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CLUSTER ALGEBRAS AND CLUSTER CATEGORIES

B. KELLER

Communicated by Lidia Angeleri Hügel

Abstract. These are notes from introductory survey lectures given
at the Institute for Studies in Theoretical Physics and Mathematics
(IPM), Teheran, in 2008 and 2010. We present the definition and
the fundamental properties of Fomin-Zelevinsky’s cluster algebras.
Then, we introduce quiver representations and show how they can
be used to construct cluster variables, which are the canonical gen-
erators of cluster algebras. From quiver representations, we proceed
to the cluster category, which yields a complete categorification of
the cluster algebra and its combinatorial underpinnings.

1. Introduction

Cluster algebras, invented [37] by Sergey Fomin and Andrei Zelevin-
sky around the year 2000, are commutative algebras whose generators
and relations are constructed in a recursive manner. Among these alge-
bras, there are the algebras of homogeneous coordinates on the Grass-
mannians, on the flag varieties and on many other varieties which play
an important role in geometry and representation theory. Fomin and
Zelevinsky’s main aim was to set up a combinatorial framework for
the study of the so-called canonical bases which these algebras possess
[69, 85] and which are closely related to the notion of total positivity
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[86] in the associated varieties. It has rapidly turned out that the com-
binatorics of cluster algebras also appear in many other subjects, for
example in

• Poisson geometry [53, 54, 55, 56, 11] . . . ;
• discrete dynamical systems [40, 71, 27, 64, 73, 78, 75] . . . ;
• higher Teichmüller spaces [31, 33, 32] . . . ;
• combinatorics and in particular the study of polyhedra like the

Stasheff associahedra [23, 22, 63, 83, 35, 36, 88, 89, 100] . . . ;
• commutative and non commutative algebraic geometry and in

particular the study of stability conditions in the sense of Bridge-
land [13], Calabi-Yau algebras [66, 57], Donaldson-Thomas in-
variants [106, 68, 82, 81, 95, 47, 46, 21, 48] . . . ;
• and in the representation theory of quivers and finite-dimensional

algebras; cf. for example the survey articles [6, 96, 98, 52, 78].

We refer to the introductory articles [39, 111, 112, 113, 114] and to the
cluster algebras portal [34] for more information on cluster algebras and
their links with other subjects in mathematics (and physics).

In these lectures, we give a concise introduction to cluster algebras
and to their (additive) categorification using cluster categories. We start
by recalling the most important facts on finite root systems (Section 2)
because these play crucial roles in the classification of cluster algebras
with finitely many cluster variables. Then, we prepare the ground for the
formal definition of cluster algebras by giving an approximate descrip-
tion and the first examples in Section 3. In Section 4, we introduce the
central construction of quiver mutation and define the cluster algebra
associated with a quiver. We extend the definition to that of cluster alge-
bras with coefficients and present some geometric examples in Section 5.
Starting in Section 6, we turn to the (additive) categorification of cluster
algebras. We start by recalling basic facts on representations of quivers.
Then, we present the Caldero-Chapoton formula, which expresses the
cluster variable associated with an indecomposable representation of a
Dynkin quiver in terms of the geometry of the subrepresentations. For
the proof of Caldero-Chapoton’s formula and in order to prepare the
grounds for the cluster category, we then recall the definition and the
description of the derived category of a Dynkin quiver. Following Buan-
Marsh-Reineke-Reiten-Todorov [7], we define the cluster category as an
orbit category of the derived category. We then show how to categorify
clusters via cluster-tilting objects. Finally, in Section 7, we extend the
definitions given so far from the Dynkin quivers to acyclic quivers and
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show on an example how, in certain cases, cluster categories are related
to stable categories of the Cohen-Macaulay modules.

This introductory survey leaves out a number of important recent de-
velopments, notably monoidal categorification, as developed by
Hernandez-Leclerc [61], and the theory of quivers with potentials [25]
with its spectacular application to the solution [26] (cf. also [90, 93]) of
a series of conjectures by Fomin-Zelevinsky [41]. We refer to [72] for a
survey including these developments and to [74] for an introduction to
the links between cluster theory and quantum dilogarithm identities.

2. Reminder on root systems

In the sequel, the classification of (finite, reduced) root systems will
play an important role. For the convenience of the reader, we recall the
main results from [103].

Let V be a finite-dimensional real vector space and v be a non zero
vector in V . A reflection at v is a linear map s : V → V such that
s(v) = −v and s admits a hyperplane of fixed points in V .

Lemma 2.1. Let G be a finite generating set of V and let s and s′ be
two reflections at v which leave G stable. Then, we have s = s′.

Proof. Let us put f = s ◦ s′. Then, we have f(v) = v and f induces the
identity in V/Rv. Hence, f−1V is nilpotent. Since f leaves G stable and
G generates V , the map f is of finite order and hence diagonalizable. It
follows that f equals 1V . �

A root system in V is a finite subset Φ ⊂ V such that

(a) Φ is non empty, does not contain the zero vector and generates
V ;

(b) for each α ∈ Φ, there is a reflection sα at α which leaves Φ stable
(notice that by the lemma, sα is unique);

(c) for all α, β ∈ Φ, the vector β− sα(β) is an integer multiple of α;
(d) for all α ∈ Φ and all λ ∈ Φ, if we have λα ∈ Φ, then λ equals 1

or −1.

For two root systems (V,Φ) and (V ′,Φ′), an isomorphism is a linear
map f : V ∼→ V ′ such that f(Φ) = Φ′. The sum of (V,Φ) and (V ′,Φ′)
is the space V ⊕ V ′ endowed with Φ ∪ Φ′. The root system (V,Φ) is
irreducible if it is not isomorphic to a sum of two root systems. The
rank of a root system (V,Φ) is the dimension of V . It is not hard to
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Figure 1. The root systems of rank 2

check that each root system of rank 1 is isomorphic to the following
system, denoted by A1,

A1 : ◦ α1−α1
//oo

It is a less trivial exercise to check that each root system of rank 2 is
isomorphic to one of the root systems depicted in Figure 1. Let (V,Φ)
be a root system. A root basis is a subset α1, . . . , αn of Φ such that

(a) α1, . . . , αn is a basis of V and
(b) for each root α, either α or −α is a linear combination with non

negative integer coefficients of α1, . . . , αn.

In each of the examples in Figure 1, the roots α1 and α2 form a root
basis. For a given root basis α1, . . . , αn, the root lattice is the abelian
subgroup of V formed by the integer linear combinations of the αi and
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the positive roots are the roots which are linear combinations with non
negative coefficients of the αi.

Lemma 2.2. Let f : V → R be a non zero linear form which does not
vanish on any root. Let V + (respectively V −) be the half-space formed
by the vectors v such that f(v) > 0 (respectively f(v) < 0). Let
Φ± = V ± ∩ Φ and let S be the set of those roots α ∈ Φ+ which are not
sums of two roots in Φ+. Then, S is a root basis and every root basis is
obtained in this way.

Once a root basis S is fixed, its elements are called simple roots. The
Weyl group W ⊂ GL(V ) is the subgroup generated by the reflections sα
associated with all roots α ∈ Φ. Notice that the action of W leaves Φ
stable. So, the group W is finite since Φ is a finite generating set for V .

Lemma 2.3. The group W acts simply transitively on the set of root
bases.

Let S ⊂ Φ be a root basis. The Cartan matrix C has the entries cα,β,
α, β ∈ S, determined by

sα(β) = β − cα,βα.

Thanks to Lemma 2.3, the Cartan matrix depends only on Φ and is
unique up to conjugation with a permutation matrix. If α and β are
distinct simple roots and Vα,β is the subspace generated by α and β,
then the pair (Vα,β, Vα,β ∩ Φ) is a root system of rank 2 with root basis
α, β. Thus, the 2 × 2-submatrix of C given by α and β is one of the
following:

A1 ×A1 :

[
2 0
0 2

]
, A2 :

[
2 −1
−1 2

]
, B2 :

[
2 −2
−1 2

]
, G2 :

[
2 −3
−1 2

]
.

The Coxeter-Dynkin diagram of (Φ, V ) is the labeled graph whose ver-
tices are the simple roots α ∈ S, where there is an edge

α β

if cα,β 6= 0, and this edge is labeled by the pair (|cα,β|, |cβ,α|). For
example, the Coxeter-Dynkin diagrams of the root systems of rank 2
are:

A1 ×A1 : ◦ ◦ , A2 : ◦
(1,1)

◦ , B2 : ◦
(2,1)

◦ , G2 : ◦
(3,1)

◦ .
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By convention, in the sequel, we write

◦ ◦ instead of ◦
(1,1)

◦ .

If α1, . . . , αn is a root basis, the product c = sα1 . . . sαn of the reflections
at the simple roots is a Coxeter element. Up to conjugacy in W , the
Coxeter element is independent of the choice of the root basis. For
example, for A2, the Coxeter element is the rotation by 120 degrees.
The Coxeter number is the order of the Coxeter element.

Theorem 2.4.

(a) The Coxeter-Dynkin diagram determines the root system up to
isomorphism.

