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ABSTRACT. This paper is a slightly revised version of an introduc-
tion into singularity theory corresponding to a series of lectures
given at the “Advanced School and Conference on homological and
geometrical methods in representation theory” at the International
Centre for Theoretical Physics (ICTP), Miramare - Trieste, Italy,
11-29 January 2010. We show how to associate to a triple of posi-
tive integers (p1, p2, p3) a two-dimensional isolated graded singular-
ity by an elementary procedure that works over any field k£ (with no
assumptions on characteristic, algebraic closedness or cardinality).
This assignment starts from the triangle singularity ' + 252 4 253
and when applied to the Platonic (or Dynkin) triples, it produces
the famous list of A-D-E-singularities. As another particular case,
the procedure yields Arnold’s famous strange duality list consist-
ing of the 14 exceptional unimodular singularities (and an infinite
sequence of further singularities not treated here in detail). As we
are going to show, weighted projective lines and various triangu-
lated categories attached to them play a key role in the study of
the triangle and associated singularities.
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1. Introduction

Weighted projective lines provide the mathematical environment to
study triangle singularities 21" + 25 +2%* (and suitable finite systems of
such equations). To analyze the arising singularities, we attach to them
an abelian hereditary k-linear category H with Serre duality having a
tilting object T', whose endomorphism ring is a canonical algebra (with
three arms). This category H has an interpretation as the category of
coherent sheaves coh-X on a weighted projective line X whose weight
type is just the triple of integers we started with.

Weighted projective lines and their defining equations of shape
f =" + 287 + 28® have a long history going back to Klein [13] and
Poincaré [25]. Accordingly, their study has a high contact surface with
many mathematical subjects, classical and modern. Among the many re-
lated subjects, we mention representation theory of algebras and groups,
invariant theory, function theory, orbifolds, 3-manifolds, singularities
and the study of nilpotent operators. The formal definition of the cate-
gory of coherent sheaves is due to Geigle and the author in 1987; see [7].
In particular, through tilting theory a close link to the representation
theory of finite dimensional algebras has been established. This concerns
in particular, Ringel’s study of canonical algebras and their representa-
tions, see [20]. The quoted paper further contains a link to commutative
algebra, through the relationship between vector bundles on a weighted
projective line and the (graded) Cohen-Macaulay modules over the al-
gebra S = k[z1, 2, z3]/(f) and related algebras. This link to singularity
theory is exploited in the present paper. For an alternative category-
based access to weighted projective lines, we refer to the papers [3, 20].

In the focus of this paper is the construction and analysis of three
types of (usually not equivalent) triangulated categories which are nat-
urally attached to coh-X. These categories all have a tilting object and
thus each one yields an explicit link to the representation theory of finite
dimensional algebras. One of the three categories is the bounded derived
category of coh-X, and the other two are obtained from two (usually dif-
ferent) Frobenius structures on the category vect-X of vector bundles
on X. Due to a general result of Happel [3], the associated stable cat-
egories are triangulated. Following the work of Buchweitz (1987), they
are equivalent to the stable categories of the (suitably graded) Cohen-
Macaulay modules; see [2].
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The topics discussed in the final part of the paper are related to
recent independent work (2006) of Kajiura-Saito-Takahashi-Ueda [!1,

| and Lenzing-de la Pena [21] on Fuchsian singularities. A key role
in these developments is played by a theorem of Orlov (arXiv 2005,
published in 2009) dealing with the analysis of singularities by means
of the triangulated category of (graded) singularities (the stable derived
category in Buchweitz’s sense). An important feature of our treatment
is its independence of the characteristic of the base field.

Historically, an important aspect of singularity theory is incorporated
in the following table of simple singularities:

Dynkin’s diagram A simple singularity fa
A,:0o—0—o0--+ o0—o0 zy + 2"t
[¢]
N _
D, : 60 - o—o 22+ yPr 42!
7
[¢]
[e)
I 2 4 3
Fg: o—o—o0—o0—o0 2ty t
[e)
I 2 3 3
E;r: o—o—o0o—o0—o0—o Fryrtw
(e
I 2 3 5
Eg: o—o0o—0—0—0—0—0 Yyt

The A-D-E-singularities for the base field C

For the moment, the above singularities should be considered to be de-
fined over the field C of complex numbers, giving rise to the simple iso-
lated singularities Ra = Clz,y, z]/(fa). Just as the Dynkin diagrams,
these singularities appear in many mathematical contexts where here we
only mention a few. They appear for instance in

(1) the classification of critical points of differential maps.
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(2) rings of invariants under the natural action of finite subgroups
of SL(2,Z) acting on C[[X,Y]]. (A graded version with the
action on C[X,Y] is also available.) This links the topic with
the ancient classification of regular or Platonic solids and its
modern treatment as the McKay correspondence; see [5].

