(3.18)

In other words, σ is an eigenvalue and u0 is an eigenvector associated
with σ for the matrix A0. Since A0 has three distinct eigenvalues, the
linear combination of corresponding solutions of the system (3.18) gives
the general solution of (3.17), as h→ +∞.

By taking σ = 2/3 in (3.18), we obtain

u0 =

 2
0
1

 , u1 =

 0
−1
0

 , u2 =

 −1/3
0

−25/4

 , . . . ,

and by taking σ = 1 in (3.18), we obtain

u0 =

 0
1
0

 , u1 =

 −3
0
−9/4

 , u2 =

 0
0
0

 , . . . .

Also, by taking σ = 4/3 in (3.18), we obtain

u0 =

 0
0
1

 , u1 =

 0
−4
0

 , u2 =

 2
0

5/3

 , . . . .
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Finally, we derive three linearly independent asymptotic solutions for
the system (3.17), as h→ +∞, as follows:

J1(h) = h2/3

 2
0
1

+ h−1/3

 0
−1
0

+ h−4/3

 −1/3
0

−25/4

+O(h−7/3),

J2(h) = h

 0
1
0

+

 −3
0
−9/4

+ h−1

 0
0
0

+O(h−2),

J2(h) = h4/3

 0
0
1

+ h1/3

 0
−4
0

+ h−2/3

 2
0

5/3

+O(h−5/3).

Thus, as h → +∞, the general solution of the system (3.17) has the
form

J(h) = C1J1(h) + C2J2(h) + C3J3(h).(3.19)

Now, from (3.19), we get the result. �

Lemma 3.2. The Abelian integral I0, I1 and I2 have the following as-
ymptotic expansions, as h→ 2−:

I0(h) = 3.95087 + (3.4641 ln(n)− 15.4056)n+ 0.96225n3/2

+ (2.88675 ln(n) + 0.585364)n2 +O(n5/2),

I1(h) = 0.830186 + (3.4641 ln(n) + 0.397857)n− v0.19245n3/2

+ (4.73266− 0.57735 ln(n))n2 +O(n5/2),

I2(h) = 0.365079 + (3.4641 ln(n) + 5.37897)n− 1.34715n3/2

− (0.57735 ln(n) + 5.65964)n2 +O(n5/2),

where n = 2−h
12 → 0+.

Proof. Let h = 2− 12n and x = 1− z. Then, y2 + 3x2 − x6 = h implies
that z2 − 5

3z
3 + 5

4z
4 − 1

2z
5 + 1

12z
6 = n, and hence, as z → 0+, we have

z2 = n(1 +
5

3
z +

55

36
z2 +

26

27
z3 +O(z4)).(3.20)

To find the positive solution of (3.20), first we consider the successive
equations z2 = n, z2 = n(1 + 5

3z + 55
36z

2), and so on, and then solve the
first equation and substitute the solution in the right hand side of the
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second equation and continue this process to obtain

z = 1− a(n) =
√
n(1 +

5

6

√
n+

10

9
n+

379

216
n
√
n+O(n2)).(3.21)

Now, by using (3.21) and for 0 < 2− h� 1, we can write

I0(h) =

∮
H=h

ydx = 4

∫ a(n)

0

√
(1− x2)2(x2 + 2)− 12ndx

= 4

∫ a(n)

0
(1− x2)

√
x2 + 2

√
1− 12n

(x2 − 1)2(x2 + 2)
dx

= 4

∫ a(n)

0
(1− x2)

√
x2 + 2(1− 6n

(x2 − 1)2(x2 + 2)

− 18n2

(x2 − 1)4(x2 + 2)2
+O(n3))dx

= 4

∫ a(n)

0
(1− x2)

√
x2 + 2dx− 24n

∫ a(n)

0

dx

(1− x2)
√
x2 + 2

− 72n2

∫ a(n)

0

dx

(1− x2)3(x2 + 2)3/2
+O(n3)

=
(
x(1− x2)

√
x2 + 2 + 6 sinh−1(

x√
2

)− 24n√
3

tanh−1(
x
√

3√
2 + x2

)

+
2n2x(2x4 + 3x2 − 8)

(x2 − 1)2
√
x2 + 2

− 20n2

√
3

tanh−1(
x
√

3√
2 + x2

))∣∣∣a(n)

0
+O(n3)

= 6 sinh−1(
1√
2

)−
(9
√

3

2
+ 4 ln(3)− 2 ln(n)

)
n+ (

20

3
− 55

3
√

3
)n3/2

+ (
20

3
− 8√

3
− 10√

3
ln(3) +

5√
3

ln(n))n2 +O(n5/2).

