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Abstract. Let A be a finite dimensional k-algebra and R be a
locally bounded category such that R→ R/G = A is a Galois cov-
ering defined by the action of a torsion-free group of automorphisms
of R. Following [30], we provide criteria on the convex subcategories
of a strongly simply connected category R in order to be a cycle-
finite category and describe the module category of A. We provide
criteria for A to be of polynomial growth.

1. Introduction

Throughout the article, algebras are finite dimensional associative k-
algebras with identity over a fixed algebraically closed field k. By a
module over an algebra A we mean a left A-module of finite dimension
over k, if not specified otherwise.

From Drozd’s Tame and Wild Theorem [19] (see also [13]), the class
of algebras are divided into two disjoint classes. On the one hand, we
have tame algebras for which the indecomposable modules occur, in each
dimension d, in a finite number of discrete and a finite number of one-
parameter families. On the other hand, we have wild algebras whose
representation theory includes the representation theories of all finite
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dimensional algebras over k (see [35, Chapter XIX]). A well understood
class of tame algebras is formed by the algebras of finite type which
accept only finitely many isoclasses of indecomposable modules (see [4,
5, 8, 9]). In the more general situation, the representation theory of
tame algebras is slowly emerging. Tame tilted algebras [24], domestic
and tubular extensions of tame concealed algebras [33], coil algebras
[3] and more generally, (tame) algebras of polynomial growth [37], for
which there exists an integer m such that the number of one-parameter
families of indecomposable modules is bounded, in each dimension d, by
dm, are among the type of algebras studied in the past years.

The methods of the representation theory of algebras work best for
triangular algebras A = kQA/I, where the Gabriel quiver QA has no
oriented cycles (see [1, 33, 34, 35]). To deal with arbitrary algebras,
covering techniques were developed (see [8, 16, 18, 20, 28]). In many
situations, an algebra A admits a Galois covering R→ R/G = A, where
R is a triangular locally bounded category and G is a torsion-free group
acting freely on the objects of R, which allows to study the represen-
tation theory of A by the consideration of finite dimensional algebras
inside R. For instance, assume that R is a strongly simply connected
category (see [38]). Then, tameness of A implies tameness of R, which
happens exactly when R does not accept convex subcategories which are
hypercritical [11]. The converse is expected to hold. Moreover, under
these assumptions, A is of polynomial growth if and only if R does not
accept convex subcategories which are hypercritical or pg-critical; see
[37].

An important role in the representation theory of algebras is played
by cycles of modules. A cycle in the category modA of finite dimensional
modules over an algebra A is a sequence

X = X0
f1−→ X1

f2−→ . . .
fs−→ Xs = X

of non-zero non-isomorphisms between indecomposable modules in mod
A, and the cycle is said to be finite if the homomorphisms f1, . . . , fs do
not belong to the infinite Jacobson radical of modA. An algebraA is said
to be cycle-finite if all cycles in modA are finite [2]. Representation-finite
algebras, tame tilted algebras, tame generalized multicoil algebras [26]
are examples of cycle-finite algebras. In general, a cycle-finite algebra A
is of polynomial growth, while the converse holds if A is a strongly simply
connected algebra [40]. Recently, it was shown in [30] that every algebra
A, which admits a Galois covering R → R/G = A with R a cycle-finite
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locally bounded category and G a torsion-free group, is tame and the
indecomposable finite dimensional A-modules were described. Moreover,
for such a Galois covering, the algebra A is of polynomial growth if and
only if the number of G-orbits of isoclasses of indecomposable locally
finite dimensional R-modules with non-trivial stabilizers is finite.

Here, we recall the main results and related techniques of the context
discussed so far. Namely, we consider algebra A and Galois covering
R → R/G = A where R is a ”nice” locally bounded category and G
is a torsion-free group of automorphisms of R. The nicest situation
corresponds to R being a strongly simply connected and cycle-finite
category. Assuming that R is a strongly simply connected category,
we show that R is cycle-finite if and only if R does not accept convex
subcategories which are hypercritical, pg−critical or of type (2, 2,∞).
Here, we say that a category is of type (2, 2,∞) if it is the direct limit
of domestic extensions of type (2, 2, n), for 0 ≤ n ∈ N, of a fixed tame
concealed algebra of type (2, 2, s). These conditions are satisfied when
there is a set of representatives S0 of the G-orbits in a separating family
S of convex subcategories of R with respect to G which is formed by
lines ∞A∞; see [30]. Moreover, if R → R/G = A is a covering in the
nicest situation and S0 is not empty, then A is of polynomial growth
exactly when G = Z.

The remainder of the paper is organized as follows. In Section 1, we
recall basic facts on Galois coverings of algebras essential for further
considerations. Section 2 contains results on cycle-finite strongly simply
connected categories. Section 3 is devoted to the proof of the main result
and its immediate consequences. In Section 4, we establish a criterion
for polynomial growth. In the final Section 5, we exhibit a couple of
examples illustrating our results.

For basic background on the representation theory of algebras, refer
to the books [1, 33, 34, 35].

2. Galois coverings of algebras

Following [8], by a locally bounded category we mean a k-category R
which is isomorphic to a factor category kQR/I, where QR is a locally
finite quiver and I is an admissible ideal of the path category kQR of
QR. An algebra A will be considered as a finite category, that is, a
locally bounded category given by a finite quiver. A full subcategory C
of a locally bounded category R is said to be convex if any path in QR
with source and target in QC lies entirely in QC .
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Throughout this section, we denote by R a fixed locally bounded cat-
egory (over k). By an R-module, we mean a covariant functor M from
R to the category MOD k of all vector spaces over k [8]. An R-module
M is called finite dimensional (respectively, locally finite dimensional)
if dimM =

∑
x∈R dimkM(x) < ∞ (respectively, dimkM(x) < ∞ for

any object x of R). We denote by MODR, (respectively, ModR or
modR) the category of all (respectively, all locally finite dimensional or
all finite dimensional) R-modules, and by IndR, (respectively, indR)
the full subcategory of ModR (respectively, modR) formed by all inde-
composable modules. The support suppM of an R-module M is the full
subcategory of R given by all objects x such that M(x) 6= 0.