(3) finite dimensional representation theory as suitable orbit alge-
bras of the Auslander-Reiten translation for tame hereditary al-
gebras.

For further information on the omnipresence of Dynkin diagrams and
singularities we refer to [, 10, 29].

A look at the table does not reveal any building law. And, in the
setting discussed, the equations fa are far from being unique, since the
primary object of interest — in this context — is the ring Ra, which is
not changed if we change the variables x,y and z by a linear base change
with coefficients in C. Our first aim of here is therefore to work in a
graded setting in order

(1) to present an elementary method to generate the singularities
fa systematically, and basically produces a unique list,

(2) to work over an arbitrary field, and to design the construction
as to be independent on any extra assumptions on this (charac-
teristic, algebraically closedness),

(3) to recover from fa or the associated graded ring k[z,y, 2]/(fa),
the Dynkin diagram A.

In these notes we are giving a more direct link to finite dimensional
representation theory via one associated abelian hereditary category and
three related triangulated categories. The link is then established by
means of appropriate tilting objects and their endomorphism rings.

2. From Dynkin diagrams to simple singularities

2.1. Dynkin diagrams. Assume we are given a triple (pi,p2,p3) of
integers p; > 0. By the symbol [p1,p2,p3s] we denote the star-shaped
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graph

[p1, P2, 03] : ©

with base point, where the number p; indicates the length (number of
vertices) of the ith branch (which for p; = 1 degenerates to the base
point). Here the length of the ith branch counts the number of vertices
in the branch including the fat base point. In this notation, a Dynkin
diagram A is just a star [p1, p2, p3] satisfying the inequality

(2.1) 1/p1+1/p2+1/ps > 1.
We thus have D, = [2,2,n — 2] with n > 4, Eg = [2,3,3], Er = [2, 3,4]
and Eg = [2,3,5]. For A,, there is some ambiguity, since any triple

(p,q,1), with p+ ¢ — 1 = n, produces the Dynkin diagram A,,. Taking
the base point into account, what we are going to do consistently, the
ambiguity obviously disappears. Any triple (p1,pe,ps) satisfying the
inequality (2.1) is called a Dynkin triple or, following Klein [13], a
Platonic triple.

Triangle singularities We work over an arbitrary field k£ and fix a
triple (p1, p2, p3) of integers > 1, called weight triple. Let
L = L(p1,p2,p3) be the abelian group given by generators 7y, ¥a, T3
and the defining relations p1&; = paTs = p3¥s =: €. The element ¢ is
called the canonical element of .. As is easily seen, the group L has
rank one, and thus has shape L 2 Z @ F', where F' is a finite (abelian)
group. As a group, L is not particularly interesting. We are therefore
putting an additional structure on L.

First of all, L is an ordered group with the members from
Nz +Nzs+NZ3 forming its positive cone. Thus, ¥ < ¢/ if and only if y— 7
is a positive integral linear combination of the generators ¥y, ¥s and Zs.
Putting p = lem(p1, p2, p3), there is a uniquely defined homomorphism
of groups, actually a homomorphism of ordered groups § : L — Z
sending each generator &; to p/p;. We further note that § : L — Z is
surjective and its kernel is the (finite) torsion subgroup of L. In order
to deal with elements of IL explicitly, it is useful to have the following
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property: each element Z of I can be uniquely written in normal form
3

(2.2) F=) Li#+06 with 0<l<p and (€L
i=1

Moreover, if an element 7 is in normal form as above, then Z > 0 if and
only if £ > 0.

There is a further element of L. which is important for reasons becom-
ing clear later. This is the dualizing element & = ¢— (% +Z2+73). For
the moment we remark that the dualizing element is useful to determine
how far the order < on LL is away from a total order. Indeed, it is easily
established that an element # of L either satisfies £ > 0 or Z < ¢+ &.
We are now in a position to introduce the triangle singularity’

(2'3) h(Pth,p:s) = xIIH + x’11272 + $§3

over k and the associated algebra S = k[z1, x2, 563]/( Y 2B? +28®). By
forming the k-linear span of all monomials x] x?m? having the same
degree & = (121 + lo@5 + {373, we obtain a finite dimensional k-space Sz

such that S = @,y Sz

Proposition 2.1. Assume (p1,p2,p3) is a weight triple. Then, the fol-
lowing properties hold.
(a) The k-algebra S is positively L-graded by attaching degree T; to
each generator x;. That is,

S=@P5Sz So=k, Sz-S3CSzy foralZ el
>0

Moreover, the homogeneous components Sz of S are finite di-
mensional over k.
(b) Restricting the grading of S to the subgroup Z¢, we obtain the
heart
H = Syzz= @Snc: [ 2b?]
n>0

ofS’ which ‘is’ the polynomial algebra in the ‘variables’ z§' and
xb?, which are viewed to be homogeneous of degree one. Accord-
ingly, H = Ganzo H,,, with H,, of k-dimension n+ 1 forn > 0.