(b) The Coxeter-Dynkin diagrams of the irreducible root systems are
those in the following table, where the index n denotes the num-
ber of vertices and h the Coxeter number:

Name Graph n h
An ◦ ◦ . . . ◦ ≥ 1 n+ 1

Bn ◦
(2,1)

◦ . . . ◦ ≥ 2 2n

Cn ◦
(1,2)

◦ . . . ◦ ≥ 2 2n

Dn

◦
◦

◦ . . . ◦ ≥ 4 2n− 2

E6 ◦ ◦ ◦ ◦ ◦

◦

6 12

E7 ◦ ◦ ◦ ◦ ◦ ◦

◦

7 18

E8 ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

8 30

The root systems whose Coxeter-Dynkin diagram has only labels (1, 1)
are called simply laced. A root system is simply laced if and only if its
Cartan matrix is symmetric if and only if it is a sum of root systems of
the types An, Dn, E6, E7 and E8.
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3. Description and first examples of cluster algebras

3.1. Description. A cluster algebra is a commutative Q-algebra en-
dowed with a set of distinguished generators (the cluster variables)
grouped into overlapping subsets (the clusters) of constant cardinality
(the rank) which are constructed recursively via mutation from an initial
cluster. The set of cluster variables can be finite or infinite.

Theorem 3.1. [38]. The cluster algebras having only a finite number
of cluster variables are parametrized by the finite root systems.

Thus, the classification is analogous to the one of semi-simple complex
Lie algebras. We will make the theorem more explicit (for simply laced
root systems) in Section 4 below.

First example 3.2. In order to illustrate the description and the the-
orem, we present [114] the cluster algebra AA2 associated with the root
system A2. By definition, it is generated as a Q-algebra by the cluster
variables xm, m ∈ Z, submitted to the exchange relations

xm−1xm+1 = 1 + xm , m ∈ Z.

Its clusters are by definition the pairs of consecutive cluster variables
{xm, xm+1}, m ∈ Z. The initial cluster is {x1, x2} and two clusters are
linked by a mutation if and only if they share exactly one variable.

The exchange relations allow to express each cluster variable as a
rational expression in the initial variables x1, x2 and thus to identify
the algebra AA2 with a subalgebra of the field Q(x1, x2). In order to
make this subalgebra explicit, let us compute the cluster variables xm
for m ≥ 3. We have

x3 =
1 + x2

x1
(3.1)

x4 =
1 + x3

x2
=
x1 + 1 + x2

x1x2
(3.2)

x5 =
1 + x4

x3
=
x1x2 + x1 + 1 + x2

x1x2
÷ 1 + x2

x1
=

1 + x1

x2
.(3.3)

Notice that, contrary to what one might expect, the denominator in (3.3)
remains a monomial! In fact, each cluster variable in an arbitrary cluster
algebra is a Laurent polynomial; cf. Theorem 4.1 below. Let us continue
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the computation:

x6 =
1 + x5

x4
=
x2 + 1 + x1

x2
÷ x1 + 1 + x2

x1x2
= x1(3.4)

x7 = (1 + x1) ÷ 1 + x1

x2
= x2.(3.5)

It is now clear that the sequence of the xm, m ∈ Z, is 5-periodic and
that the number of cluster variables is indeed finite and equal to 5. In
addition to the two initial variables x1 and x2, we have three non initial
variables x3, x4 and x5. By examining their denominators, we see that
they are in natural bijection with the positive roots α1, α1 + α2 and α2

of the root system A2. This generalizes to an arbitrary Dynkin diagram;
cf. Theorem 4.1.

3.2. Cluster algebras of rank 2. To each pair of positive integers
(b, c), there is associated a cluster algebra A(b,c). It is defined in analogy
with AA2 by replacing the exchange relations with

xm−1xm+1 =

{
xbm + 1 if m is odd,
xcm + 1 if m is even.

The algebra A(b,c) has only a finite number of cluster variables if and
only if we have bc ≤ 3. In other words, if and only if the matrix[

2 −b
−c 2

]
is the Cartan matrix of a root system Φ of rank 2. The reader is invited
to check that, in this case, the non initial cluster variables are still in
natural bijection with the positive roots of Φ.

4. Cluster algebras associated with quivers

4.1. Quiver mutation. A quiver is an oriented graph, i.e., a quadruple
Q = (Q0, Q1, s, t) formed by a set of vertices Q0, a set of arrows Q1 and
two maps s and t from Q1 to Q0 which send an arrow α respectively to
its source s(α) and its target t(α). In practice, a quiver is given by a
picture as in the following example:

Q : 3
λ

��

5α
%% ////// 6

1 ν
// 2

β //

µ
^^

4.
γ

oo
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An arrow α whose source and target coincide is a loop; a 2-cycle is a
pair of distinct arrows β and γ such that s(β) = t(γ) and t(β) = s(γ).
Similarly, one defines n-cycles for any positive integer n. A vertex i of
a quiver is a source (respectively a sink) if there is no arrow with target
i (respectively with source i).

By convention, in the sequel, by a quiver we always mean a finite
quiver without loops nor 2-cycles whose set of vertices is the set of
integers from 1 to n, for some n ≥ 1. Up to an isomorphism fixing the
vertices, such a quiver Q is given by the antisymmetric matrix B = BQ
whose coefficient bij is the difference between the number of arrows from
i to j and the number of arrows from j to i, for all 1 ≤ i, j ≤ n.
Conversely, each antisymmetric matrix B with integer coefficients comes
from a quiver.

Let Q be a quiver and k be a vertex of Q. The mutation µk(Q) is the
quiver obtained from Q as follows:

(1) for each subquiver i
β // k

α // j , we add a new arrow [αβ] :
i→ j;

(2) we reverse all arrows with source or target k;
(3) we remove the arrows in a maximal set of pairwise disjoint 2-

cycles.

If B is the antisymmetric matrix associated with Q and B′ is the one
associated with µk(Q), then we have

b′ij =

{
−bij if i = k or j = k
bij + sgn(bik) max(0, bikbkj) otherwise.

This is the matrix mutation rule for antisymmetric (more generally, an-
tisymmetrizable) matrices introduced by Fomin-Zelevinsky in [37]; also
cf [41].

One checks easily that µk is an involution. For example, the quivers

(4.1) 1

2 3

EE

��
oo

et

1

2 3
��

YY

are linked by a mutation at the vertex 1. Notice that these quivers are
drastically different: the first one is a cycle, the second one the Hasse
diagram of a linearly ordered set.



196 Keller

Two quivers are mutation equivalent if they are linked by a finite se-
quence of mutations. It is easy to check, for example using the quiver
mutation applet [76], that the following three quivers are mutation equiv-
alent:
(4.2)

1

2 3

4 5 6

7 8 9 10

EE
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oo
FF
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��

oo
FF
��

oo
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��
FF
��

oo oo oo
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jj
�� ~~

||

��
**
>>

.

The common mutation class of these quivers contains 5739 quivers (up
to isomorphism). The mutation class of ‘most’ quivers is infinite. The
classification of the quivers having a finite mutation class is a difficult
problem recently solved by Felikson-Shapiro-Tumarkin [30]: in addition
to the quivers associated with triangulations of surfaces (with boundary
and marked points), the list contains 11 exceptional quivers, the largest
of which is in the mutation class of the quivers (4.2).

4.2. Seed mutation, cluster algebras. Let n ≥ 1 be an integer and
F be the field Q(x1, . . . , xn) generated by n indeterminates x1, . . . , xn.
A seed (more precisely, X-seed) is a pair (R, u), where R is a quiver and
u is a sequence u1, . . . , un of elements of F which freely generates the
field F . If (R, u) is a seed and k is a vertex of R, then the mutation
µk(R, u) is the seed (R′, u′), where R′ = µk(R) and u′ is obtained from u
by replacing the element uk by the element u′k defined with the exchange
relation

(4.3) u′kuk =
∏

s(α)=k

ut(α) +
∏

t(α)=k

us(α).

One checks that µ2
k(R, u) = (R, u). For example, the mutations of the

seed

( 1 // 2 // 3 , {x1, x2, x3})
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with respect to the vertices 1 and 2 are the seeds

( 1 2oo // 3 , {1 + x2

x1
, x2, x3})(4.4)

and ( 1
&&

2oo 3oo , {x1,
x1 + x3

x2
, x3}).

Let us fix a quiver Q. The initial seed of Q is (Q, {x1, . . . , xn}).
A cluster associated with Q is a sequence u which appears in a seed
(R, u) obtained from the initial seed by iterated mutation. The cluster
variables are the elements of the clusters. The cluster algebra AQ is the
subalgebra of F generated by the cluster variables. Clearly, if (R, u) is
a seed associated with Q, the natural isomorphism

Q(u1, . . . , un) ∼→ Q(x1, . . . , xn)

induces an isomorphism of AR on AQ which preserves the cluster vari-
ables and the clusters. Thus, the cluster algebra AQ is an invariant of
the mutation class of Q. It is useful to introduce a combinatorial ob-
ject which encodes the recursive construction of the seeds: the exchange
graph. By definition, its vertices are the isomorphism classes of seeds
(isomorphisms of seeds renumber the vertices and the variables simul-
taneously) and its edges correspond to mutations. For example, the

exchange graph obtained from the quiver Q : 1 // 2 // 3 is the
1-skeleton of the Stasheff associahedron [23, 105]:

2

◦
◦

◦ 3

◦

◦

◦

1

◦

◦

◦

◦

◦

The vertex 1 corresponds to the initial seed and the vertices 2 and 3 to
correspond the seeds (4.4).