Let G be a group of k-linear automorphisms of R acting freely on the
objects of R. Then, following [20], we may consider the orbit category
R/G with objects being the G-orbits of the objects of R, and, for any
two objects a and b of R/G, the morphism k-space (R/G)(a, b) is defined
as

(R/G)(a, b) =

(fy,x) ∈
∏

(x,y)∈a×b

R(x, y)
∣∣∣ gfy,x = fgy,gx ∀

g∈G,x∈a,y∈b


with the natural composition. Then, we have a canonical Galois covering
functor

F : R −→ R/G

which assigns to any object x of R its G-orbit Gx and maps a mor-
phism f ∈ R(x, y) onto the family F (f) ∈ (R/G)(Gx,Gy) such that
F (f)hy,gx = gf or 0 in accordance with h = g or h 6= g. Moreover, F
induces the k-linear isomorphisms⊕
F (y)=a

R(x, y)
∼−→ (R/G)(F (x), a),

⊕
F (y)=a

R(y, x)
∼−→ (R/G)(a, F (x)),

for all objects x of R and a of R/G. For a full subcategory D of R, we
denote by g(D) the full subcategory of R formed by the objects g(x),
x ∈ D, and its stabilizer GD = {g ∈ G | g(D) = D}. Then, we may
consider the locally bounded category D/GD. The group G acts on
ModR by the translations (−)g which assign to each R-module M the
R-module Mg = M ◦ g. For each R-module M , we denote by GM the
stabilizer {g ∈ G |Mg ∼= M} of M . Following [18], a module Y in IndR
is said to be weakly G-periodic if suppY is infinite and (suppY )/GY is
a finite category. Observe that in such a case, GY is infinite.
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Assume now that G is a group of k-linear automorphisms of R act-
ing freely on the isoclasses of modules in indR. Clearly, then G acts
freely on the objects of R, since G acts freely on the isoclasses of in-
decomposable projective R-modules R(x,−), x ∈ R. Consider the
associated Galois covering functor F : R → R/G. We denote by
F• : MODR/G → MODR the pull-up functor, which assigns to an
R/G-module M the R-module M ◦F , and by Fλ : MODR→ MODR/G
the push-down functor, left adjoint to F• (see [8, (3.2)]). Since G acts
freely on the isoclasses in indR, Fλ induces an injection from the set
(indR/ ∼=)/G of G-orbits of isoclasses in indR into the set (indR/G)/ ∼=
of isoclasses in indR/G [20, (3.5)]. We denote by mod1R/G the full
subcategory of modR/G consisting of all modules isomorphic to Fλ(M)
for some module M in modR, and by mod2R/G the full subcategory
of modR/G formed by all modules without nonzero direct summands
from mod1R/G. It was shown in [18, (2.2) and (2.3)] that a mod-
ule X from modR/G belongs to mod1R/G (respectively, mod2R/G)
if and only if F•(X) is a direct sum of finite dimensional R-modules
(respectively, weakly G-periodic R-modules). We denote by ind1R/G
(respectively, ind2R/G) the full subcategory of mod1R/G (respectively,
mod2R/G) formed by the indecomposable modules. Following [18],
the modules from ind1R/G (respectively, ind2R/G) are called inde-
composable modules of the first kind (respectively, indecomposable mod-
ules of the second kind). The category R is said to be G-exhaustive if
modR/G = mod1R/G [18].

Assume that R is not G-exhaustive. Following [18, (3.1)], a family S
of full subcategories of R is called separating (with respect to G) if S
satisfies the following conditions:

(i) for each L ∈ S and g ∈ G, gL ∈ S;
(ii) for each L ∈ S and each G-orbit O of R, O ∩ L is contained in

finitely many GL-orbits;
(iii) for any two different L,L′ ∈ S, L ∩ L′ is locally support-finite;
(iv) for each weakly G-periodic R-module Y , there exists an L ∈ S

such that suppY ⊆ L.

The following theorem is the main result in [18, Theorem 3.1].

Theorem 2.1. Let R be a locally bounded k-category and G be a group
of k-linear automorphisms of R acting freely on the isoclasses in indR.
Let S be a separating family of convex subcategories of R with respect to
G and S0 be a fixed set of representatives of G-orbits in S. There are
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natural embedding functors ELλ : modL/GL → modR/G, L ∈ S0 which
induce a natural k-linear equivalence of categories

E :
∐
L∈S0

(modL/GL)/[mod1 L/GL] −→ (modR/G)/[mod1R/G].

In particular, the Auslander-Reiten quiver ΓR/G of R/G is the disjoint
union of the translation quivers

ΓR/G = (ΓR/G) t

∐
L∈S0

(
ΓL/GL

)
2

 ,

where
(
ΓL/GL

)
2

is the union of all connected components of ΓL/GL formed

by the indecomposable L/GL-modules of the second kind.

For a convex subcategory L of a locally bounded category R, the
canonical embedding EL : MODL → MODR is defined for a module
N in MODL, EL(N) as an R-module such that EL(N)(x) = N(x) for
any object x of L, EL(N)(f) = N(f) for any morphism f in L, and
EL(N)(y) = 0 for any object y of R which is not in L. Moreover, we
have a commutative diagram of functors

MODL
EL //

FLλ
��

MODR

Fλ
��

MODL/GL
ELλ // MODR/G

where FLλ is the push-down functor associated to the Galois covering

FL : L → L/GL, Fλ is the push-down functor associated to the Galois
covering F : R → R/G, and ELλ assigns to a module X in MODL/GL
the module ELλ (X) in MODR/G such that F•E

L
λ (X) =

⊕
g∈UL F

L
• (X)g,

where F• : MODR/G → MODR and FL• : MODL/GL → MODL are
the pull-up functors associated to F and FL, and UL is a fixed set of
representatives of the cosets of G modulo GL (see [18], (2.4) and (3.2)).

The following is an important special case of the last Theorem; see
[18].

