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SELECTIVE SMOOTHING

A. MADANKAN

Communicated by Ale Jan Hombiirg

ABSTRACT. In this paper, we present a novel approach for image
selective smoothing by the evolution of two paired nonlinear par-
tial differential equations. The distribution coefficient in de-noising
equation controls the speed of distribution, and is determined by the
edge-strength function. In the previous works, the edge-strength
function depends on isotropic smoothing of the image, which results
in failing to preserve corners and junctions, and may also result in
failing to resolve small features that are closely grouped together.
The proposed approach obtains the edge-strength function by solv-
ing a nonlinear distribution equation governed by the norm of the
image gradient. This edge-strength function is then introduced into
a well-studied anisotropic distribution model to yield a regularized
distribution coefficient for image smoothing. An explicit numerical
scheme is employed to efficiently solve these two paired equations.
Compared with the existing methods, the proposed approach has
the advantages of more detailed preservation and implementational
simplicity. Experimental results on the synthesis and real images
confirm the validity of the proposed approach.
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1. Introduction and preliminaries

One major task in computer vision and image processing is to smooth
images that are corrupted by noise from the physical world and the
imaging apparatus. Many different techniques are developed to deal
with this challenging problem in the recent past, so it is infeasible to
review all of them in this paper. Instead, we will briefly discuss a more
promising and interesting technique that is the anisotropic distribution
approach with the elegant formulation firstly introduced by Perona and
Malik [15]. The underlying principle behind anisotropic distribution
is that a family of increasingly smoothed images u(x,y,t), defined in
a domain 2 C R x R, can be obtained as the intermediate states of
a distribution equation with the original image u(z,y,0) as the initial
state. This approach gave impressive results, and overcame the linear
filters drawbacks [24] including blurred edges, hights of the locations of
features at the coarse from their true locations and destruction of edge
junctions are destroyed. Since then, numerous researchers have been
devoted themselves to theoretical and practical understanding of this
and related methods for image smoothing and edge detection, such as
regularizing anisotropic distribution [2, 21], modifying for range image
[12, 19], defining the well-posed conditions [2(], determining the opti-
mal stopping time for anisotropic distribution [7, 11] and studying the
relationship between the anisotropic distribution and other image pro-
cessings [3, 16]. Comprehensive reviews of anisotropic distribution can
be found in [17, 23]. Some distribution equations related to our work will
be further explained in Section 2. Numerical results indicate that the
choice of v, which is an edge strength function, plays a very important
role in the quality of the recovered images.

Here, we will present a regularized distribution coefficient which de-
pends on a novel function v. After that, we obtain an anisotropic distri-
bution model constituted of two paired partial differential equations, and
use a concise and efficient explicit scheme to solve them. The proposed
distribution coefficient not only contributes to the removal of noise from
original images, but also preserves the detail features well. The remain-
der of our work is organized as follows. In Section 2, some anisotropic
distribution algorithms are outlined. In Section 3, the function v is
achieved by solving a nonlinear distribution equation which depends on
the norm of the image gradient. Then, the anisotropic smoothed version
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of norm, the function v, is introduced into a well-studied image smooth-
ing anisotropic distribution equation to form a regularized distribution
coefficient. The explicit numerical schemes can be used to efficiently
solve these two equations. In Section 4, experimental results on the
synthesis and real images are presented, and performance comparisons
between the proposed algorithm and the one due to Catte et al. [1] are
given. Conclusions are given in Section 5.

2. Outline of anisotropic distribution

distribution algorithms remove noise from an image by modifying the
image via a partial differential equation. One property of anisotropic
distribution is to integrate prior knowledge of the image into the dis-
tribution coefficient. Perona and Malik [15] first introduced the idea of
nonlinear distribution that is preferred within a smooth region to dis-
tribute near an edge. They proposed the enhancement of image I by the
solution of the following partial differential equations:

9u — div[g(|Vul)Vul,
(2.1) u(z,y,0) = I(x,y)

du_

5t lva =0,

where, Vu denotes the local image gradient, 9€) denotes the boundary
of €2, n represents the direction normal to 9€2, and the distribution
coefficient g(.) is a non-negative function of the magnitude of local image
gradient. It has such properties as: ¢g(0) = 1,¢9(s) > 0 and g(s) — 0
as s — oo. If g is constant, the model of anisotropic distribut in (2.1)
reduces to the classical Gaussian filtering, whereas in the Perona and
Maliks model, two usual choices for g(.) are suggested