Let Q be a connected quiver. If its underlying graph is a simply laced
Dynkin diagram ∆, we say that Q is a Dynkin quiver of type ∆.
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Theorem 4.1. [38].

(a) Each cluster variable of AQ is a Laurent polynomial with integer
coefficients [37].

(b) The cluster algebra AQ has only a finite number of cluster vari-
ables if and only if Q is mutation equivalent to a Dynkin quiver
R. In this case, the underlying graph ∆ of R is unique up to
isomorphism and is called the cluster type of Q.

(c) If Q is a Dynkin quiver of type ∆, then the non initial cluster
variables of AQ are in bijection with the positive roots of the
root system Φ of ∆; more precisely, if α1, . . . , αn are the simple
roots, then for each positive root α = d1α1 + · · ·+ dnαn, there is
a unique non initial cluster variable Xα whose denominator is
xd11 . . . xdnn .

A cluster monomial is a product of non negative powers of cluster
variables belonging to the same cluster. The construction of a ‘canon-
ical basis’ of the cluster algebra AQ is an important and largely open
problem; cf., for example, [65, 29, 37, 104]. It is expected that such
a basis should contain all cluster monomials. Whence, the following
conjecture is at hand.

Conjecture 4.2. [37]. The cluster monomials are linearly independent
over the field Q.

If Q is a Dynkin quiver, then one knows [18] that the cluster mono-
mials form a basis of AQ. If Q is acyclic, i.e., does not have any oriented
cycles, the conjecture follows from a theorem by Geiss-Leclerc-Schröer
[49], who show the existence of a ‘generic basis’ containing the cluster
monomials. The conjecture has also been shown for classes of cluster
algebras with coefficients (cf. Section 5); for example, see the papers
[24, 42, 49].

Conjecture 4.3. [38]. The cluster variables are Laurent polynomials
with non negative integer coefficients in the variables of each cluster.

The technique of monoidal categorification developed by Leclerc [84]
and Hernandez-Leclerc [61] has recently allowed the proof of this con-
jecture first for the quivers of type An and D4 (cf. [61]), and then for
each bipartite quiver [91], i.e., a quiver where each vertex is a source
or a sink. This has been shown in a combinatorial way, by Musiker-
Schiffler-Williams [89], for all the quivers associated with triangulations
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of surfaces (with boundary and marked points) and by Di Francesco-
Kedem [27], for the quivers associated with the T -system of type A.

We refer to [39, 41] for numerous other conjectures on cluster algebras
and to [26] for the solution of a large number of them using additive
categorification.

5. Cluster algebras with coefficients

We will slightly generalize the definition in Section 4 in order to obtain
the class of ‘antisymmetric cluster algebras of geometric type’. This
class contains many algebras of geometric origin which are equipped
with ‘dual semi-canonical bases’. The construction of a large part of
such a basis in [50] is one of the most remarkable applications of cluster
algebras so far.

We refer to [41] for the definition of the ‘antisymmetrizable cluster
algebras with coefficients in a semi-field’, which constitutes so far the
most general class considered.

Definition 5.1. Let 1 ≤ n ≤ m be integers. Let Q̃ be an ice quiver of
type (n,m), i.e., a quiver with m vertices and which does not have any
arrows between vertices i and j which are both strictly greater than n.

The principal part of Q̃ is the full subquiver Q whose vertices are 1, . . . ,
n (a subquiver is full if, with any two vertices, it contains all the arrows
linking them). The vertices n+ 1, . . . , m are called the frozen vertices.

The cluster algebra associated with the ice quiver Q̃,

A
Q̃
⊂ Q(x1, . . . , xm),

is defined in the same manner as the cluster algebra associated with a
quiver (Section 4), but

• only mutations with respect to non frozen vertices are allowed
and no arrows between frozen vertices are added in the muta-
tions;
• the variables xn+1, . . . , xm, which belong to all clusters, are

called coefficients rather than cluster variables;
• the cluster type of the ice quiver is that of its principal part (if

it is defined).

Often one considers localizations of A
Q̃

obtained by inverting some of

the coefficients. If K is an extension field of Q and A is a K-algebra

(associative with 1), a cluster structure of type Q̃ on A is given by
an isomorphism ϕ from A

Q̃
⊗Q K onto A. Such an isomorphism is
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determined by the images of the coefficients and of the initial cluster

variables ϕ(xi), 1 ≤ i ≤ m. We call the datum of Q̃ and of the ϕ(xi) an
initial seed for A.

Example 5.2. planes in a vector space Let n ≥ 1 be an integer. Let
A be the algebra of polynomial functions on the cone over the Grass-
mannian of planes in Cn+3. This algebra is generated by the Plücker
coordinates xij , 1 ≤ i < j ≤ n+ 3, subject to the Plücker relations: for
each quadruple of integers i < j < k < l between 1 and n+ 3, we have

(5.1) xikxjl = xijxkl + xjkxil.

Notice that the monomials in this relation are naturally associated with
the diagonals and the sides of the square

i j

l k

The idea is to interpret this relation as an exchange relation in a cluster
algebra with coefficients. In order to describe this algebra, let us con-
sider, in the Euclidean plane, a regular polygon P whose vertices are
numbered from 1 to n+ 3. Consider the variable xij as associated with
the segment [ij] which links the vertices i and j.

Proposition 5.2. [38, Example 12.6]. The algebra A has a cluster
algebra structure such that

- the coefficients are the variables xij associated with the sides of
P ;

- the cluster variables are the variables xij associated with the di-
agonals of P ;

- the clusters are the n-tuples of cluster variables corresponding to
diagonals which form a triangulation of P .

Moreover, the exchange relations are exactly the Plücker relations and
the cluster type is An.

A triangulation of P determines an initial seed for the cluster algebra
and the exchange relations satisfied by the initial cluster variables deter-

mine the ice quiver Q̃. For example, one can check that in the following
picture, the triangulation and the ice quiver (whose frozen vertices are
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in boxes) correspond to each other:

0

1

2

3

4

5

05

04
03

02

01

45

34 23

12

UU

gg//

��

ww
??

��

		
OO

//

Many other (homogeneous) coordinate algebras of classical algebraic va-
rieties admit cluster algebra structures (or ‘upper cluster algebra struc-
tures’), and in particular the Grassmannians [102] and the double Bruhat
cells [10]. Some of these algebras have only finitely many cluster vari-
ables and thus a well-defined cluster type. Here is a list of some examples
extracted from [39], where N is a maximal unipotent subgroup:

Gr2,n+3 Gr3,6 Gr3,7 Gr3,8 SL3/N SL4/N SL5/N Sp4/N SL2 SL3

An D4 E6 E8 A1 A3 D6 B2 A1 D4

A theorem analogous to proposition 5.2 for ‘reduced double Bruhat
cells’ is due to Yang and Zelevinsky [109]. They thus obtain a cluster
algebra (with principal coefficients) with an explicit description of the
cluster variables for each Dynkin diagram.

6. Categorification via cluster categories: the finite case

6.1. Quiver representations and Gabriel’s theorem. We refer to
the books [3, 4, 44, 99] and for a wealth of information on the represen-
tation theory of quivers and finite-dimensional algebras. Here, we will
only need very basic notions.

Let Q be a finite quiver without oriented cycles. For example, Q can
be an orientation of a simply laced Dynkin diagram or the quiver

2
β

%%
1 γ

//

α
99

3.

Let k be an algebraically closed field. A representation of Q is a dia-
gram of finite-dimensional vector spaces of the shape given by Q. More
formally, a representation of Q is the datum V of

• a finite-dimensional vector space Vi for each vertex i of Q;
• a linear map Vα : Vi → Vj for each arrow α : i→ j of Q.
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Thus, in the above example, a representation of Q is a (not necessarily
commutative) diagram

V2 Vβ

%%
V1

Vγ
//

Vα
99

V3

formed by three finite-dimensional vector spaces and three linear maps.
A morphism of representations is a morphism of diagrams. More for-
mally, a morphism of representations f : V → W is the datum of a
linear map fi : Vi →Wi for each vertex i of Q such that the square

Vi

fi
��

Vα // Vj

fj
��

Wi
Wα

// Wj

commutes for all arrows α : i→ j of Q. The composition of morphisms
is defined in the natural way. We thus obtain the category of representa-
tions rep(Q). A morphism f : V →W of this category is an isomorphism
if and only if its components fi are invertible for all vertices i of Q0.

For example, let Q be the quiver

1 // 2 ,

and

V : V1
Vα // V2

be a representation of Q. By choosing basis in the spaces V1 and V2, we
find an isomorphism of representations

V1
Vα // V2

kn

OO

A
// kp ,

OO

where, by abuse of notation, we denote by A the multiplication by a
p× n matrix A. We know that we have

PAQ =

[
Ir 0
0 0

]
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for invertible matrices P and Q, where r is the rank of A. Let us
denote the right hand side by Ir ⊕ 0. Then, we have an isomorphism of
representations

kn
A
// kp

kn

Q

OO

Ir⊕0
// kp

P−1

OO .