Proposition 2.2. Let R be a tame locally bounded k-category, G be a
group of k-linear automorphisms of R acting freely on the objects of R,
and Y be a weakly G-periodic R-module. Then, the followings hold:

(1) the stabilizer GY is an infinite cyclic group;
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(2) the push-down module Fλ(Y ) carries a canonical structure of a
kGY -R/G-bimodule which is a free module of finite rank as left
module over the group algebra kGY of GY . In particular, we
have a canonical functor

ΦY = −⊗kGY Fλ(Y ) : mod kGY −→ modR/G,

whose image is contained in mod2R/G.

Let R be a locally bounded k-category and G be a group of k-linear
automorphisms of R acting freely on the objects of R. A line in R is a
convex subcategory L of R which is isomorphic to the path category kQ
of a linear quiver Q of type An, A∞ or ∞A∞. A line L in R is said to
be G-periodic if its stabilizer GL is nontrivial. Clearly, in this case, the
quiver QL of L is of type

∞A∞ : . . . • • • • • . . .

and has a GL-periodic orientation. With each G-periodic line L of R we
may associate a canonical weakly G-periodic R-module ML by setting
ML(x) = k for any vertex x of QL, ML(y) = 0 for all vertices y of
QR\QL, andML(γ) = idk for each arrow γ ofQL. SinceGML

= GL = Z,
we then obtain a canonical functor

ΦL = −⊗k[T,T−1] Fλ(ML) : mod k[T, T−1] −→ modR/G

where mod k[T, T−1] denotes the category of finite dimensional modules
over k[T, T−1].

Proposition 2.3. Let R be a cycle-finite strongly simply connected cate-
gory and F : R→ A be a Galois covering functor of a finite dimensional
algebra A defined by the action of a torsion-free group G. Let S0 be a
set of representatives of the G-orbits in a separating family S of convex
subcategories of R with respect to G. The followings hold:

(i) each L ∈ S is a convex subcategory of R which is a line L in R,
that is, the quiver QL of L is of type

∞A∞ : . . . • • • • • . . .

and L = kQL;
(ii) for any two different L,L′ ∈ S, the intersection L ∩ L′ is a

connected finite linear quiver.

Proof. (i): In [30] (3.1), without assuming that R is strongly simply
connected, it was shown that L is a convex subcategory of R admitting
a simply connected Galois covering F ′ : L̃ → L̃/H = L determined
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by the action of a torsion free group H and L̃ is a line of type ∞A∞.
Assuming that R is strongly simply connected, then L̃ = L as desired.

Assume (ii) fails. Since L ∩ L′ is locally suport finite, then L ∩ L′ is
formed by at least two disconnected finite intervals of the line L. Thus,
we get a convex segment x1 x2 · · ·xs−1 xs in L with

x1, xs ∈ L ∩ L′ and xi /∈ L′, 2 ≤ i ≤ s− 1. Then, the convex closure of
x1, xs in R is of the shape

xp
%%yy

xp−1
xx

xp+1
''

· · ·
vv

· · ·
((

x1 = y1
''

xs = yt
vv

y2
&&

yt−1
ww

· · ·
&&

· · ·
xx

yq

where all yi ∈ L′ but yj /∈ L, for 2 ≤ j ≤ t − 1, and there is a commu-
tativity relation from xp to yq. Since the stabilizer GL acts on L, we
get a weakly G-periodic convex subcategory of R which is not a line,
contradicting (i). �

3. Cycle-finite strongly simply connected categories

By a tame concealed algebra, we mean a tilted algebra C = EndH(T ),
where H is the path algebra kQ of a quiver Q of Euclidean type

Ãm(m ≥ 1), D̃n(n ≥ 4), or Ẽp(6 ≤ p ≤ 8), and T is a (multiplicity-
free) preprojective tilting H-module. Recall that the Auslander-Reiten
quiver ΓC of a tame concealed algebra C is of the form

ΓC = PC ∨ T C ∨ IC ,

where PC is a preprojective component containing all indecomposable
projective C-modules, IC is a preinjective component containing all in-
decomposable injective C-modules, and T C is a P1(k)-family T Cλ , λ ∈
P1(k), of pairwise orthogonal standard stable tubes, all but finite number
of them of rank one (see [33, Chapter 4]) and [34]).

By a tubular algebra, we mean a tubular extension (equivalently, tubu-
lar coextension) of a tame concealed algebra of tubular type (2, 2, 2, 2),
(3, 3, 3), (2, 4, 4), or (2, 3, 6), as defined in [33]. Recall that a tubular
algebra B admits two different tame concealed convex subcategories C0
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and C∞ such that the Auslander-Reiten quiver ΓB of B is of the form

ΓB = PB0 ∨ T B0 ∨

 ∨
q∈Q+

T Bq

 ∨ T B∞ ∨ IB∞,
where PB0 is the preprojective component PC0 of ΓC0 , T B0 is a P1(k)-
family of pairwise orthogonal standard ray tubes, obtained from the
stable tubes of T C0 by ray insertions, IB∞ is the preinjective component
IC∞ of ΓC∞ , T B∞ is a P1(k)-family of pairwise orthogonal standard coray
tubes, obtained from the stable tubes of T C∞ by coray insertions, and,
for each q ∈ Q+ (the set of positive rational numbers), T Bq is a P1(k)-
family of pairwise orthogonal standard stable tubes; see [33].

Lemma 3.1. Let R be a tame strongly simply connected locally bounded
category and G be a group acting freely on R. Let C be a tame concealed
algebra of type D̃n which is a convex subcategory of R. Assume x1 is a
vertex of C in a convex line y− x1− x2− · · · − xt− y′ such that each xi
has exactly two neighbors in the quiver of C and xt = g(x1), for some
g ∈ G. Then, for every number s there are indecomposable R-modules Ys
containing at least s convex tame concealed subcategories in the support
supp Ys.

Proof. Tame concealed algebras of type D̃s are given by the following
frames:

• •
• x1 · · · xt •

• •

•

��

~~
•�� •
... •

��

· · · •

•
  

•
•

•

��

~~
•

��

  
•�� •��
... •

��

· · · •

��

...

•
  

•
~~

• •

•

��

  

��
•��

•

��

•

��

...

•
~~
•

with all commutativity relations. For the sake of simplicity, we assume
that xi, for 1 ≤ i ≤ t, are given as in the first frame. Then, in R we get



168 de la Peña

a convex subcategory B3 of the shape

• •
•

��
• •

• // x1 · · · • // g(x1) //

��

•

• •
•
...