Similarly, we can obtain the result for I1(h) and I2(h). �

Lemma 3.3. I0(h), I1(h) and I2(h), for H(x, y) = y2 + 3x2 − x6, have
the following asymptotic expansions, as h→ 0+,

I0(h) = I ′0(0)[h+O(h3)],

I1(h) = I ′0(0)[
1

12
h2 +O(h3)],

I2(h) = I ′0(0)[
1

72
h3 +O(h4)].
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Proof. Since Ik(0) = 0 and Ik(h), for k = 0, 1, 2, is analytic by [13] at
h = 0, then by putting

I0(h) =
∞∑
n=1

anh
n, I1(h) =

∞∑
n=1

bnh
n, I2(h) =

∞∑
n=1

cnh
n,

into (3.13) (the Picard-Fuchs equation) and equating the coefficients of
the terms with the same degree, we get the result. �

4. Number of zeros of the Abelian integrals

In this section, by the Petrov method, we solve the problem of zeros
of the integral Iω =

∮
ω of real polynomial form ω of degree not greater

than n over a family of vanishing cycles on curves y2 + 3x2 − x6 = h,
where the integral is considered as a function of the parameter h.
By using the methods developed in [3], we define the vanishing cycles.
Consider a holomorphic function f : Cn → C, z 7→ t. Inside the ball U ,
f has exactly µ critical points a1, . . . , aµ, with pairwise distinct critical
values α1 = f(a1), · · · , αµ = f(aµ); moreover, all the αi lie inside a
disk T ⊂ C and the level sets Vt = f−1

ε (t)
⋂
U are transverse to the

boundary ∂U of U . Take a noncritical value α∗ on the boundary of the
disk T and the corresponding nonsingular level manifold V∗ = Vα∗ . In
disk T , consider a path ϕ(τ), τ ∈ [0, 1], connecting the marked point
α∗ = ϕ(0) ∈ ∂T with one of the critical values αi = ϕ(1); assume that,
for τ < 1, the path ϕ avoids all the critical values of f . By the Morse
lemma, in a neighborhood U of the critical point ai there is a coordinate
system in which

f(z) = αi + z2
1 + · · ·+ z2

n.

These coordinates allow us to single out in the nonsingular fibre Vϕ(τ),
for τ close to 1, the sphere

Sτ =
√
ϕ(τ)− αiSn−1.

As τ → 1, Sτ degenerates to a point.

Definition 4.1. The homology class 4ϕ ∈ Hn−1(V∗), defined by the
sphere S0 in the nonsingular fibre V∗, is called a vanishing cycle (along
the path ϕ).

First, we shall define a continuous family of cycles on curves y2 +
3x2 − x6 = h, vanishing for h = 0 (respectively, h = 2), and forming a
basis in the space of homologies of families of cycles, vanishing for this
value of parameter h.
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Now, we consider the consecutive real roots of the polynomial 3x2 −
x6 − 1, indexed in increasing order: x0 < x1 < x2 < x3. For i = 0, 1, 2,
we define a cycle γi on the curve y2 + 3x2 − x6 = 1 in C2 = (x, y) as
a cycle whose natural projection on the x-plane circles points xi and
xi+1 once, and such that the normalization condition is fulfilled: the
integral of the form ydx over this cycle is positive. For each value of
h in the plane-region with cuts along rays {h ≤ 0} and {2 ≤ h}, we
consider the path lying in this region and connecting the value of h with
the point 2. A continuous change of parameter τ along this path gives
a continuous deformation of the curves y2 + 3x2 − x6 = τ and defines
a homotopy of curves y2 + 3x2 − x6 = 1 and y2 + 3x2 − x6 = h (not
depending on the choice of the path in the region). The image of the
cycle γi for this homotopy is, by definition, the cycle γi(h). It is clear
that a continuous family of cycles γ1(h) (respectively, families of cycles
γ0(h) and γ2(h)) is a family (are families) of cycles vanishing at h = 0
(at h = 2). In this connection, each family of cycles γ(h), continuously
depending on a parameter h which varies on the plane with cuts {h ≤ 0}
and {2 ≤ h}, vanishing for h = 2 (h = 0), is homologous, for each fixed
h, to a linear combination αγ0(h)+βγ2(h) (cycle ργ1(h)) with constants
α and β (constant ρ) not depending on h.