1Properly speaking, this requires that all p; > 2. By abuse of language, we extend
the terminology to the present slightly more general setting.
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(¢) If & = 0171 + loXy + U375 + £C has normal form with £ > 0, then

(2.4) Sy = x{l :1:§2 LI:f;3 H,

(2.5) dimg Sz = £+ 1.

Proof. Assertion (c¢) follows by collecting monomials having the same
degree and using the relation z8° = —(z" + 25?). Property (c) then
implies assertions (a) and (b). O

The next consequence explains the role of the order on L.
Corollary 2.2. For & € L, we have & > 0 if and only if Sz # 0.

Corollary 2.3. As an L-graded algebra, S satisfies the following prop-
erties.
(a) S is graded-integral, that is, if x and y are non-zero homoge-
neous elements of S, then also xy is non-zero.
(b) The k-algebra S is graded-factorial, that is, each non-zero ho-
mogeneous element is a product of homogeneous prime elements.
(Here, a homogeneous element p of S is called prime if S/(p)
is graded-integral.)
(¢) The non-zero homogeneous prime elements of S naturally form
a PY(k)-family.

Proof. Concerning (a) it follows from formula (2.4) that each homoge-
neous element of S has the form xlllxlfxéf’ h;, where h; is a homogeneous
element of the heart H of S which is an integral domain. Claim (b) fol-
lows in a similar way, observing that H is clearly graded-factorial. Using
the known structure of homogeneous prime polynomials in H, claim (c)
follows along the same lines. (If k is not algebraically closed, we have to
interpret the projective line as a scheme, not as a variety.) ]

Comments 2.4. (1) One should not mix the concepts “graded-integral”
and “graded plus integral”. For instance, we have in characteristic two
that the square of © = x1+ 9+ x3 is zero in the (2,2, 2)-graded algebra
S = k[x1, 22, 23]/ (23 + 23 + 23) which, as we have pointed out, is graded-
integral. Note, in this context, that x is not a homogeneous element with
regard to the L-grading.

(2) A similar remark replies to all other “graded concepts”. So, a
k-algebra R is a “graded field” (to be thought of as one word!) if each
non-zero homogeneous element has a homogeneous inverse with respect
to multiplication. In the graded sense therefore, the algebra of Laurent
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polynomials K = k[X, XY (considered to be Z-graded by attaching de-
gree 1 to X ) is a graded field. Similar care has to be taken, when dealing
with graded modules. For instance, the concepts “graded-injective” mod-
ule and “graded plus injective” module will usually be different. For
instance, dealing with the Z-graded polynomial algebra k[X], where we
give X degree one, the graded module K of Laurent polynomials, graded
as above, is an injective object in the category of graded modules, but K
is far from being injective in the category of all k[X]-modules.

(3) If k is an algebraically closed field, then the algebras S(p1,p2,p3)
erhaust the graded-factorial affine k-algebras of Krull dimension two
which have three generators and are graded by a rank-one abelian group.
This follows from a result of Kussin [11]. In that paper, the more gen-
eral situation of an arbitrary number of weights is treated, yielding the
corresponding result. For simplicity, we restrict to three weights which
is simplifying notation and nevertheless allows to cover the most inter-
esting singularities.

Lemma 2.5. The degree §(&) is negative if and only if the triple (p1, pe,
p3) is, up to T'@O?”d@?”ing, one Of (1;1;1); (1717p)7 (pr;q)7 (2,2,71), (2;3;3)7
(2,3,4) and (2,3,5). Moreover, we have §(J) = 0 if and only if the triple
is one of the triples (3,3,3), (2,4,4) and (2,3,6), called tubular. For all
the remaining triples, called wild, we have §(J) > 0.

2.2. The simple singularity attached to a Dynkin diagram. We
are now going to show how to associate to each Dynkin diagram, equiv-
alently to each triple (p1, p2,p3) of negative degree, a simple singularity.
This is simply done by restricting the L-graded algebra to the (infinite
cyclic) subgroup Zd. This restriction is defined to be the Zdi-graded
algebra R = @,,c; Sng. By our assumption on the degree of &, we
can have ndd > 0 only if n < 0. By means of the bijection Z — ZddJ,
n — —nw, and we may thus view R as the positively Z-graded algebra
with homogeneous components R, = S_,,5.