• •
��

•

• // g2(x1) //

��

• · · · • // g3(x1) // •

• •
•

• •

up to change of some arrow orientations. Clearly, B3 accepts an inde-
composable sincere module Y3 whose support contains 6 tame concealed
convex subcategories. Similarly, we may construct the desired indecom-
posable R-modules Ys, for s ≥ 4. �

Let B be an algebra, C be a standard component of ΓB and X be an
indecomposable module in C. In [3], three admissible operations (ad 1),
(ad 2) and (ad 3) were defined depending on the shape of the support
of HomB(X,−)|C in order to obtain a new algebra B′.

(ad 1) If the support of HomB(X,−)|C is of the form

X = X0 → X1 → X2 → · · ·

then we set B′ = (B × D)[X ⊕ Y1], where D is the full t × t
lower triangular matrix algebra and Y1 is the indecomposable
projective-injective D-module.

(ad 2) If the support of HomB(X,−)|C is of the form

Yt ← · · · ← Y1 ← X = X0 → X1 → X2 → · · ·

with t ≥ 1, so that X is injective, then we set B′ = B[X].
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(ad 3) If the support of HomB(X,−)|C is of the form

Y1 → Y2 → · · · → Yt

↑ ↑ ↑

X = X0 → X1 → · · · → Xt−1 → Xt → · · ·

with t ≥ 2, so that Xt−1 is injective, then we set B′ = B[X].

In each case, the module X and the integer t are called, respectively,
the pivot and the parameter of the admissible operation. The dual op-
erations are denoted by (ad 1*), (ad 2*) and (ad 3*).

Following [3], an algebra A is a coil enlargement of the critical algebra
C if there is a sequence of algebras C = A0, A1, . . . , Am = A such that
for 0 ≤ i < m, Ai+1 is obtained from Ai by an admissible operation with
pivot in a stable tube of ΓC or in a component (coil) of ΓAi obtained
from a stable tube of ΓC by means of the admissible operations done so
far. When A is tame, then we call A a coil algebra.

If A is a coil enlargement of a critical algebra C, then there is a
maximal branch coextension A− of C inside A which is full and convex
in A, and such that A is obtained from A− by a sequence of admissible
operations of types (ad 1), (ad 2) and (ad 3). Dually, there is a maximal
branch extension A+ of C inside A which is full and convex in A, and
such that A is obtained from A+ by a sequence of admissible operations
of types (ad 1*), (ad 2*) and (ad 3*).

For a coil enlargement A of a critical algebra C, we consider the type
r(A) of A as follows: Let T = (Tλ)λ∈P1(k) be the separating tubular
family of modC. For each λ ∈ P1(k), let nλ be the rank of Tλ and
r+
λ − nλ (respectively, r−λ − nλ) be the number of rays (respectively,

corays) inserted in Tλ by the sequence of admissible operations that
leads from C to A. Finally, let r(A) = (r+

λ , r
−
λ )λ∈P1(k), where we write

down only those numbers greater or equal to 1.

Proposition 3.2. Let B be a coil enlargement of a tame concealed al-
gebra C. The following conditions are equivalent.

(a) B is tame.
(b) B+ and B− are tame.
(c) Every cycle

X = X0
f1−→ X1

f2−→ . . .
fs−→ Xs = X

of non-zero non-isomorphisms between indecomposable modules
in modB. belongs to a standard coil in ΓB.
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(d) B is of polynomial growth.
(e) B is of linear growth.
(f) B is cycle-finite.
(g) Each of r+(B) and r−(B) is one of the following: (p, q) where

1 ≤ p ≤ q, (2, 2, r) with r ≥ 2, (2, 3, 3), (2, 3, 4), (2, 3, 5), (3, 3, 3),
(2, 4, 4), (2, 3, 6), (2, 2, 2, 2).

Essential for our considerations is the following theorem which is the
main result of [42].

Theorem 3.3. Let A be a strongly simply connected algebra. The fol-
lowing conditions are equivalent.

(a) A is of polynomial growth.
(b) A is of linear growth.
(c) A is cycle-finite.
(d) A does not contain a convex subcategory which is pg-critical or

hypercritical.
(e) rad∞(modA) is locally nilpotent.
(f) The component quiver C(A), whose vertices are components of

the Auslander-Reiten quiver ΓA and arrows C → C′ are set when
there are modules X ∈ C and X ′ ∈ C′ with rad∞(X,X ′) 6= 0, has
no oriented cycles.

(g) Every connected component of ΓA is standard.

A special situation of the above Theorem is the following.

Lemma 3.4. Let B be a strongly simply connected cycle-finite algebra
and M be an indecomposable B-module. Assume that

X = X0
f1−→ X1

f2−→ . . .
fs−→ Xs = X

is a cycle of non-zero non-isomorphisms between pairwise different in-
decomposable modules in modB, such that 6 ≤ s and f1 factorizes non-
trivially in modB[M ]. Then, one of the following two situations occur:

(i) B contains a convex subcategory B′ which is a coil extension
such that one of the two r+(B′) or r−(B′) is (2, 2, s).

(ii) B[M ] is of wild type.

Proof. Indeed, by [42] (2.3), the algebra B is multicoil and the given
cycle belongs to a standard coil T of a multicoil of ΓB. Let C be a
tame concealed algebra such that B′ is a convex subcategory of B and
coil extension of a tame concealed algebra C. Assume (i) does not hold,
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that is, B′ is of type (r1, r2, r3), with r1 ≤ r2 ≤ r3 and 3 ≤ r2, or of type
(2, 2, 2, 2).

Let T ′ be the component of ΓB[M ] where X belongs. Observe that
HomB(M, T ) 6= 0 and since f1 is factorized there is a cycle of non-zero
non-isomorphisms between 6 < s+ 1 pairwise different indecomposable
modules in modB[M ]. If M belongs to T ′, then either M is not a pivot
module or the extension type of B′[M ] is not tame. In the latter case,
B[M ] is wild. Moreover, if M is not a pivot module, according to [29],
the one-point extension B′[M ] is tame only when B′ is of type (2, 2, s).
Since this is forbidden, then B[M ] is wild.