-1

(22) g1(s) = exp [— (Z)Q] and gs(s) = exp [1 + (Z)Q]

where, k is a constant and should be tuned for a specific application.
Since the two proposed distribution coefficients make the distribute pro-
cess perform selective smoothing, which depends on the magnitude of
image gradient at the point, the edges remain sharp and undistorted
across many scales. Thus, it yields stable edges across many scales.
So, it is not necessary to track edges across the scale space, which is a
complicated and expensive task. However, the anisotropic distribution
process introduced by Perona and Malik does not perform well for large
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noisy images, and very similar images could produce divergent solutions,
as pointed out in [1]. The problem is mainly due to the dependence of
the variable distribute coefficient g(|Vu|) on the magnitude of the image
gradient. If the initial image I is very noisy, then large oscillations in
|VI| and hence in |Vu| will result in a large number of false edges. To
alleviate this problem, Catte et al. [1] introduced a Gaussian smoothing
operation to the variable s of the distribution coefficient g(s). Their
model is formulated as follows:
(2. O~ dinly(19(s = )V,
where, Gs*u denotes a convolution of the image at time ¢ with a Gauss-
ian kernel. Although this change results in much improvement in the
smoothing procedure, Gaussian convolution is an isotropic distribution.
This leads not to preserve some important features well. In addition,
a question that needs to be answered before applying the distribution
process is what size Gaussian kernel should be used to smooth the image.
Note that although the distribution coefficient in (2.1) is a scalar,
Perona and Malik [15] implemented the anisotropic distribution process
by making the the distribution coefficient in each of the four diffusing
directions depend on the directional gradient in that direction. Alvarez

et al. [l] further extended their work by modifying the distribution
operator,
(2.4) gﬁf = G(IV(Gy + u))|Vuldiv <|§Z> .

This process is anisotropic and has a geometric interpretation, it diffuses
u in the direction orthogonal to its gradient Vu and does not diffuse at
all in the direction of the gradient Vu.

Image smoothing can also be achieved by variational methods [5, &,

, 10, 14, 20] through modifying or regularizing the anisotropic dis-
tribution. Here, we will only emphasize two more for the purpose of
motivation. Mumford and Shah [I3] proposed an algorithm to perform
simultaneous image de-noising and segmentation by minimizing the fol-
lowing functional,

(2.5) E(u,B):/ vu|2d:c+/5|u—1|2dx+|3|,
Q/B Q

where, the smoothed image u is assumed to be piece-wise constant, and
B represents the edges of the true image. Since it is difficult to apply
gradient descent method with respect to B, Shah [15], by introducing an
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edge-strength function v, which takes values close to one on the edges,
and rapidly decays away from the edges to value zero in homogeneous
regions, proposed the model for image de-noising and segmentation as
follows:

2
26) Euo) = [ {a@- oVl + a1+ Gvep + 1 Lar
Q 2 2p

The Euler-Lagrange equation on (2) is computed, and can be solved by
using a dynamic scheme:

(2.7)
ou . B u—1
— = — . 1-— —
gt 2Vu.Vu + (1 —v)|[Vul|div(u) a(l_U)HVUH‘u_H
Vo2, Vo 2a
m—Vv ,02+ pHVuH

Replacing the length functional in E by the last two terms in Ey ren-
ders the method more amenable to solving by means of the evolution
equations. In addition, we observe that the first term in E's is of the
TV type that reduces the amount of smoothing across edges. However,
even with this modification, Shah’s algorithm still results in an isotropic
smoothing of v and rounded edges at times.

Here, a novel paired nonlinear partial differential equation model is
proposed on the basis of the analysis of previously mentioned models.
The goal is to obtain a method for image enhancement which has the
capability of preserving edge features in large noisy images.

3. Paired anisotropic distribution

3.1. Requirements on distribution coefficient. Among the models
mentioned in the last section, the choices of function v in the distri-
bution coefficient include the equation v = |Vu| in Perona and Ma-
lik’s model,v = |V(G * u)| suggested by Catte et al., and the equation
% = V2% — (v/p?) + (2a/p)(1 —v)||Vu|| mentioned in Shah’s algorithm,
and so on. Numerical simulations and experimental results show that
the choice of the function v plays a very important role in the recov-
ered quality of images contaminated by noise, so care must be taken
in its determination. We note that all these function v in the distri-
bution coefficients described in the previous section are isotropic, thus
the distribution algorithm will blur the function v, and sometimes fail
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to preserve important features. Note that this peculiar scheme of lin-
ear isotropic distribution within the anisotropic distribution is obviously
against the spirit of the anisotropic distribution. So, it is clear that the
isotropic distribution for function v is not an optimal choice. Thus,
one issue of the distribution algorithms is how to design an anisotropic
distribution for the function v in order to form a proper distribution
coefficient, which can not only remove the noise from images, but also
preserve the detail features well.