We thus obtain a normal form for the representations of this quiver.
Now, the category repk(Q) is in fact an abelian category: its direct

sums, kernels and cokernels are computed componentwise. Thus, if V
and W are two representations, then the direct sum V ⊕W is the rep-
resentation given by

(V ⊕W )i = Vi ⊕Wi and (V ⊕W )α = Vα ⊕Wα ,

for all vertices i and all arrows α of Q. For example, the above repre-
sentation in normal form is isomorphic to the direct sum

( k
1 // k )r ⊕ ( k // 0 )n−r ⊕ ( 0 // k )p−r.

The kernel of a morphism of representations f : V →W is given by

ker(f)i = ker(fi : Vi →Wi)

endowed with the maps induced by the Vα and similarly for the cokernel.
A subrepresentation V ′ of a representation V is given by a family of
subspaces V ′i ⊂ Vi, i ∈ Q0, such that the image of V ′i under Vα is
contained in V ′j , for each arrow α : i→ j of Q. A sequence

0 // U // V // W // 0

of representations is a short exact sequence if the sequence

0 // Ui // Vi // Wi
// 0

is exact for each vertex i of Q.
A representation V is simple if it is non zero and if for each sub-

representation V ′ of V , we have V ′ = 0 or V/V ′ = 0. Equivalently,
a representation is simple if it has exactly two subrepresentations. A
representation V is indecomposable if it is non zero and in each decom-
position V = V ′ ⊕ V ′′, we have V ′ = 0 or V ′′ = 0. Equivalently, a
representation is indecomposable if it has exactly two direct factors.

In the above example, the representations

k // 0 and 0 // k
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are simple. The representation

V = ( k
1 // k )

is not simple: it has the non trivial subrepresentation 0 // k . How-
ever, it is indecomposable. Indeed, each endomorphism f : V → V is
given by two equal components f1 = f2 so that the endomorphism al-
gebra of V is one-dimensional. If V was a direct sum V ′ ⊕ V ′′ for two
non zero subspaces, the endomorphism algebra of V would contain the
product of the endomorphism algebras of V ′ and V ′′ and thus would
have to be at least of dimension 2. Since V is indecomposable, the exact
sequence

0→ ( 0 // k )→ ( k
1 // k )→ ( k // 0 )→ 0

is not a split exact sequence.
If Q is an arbitrary quiver, then for each vertex i, we define the

representation Si by

(Si)j =

{
k i = j
0 otherwise.

Then, clearly the representations Si are simple and pairwise non iso-
morphic. As an exercise, the reader may show that if Q does not have
oriented cycles, then each representation admits a finite filtration whose
subquotients are among the Si. Thus, in this case, each simple repre-
sentation is isomorphic to one of the representations Si.

Recall that a (possibly non commutative) ring is local if its non in-
vertible elements form an ideal.

Theorem 6.1. decomposition [Azumaya-Fitting-Krull-Remak-Schmidt]

(a) A representation is indecomposable iff and only if its endomor-
phism algebra is local.

(b) Each representation decomposes into a finite sum of indecompos-
able representations, unique up to isomorphism and permutation.

As seen above, for quivers without oriented cycles, the classification
of the simple representations is trivial. On the other hand, the problem
of classifying the indecomposable representations is non trivial. Let us
examine this problem in a few examples: for the quiver 1→ 2, we have
checked the existence in part (b) directly. The uniqueness in (b) then
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implies that each indecomposable representation is isomorphic to exactly
one of the representations S1, S2 and

k
1 // k .

Similarly, using elementary linear algebra, it is not hard to check that
each indecomposable representation of the quiver

~An : 1 // 2 // . . . // n

is isomorphic to a representation I[p, q], 1 ≤ p < q ≤ n, which takes the
vertices i in the interval [p, q] to k, the arrows linking them to the identity
and all other vertices to zero. In particular, the number of isomorphism

classes of indecomposable representations of ~An is n(n+ 1)/2.
The representations of the quiver

1 αee

are the pairs (V1, Vα) consisting of a finite-dimensional vector space and
an endomorphism and the morphisms of representations are the ‘inter-
twining operators’. It follows from the existence and uniqueness of the
Jordan normal form that a system of representatives of the isomorphism
classes of indecomposable representations is formed by the representa-
tions (kn, Jn,λ), where n ≥ 1 is an integer, λ is a scalar and Jn,λ is the
Jordan block of size n with eigenvalue λ.

The Kronecker quiver

1
//
// 2

admits the following infinite family of pairwise non isomorphic represen-
tations:

k
λ //

µ
// k ,

where (λ : µ) runs through the projective line.

Question 6.2. For which quivers are there only finitely many isomor-
phism classes of indecomposable representations?

To answer this question, we define the dimension vector of a represen-
tation V to be the sequence dimV of the dimensions dimVi, i ∈ Q0. For
example, the dimension vectors of the indecomposable representations

of ~A2 are the pairs

dimS1 = [10] , dimS2 = [01] , dim (k → k) = [11].
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We define the Tits form

qQ : ZQ0 → Z
by

qQ(v) =
∑
i∈Q0

v2
i −

∑
α∈Q1

vs(α)vt(α).

Notice that the Tits form does not depend on the orientation of the
arrows of Q but only on its underlying graph. We say that the quiver Q
is representation-finite if, up to isomorphism, it has only finitely many
indecomposable representations. We say that a vector v ∈ ZQ0 is a root
of qQ if qQ(v) = 1 and that it is positive if its components are ≥ 0.

Theorem 6.3. Gabriel [43]. Let Q be a connected quiver and assume
that k is algebraically closed. The followings are equivalent.

(i) Q is representation-finite.
(ii) qQ is positive definite.
(iii) The underlying graph of Q is a simply laced Dynkin diagram ∆.

Moreover, in this case, the map taking a representation to its dimension
vector yields a bijection from the set of isomorphism classes of inde-
composable representations to the set of positive roots of the Tits form
qQ.

It is not hard to check that if the conditions hold, then the positive
roots of qQ are in turn in bijection with the positive roots of the root
system Φ associated with ∆, via the map taking a positive root v of qQ
to the element ∑

i∈Q0

viαi

of the root lattice of Φ.
Let us consider the example of the quiver Q = ~A2. In this case, the

Tits form is given by

qQ(v) = v2
1 + v2

2 − v1v2.

It is positive definite and its positive roots are indeed precisely the di-
mension vectors

[01] , [10] , [11]

of the indecomposable representations.
Gabriel’s theorem has been generalized to non algebraically closed

ground fields by Dlab and Ringel [28]. Let us illustrate the main idea
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on one simple example: consider the category of diagrams

V : V1
f // V2

where V1 is a finite-dimensional real vector space, V2 is a finite-dimensional
complex vector space and f is an R-linear map. Morphisms are given in
the natural way. Then, we have the following complete list of represen-
tatives of the isomorphism classes of indecomposables:

R→ 0 , R2 → C , R→ C , 0→ C.

The corresponding dimension vectors are

[10] , [21] , [11] , [01].

They correspond bijectively to the positive roots of the root system B2.

6.2. The Caldero-Chapoton formula. Let ∆ be a simply laced
Dynkin diagram and Q be a quiver with underlying graph ∆. Suppose
that the set of vertices of ∆ and Q is the set of the natural numbers 1,
2, . . . , n. We already know from part (c) of Theorem 4.1 that for each
positive root

α =

n∑
i=1

diαi

of the corresponding root system, there is a unique non initial cluster
variable Xα with denominator

xd11 . . . xdnn .

By combining this with Gabriel’s theorem, we get the following result.

Corollary 6.4. The map taking an indecomposable representation V
with dimension vector [d1 · · · dn] of Q to the unique non initial cluster

variable XV , whose denominator is xd11 . . . xdnn , induces a bijection from
the set of ismorphism classes of indecomposable representations to the
set of non initial cluster variables.

Let us consider this bijection for Q = ~A2:

S2 = (0→ k) P1 = (k → k) S1 = (k → 0)

XS2 =
1 + x1

x2
XP1 =

x1 + 1 + x2

x1x2
SS1 =

1 + x2

x1
.

We observe that for the two simple representations, the numerator con-
tains exactly two terms: the number of subrepresentations of a simple
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representation! Moreover, the representation P1 has exactly three sub-
representations and the numerator of XP1 contains three terms. In fact,
it turns out that this phenomenon is general in type A. But, now let us
consider the following quiver, with the underlying graph D4,

3
&&

2 // 4

1

88

and the dimension vector d = [1112]. The unique (up to isomorphism)
indecomposable representation V with dimension vector d consists of a
plane V4 together with three lines in general position Vi ⊂ V4, i = 1, 2, 3.
The corresponding cluster variable is

X4 =
1

x1x2x3x2
4

(1 + 3x4 + 3x2
4 + x3

4 + 2x1x2x3 + 3x1x2x3x4 + x2
1x

2
2x

2
3).