If M does not belong to T ′, then there is a regular C-module Y such
that HomB(M,Y ) 6= 0, and B[M ] contains a convex subcategory of the
form C[N ] for a preprojective C-module N . The extension C[N ] being
wild implies that B[M ] is wild. �

The following theorem is the main result of [30].

Theorem 3.5. Let R be a connected cycle-finite locally bounded k-
category over an algebraically closed field k, G be a torsion-free admis-
sible group of k-linear automorphisms of R, and A = R/G. Let S be
a separating family of convex subcategories of R with respect to G and
S0 be a fixed set of representatives of G-orbits in S. Then, the functors
ΦY = Fλ(Y ) ⊗k[T,T−1] − : mod k[T, T−1] → modA, Y ∈ S0, induce a
k-linear equivalence of categories

Φ :
∐
S0

mod k[T, T−1]
∼−→ modA/[mod1A].

Moreover, the following statements hold.

(i) A is tame.
(ii) Every indecomposable finite dimensional A-module X is isomor-

phic either to Fλ(M) for some indecomposable finite dimensional
R-module M or to ΦY (V ) for some Y ∈ S0 and some indecom-
posable finite dimensional k[T, T−1]-module V .

(iii) The Auslander-Reiten quiver ΓA of A has the disjoint union de-
composition

ΓA = (ΓR/G) t

∐
S0

Γk[T,T−1]


where Γk[T,T−1] is the Auslander-Reiten quiver of the category of

finite dimensional k[T, T−1]-modules.
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There are strongly simply connected categoriesR of polynomial growth
which are not cycle-finite, as the following example shows. Consider the
category R given by the following quiver with relations as indicated by
the dotted edges:

•

��

•

· · · // 2 // 1 // 0

??

��

// 1′ // 2′ // · · ·

•

@@

•
Since R has tame coil enlargements Rs of a hereditary algebra C of
Euclidean type D̃4 of type (2, 2, s), for arbitrary s ≥ 1, then modR ac-
cepts cycles of non-zero morphisms between indecomposable R-modules
of arbitrary length. We may build a non-trivial infinite cycle in modR′,
where R′ is the quotient of R obtained by adding a zero-relation from 1
to 1′, of the form

0 1

S0 → P1 → Ps → 1 →
0 1

1 1

2

1 1

1 0

→ 1 → Is′ → I1′ → S0

1 0

where S0 is the simple module at 0, Pj (respectively, Ij) is the indecom-
posable projective cover (respectively, injective envelope) of Sj in modR′

and the dimension vectors correspond to indecomposable C-modules Xi,
i = 1, 2, 3. Observe that the composition of maps S0 → X1 is non-zero
in rad∞(modR).

We say that the category R is of type (2, 2,∞) if for every m it
contains a convex subcategory Bm which is a coil enlargement of type
(2, 2,m), Bm is a subcategory of Bm+1 and R =

⋃
mBm.

The next result is preparatory for the main theorem of our work.

Lemma 3.6. Let R be a strongly simply connected cycle-finite category
and F : R → A be a Galois covering functor of a finite dimensional
algebra A defined by the action of a torsion-free group G. Assume that
R is of polynomial growth. Then, the followings hold:

(i) there is a number s0 such that, for any finite convex subcategory
B of R, any periodic B-module has period at most s0;

(ii) for any cycle

X = X0
f1−→ X1

f2−→ . . .
fs−→ Xs = X
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of length s ≥ s0, there is a convex subcategory B of R and a coil
T in modB containing all modules Xi, 1 ≤ i ≤ s, and at least
s− s0 indecomposable projective modules.

Proof. (i) : Let s0 = 2n + 4, where n is the number of vertices in the
quiver of A. Consider a convex subcategory B of R with a periodic
module X of period p > s0. Since B is a multicoil algebra, then X
lies in a stable tube. By [3], the support of X is a tame concealed or
a tubular algebra. Without lost of generality, we may asume that B is
tame concealed or a tubular algebra.

Since p > 6, then B is tame concealed of type D̃p−2. From the struc-
ture of the frames of the tame concealed algebras, we get a linear convex
subcategory of B of the shape y− x1− x2− · · · − xt− y′ such that each
xi has exactly two neighbors in the quiver of B and xt = g(x1), for some
g ∈ G. By Lemma 3.1, there is an indecomposable R-module whose
support contains at least 4 convex tame concealed subcategories. This
contadicts with the result in [25].

(ii) : is a consequence of (i) and the structure of multicoil components
of the Auslander-Reiten quiver of multicoil algebras. �

4. The main results

Theorem 4.1. Let R be a strongly simply connected category and F :
R → A be a Galois covering functor of a finite dimensional algebra
A defined by the action of a torsion free group G. The followings are
equivalent.

(a) R is of polynomial growth and does not contain a convex subcat-
egory of type (2, 2,∞).

(b) R is of linear growth and does not contain a convex subcategory
of type (2, 2,∞).

(c) R is cycle-finite.
(d) R does not contain a convex subcategory which is of type (2, 2,∞),

pg-critical or hypercritical.
(e) R does not contain a convex subcategory which is pg-critical or

hypercritical and there exists a set of representatives S0 of the
G-orbits in a separating family S of convex subcategories of R
with respect to G formed by lines.
Moreover, if any of the above holds, then the following holds:

(f) rad∞(mod1A) is locally nilpotent.
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Proof. The equivalence of (a), (b) and (d) follows obviously from Theo-
rem (4.1) in [42]. If (c) is satisfied, then clearly (a) is satisfied. Assume
that (a) holds, that is, R is of polynomial growth not accepting convex
subcategories of type (2, 2,∞). We shall show that there is a number s
such that the maximal length of a cycle in modR is s and therefore R
is cycle finite.