3.2. Paired anisotropic distribution model. The distribution algo-
rithm described in Section 2 has many desirable properties. But, it still
has difficulties when images are contaminated by a large noise. The main
problem is that all those choices for v involve an isotropic smoothing pro-
cess, which at times may cause failure in preserving important corners
and junctions, and may also cause failure to resolve small features that
are closely grouped together.

Inspired by the relationship proposed by You et al. [26] between
energy minimization and anisotropic distribution equation, we consider
choosing the function v to minimize the following energy functional,

B B) = [ 5o0VaDIVu + Ge(Vublo - e,

where, f represents the magnitude of the original image gradient. The
first term is referred to as the smoothing term producing a smooth vary-
ing scalar function at homogeneous region, and the second term is re-
ferred to as data term forcing the scalar function v to match f at the
boundary of objects where ¢(|Vu|) is large. The weighting functions,
¢(.) and ¢(.), are applied to the smoothing term and the data term, re-
spectively. Since we want v to be smooth at locations far from the edges,
but to conform to f near the edges, ¢(.) and ¢(.) should be monotoni-
cally non-increasing and non-decreasing functions of |Vul|, respectively.
Thus, it makes the distribution process behave well even for a large noisy
image. These weighing functions depend on the gradient norm of the
smoothed image u which is spatially and temporally varying, so they are
also spatially and temporally varying. There are many ways to specify
such pairs of weighting functions. Here, we use the following weighing
functions for the distribution coefficient:

(3.2) 8(Vul) = exp (— ('V;‘))



Paired anisotropic distribution for image selective smoothing 123
and
(3.3) e(IVul) =1 = ¢(|Vul).

The specification of K determines to some extent the degree of trade-off
between the smoothness and the gradient conformity. The characteris-
tics of the two weighting functions with respect to the image gradient
Vu are plotted in Fig. 1. From the figure, we can see that the function v
will conform to the image gradient at strong edges, but it will be smooth
away from the boundaries.

By obtaining the corresponding energy descent equation for (3.2), we
propose to determine v by solving the nonlinear distribution equation:

ov .
5 = dw(IVul)Vo) = o([Vul)(v - f)

(3-4) = Vo(|Vul)Vo + é(|Vul) Vo — o(|Vul) (v — f)
We note that if Vo(|Vu|)Vo =0, then (??) will reduce to the following
equation:

ov

(3.5) i $(IVul) V20 — (|Vul) (v — f).
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FiGureE 1. Weighing functions plotted as a function of
image gradient.
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However, this condition, ¢(|Vu|).Vv = 0, is dependent on the image
data, and is satisfied within homogeneous regions, but is generally non-
zero near the edges [25]. After implementing (??) and (??), we have
found out that the reduced distribution coefficient has similar proper-
ties as (7?7). What is more, this reduced version is computationally more
efficient. Therefore, although (?7) does not have the aesthetically pleas-
ing property of satisfying a minimum principle and does not lead to an
exact solution of (3.2), we appreciate (??) if the proposed anisotropic
algorithm is used.

The anisotropic distribution equation for image smoothing is as fol-
lows [22]:

1
(3.6) Ey(u) = / L oDIVul? + Llu — 12da.
2 2

Function v, being the solution of anisotropic distribution of image gra-
dient f, is introduced into (3.2) to form a regularized distribution coef-
ficient. The solution of (3.2) can be obtained by computing the steady
state of the following distribution equation:

(3.7) = = div(g(|v])|[Vu]) = p(u = 1).

Finally, our proposed model is formed by (??) and (??) together with the
insulated boundary conditions and initial conditions, as shown below:

0
5 = div(a(o)|Vul) = plu—1)
0
(3.8) 57 = OVul) V20 — (| Vul)(u — 1)
oul ov| 0
Ilpg " Ol

The paired partial differential equations (?7) consist of anisotropic dis-
tribution equations, which will smooth regions and diffuse the function
v where the gradient is small, but will preserve them well where the
gradient is large. The proposed nonlinear partial differential equations
can be efficiently implemented by a concise and efficient scheme. In the
next section, we will see that the proposed model obviously outweighs
the others.
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4. Simulation and experimental results

To verify the proposed paired anisotropic distribution algorithm de-
scribed in the last section, we have applied this algorithm to a variety of
images. In this section, two synthesis images and a real chip substrate
image are chosen to demonstrate the ability of the proposed algorithm
to faithfully preserve features of several structures in the presence of
noise, and experimental results are presented. Furthermore, applying