For the base field of complex numbers, an alternative interpretation of
this passage from S to R is important. Due to Klein [13], each Dynkin
diagram A = [p1,p2,ps] yields an action of the corresponding binary
polyhedral group Ga on the polynomial algebra C[X,Y]. Klein’s central
result states that the subalgebra of relative invariants is isomorphic to
S and the subalgebra of absolute invariants is isomorphic to R; see [7,
Subsection 5.4.1].
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Theorem 2.6. For any weight triple (p1,p2, p3) with §(J) <0, let A =
[p1, P2, p3] denote the attached Dynkin diagram. Then, the restriction of
the grading of S = S(p1,p2,p3) to Z& yields a Z-graded algebra having
a (minimal) system of three homogeneous generators x,y,z, all being
monomials in x1,x2,x3. With this choice of generators, we have

R = Sz = kla,y,21/(fa),

where fa is the simple graded singularity from the table below. Moreover,
with the above assumptions, the singularity fa can be chosen as a sum
of monomials in x,y,z and thus is unique:

[ Dynkin diagram A | generators (z,y,z) | deg(z,y, 2) [ relation fa [ deg(fa) ]
Aptq = [p, 4] (w1 22,257,277 T (1,p,9) Pt —y 2 p+g
Doy = [2,2,20] (w%,m%,xl T2 T3) (2,21,21 + 1) 22 -l-w(y2 +ywl) 41 + 2
Dojqs = [2,2,21 + 1] (22,21 T2, T3 x3) (2,204 1,21 +2) | 224+ a(yZ +za') | dl+4
Es = [2,3,3] (1, 22 T3, T3) (3,4,6) 224y +az 12
E; = [2,3,4] (z2, 23, 21 T3) (4,6,9) 22y faty 18
Es = [2,3, 5] (3,2, x1) (6, 10, 15) 22+ b 30

The simple graded surface singularities (arbitrary base field)

We postpone a discussion of the proof for a moment in order to point
out an interesting consequence.

Corollary 2.7. FEach algebra Ran = klx,y,z]/(fa), with fa from the
above list, where k is an arbitrary field, is an integral domain (both in
the graded and ungraded sense). Accordingly, the polynomial fa is a
prime element in k[x,y, z] (both in the graded and ungraded sense).

(Just judging from the form of the relations fa, this is not obvious
at all; compare, for example Comments 2.4 (2). With Theorem 2.6 at
hand, this proof becomes very easy.)

Proof. Since S is graded integral, the same holds true for its restriction
R = Sjz5. Now, any positively Z-graded algebra R which is graded
integral is also integral. For this, write two non-zero elements x and y
as a sum of homogeneous elements * = zg+ 1 + -+ + 2, and y =
Yo + y1 + - -+ + Yn, with leading terms x,, and y, different from zero.
Then, the product of x and y has the non-zero leading term x,, y, and
hence is non-zero. O

We now sketch the proof of Theorem 2.6. The proof relies on two
useful lemmas. Recall for this that the Poincaré series or the Hilbert-
Poincaré series of a positively Z-graded algebra R = @~ R, with
finite dimensional components R,,, is the formal power series in = given
as Pr =), <odimg R,z".
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Lemma 2.8. Let (p1,p2,p3) be a weight triple, where each p; > 2.
(a) If 8(<d) <0, then the Poincaré series of R = Sjz5 with
R,=5_,z1is
3
1 1 1 1
2.6 Pr=-— — .
(26) r 11—z (1—x)2+1—x;1—:cpi
(b) If (<) > 0, then the Poincaré series of R = S|z with Ry, = Sy
18

3

1 x x 1
2.7 Pr = — .
27) R x+1—:1;+(1—3:)2 1—:1:;1—961%‘

Proof. (a): We sketch the argument assuming () < 0 and all p; > 2.
In this case, the element —& = x1 429+ x3— Cis already in normal form.
For n > 0, the element n@; = has normal form (n—p;[*])#;+[.]¢, where
the bracket notation [g] denotes the integral part of a rational number
q. For n > 0, it follows that the normal form of —nd is given by

oo 2o (2]

One then uses Proposition 2.1 and takes care of what happens for small
values of n. The claim follows.