Suppose, to get a contradiction, that for every number s there is a
cycle

ηs : X = X0
f1−→ X1

f2−→ . . .
ft(s)−−−→ Xt(s) = X

of length t(s) ≥ s. As in Lemma 3.6, there is a number s0 such that,
for any finite convex subcategory B of R, any periodic B-module has
period at most s0. In particular, any tame concealed convex subcategory
C of R is of Euclidean type (2, 3, 3), (2, 3, 4), (2, 3, 5) or (2, 2, r) with
2 ≤ r ≤ s0. Moreover, each cycle ηs lies in a coil Ts in modBs containing
at least t(s) − s0 indecomposable projective modules, where Bs is a
convex subcategory of R which is a coil extension of a tame concealed
algebra Cs. Moreover, without lost of generality, we may assume that
Bs = B′s[Ms] is a one-point extension of a coil algebra B′s by a module
in Ts. Since there are only finitely many orbits of the action of G on R,
there is a finite set F of numbers such that for every number s there is an
element gs ∈ G such that gs(Cs) = Cf(s), for some f(s) ∈ F. Replacing ηs
by gs(ηs) and choosing some s′ ∈ F with an infinite preimage f−1(s′), we
may assume, without lost of generality, that every Bs is a coil extension
of the tame concealed algebra C. By Lemma 3.6 and s ≥ 7, C is of
type (2, 2, t0) with t0 ≤ s0 and therefore, for t0 ≤ s, the cycle ηs lies in
a coil Ts with at least t(s) − t0 projective modules. Moreover, Ts′ is a
coil extension of the coil Ts, for any s′ ≥ s. Clearly, R contains a convex
subcategory of type (2, 2,∞), a contradiction showing (c).

(c) is equivalent to (e): we already observed that weakly G-periodic
subcategories of a strongly simply connected cycle-finite category R are
lines. For the converse, assume that (e) is satisfied. By theorem 3.3,
every finite convex subcategory of R is of polynomial growth, that is,
R is of polynomial growth. Assume, to get a contradiction, that B is
a convex subcategory of R of type (2, 2,∞); in particular, there is a
convex subcategory D of R tilted of type Ds with s > n + 2 for n, the
number of vertices of the quiver QA, given by a quiver with relations
corresponding to one of the following frames of categories:
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•

• • · · · x · · · g(x) · · ·

•

•

��

~~
•
... •

��

• · · · x · · · g(x) · · ·

•
  
•

for some x ∈ QD and some g ∈ G. Clearly, this yields a convex sub-
category D′ of R which is tame concealed of type D̃t and a convex line
x − x1 − x2 − · · · − xt − g(x) such that each xi has exactly two neigh-
bors in the quiver of C. Applying Lemma 3.1, we get indecomposable
R-modules Y whose support contain at least 4 different tame concealed
algebras. This contradicts the main result in [25].

(c) implies (f): Assume (c) holds. Consider M an indecomposable
A-module of the first kind and a linear map f : M →M in rad∞(mod1A).
Suppose that Fλ(X) = M , for some indecomposable R-module X.
Then, there are maps fg ∈ HomR(X,Xg), almost all fg = 0, such that∑
g∈G

F (fg)

= f . Since f ∈ rads(mod1A) then, fg ∈ rads(modR), for any s ≥ 1.
Suppose 0 6= f = f1 · · · fr, for some fi ∈ rad∞(M,M), there exist maps
f(i,g) ∈ rad∞(X,Xg), for 1 ≤ i ≤ r, with almost all f(i,g) = 0, such that∑
g∈G

F (f(i,g)) = fi. We get

fg =
∑

g=gr···g1

f
gr−1···g1
(r,gr)

· · · fg1(2,g2)f(1,g1).

Call X0 = X,X1 = Xg1 , X2 = Xg2g1 , · · · , Xr = Xgr···g2g1 and consider a
non-zero composition of maps 0 6= fr · · · f2f1 with fi ∈ rad∞(Xi−1, Xi),
1 ≤ i ≤ r. Since R is cycle-finite and therefore rad∞(Y, Y ) = 0 for
any indecomposable R-module Y , then the modules Xi, 0 ≤ i ≤ r,
are pairwise non-isomorphic indecomposable R-modules with the same
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dimension d = dimkM . The Harada-Sai lemma yields a contradiction,
in case r ≥ 2d. This shows that rad∞(mod1A) is locally nilpotent. �

Given a Galois covering R → R/G = A of a finite dimensional k-
algebra A, we observe that a component C′ of ΓA is either of the first
kind, that is formed by the modules Fλ(X), for X ∈ C for a component C
in ΓR, or of the second kind, that is formed by the modules ΦY (V ), for Y
a fixed weakly G-periodic module and V an indecomposable k[T, T−1]-
module. The following consequence for the structure of components of
the Auslander-Reiten quiver ΓA is obtained.

Proposition 4.2. Let R be a cycle-finite strongly simply connected cate-
gory and F : R→ A be a Galois covering functor of a finite dimensional
algebra A defined by the action of a torsion free group G. Let C be a
component of the Auslander-Reiten quiver ΓR. The followings hold:

(a) the set of vertices a such that X(a) 6= 0, for some indecomposable
X ∈ C, form a convex subcategory B(C) of R;

(b) the stabilizer G′ = GC of C is a normal subgroup of G;
(c) the category B(C) is strongly simply connected and cycle-finite,

the induced functor F ′ : B(C)→ A′ is a Galois covering defined
by the action of a torsion free group G′, and C is a component
of ΓB(C) with stabilizer G′C = G′;

(d) every component of the Auslander-Reiten quiver Γ(mod1A) is
generalized standard.

Proof. (a) : Assume a1 → a2 → · · · → ar is a path in the quiver QR
such that X(a1) 6= 0 6= Y (ar), for indecomposable modules X,Y ∈ C
and Z(ai) = 0, for 2 ≤ i ≤ r − 1, and all Z ∈ C. We shall construct a
cycle in the componental quiver C(R). This contradicts [42](4.1).