FIGURE 2. Synthetic piece-wise constant grey-scale im-
ages: (a) original image, (b) original image, (¢) noisy im-
age (Gaussian noise with 10.2 dB), and (d) noisy image
(Gaussian noise with 3.2 dB).

the model in (??) and our proposed model in (??) on synthesis data, we
do some comparisons of the results. During the experiments, we chose
parameters in these models giving optimal results by trial and error.
To evaluate the filtering quality in the simulations, we need the notion
of distance between two images. The Euclidean distance seems most
suited for theoretical analysis [I1], and has the ability of evaluating
the difference between two images. In our experiments, the Euclidean
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distance between two images is defined as follows:

m n
(4.1) Distance = » > [u(i, j) — I1(i, §)]*.

i=1 j=1
Another note concerns the simulation of the noise in these images. De-
grading a discrete image I to the noisy version of [ is obtained by adding
pseudorandom Gaussian noise with signal to noise ratio (SNR) ¢ dB,
where,

Var(Image)

4.2 =101 —_—
(42) c 810 Var(Noise)

FIGURE 3. Results on synthesis data: (a), (b) smoothed
images by Catte’s algorithm, (¢), (d) smoothed images by
the proposed algorithm.

The original images only contain intensities between 0 and 255; adding
the additive pseudorandom Gaussian noise makes pixel values of noisy
image outside of the range. It seems that it is customary to always
truncate values of the noisy pixel values outside of [0, 255] so that they
are in that range. However, here we do not truncate the noisy pixel
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values, so our noisy images contain intensities well outside the [0, 255]
range. For instance, the noisy image in Fig. 2 contains intensities as
low as -47 and as high as 312. This presents a much greater challenge
to the algorithm than the truncated version.

Grey scale intensity
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FIGURE 4. Cross-sections of images: (a), (b) cross-
sections of original image and noisy image, (c), (d) cross-
sections of smoothed image by the proposed algorithm
and one by Catte’s algorithm.

Figs. 2(a) and 2(b) show the synthesis images, which are grey-scale
and piece-wise constant objects and are represented on a 256 X256 square
lattice. There are a lot of typical features that are used to demonstrate
the ability of the proposed algorithm. For the first image, pseudo-
random Gaussian noise with SNR 10.2 dB is added to the original im-
age to obtain the noisy version shown in Fig. 2(c). The Catte’s model
is run with £ = 56,0 = 0.05, At = 0.05 for 68 iterations, and pro-
duces the smoothed image shown in Fig. 3(a), whose distancens with
k = 45, K = 36, At = 0.05. This produces the smoothed image shown
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in Fig. 3(c), whose distance is 1379.2. For the second image, pseudo-
random Gaussian noise with SNR 3.2 dB is added to the original image
to obtain the noisy version shown in Fig. 2(d). The Catte’s model is
run with & = 68,6 = 0.2, At = 0.05 for 106 iterations, and produces
the smoothed image shown in Fig. 3(b), whose is 1922.0. The proposed
model is run for 43 iteratio distance is 3728.8.0. The proposed model
is run for 74 iterations with k& = 53, K = 43, At = 0.05. This produces
the smoothed image shown in Fig. 3(d), whose distance is 2468.0. We
see that our method requires less rounding of sharp corners and gives
better enhancements.
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FIGURE 5. Experimental results on real chip substrate
image: (a) real picture of a chip substrate, (b) smoothed
substrate image by the proposed algorithm, (c) edge map
of smoothed image.

In order to see the improvement of the proposed model clearly, line
plots of particular rows of the true, noisy and smoothed images are
presented in Fig. 4. Figs. 4(a) and 4(b) contain line plots of the 120th
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row of the true and noisy images. Line plots for the same section in
the smoothed images produced by two different algorithms are shown in
Figs. 4(c) and 4(d), respectively. From these figures, we can see clearly
that the large noise image smoothed by Catte’s method is more blurred,
so produces rounded edges, and the locations of edges are worse, but we
do not expect these rounded edges and the false ones to appear in real
applications. Nevertheless our proposed algorithm obtains good quality
images and preserve the details of the features well.

Fig. 5(a) is an actual digital photograph of a chip substrate. The
smoothed image and edge map in Figs. 5(b) and (c) are obtained by
running the discretization of the proposed model (?7) for eight iterations
with £ = 15, K = 20,At = 0.15. The edges or the features are very
important for vision location and quality inspection.
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