Its numerator contains a total of 14 monomials. On the other hand, it is
easy to see that V4 has only 13 types of submodules: twelve submodules
are determined by their dimension vectors but for the dimension vector
e = (0, 0, 0, 1), we have a family of submodules, and each submodule of
this dimension vector corresponds to the choice of a line in V4. Thus
for this dimension vector e, the family of submodules is parametrized by
a projective line. Notice that the Euler characteristic of the projective
line is 2 (since it is a sphere: the Riemann sphere). So, if we attribute
weight 1 to the submodules determined by their dimension vector and
weight 2 to this P1-family, then we find a ‘total submodule weight’ equal
to the number of monomials in the numerator. These considerations led
Caldero-Chapoton [15] to the following definition, whose ingredients we
describe next. Let Q be a finite quiver with vertices 1, . . . , n, and V
be a finite-dimensional representation of Q. Let d = [d1 · · · dn] be the
dimension vector of V . Define

CC(V ) =
1

xd11 x
d2
2 . . . xdnn

(
∑

0≤e≤d
χ(Gre(V ))

n∏
i=1

x
∑
j→i ej+

∑
i→j(dj−ej)

i ).

Here, the sum is taken over all vectors e ∈ Nn such that 0 ≤ ei ≤ di, for
all i. For each such vector e, the quiver Grassmannian, Gre(V ), is the
variety of n-tuples of subspaces Ui ⊂ Vi such that dimUi = ei and the
Ui form a subrepresentation of V . By taking such a subrepresentation
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to the family of the Ui, we obtain a map

Gre(V )→
n∏
i=1

Grei(Vi) ,

where Grei(Vi) denotes the ordinary Grassmannian of ei-dimensional
subspaces of Vi. Recall that the Grassmannian carries a canonical struc-
ture of projective variety. It is not hard to see that for a family of
subspaces (Ui) the condition of being a subrepresentation is a closed
condition so that the quiver Grassmannian identifies with a projective
subvariety of the product of ordinary Grassmannians. If k is the field of
complex numbers, then the Euler characteristic χ is taken with respect
to singular cohomology with coefficients in Q (or any other field). If k is
an arbitrary algebraically closed field, we use étale cohomology to define
χ. The most important properties of χ are (e.g. , cf. Section 7.4 in [51]):

(1) χ is additive with respect to disjoint unions;
(2) if p : E → X is a morphism of algebraic varieties such that the

Euler characteristic of the fiber over a point x ∈ X does not
depend on x, then χ(E) is the product of χ(X) by the Euler
characteristic of the fiber over any point x ∈ X.

Theorem 6.5. Caldero-Chapoton [15]. Let Q be a Dynkin quiver and
V be an indecomposable representation. Then, we have CC(V ) = XV ,
the cluster variable obtained from V by composing Fomin-Zelevinsky’s
bijection with Gabriel’s.

Caldero-Chapoton’s proof of the theorem was by induction. One of
the aims of the following sections is to explain ‘on what’ they did in the
induction.

6.3. The derived category. Let k be an algebraically closed field and
Q be a (possibly infinite) quiver without oriented cycles (we will impose
more restrictive conditions on Q later). For example, Q could be the
quiver

1

γ

��

// 3

α
��

2
β

@@

// 4

A path of Q is a formal composition of arrows. For example, the sequence
(4|α|β|γ|1) is a path of length 3 in the above example (notice that, for
the moment, we include the source and target vertices of the path in
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the notation; later, we will simply write αβγ for this composition). For
each vertex i of Q, we have the lazy path ei = (i|i), the unique path of
length 0 which starts at i and stops at i and does nothing in between.
The path category has a set of objects Q0 (the set of vertices of Q) and,
for any vertices i, j, the morphism space from i to j is the vector space
whose basis consists of all paths from i to j. Composition is induced by
composition of paths and the unit morphisms are the lazy paths. If Q
is finite, then we define the path algebra to be the matrix algebra

kQ =
⊕
i,j∈Q0

Hom(i, j)

where multiplication is matrix multiplication. Equivalently, the path
algebra has as a basis all paths and its product is given by concatenating
composable paths and equating the product of non composable paths to
zero. The path algebra has the sum of the lazy paths as its unit element

1 =
∑
i∈Q0

ei.

The idempotent ei yields the projective right module

Pi = eikQ.

The modules Pi generate the category of k-finite-dimensional right mod-
ules mod kQ. Each arrow α from i to j yields a map Pi → Pj given by
left multiplication by α. (If we were to consider - heaven forbid - left
modules, the analogous map would be given by right multiplication by
α and it would go in the direction opposite to that of α. Whence, our
preference for right modules is justified.)

Notice that we have an equivalence of categories

repk(Q
op)→ mod kQ

sending a representation V of the opposite quiver Qop to the sum⊕
i∈Q0

Vi

endowed with the natural right action of the path algebra. Conversely,
a kQ-module M gives rise to the representation V with Vi = Mei, for
each vertex i of Q, and Vα given by right multiplication by α, for each
arrow α of Q. The category mod kQ is abelian, i.e. , it is additive, has
kernels and cokernels and for each morphism f , the cokernel of its kernel
is canonically isomorphic to the kernel of its cokernel.
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The category mod kQ is hereditary. Recall from [20] that this means
that submodules of projective modules are projective; equivalently, that
all extension groups in degrees i ≥ 2 vanish:

ExtikQ(L,M) = 0

for all L and M ; equivalently, that kQ is of global dimension ≤ 1.
Thus, in the spirit of noncommutative algebraic geometry approached
via abelian categories, we should think of mod kQ as a ‘non commutative
curve’.

We define DQ to be the bounded derived category Db(mod kQ) of the
abelian category mod kQ. Thus, the objects of DQ are the bounded
complexes of (right) kQ-modules

. . .→ 0→ . . .→Mp dp→Mp+1 → . . .→ 0→ . . . .

Its morphisms are obtained from morphisms of complexes by formally
inverting all quasi-isomorphisms. We refer to [70, 107] for in depth
treatments of the fundamentals of this construction. Below, we will
give a complete and elementary description of the category DQ if Q is a
Dynkin quiver. We have the following general facts. The functor

mod kQ→ DQ
taking a module M to the complex concentrated in degree 0,

. . .→ 0→M → 0→ . . . ,

is a fully faithful embedding. From now on, we will identify modules
with complexes concentrated in degree 0. If L and M are two modules,
then we have a canonical isomorphism

ExtikQ(L,M) ∼→ HomDQ(L,M [i]),

for all i ∈ Z, where M [i] denotes the complex M shifted by i degrees to
the left, M [i]p = Mp+i, p ∈ Z, and endowed with the differential dM [i] =

(−1)idM . The category DQ has all finite direct sums (and they are
given by direct sums of complexes) and Theorem 6.1 holds. Moreover,
each object is isomorphic to a direct sum of shifted copies of modules
(this holds more generally in the derived category of any hereditary
abelian category; for example, the derived category of coherent sheaves
on an algebraic curve). The category DQ is abelian if and only if the
quiver Q does not have any arrows. However, it is always triangulated.
This means that it is k-linear (it is additive, and the morphism sets
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are endowed with k-vector space structures so that the composition is
bilinear) and endowed with the following extra structure:

(a) a suspension (or shift) functor Σ : DQ → DQ, namely the functor
taking a complex M to M [1];

(b) a class of triangles (sometimes called ‘distinguished triangles’),
namely the sequences

L→M → N → ΣL

which are ‘induced’ by short exact sequences of complexes. We
sometimes abbreviate the notation for such a triangle to (L,M,N).

The class of triangles satisfies certain axioms; e.g. , cf. [107]. The most
important consequence of these axioms is that the triangles induce long
exact sequences in the functors Hom(X, ?) and Hom(?, X), i.e. for each
object X of DQ, the sequences

. . . (X,Σ−1N)→ (X,L)→ (X,M)→ (X,N)→ (X,ΣL)→ . . .

and

. . . (Σ−1N,X)← (L,X)← (M,X)← (N,X)← (ΣL,X)← . . .

are exact, where we abbreviate Hom(U, V ) to (U, V ). For the set of
morphisms from an object U to an object V in a category C, we will
also use the notation C(U, V ).

6.4. Presentation of the derived category of a Dynkin quiver.
From now on, we assume that Q is a Dynkin quiver. Let ZQ be its
repetition [97]: the vertices of ZQ are the pairs (p, i), where p is an
integer and i a vertex of Q and the arrows of ZQ are obtained as follows:
each arrow α : i→ j of Q yields the arrows

(p, α) : (p, i)→ (p, j) , p ∈ Z ,
and the arrows

σ(p, α) : (p− 1, j)→ (p, i) , p ∈ Z.
We extend σ to a map (sometimes called the polarization) defined on all
arrows of ZQ by defining

σ(σ(p, α)) = (p− 1, α).

Notice that σ is only defined on the arrows, not on the vertices of ZQ.
We endow ZQ with the map σ and with the automorphism τ : ZQ→ ZQ
taking (p, i) to (p − 1, i) and (p, α) to (p − 1, α), for all vertices i of Q,
all arrows α of Q and all integers p.
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For a vertex v of ZQ, the mesh ending at v is the full subquiver

(6.1) u1

α

  
u2

''
τv

σ(α)
==
77

''

... v

us

77

formed by v, τ(v) and all sources u of arrows α : u→ v of ZQ ending in
v. We define the mesh ideal M to be the (two-sided) ideal of the path
category of ZQ (cf. Section 6.3) which is generated by all mesh relators

rv =
∑

arrows α:u→v
ασ(α) ,

where v runs through the vertices of ZQ. Thus, for two vertices u and
w of ZQ, the space M(u,w) is formed by all morphisms of the path
category which are linear combinations of compositions of the form prvq,
where v is a vertex of ZQ, p is a path from v to w and q is a path from
u to τv. The mesh category is the quotient of the path category of ZQ
by the mesh ideal. Thus, its objects are the vertices of ZQ and, for two
vertices u and w, the space of morphisms in the mesh category is the
quotient of the space of morphisms in the path category by its subspace
M(u,w).