We introduce some notations. For the integral Iω =
∮
ω, over cycle

γi(h), we denote Iωi(h).
Finally, we denote

D = C\
(
{h ∈ R;h ≤ 0} ∪ {h ∈ R;h ≥ 2}

)
,

D+= C\{h ∈ R;h ≥ 2},
D−= C\{h ∈ R;h ≤ 0}.

We consider the integrals Iω0 , Iω1 and Iω2 of form ω of degree not
greater than n (see definitions) and denote by α the number equal to
[(n− 1)/2] + 2/3.
In order to use the Argument principle to I(h), we define G = GR,ε ⊂ D
(a simply connected region) with ∂G = C = CR,ε, a simple closed curve,

CR,ε = CR ∪ C1
ε ∪ C2

ε ∪ L1
±(R, ε) ∪ L2

±(R, ε),

where CR = {z ∈ ; |z| = R >> 1}, C1
ε = {z ∈ ; |z − 2| = ε << 1},

C2
ε = {z ∈ ; |z| = ε << 1}, L1

±(R, ε) = {z ∈ R; 2 + ε ≤ z ≤ R} and
L2
±(R, ε) = {z ∈ R;−R ≤ z ≤ −ε}.
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Lemma 4.2. The quotient Iω1(h)/hα (quotients Iω0(h)/hα and Iω2(h)/hα)
uniformly converges to a constant (constants), as h → ∞, in region
D+ (D−).

Proof. By Lemma 2.2, we have

Iω1(h) = α(h)I0(h) + β(h)I1(h) + γ(h)I2(h),(4.1)

where α(h), β(h), and γ(h) are polynomials of h, deg α(h) ≤ [n−1
2 ],

deg β(h) ≤ [n−2
2 ] and deg γ(h) ≤ [n−3

2 ]. And by Lemma 3.1 we have

I0(h) = O(h2/3), I1(h) = O(h), I2(h) = O(h4/3). �

Lemma 4.3. Integral Iω1 (integrals Iω0 and Iω2) is holomorphic in D+

(D−) and continuously extends to the upper and lower sides of cut L1
±

(L2
±). In this connection, on the cut L1

± (L2
±), the functions ImIω1 and

Iω0 (ImIω0 and Iω1) are proportional to a non-null coefficient.

Proof. Family of cycles γ1(h) (families γ0(h) and γ2(h)) is a family (fam-
ilies) of cycles not vanishing at h = 0(h = 2). Therefore the, integral
Iω1 (integrals Iω0 and Iω2) is (are) holomorphic to a neighborhood of the
point h = 0 (h = 2), and therefore holomorphically extends to region
D+ (D−). We shall prove the second part of the lemma. The function
Iω0 is complex-conjugate and therefore on any side of the real cut L2

±
the function ImIω0 is proportional to the difference of the values of the
integral Iω0 on its upper and lower sides. But, the difference of these
values at a point on the cut L2

± is the integral of form ω over the dif-
ference of cycles γ0(h) defining the values of the integral at this point
on the upper and lower sides of the cut. This difference of cycles is
homologous to the cycle γ1(h). From this, the assertion of the lemma
follows for the integral Iω1 . The assertion for the integral Iω0 is proved
analogously. �

Proof of the Theorem: We denote by r+(r−) the number of zeros of
integral Iω1 (integral Iω0) on D, by p+(p−) the number of zeros of Iω1

(Iω0) on L2
± ∪C2

ε (L1
± ∪C1

ε ), and finally, by q+(q−) the number of zeros
of the function ImIω1 (function ImIω0 ) on any of the sides of L1

± (L1
±).

First, let us compute the rotation number of Iω1 on D+. By Lemma
3.2, the number of complete turns of Iω1 on C1

ε , when ε goes to 0, tends
to zero. By the previous notation, the number of zeros of ImIω1 , for
h ∈ L1

±, is at most 2q+. Since each complete turn of Iω1 forces at
least two zeros of ImIω1 , we get that the number of complete turns on
this two segments is at most q+ + 1 (we add less than one half turn on
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each bank). Finally, from Lemma 4.2, the number of complete turns
on CR is at most α. Putting all the results together, we obtain that
the number of turns is at most α + q+ + 1. Since ImIω1 always has a
zero for h = 0, then we have the inequality p+ + r+ + 1 ≤ q+ + α + 1.
Completely analogously for the integral Iω0 and by Lemma 3.3, we have
p− + r− + 1 ≤ q− + α + 1. But, p− = q+, p+ = q− (Lemma 4.3), from
which after adding he inequalities, we get r+ + r− ≤ 2α. �
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