(b): The proof is similar, calculating this time the normal form of nda
and using that the normal form of @ is (30, (p; — 1) Z;) — 2€. O

Lemma 2.9. Assume the algebra A = kluy,u2,us]/(f) is positively Z-
graded such that the generators u; and the relation f are homogeneous
of degree ¢; > 1 and d, respectively. Then, the Hilbert series Ps of A is
given by the rational function

1— x4

(2.8) Py = (1—29)(1 — 22)(1 — %)

Proof. The polynomial ring A; = k[u;] with deg(u;) = ¢; has Hilbert
series

1/(1—x%). As the tensor product of the A;, the polynomial algebra B =
E[u1,ug, ug] thus gets the Hilbert series ) <, bpz™ = H§:1 1/(1 — z%).
Finally, since f has degree d, we get exact sequences

0= By_g L5 By — A, — 0, yielding dimy, A, = by — by_q and then
P4 = (1 — 2%) Pg. This proves the claim. O
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Proof of Theorem 2.6. To prove the theorem, each row of the table is
separately dealt with. For two cases, we show the arguments involved;
the remaining cases can be dealt with in a similar fashion. First, we
deal with the case Eg = [2,3,5]. Here, practically nothing is to show,
since in this case, Z& = L, that is, up to renaming the grading group,
the algebra R coincides with S. In more detail, we have —64J = I3,
—10& = #5 and 146 = Z1. The corresponding components are Rg = kx3,
Rig = kxo and Ri5 = kxi;. Thus, z = 3, y = 22 and z = x; are
homogeneous generators for R satisfying the relation fa = 22 +y3 + 2.
Thus, R = k[z,y,z|/(fa), as claimed. Of course, in this case we do not
need the two lemmas stated above.

Next, we deal with the case E¢ = [2,3,3]. In calculating the normal
form of —nw, n = 0,1,2,---, we first determine for small values of n
those multiples —nd which are > 0 and then, by means of Proposi-
tion 2.1 (c), we determine the members of R,,. Here, we get

-3 = fl hence Rg == k$1
—40 = Z9+ 73 hence Ry = kxoxs
—60 = hence Rg = kx% + kx%

Restricting to monomials, we have no choice in the first two cases, ob-
taining x = z1 of degree 3 and y = xox3 of degree 4. Concerning the
third case, we have three monomials in x1, x2, x3 lying in Rg, namely x%,
x5 and 93% Since z? equals 22, only the choices z = x3, and respectively

z = wg, make sense. Because of weight type (2,3, 3), these two choices

are equivalent, and so let z = z3. As is easily checked, the elements
x,y, z are indeed generators for R (use some almost-periodicity of the
expression —nd with “period” 6 = lem(2, 3, 3), resulting in some almost-
periodic building law for R, of the same “period”). The canonical ho-
momorphism ¢ from the polynomial algebra k[ui,us,us] to R sending
u1, U9, U3 to x,y, z is therefore surjective; moreover, ¢ is a homomor-
phism of graded algebras if we put deg(u1,u2,us) = (3,4,6). Finally,
7y, 2 satisfy the relation fa(z,y,2) = 0 since using ¥ + 23 + l’g =0,
we get 22 = —x3(2? + 23) = —z2? — y®. Hence, we obtain a surjective
algebra homomorphism v : klui,u2,us)/(fa(u1,u2,u3z)) — R, which
preserves degrees. Lemmas 2.9 and 2.8 show that both algebras have
the same Poincaré series, and it follows that 1 is an isomorphism, as
claimed.

oL
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2.3. Preliminary conclusions.

Comments 2.10. We comment on various aspects of the theorem.

(1) In Theorem 2.6, we show uniqueness of the relation fa if the min-
1mal generators x,y and z for Ra are chosen from the set of monomials
n r1,x2,x3. However, any choice of a minimal triple of homogeneous
generators x,y, z yields a valid relation ga. For the types E7 = [2,3, 4]
and BEg = [2,3,5], each such system x,y,z is formed by monomials in
1, T2, T3, up to multiplication with non-zero scalars. For the remaining
cases, we have a choice. This explains what in the literature one often
finds relations which are different from those derived here.

(2) For instance, for type BEg = [2,3, 3], the usual form of the relation
is given as g = 22 +y*+a3 and not as f = 22+ +222. We show how by
a stmple base change, equation f transforms into equation g provided the
base field k is algebraically closed of characteristic # 2. First, we note
that for an arbitrary X € k, the elements x,y and Z = z 4+ \x? are again
a minimal set of generators for R having degrees 3,4 and 6, respectively.
Substitution into f yields the new relation (\2—\)z*4-(1—2X\)x2 443 +22.
We now put X = 1/2 such that the quadratic term in x disappears and
introduce the new variable T = px, where p is a 4th root of —1/4. This
yields, as claimed, for the new generators T, vy, Z, the relation Z>+y°+z*.
With similar arguments, the relations fa for D, can be transformed into
those from the previous list. Again, this works for fields of characteristic
% 2 ,which are algebraically closed.