Theorem 6.6. Happel [58].

(a) There is a canonical bijection v 7→Mv from the set of vertices of
ZQ to the set of isomorphism classes of indecomposables of DQ
which takes the vertex (1, i) to the indecomposable projective Pi.

(b) Let indDQ be the full subcategory of indecomposables of DQ. The
bijection of (a) lifts to an equivalence of categories from the mesh
category of ZQ to the category indDQ.

In Figure 2, we see the repetition for Q = ~A5 and the map taking its
vertices to the indecomposable objects of the derived category. The ver-
tices marked by • belonging to the left triangle are mapped to indecom-
posable modules. The vertex (1, i) corresponds to the indecomposable
projective Pi. The arrow (1, i)→ (1, i+ 1), 1 ≤ i ≤ 4, is mapped to the
left multiplication by the arrow i→ i+ 1. The functor of Theorem 6.6,
part (b), takes a mesh (6.1) to a triangle

(6.2) Mτv
//
⊕s

i=1Mui
// Mv

// ΣMτv
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(2,1)

Figure 2. The repetition of type An

called an Auslander-Reiten triangle or almost split triangle; cf. [59]. If
Mv and Mτv are modules, then so is the middle term and the triangle
comes from an exact sequence of modules

0 // Mτv
//
⊕s

i=1Mui
// Mv

// 0

called an Auslander-Reiten sequence or almost split sequence; cf. [4].
These almost split triangles (respectively sequences) can be character-
ized intrinsically in DQ (respectively mod kQ).

Recall that the Grothendieck group K0(T ) of a triangulated category
is the quotient of the free abelian group on the isomorphism classes [X]
of objects X of T by the subgroup generated by all elements

[X]− [Y ] + [Z]

arising from triangles (X,Y, Z) of T . In the case of DQ, the natural map

K0(mod kQ)→ K0(DQ)

is an isomorphism (its inverse sends a complex to the alternating sum
of the classes of its homologies). Since K0(mod kQ) is free on the classes
[Si] associated with the simple modules, the same holds for K0(DQ) so
that its elements are given by n-tuples of integers. We write dimM
for the image in K0(DQ) of an object M of DQ and call dimM the
dimension vector of M . Then, each triangle (6.2) yields an equality

dimMv =
s∑
i=1

dimMui − dimMτv.

Using these equalities, we can easily determine dimM for each indecom-
posable M starting from the known dimension vectors dimPi, 1 ≤ i ≤ n.
In the above example, we find the dimension vectors listed in Figure 3.
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Figure 3. Some dimension vectors of indecomposables
in D ~A5

Thanks to the theorem, the automorphism τ of the repetition yields a
k-linear automorphism, still denoted by τ , of the derived category DQ.
This automorphism has several intrinsic descriptions:

(1) As shown in [45], it is the right derived functor of the left exact
Coxeter functor rep(Qop)→ rep(Qop) introduced by Bernstein-Gelfand-
Ponomarev [12] in their proof of Gabriel’s theorem. If we identify
K0(DQ) with the root lattice via Gabriel’s theorem, then the automor-
phism induced by τ−1 equals the the Coxeter transformation c. As
shown by Gabriel [45], the identity ch = 1, where h is Coxeter number,
lifts to an isomorphism of functors

(6.3) τ−h ∼→ Σ2.

(2) It can be expressed in terms of the Serre functor of DQ: recall that
for a k-linear triangulated category T with finite-dimensional morphism
spaces, a Serre functor is an autoequivalence S : T → T such that the
Serre duality formula holds. We have bifunctorial isomorphisms

DHom(X,Y ) ∼→ Hom(Y, SX) , X, Y ∈ T ,
where D is the duality Homk(?, k) over the ground field. Notice that this
determines the functor S uniquely up to isomorphism. In the case of
DQ = Db(mod kQ), it is not hard to prove that a Serre functor exists; it
is given by the left derived functor of the tensor product by the bimodule
D(kQ). Now, the autoequivalence τ , the suspension functor Σ and the
Serre functor S are linked by the fundamental isomorphism

(6.4) τΣ ∼→ S.
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6.5. Caldero-Chapoton’s proof. The above description of the de-
rived category yields in particular a description of the module category,
which is a full subcategory of the derived category. This description was
used by Caldero-Chapoton [15] to prove their formula. Let us sketch the
main steps in their proof. Recall that we have defined a surjective map
v 7→ Xv from the set of vertices of the repetition to the set of cluster
variables such that

(a) we have X(0,i) = xi for 1 ≤ i ≤ n and
(b) we have

XτvXv = 1 +
∏

arrows w→v
Xw

for all vertices v of the repetition.

We wish to show that we have

Xv = CC(Mv)

for all vertices v such that Mv is an indecomposable module. This is
done by induction on the distance of v from the vertices (1, i) in the
quiver ZQ. More precisely, one shows the followings.

(a) We have CC(Pi) = X(1,i) for each indecomposable projective
Pi. Here, we use the fact that submodules of projectives are
projective in order to explicitly compute CC(Pi).

(b1) For each split exact sequence

0→ L→ E →M → 0 ,

we have

CC(L)CC(M) = CC(E).

Thus, if E = E1 ⊕ . . .⊕Es is a decomposition into indecompos-
ables, then

CC(E) =

s∏
i=1

CC(Ei).

(b2) If

0→ L→ E →M → 0

is an almost split exact sequence, then we have

CC(E) + 1 = CC(L)CC(M).

It is now clear how to prove the equality Xv = CC(Mv), by induction,
by proceeding from the projective indecomposables to the right.
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6.6. The cluster category. Recall that Q denotes a Dynkin quiver.
The cluster category

CQ = DQ/(τ−1Σ)Z = DQ/(S−1Σ2)Z

is the orbit category of the derived category under the action of the
cyclic group generated by the autoequivalence τ−1Σ = S−1Σ2 (notice
that Σ commutes with S and τ since both are triangle functors and that
we have τΣ = S by (6.4)). This means that the objects of CQ are the
same as those of the derived category DQ and that for two objects X
and Y , the morphism space from X to Y in CQ is

CQ(X,Y ) =
⊕
p∈Z
DQ(X, (S−1Σ2)pY ).

Morphisms are composed in the natural way. This definition is due
to Buan-Marsh-Reineke-Reiten-Todorov [7], who tried to obtain a bet-
ter understanding of the ‘decorated quiver representations’ introduced
by Reineke-Marsh-Zelevinsky [87]. For quivers of type A, an equiva-
lent category was defined independently by Caldero-Chapoton-Schiffler
[16] using an entirely different description. Clearly, the category CQ is
k-linear. It is not hard to check that its morphism spaces are finite-
dimensional.

One can show [77] that CQ admits a canonical structure of triangulated
category such that the projection functor π : DQ → CQ becomes a
triangle functor (in general, orbit categories of triangulated categories
are no longer triangulated). The Serre functor S of DQ clearly induces a
Serre functor in CQ, which we still denote by S. Now, by the definition of
CQ (and its triangulated structure), we have an isomorphism of triangle
functors

S ∼→ Σ2.

This means that CQ is 2-Calabi-Yau. Indeed, for an integer d ∈ Z, a
triangulated category T with finite-dimensional morphism spaces is d-
Calabi-Yau if it admits a Serre functor isomorphic as a triangle functor
to the dth power of its suspension functor.

6.7. From cluster categories to cluster algebras. We keep the no-
tations and hypotheses of the previous section. If R is a quiver and G
is a group of automorphisms of R, then the orbit quiver R/G has as
vertices the set of orbits R0/G of G on the set of vertices R0 and the
set of arrows between the orbit of a vertex u and that of a vertex v is
the set of orbits of G in the disjoint union of the sets of arrows from gu



218 Keller

to hv, where g and h range through G. We have a canonical morphism
π : R → R/G satisfying π ◦ g = π for all g in G and universal for this
property.

The suspension functor Σ and the Serre functor S of the derived
category induce automorphisms of the repetition ZQ which we still de-
note by Σ and S, respectively. The orbit quiver ZQ/(τ−1Σ)Z inherits
the automorphism τ and the map σ (defined on arrows only) and thus
has a well-defined mesh category. Recall that we write Ext1(X,Y ) for
Hom(X,ΣY ) in any triangulated category.

Theorem 6.7. [7, 8].

(a) The decomposition theorem holds for the cluster category and the
mesh category of ZQ/(τ−1Σ)Z is canonically equivalent to the full
subcategory ind CQ of the indecomposables of CQ. Thus, we have
an induced bijection L 7→ XL from the set of isomorphism classes
of indecomposables of CQ to the set of all cluster variables of AQ,
which takes the shifted projective ΣPi to the initial variable xi,
1 ≤ i ≤ n.