Indeed, consider the quotient R′ of R obtained by adding relations
a1 → a2 → b and c → ar−1 → ar, for all arrows a2 → b and c → ar−1.
Consider Ix to be the injective envelope and Px to be the projective cover
of the simple module Sx corresponding to a vertex x in the category
modR′. We get a path of morphisms in modR to be

Y → Iar → Sar−1 → F (ar−1, ar−2)→ Sar−2 → · · · → F (a3, a2)→ Sa2
→ Pa1 → X

where for any arrow y → x in QR, the R-module F (x, y) is the unique
indecomposable whose composition factors are Sx and Sy. Since Sai
does not belong to C, for 2 ≤ i ≤ r − 1, we get a cycle through C in the
componental quiver C(R).
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(b) and (c) are obvious.
(d): Let M and N be two modules in C′ and 0 6= f ∈ rad∞A (M,N). As-

suming that C′ is of the first kind implies that there exists a component C
in ΓR and indecomposable R-modules X,Y ∈ C such that Fλ(X) = M
and Fλ(Y ) = N . Lifting the morphism f provides morphisms fg ∈
rad∞R (X,Y g), for g ∈ G′, almost all zero, such that

∑
g∈G′

Fλ(fg) = f .

We remark that, for the algebra A′, we have rad∞A′(M,N) = 0. In-
deed, a morphism f ′ ∈ rad∞A′(M,N) yields the existence of morphisms
f ′g ∈ rad∞R (X,Y g), for g ∈ G′, almost all zero, such that

∑
g∈G′

Fλ(f ′g) =

f ′. Since for g ∈ G′ the module Y g ∈ C, then [42](4.1) implies that
rad∞R (X,Y g) = 0. Hence f ′g = 0 and f ′ = 0.

Since rad∞A′(M,N) = 0 then, for every g ∈ G such that fg 6= 0, we have
rad∞B(C)(X,Y

g) = 0 and there is a chain of irreducible maps connecting

X and Y g, that is, Y g ∈ C and g ∈ GC . Up to a change of orientation,
we may assume that there is an indecomposable projective R-module
Pa /∈ C such that radPa = L and the one-point extension category
B′ = B(C)[L] is convex in R. Moreover, fg ∈ rad∞B′(X,Y

g) factorizes
through a module Z ∈ modB′ satisfying Z(a) 6= 0. Therefore, there
is a direct summand Z ′ of Z satisfying Z ′ /∈ C and there is a cycle in
the componental quiver C(R) of the form C = [X] → [Z ′] → [Y g] = C,
where [Z ′] denotes the component in ΓR containing Z ′. �

5. Criteria for polynomial growth

The aim of this section is to establish a criterion for an algebra with
a cycle-finite Galois covering to be of polynomial growth (respectively,
domestic type). We start by recalling a criterion in [30].

Theorem 5.1. Let R be a connected cycle-finite locally bounded k-
category, G be a torsion-free admissible group of k-linear automorphisms
of R, and A = R/G. Then the followings hold.

(i) A is of polynomial growth if and only if the number of G-orbits
of isoclasses of weakly G-periodic R-modules is finite.

(ii) A is domestic if and only if R does not contain a convex subcat-
egory which is tubular and the number of G-orbits of isoclasses
of weakly G-periodic R-modules is finite.

Part of the following result is explicit in [30].
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Theorem 5.2. Let R be a cycle-finite strongly simply connected category
and F : R → A be a Galois covering functor of a finite dimensional
algebra A defined by the action of a torsion free group G. Let S0 be a
set of representatives of the G-orbits in a separating family S of convex
subcategories of R with respect to G. Then the followings hold.

(1) The category mod1A of modules of the first type is of polynomial
growth.

(2) The category mod2A of modules of the second kind is of polyno-
mial growth if and only if S0 is a finite set.

(3) The algebra A is of polynomial growth if and only if the cardi-
nality of S0 is bounded by the number n of vertices in QA.

Proof. (1): Since every convex subcategory of R is of polynomial growth,
by [16], Lemma 3, the category of modules of the first kind mod1A is of
polynomial type.

(2): This results from Theorem 4.1 in [30].
(3): Assume there are different lines L1, . . . , Ls ∈ S0 for any s > n.

Obviously, not all sets of vertices F (Li) are disjoint. We may suppose
x is a vertex in L1 ∩ L2. Let 1 6= g ∈ GL1 and observe that g(x) /∈ L2,
since otherwise, by Proposition 2.3, we would have L1 = L2. Consider
the line L′s, for s ∈ N formed by the vertices

· · · y−2 y−1 x x1 · · · xt = g(x) · · · g2(x) · · · gs(x)

g(y1) g(y2) · · ·

where x x1 · · ·xt = g(x) · · · x2t = g2(x) · · · xst = gs(x) is

the convex segment of L1 connecting x and gs(x), and · · · − y−2− y−1−
x− y1 − y2 − · · ·

is the line L2. We may assume that y−1 and g(y1) are not in the line
L1. We claim that the lines L′s determine pairwise different elements in
S0. Indeed, assume that h(L′p) = L′q, for some p ≤ q, and h ∈ G. Then
h sends infinite segments of L2 to L2, and hence h ∈ GL2 . Moreover, L′p
contains exactly tp vertices of L1, which yields p = q. �

The structure ofG is sometimes a source of information on the families
of second kind modules, and hence on the representation type of R/G.
Namely, we show the following proposition.

Proposition 5.3. Let R be a cycle-finite strongly simply connected cate-
gory and F : R→ A be a Galois covering functor of a finite dimensional
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algebra A defined by the action of a torsion-free group G. If G is cyclic,
then A is of polynomial growth.

Proof. Assume that S0 is not empty and assume that G is cyclic. Take
lines L1, . . . , Ls ∈ S0, for any s > n, where n is the number of vertices
in QA. Obviously, not all the sets of vertices F (Li) are disjoint. We
may suppose x to be a vertex in L1 ∩ L2. Since GL1 and GL2 are non-
trivial cyclic subgroups of G, then G/(GL1 ∩GL2) is a finite group. Let
1 6= g ∈ GL1 ∩GL2 and observe that x and g(x) belong to L1∩L2 which,
according to Proposition 2.3, is formed by a unique connected segment.
This yields L1 = L2, and the cardinality of S0 is at most n. �

6. Examples

Here we illustrate some results of our work in four parts.

(1) We start by giving an example (see [12]) of the relation between
structural properties of the category R and the group G defining the
Galois covering.

Theorem 6.1. Let R be a strongly simply connected category and F :
R → A be a Galois covering functor of a finite dimensional triangular
algebra A defined by the action of a torsion free group G. Then, G is a
free (non-abelian) group.