(8) The degrees of the generators x,y,z and the degree of fa are im-
portant numerical invariants of the graded singularity fa. For instance,
the degree of fa equals the Coxeter number ha of the Dynkin diagram
A, which equals the period of the Coxeter transformation of the Dynkin
diagram A, and thus reflects important homological information of the
Auslander-Reiten translation for mod-kA, where kA is the path alge-
bra. If Si,...,Sy, denote the simple kA-modules (up to isomorphism)
and P, ..., P, (respectively I1,...,I,) are their projective covers (re-
spectively injective hulls), then the Coxeter transformation ® of A is
the automorphism of the Grothendieck group Ko(mod-kA) sending each
class [P;] to the class —[I;].

Another more conceptual description states that the Auslander-Reiten
translation T 1is a self-equivalence of the bounded derived category
D’(mod-kA) inducing the transformation ® on the Grothendieck
Ko(D?(mod-kA)) = Ko(mod-kA). It is well-known that ® is periodic in
the Dynkin situation with the numbers n+1,2(n—1),12,18 and 30 being



Rings of singularities 247

the periods for A,,D,,Eq, E7 and Eg, respectively. Here, the equality of
the numbers deg fa and ha occurs, a surprising coincidence. Assuming
a more advanced level we will return to this question in Section 5, where
the relationship will easily follow on a conceptual level.

(4) The table contains further interesting information. The sum of
the degrees of the generators x,y,z always equals 1 + deg(fa).

Summary 2.11. We summarize what we have achieved and also ad-
dress some obvious questions.

(1) To each Dynkin diagram A = [p1,p2,ps], the restriction of the
L(p1,p2, p3)-graded triangle singularity S = S(p1,p2,p3) to the infinite
cyclic group 7@, identified by 7 via nid < —n, yields a positively Z-
graded k-algebra RA = k[z,y, z]/(fa), where fa is a homogeneous prime
polynomial, whose degree is the Cozxeter number ha of A. Moreover, Ra
18 a Z-graded integral domain which is noetherian of Krull dimension
two. Unlike the L-graded k-algebra S, the k-algebra R is no longer graded
factorial (except for the Dynkin diagram Eg9 = [2,3,5]).

(2) Our treatment still leaves important questions open: what is the
conceptual role of the grading group L? What is the special role of the
dualizing element & in L that makes the correspondence A — Ra work?
So far, our correspondence A — Ra looks a bit ad-hoc. On the other
hand, we have seen that the restriction of S to the subgroup Zc of L,
generated by the canonical element, always yields the polynomial algebra
klz,y], x = 28", y = ab?, where x and y both get degree one. So, what are
the properties that are making & so special that for @ the correspondence
works?

(8) Later, we describe a setting, where the above questions get a nat-
ural answer. To give a brief indication already, we first comment how
to think of the LL-graded algebra S. For many questions, it is natural
to replace the LL-graded algebra by its companion category, which is
equipped with o natural shift-action of L. This means to consider the
k-linear category [L; S| given by the following data:

- the objects are just the elements T of the grading group 1L,

- the morphism space Hom(Z,¥) equals Sy_z,

- composition of morphisms corresponds to the multiplication of
S,

- an element ¥ € L sends an object § to the object Y(T) := ¥+ ¢
and yields on morphisms the mapping

Sz = Hom(§, 2) — Hom (§i(%), 2(#)) = Sz,
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corresponding to the identity map on Sz_j.

In Section 3, we are going to construct the category coh-X of coher-
ent sheaves on the weighted projective line X of weight type (p1,p2,p3),
and we will see there that our companion category [L;S] is equivalent
to the category of all line bundles on X. Under this equivalence, more-
over, the action of @ on [L;S] corresponds to the (restriction of the)
Auslander-Reiten translation of coh-X. In that sense, the L-graded al-
gebra S embodies the properties of the Auslander-Reiten translation of
the category coh-X. It thus comes as a surprise that studying the simple
singularity fa means to study the Auslander-Reiten translation on the
category coh-X and vice versa.

(4) We mention in this context that weighted projective lines (also
those with more than three weights) appear in the following context: as-
sume that the base field k is algebraically closed, and H is a connected
hereditary abelian k-linear category, which is Ext-finite and has a tilting
object. Then, H is derived equivalent to the module category mod-kA
over the path algebra of a quiver A ortoa category coh-X of coherent
sheaves on a weighted projective line X; see [9]. If k is not algebraically
closed, then the class of weighted projective lines has to be enlarged to
take many further cases into account; compare for this, [15], [19] and

[27]-

3. From singularities to diagrams

3.1. An analysis of the problem. We have seen in Section 2 how to
attach to a Dynkin diagram A = [p1, p2, p3], that is, to a weight triple
(p1, p2, p3) whose dualizing element satisfies 0(<J) < 0, a simple Z-graded
surface singularity R by forming the restriction of the LL-graded triangle
singularity S = k[z1, o, z3]/(2]" + 25> + 24°) to the subgroup Za of
L. Under the present assumptions, the group Zd& is infinite cyclic; we
identify Zda with the integers by means of the correspondence —ndi < n.
This way we have obtained a list (fa), A Dynkin, of simple graded
surface singularities, a list working for any field.