(b) Under this bijection, the clusters correspond to the cluster-tilting
sets, i.e. , the sets of pairwise non isomorphic indecomposables
T1, . . . , Tn such that we have

Ext1(Ti, Tj) = 0

for all i, j.
c) If T1, . . . , Tn is cluster-tilting, then the quiver (cf. below) of the

endomorphism algebra of the sum T =
⊕n

i=1 Ti does not have
loops nor 2-cycles and the associated antisymmetric matrix is
the exchange matrix of the unique seed containing the cluster
XT1 , . . . , XTn.

In part (b), the condition implies in particular that Ext1(Ti, Ti) van-
ishes. However, for a Dynkin quiver Q, we have Ext1(L,L) = 0, for each
indecomposable L of CQ. A cluster-tilting object of CQ is the direct sum
of the objects T1, . . . , Tn of a cluster-tilting set. Since these are pairwise
non isomorphic indecomposables, the datum of T is equivalent to that of
the Ti. A cluster-tilted algebra of type Q is the endomorphism algebra of
a cluster-tilting object of CQ. In part (c), the most subtle point is that
the quiver does not have loops or 2-cycles [8]. Let us recall what one
means by the quiver of a finite-dimensional algebra over an algebraically
closed field.
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Proposition-Definition 6.8 (Gabriel). Let B be a finite-dimensional
algebra over the algebraically closed ground field k.

(a) There exists a quiver QB , unique up to isomorphism, such that
B is Morita equivalent to the algebra kQB/I, where I is an ideal
of kQB contained in the square of the ideal generated by the
arrows of QB.

(b) The ideal I is not unique, in general, but we have I = 0 if and
only if B is hereditary.

(c) There is a bijection i 7→ Si between the vertices of QB and the
isomorphism classes of simple B-modules. The number of arrows
from a vertex i to a vertex j equals the dimension of Ext1B(Sj , Si).

In our case, the algebra B is the endomorphism algebra of the sum
T of the cluster-tilting set T1, . . . , Tn in CQ. In this case, the Morita
equivalence of (a) even becomes an isomorphism (because the Ti are
pairwise non isomorphic). For a suitable choice of this isomorphism, the
idempotent ei associated with the vertex i is sent to the identity of Ti
and the images of the arrows from i to j yield a basis of the space of
irreducible morphisms

irrT (Ti, Tj) = radT (Ti, Tj)/ rad
2
T (Ti, Tj) ,

where radT (Ti, Tj) denotes the vector space of non isomorphisms from Ti
to Tj (thanks to the locality of the endomorphism rings, this set is indeed

closed under addition) and rad2
T is the subspace of non isomorphisms

admitting a non trivial factorization:

rad2
T (Ti, Tj) =

n∑
r=1

radT (Tr, Tj) radT (Ti, Tr).

As an illustration of Theorem 6.7, we consider the cluster-tilting set
T1, . . . , T5 in C ~A5

, as depicted in Figure 4. Here, the vertices labeled 0,

1, . . . , 4 have to be identified with the vertices labeled 20, 21, . . . , 24 (in
this order) to obtain the orbit quiver ZQ/(τ−1Σ)Z. In the orbit category
CQ, we have τ ∼→ Σ so that ΣT1 is the indecomposable associated to
vertex 0, for example. Using this and the description of the morphisms
in the mesh category, it is easy to check that we do have

Ext1(Ti, Tj) = 0

for all i, j. It is also easy to determine the spaces of morphisms

HomCQ(Ti, Tj)
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Figure 4. A cluster-tilting set in A5

and the compositions of morphisms. Determining these is equivalent to
determining the endomorphism algebra

End(T ) = Hom(T, T ) =
⊕
i,j

Hom(Ti, Tj).

This algebra is easily seen to be isomorphic to the algebra given by the
following quiver Q′:

5

β1 ��

3
γ1oo

2
α1

@@

γ2

��
1

α2
@@

4
β2

oo

with the relatiors

α1β1 , β1γ1 , γ1α1 , α2β2 , β2γ2 , γ2α2.

Thus, the quiver of End(T ) is Q′. It encodes the exchange matrix of the
associated cluster

XT1 =
1 + x2

x1

XT2 =
x1x2 + x1x4 + x3x4 + x2x3x4

x1x2x3

XT3 =
x1x2x3 + x1x2x3x4 + x1x2x5 + x1x4x5 + x3x4x5 + x2x3x4x5

x1x2x3x4x5

XT4 =
x2 + x4

x3
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XT5 =
1 + x4

x5
,

where the variables x1, . . . , x5 form the cluster corresponding to the
vertices 0, 1, 2, 3, 4 of Figure 4.

6.8. A K-theoretic interpretation of the exchange matrix. Keep
the notations and hypotheses of the preceding section. Let T1, . . . , Tn
be a cluster-tilting set, T the sum of the Ti and B its endomorphism
algebra. For two finite-dimensional right B-modules L and M put

〈L,M〉a = dimHom(L,M)− dimExt1(L,M)− dimHom(M,L)

+ dimExt1(M,L).

This is the antisymmetrization of a truncated Euler form. A priori it is
defined on the split Grothendieck group of the category modB (i.e. the
quotient of the free abelian group on the isomorphism classes divided
by the subgroup generated by all relations obtained from direct sums in
modB).

Proposition 6.9. Palu [92]. The form 〈, 〉a descends to an antisym-
metric form on K0(modB). Its matrix in the basis of the simples is the
exchange matrix associated with the cluster corresponding to T1, . . . , Tn.

6.9. Mutation of cluster-tilting sets. Let us recall two axioms of
triangulated categories:

TR1: For each morphism u : X → Y , there exists a triangle

X
u→ Y → Z → ΣX.

TR2: A sequence

X
u→ Y

v→ Z
w→ ΣX

is a triangle if and only if the sequence

Y
v→ Z

w→ ΣX
−u→ ΣY

is a triangle.

One can show that in TR1, the triangle is unique up to (non unique)
isomorphism. In particular, up to isomorphism, the object Z is uniquely
determined by u. Notice the sign in TR2. It follows from TR1 and TR2
that a given morphism also occurs as the second (respectively third)
morphism in a triangle.

Now, with the notations and hypotheses of the preceding section,
suppose that T1, . . . , Tn is a cluster-tilting set and Q′ is the quiver of
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the endomorphism algebra B of the sum of the Ti. As explained after
Proposition-Definition 6.8, we have a surjective algebra morphism

kQ′ →
⊕
i,j

Hom(Ti, Tj)

which takes the idempotent ei to the identity of Ti and the arrows i→ j
to irreducible morphisms Ti → Tj , for all vertices i, j of Q′ (cf. the above
example, computation of B and Q′ = QB).

Now, let k be a vertex of Q′ (the mutating vertex). We choose trian-
gles

Tk
u→
⊕
arrows
k→i

Ti → T ∗k → ΣTk

and
∗Tk →

⊕
arrows
j→k

Tj
v→ Tk → Σ∗Tk

where the component of u (respectively v) corresponding to an arrow
α : k → i (respectively j → k) is the corresponding morphism Tk → Ti
(respectively Tj → Tk). These triangles are unique up to isomorphism
and called the exchange triangles associated with k and T1, . . . , Tn.

Theorem 6.10. [7].

(a) The objects T ∗k and ∗Tk are isomorphic.
(b) The set obtained from T1, . . . , Tn by replacing Tk with T ∗k is

cluster-tilting and its associated cluster is the mutation at k of
the cluster associated with T1, . . . , Tn.

(c) Two indecomposables L and M appear as the the pair (Tk, T
∗
k )

associated with an exchange if and only if the space Ext1(L,M)
is one-dimensional. In this case, the exchange triangles are the
unique (up to isomorphism) non split triangles

L→ E →M → ΣL and M → E′ → L→ ΣM.

Let us extend the map L 7→ XL from indecomposable to decomposable
objects of CQ by requiring that we have

XN = XN1XN2

whenever N = N1 ⊕ N2 (this is compatible with the muliplicativity of
the Caldero-Chapoton map). We know that if u1, . . . , un is a cluster
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and B = (bij) is the associated exchange matrix, then the mutation at
k yields the variable u′k such that

uku
′
k =

∏
arrows
k→i

ui +
∏

arrows
j→k

uj .

By combining this with the exchange triangles, we see that in the situ-
ation of (c), we have

XLXM = XE +XE′ .

We would like to generalize this identity to the case where the space
Ext1(L,M) is of higher dimension. For three objects L, M and N of CQ,

let Ext1(L,M)N be the subset of Ext1(L,M) formed by those morphisms
ε : L→ ΣM such that in the triangle

M → E → L
ε→ ΣM ,

the object E is isomorphic to N (we do not fix an isomorphism). Notice
that this subset is a cone (i.e. , stable under multiplication by non zero
scalars) in the vector space Ext1(L,M).

Proposition 6.11. [18]. The subset Ext1(L,M)N is constructible in
Ext1(L,M). In particular, it is a union of algebraic subvarieties. It is
empty for all but finitely isomorphism classes of objects N .

If k is the field of complex numbers, then we denote by χ the Euler
characteristic with respect to singular cohomology with coefficients in a
field. If k is an arbitrary algebraically closed field, then we denote by
χ the Euler characteristic with respect to étale cohomology with proper
support.