Sketch of proof: (i) Assume A = B[M ] to be a one-point extension
of an algebra B by a module M . Let a be a source vertex in QA such that
radPa = M and x be a vertex in QR such that F (x) = a. Consider R′

the convex subcategory formed by those vertices at the preimage F−1(B)
and choose a connected component RB of R′. The stabilizer GB of RB

is a normal subgroup of G. Consider FB : RB → B to be the functor
obtained as the restriction of F . We get that RB is a strongly simply
connected category and FB : RB → B is a Galois covering functor of a
finite dimensional triangular algebra B defined by the action of a torsion
free group GB.

By induction on the dimk A, we may assume that GB is a free group.
(ii) We show that F is a covering of the first kind, that is, if radPa =

M1⊕· · ·⊕Mt is an indecomposable decomposition in modB, then there
is an indecomposable decomposition radPx = Y1 ⊕ · · · ⊕ Ys in modR′

such that s = t and a permutation σ satisfying Fλ(Yi) = Mσ(i), for
1 ≤ i ≤ t.
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Indeed, since R is strongly simply connected, then the source x sepa-
rates R, that is, there are connected components R1, · · · , Rs of R′ such
that the support of Yi is contained in Ri, for 1 ≤ i ≤ s. Therefore,

radPa = radFλ(Px) =
s⊕
i=1

Fλ(Yi) is an indecomposable decomposition

and the claim follows.
(iii) The group G/GB is a free group F (t− 1) of rank t− 1.
(iv) G is isomorphic to the free product GB∗F (t−1) and it is therefore

a free group.
To illustrate the idea of the proof, assume that t = 3. Construct the

category B̄ as a model for a covering F ′ : B̄ → A defined by the action
of F (t− 1) = F (2). Sustitute each o in the diagram by the category RB
in such a way that, for every vertex a, the radical radPa = Y1⊕ Y2⊕ Y3

(in the representations Yi the arrows stand for identity maps; observe
that the vertical arrows in B̄ contribute Y1 to the radical of Pa). The
functor F : R → A factorizes as F = F̄F ′ by a Galois covering functor
F̄ : R→ B̄ defined by the action of GB (in the example GB = Z):

a

tt }} !! **A : •
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•
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•
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•
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•
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•
||

•
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k k
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o o
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��
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a
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  ~~
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a
��

OOOO

}}
a
!!

OOOO

��
· · · o o o o · · ·

...

(2) As another series of examples, consider the categories Rα,β given by
the quiver with relations
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a−1
ρ−1 //

ν−1
��

a0
ρ0 //

ν0
��

a1
ρ1 //

ν1
��

a2
//

b−1 σ−1

//

γ−1

EE

b0 σ0
//

γ0

FF

b1 σ1
//

γ1

FF

b2 //

σi+1σi = ανi+1γi

νi+1ρi = βσi+1νi

γi+1νi = ρi+1ρi

ρi+1γi = γi+1σi


and (α, β) 6= (1, 1), to be locally support finite; it is simply connected

but not strongly simply connected. Moreover, the group Z generated by
the action (ai 7→ ai+1, bi 7→ bi+1) acts freely on Rα,β and on indRα,β /

∼=.
Hence, the Galois covering F : Rα,β → Aα,β/Z yields a bijection Fλ : (ind
Rα,β/ ∼=)/Z → (indAα,β)/ ∼=. The algebra Aα,β is given by the quiver
with relations

aρ 99

ν
**

γ

44 b σdd

σ2 = αγν
ρν = βνσ
νγ = ρ2

γρ = σγ


Since Rα,β is tame (respectively polynomial growth for αβ 6= 1), so is

Aα,β.

(3) Consider the Galois covering

F : A = A
(2)
1,1 → Ā = A

(2)
1,1/Z2

and assume that the characteristic of k is 2. As a tubular algebra, we
know that A is tame. We show that Ā is a wild algebra.
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Set x0 = α0 + β0, y0 = β0, x1 = α1 + β1, y1 = β1. Then, Ā is
isomorphic to the algebra A′ given by the quiver with relations

A′ : • x0 //
y0

// •
x1 //
y1

// •

x1x0 = 0
y1x0 = x1y0

}
Observe that A′ accepts a Galois covering R→ R/Z = A′, given by the
category

•

��

•oo

��
4 8oo // 6

6

OO

// 10

��

OO

8oo

��
• 6oo // •

4

OO

// 2

��

OO

1oo

•

which is strongly simply connected. Therefore, R is tame if and only
if the Tits form qR is weakly non-negative. Observe that the vector y
marked on the vertices of R determines a convex subcategory B of R
whose Tits form takes value qB(y) = −1. Therefore, R is a wild category
and A′ a wild algebra.

(4) Our last example is similar to an example given in [30]. Let A be
the bound quiver algebra kQ/I given by the quiver
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4
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��

5

χ

��

η

��

9
a

yy
15

λ

��

ε

��
3

β

��

γ

��

6

ν

��

10

c

\\

11

b

OO

d

BB

14 π
//

µ

OO

2

α

��

7

%

��

σ

��

12

e

BB

13

g

\\

1

κ

KK

ϕ

//

8

ψ

oo

and the ideal I of the path algebra kQ of Q be generated by the
elements αϕ, ακ, σϕ, σκ, γσ, γ%, ν%, νσ, ηγ, ηβ, ξβ, ξγ, ϕδ, δψ, ψη,
ψχ, κχ, κη, aν, ba, dca, eb, gb− gdc, πα, λπ, µλµ, ε2 − λµ, µλ− µελ.

For k of characteristic 2, the convex subcategory B of A given by
the objects 14 and 15 is a penny-farthing, and hence is a non-standard
representation-finite algebra. Hence, for k of characteristic 2, the algebra
A does not admit a simply connected (even triangular) Galois covering.
For characteristic different from 2, A is isomorphic to kQ/I ′, where
I ′ is obtained by sustituting the last given relation by µλ. For this
presentation, the algebra A accepts a covering R→ R/G = A, where R
is strongly simply connected and G is a torsion-free group.

The convex subcategory C given by the vertices 9, 10, 11, 12, 13 deter-
mines a convex subcategory of R which contains subcategories of type
(2, 2,∞); that is, R is not cycle-finite.
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