Remark 3.1. Certain aspects of the theory, nevertheless, still need clar-
ification.

(1) We need a conceptual understanding why it is natural to consider
the restriction of the L-grading of S to Z& and not to another
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infinite cyclic subgroup of L. (Usually, there are many such sub-
groups around.)

(2) Assume we are presented a (graded) singularity fa from the list
(but without the list itself and, of course, without the attached
Dynkin label). How can we recover the Dynkin diagram, giving
rise to it?

(3) More generally, and this time not restricting to the Dynkin triples,
we want to analyze the complexity (or shape) of an isolated graded
surface singularity R by attaching suitable canonical invariants,
which, in the special case of Dynkin triples, will contain the in-
formation on the Dynkin diagram in question.

3.2. Dynkin and extended Dynkin diagrams. For the discussion
to follow, it is useful to have a clear conception of the natural bijection
between Dynkin and extended Dynkin diagrams. (Note that they are
not just lists of graphs! More structure is around.) The correspondence
is given by looking at subadditive (respectively additive) functions.

(a) Recall that a positive integral function A on a graph A is additive
in a vertex v provided that 2A(v) = >, A(p), where the sum is over
all vertices which are incident to v. Subadditivity in v means that we
weaken the condition to 2A(v) > >°,  A(p)-

(b) Dynkin diagrams are exactly the connected finite graphs such
that there is a unique (normalized) subadditive function which fails to
be additive in a single vertex. Given a Dynkin graph A, let v be the
vertex where a subadditive function fails to be additive. Attaching to v
a new edge with a vertex yields an extended Dynkin diagram, denoted
by A.

(c) Extended Dynkin diagrams are exactly the finite connected graphs
admitting an additive function. These function are all proportional, and
it is possible to choose one, called normalized, attaining value 1. Deleting
any vertex (and adjacent edges) then yields a Dynkin diagram.

(d) The two procedures in (b) and (c) are inverse to each other (on
the level of isomorphism classes of graphs). We illustrate this by an
example.

The Dynkin graph Dg admits the subadditive function depicted below:

1

>221.

1
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It is additive, except in the framed vertex. Adding a new edge here
yields the extended Dynkin graph Ds.

Conversely, the extended Dynkin graph Dg has a unique normalized
additive function A\ as depicted below:

N

/2—2—2\
1 1.

There are four vertices v with A(v) = 1. As we see, it does not matter
which one we delete. The four choices give rise to the “same” Dynkin
diagram.

3.3. Sheafification by the Serre construction. We now describe
how to attach to the L-graded singularity S a hereditary K-linear cate-
gory which is Hom-finite. (A similar construction will later be discussed
for the Z-graded algebra R if () is non-zero.)

First, we form the abelian k-linear category of finitely generated L-
graded S-modules, which we denote by mod™S. The objects of this
category are the finitely generated L-graded S-modules. We thus have
M = @z, Mz such that SzpMy C Mgy, for all  and 7 from L. It
follows that all components M3z are finite-dimensional over k. Equipped
with the degree-preserving morphisms (morphism of degree zero), the
category mod™-S is Hom-finite, that is, it is a k-linear abelian category
with finite dimensional Hom-spaces.

An important feature of this category is the action of the grading
group L by shift: if M = @, M is a graded S-module and % € L,
then we define M(%) to be the graded module with M(y)z = Mz,
In particular, each indecomposable projective object in mod™-S has the
form of the module S(Z) with & € L. Viewed from a graded point of
view, the algebra S is graded-local®, that is, it has a unique maxi-
mal graded ideal m = (z,z9,x3). Accordingly, S/m = k is simple in
mod™-S; moreover, each simple graded S-module has the form k(&) for
a unique ¥ in L. We conclude that a graded S-module has finite length
if and only if it is finite dimensional. We denote by mod%—S the full sub-
category of mod“-S consisting of all finite length objects. It is a Serre
subcategory, that is, it is closed under subobjects, factor objects and
extensions.