Theorem 6.12. [18]. Suppose that L and M are objects of CQ such that

Ext1(L,M) 6= 0. Then, we have

XLXM =
∑
N

χ(PExt1(L,M)N ) + χ(PExt1(M,L)N )

χ(PExt1(L,M))
XN

where the sum is taken over all isomorphism classes of objects N of CQ.

Notice that in the theorem, the objects L and M may be decompos-
able so that XL and XM will not be cluster variables, in general, and
the XN do not form a linearly independent set in the cluster algebra.
Thus, the formula should be considered as a relation rather than as an
alternative definition for the multiplication of the cluster algebra. No-
tice that it nevertheless bears a close resemblance to the product formula
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in a dual Hall algebra: for two objects L and M in a finitary abelian
category of finite global dimension, we have

[L] ∗ [M ] =
∑
[N ]

|Ext1(L,M)N |
|Ext1(L,M)|

[N ]

where the brackets denote isomorphism classes and the vertical bars the
cardinalities of the underlying sets; cf. Proposition 1.5 of [101].

7. Categorification via cluster categories: the acyclic case

7.1. Categorification. Let Q be a connected finite quiver without ori-
ented cycles with vertex set {1, . . . , n}. Let k be an algebraically closed
field. We have seen in Section 6.3 how to define the bounded derived
category DQ. We still have a fully faithful functor from the mesh cate-
gory of ZQ to the category of indecomposables of DQ, but this functor
is very far from being essentially surjective. In fact, its image does not
even contain the injective indecomposable kQ-modules. The methods of
the preceding section therefore do not generalize, but most of the results
continue to hold. The derived category DQ still has a Serre functor (the
total left derived functor of the tensor product functor ? ⊗B D(kQ)).
We can form the cluster category

CQ = DQ/(S−1Σ2)Z

as before and it is still a triangulated category in a canonical way such
that the projection π : DQ → CQ becomes a triangle functor [77]. More-
over, the decomposition Theorem 6.1 holds for CQ and each object L of
CQ decomposes into a direct sum

L = π(M)⊕
n⊕
i=1

π(ΣPi)
mi

for some module M and certain multiplicities mi, 1 ≤ i ≤ n; cf. [7]. We
put

XL = CC(M)
n∏
i=1

xmii

where CC(M) is defined as in Section 6.2. Notice that, in general, XL

can only be expected to be an element of the fraction field Q(x1, . . . , xn),
not of the cluster algebra AQ inside this field.

Theorem 7.1. Let Q be a finite quiver without oriented cycles with
vertex set {1, . . . , n}.
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(a) The map L 7→ XL induces a bijection from the set of isomor-
phism classes of rigid indecomposables of the cluster category CQ
onto the set of cluster variables of the cluster algebra AQ.

(b) Under this bijection, the clusters correspond exactly to the cluster-
tilting sets, i.e., the sets T1, . . . , Tn of rigid indecomposables such
that

Ext1(Ti, Tj) = 0,

for all i, j.
(c) For a cluster-tilting set T1, . . . , Tn, the quiver of the endomor-

phism algebra of the sum of the Ti does not have loops nor 2-
cycles and encodes the exchange matrix of the seed containing
the corresponding cluster.

(d) If L and M are rigid indecomposables such that the space Ext1(L,
M) is one-dimensional, then we have the relation

(7.1) XLXM = XB +XB′

where B and B′ are the middle terms of ‘the’ non split triangles

L // B // M // ΣL and M // B′ // L // ΣM.

Concerning part (c), let us point out that the uniqueness of a seed con-
taining a given cluster is proved in full generality in [55]. The relation in
part (d) generalizes the exchange relations as they appear in the defini-
tion of a cluster algebra. Parts (a), (b) and (d) of the theorem are proved
in [17] and part (c) in [8]. The proofs build on the work by many authors
notably Buan-Marsh-Reiten-Todorov [9], Buan-Marsh-Reiten [8], Buan-
Marsh-Reineke-Reiten-Todorov [7], Marsh-Reineke-Zelevinsky [87], and
especially on Caldero-Chapoton’s explicit formula for XL proved in [15]
for orientations of simply laced Dynkin diagrams. Another crucial in-
gredient of the proof is the Calabi-Yau property of the cluster category.
An alternative proof of part (c) was given by Hubery [62], for quivers
whose underlying graph is an extended simply laced Dynkin diagram.

We describe the main steps of the proof of (a). The mutation of
cluster-tilting sets is defined using the construction of Section 6.9.

(1) If T is a cluster-tilting object, then the quiver QT of its endomor-
phism algebra does not have loops or 2-cycles. If T ′ is obtained
from T by mutation at the summand T1, then the quiver QT ′ of
the endomorphism algebra of T ′ is the mutation at the vertex 1
of the quiver QT ; cf. [8].
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(2) Each rigid indecomposable is contained in a cluster-tilting set.
Any two cluster-tilting sets are linked by a finite sequence of
mutations. This is deduced in [7] from the work of Happel-Unger
[60].

(3) If (T1, T
∗
1 ) is an exchange pair and

T ∗1 → E → T1 → ΣT ∗1 and T1 → E′ → T ∗1 → ΣT1

are the exchange triangles, then we have

XT1XT ∗1
= XE +XE′ .

This is shown in [17].

It follows from (1)-(3) that the map L → XL does take rigid indecom-
posables to cluster variables and that each cluster variable is obtained
in this way. It remains to be shown that a rigid indecomposable L is
determined up to isomorphism by XL. This follows from

(4) If M is a rigid indecomposable module, then the denominator of

XM is xd11 . . . xdnn ; cf. [17].

Indeed, a rigid indecomposable module M is determined, up to isomor-
phism, by its dimension vector.

We sum up the relations between the cluster algebra and the cluster
category in the following table:

cluster algebra cluster category
multiplication direct sum

addition ?
cluster variables rigid indecomposables

clusters cluster-tilting sets
mutation mutation

exchange relation exchange triangles
xx∗ = m+m′ Tk →M → T ∗k → ΣTk

T ∗k →M ′ → Tk → ΣT ∗k

7.2. Two applications. Theorem 7.1 does shed new light on cluster
algebras. In particular, thanks to the theorem, Caldero and Reineke
[19] have made significant progress towards the following.

Theorem 7.2. Qin [94], Nakajima [91]. Suppose that Q does not have
oriented cycles.Then,all cluster variables of AQ belong to N[x±1

1 ,..., x±1
n ].

This theorem is a consequence of a general conjecture of Fomin-
Zelevinsky [37], which here is specialized to the case of cluster algebras
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associated with acyclic quivers, for cluster expansions in the initial clus-
ter. Notice that in [19], the above is also stated as a theorem. However,
a gap in the proof was found by Nakajima [91]: the authors incorrectly
identify their parameter q with Lusztig’s parameter v, whereas the cor-
rect identification is v = −√q. Fomin-Zelevinsky’s general positivity
conjecture [37] has now been proved for quivers of type An and D4 by
Hernandez-Leclerc [61] and for bipartite acyclic quivers by Nakajima
[91]. Both proofs rely on the method of ‘monoidal categorification’ de-
veloped by Leclerc and Hernandez-Leclerc.

Here are two applications to the exchange graph of the cluster algebra
associated with an acyclic quiver Q.

Corollary 7.3. [17].

(a) For any cluster variable x, the set of seeds, whose clusters con-
tain x, form a connected subgraph of the exchange graph.

(b) The set of seeds, whose quiver does not have oriented cycles, form
a connected subgraph (possibly empty) of the exchange graph.

For acyclic cluster algebras, parts (a) and (b) confirm conjecture 4.14,
parts (3) and (4), given by Fomin-Zelevinsky in [39]. By (b), the clus-
ter algebra associated with a quiver without oriented cycles has a well-
defined cluster-type.

7.3. Cluster categories and singularities. The construction of clus-
ter categories may seem a bit artificial. Nevertheless, cluster categories
do occur ‘in nature’. In particular, certain triangulated categories associ-
ated with singularities are equivalent to cluster categories. We illustrate
this on the following example. Let the cyclic group G of order 3 act on a
three-dimensional complex vector space V by scalar multiplication with
a primitive third root of unity. Let S be the completion at the origin
of the coordinate algebra of V and let R = SG, the fixed point algebra
corresponding to the completion of the singularity at the origin of the
quotient V//G. The algebra R is a Gorenstein ring, (e.g. , cf. ) [108],
and an isolated singularity of dimension 3 (e.g. , cf. ) Corollary 8.2 of
[67]. The category CM(R) of maximal Cohen-Macaulay modules is an
exact Frobenius category and its stable category CM(R) is a triangu-
lated category. By Auslander’s results [5] (cf. Lemma 3.10 of [110]), it is
2-Calabi Yau. One can show that it is equivalent to the cluster category
CQ for the quiver

Q : 1 ////// 2
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by an equivalence which takes the cluster-tilting object T = kQ to S
considered as an R-module. This example can be found in [79], where
it is deduced from an abstract characterization of cluster categories. A
number of similar examples can be found in [14, 80]. A far-reaching
link between singularities and ‘generalized cluster categories’ [1] is es-
tablished in [2].
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[106] B. Szendrői, Non-commutative Donaldson-Thomas invariants and the conifold,

Geom. Topol. 12 (2008) 1171-1202.
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