2See the previous remarks for how to interpret concepts in the graded sense!
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The setting allows us to deal with an [L-grading variant of the socalled
Serre construction [23], going back to Serre (1955). This is done by
forming the quotient category

mod®-$
mod§-S’

which is again an abelian category defined as follows (for details of the
construction we refer to [0]):

- the objects of H are just the objects of mod™-S,

- the morphisms of # are obtained from the morphisms of mod™-$
by formally inverting all morphisms having a kernel and a
cokernel of finite length,

- the composition in H is induced by the composition in mod*-S.

3.4. Coherent sheaves on a weighted projective line. The cat-
egory H has an interpretation as the category of coherent sheaves on
a weighted projective line X having three weighted points of weights
(p1,p2,p3). For this reason, we are to some extent using sheaf-theoretic
language for concepts related to H: in the above setting, we have a
natural quotient functor ¢ : mod®-S — %, which is exact. Further
more, the L-action on mod™-S induces an L-action on #, which we also
denote in shift notation by (¥, X) — X (&). Moreover, we use the nota-
tion O = ¢(S) and, for reasons becoming transparent later, call this the
structure sheaf. Moreover, we call ¢(S(Z) = O(Z)) to be a twisted struc-
ture sheaf. These form a nice set of ‘generators’ for the category H. We
have the following result, see [7] for further details. For an alternative
access to weighted projective lines, we refer to [3, 20].

Theorem 3.2 (Geigle-Lenzing, 1987). The category H has the following
properties:

(1) H is a Hom-finite abelian category which is noetherian, that is,
any ascending chain of subobjects becomes stationary.
(2) H satisfies the Serre duality in the form

DExt!(X,Y) = Hom(Y, X (&)).

(This implies that the category H is hereditary and further that it
has almost-split sequence with the Auslander-Reiten translation
T, given by twist with J.)
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(3) The indecomposable objects from H come in two parts:
Ho = {X € H|length(X) < oo},
Hy = {Y € H|Y has no simple subobject}.

Moreover, Hom(Hy,H+) = 0. Members of Ho will be called
torsion (or finite length) sheaves, and those of H4 will be
called vector bundles.

(4) We have natural isomorphisms Hom(O(Z), O(y))) = Sy_z.

(5) There is a Z-linear form on Ko(H), called rank, which is 0 ex-
actly on the objects of Hy and greater than O otherwise.

(6) For each line bundle L, that is, an indecomposable object of
rank one, there exists a unique & from L such that L is isomor-
phic to O(Z).

(7) The indecomposables of Ho decompose into a P(k)-family of
uniserial (standard stable) tubes with three distinguished ones
having p1,p2, p3 simple objects, respectively, and the remaining
ones containing exactly one simple object.

Proof. We give a few indications concerning the proof.

Ad (1): Abelianness is a general feature of the quotient category with
respect to a Serre subcategory. As is easy to see, noetherianness of
mod"-S$ is preserved when passing to the quotient category.

Ad (2): This is technically the most difficult part. On the other
hand, it is a general technique in algebraic geometry. If one deals
with a graded complete intersection S having a minimal set of homo-
geneous generators in degrees a1, ..., a, and a minimal set of homoge-
neous relations in degrees by,...,b,, then one gets the Serre duality
in the form DExt"(X,Y) = Ext" 4(Y, X(w)), where d = n —m — 1
and w = > 21", d; — 377 a;. The techniques use either a Koszul com-
plex associated with the complete intersection or alternatively a minimal
graded resolution of S. For details, we refer to the literature.

Ad (3): Let X be an object in ‘H. By noetherianness, X has a largest
noetherian subobject Xy of finite length such that we obtain a short
exact sequence n: 0 — Xg — X — X/Xp — 0 with Xy from Hy and
X/ Xo from H. Invoking the Serre duality, one now shows that 7 splits,
which yields the result.

Ad (4) and (6): This is another important feature following directly
from graded factoriality of S.

Ad (5): A quick way to define the rank is the following. Let Ho denote
the full subcategory of H consisting of all objects of finite length. Then,
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the quotient category H/H, is an abelian category, where each object
has a finite length. For X in H, now define the rank of X as the length
of X in H/Ho. It is then easy to verify the claim.

Ad (7): This uses the classification of homogeneous prime elements
in the algebra S. If p is a homogeneous prime in S, then ¢(S/(p))(¥) is
a simple object in H, and each simple object U has this form. Here p is
uniquely determined by S, while & is not. 0

Corollary 3.3. We can recover the weight triple (p1,p2,p3), and hence
the L-graded algebra S from the category H.

Proof. This follows directly from part (7) in Theorem 3.2. O

Corollary 3.4. The companion category [L; S| of the L-graded algebra
S is equivalent to the full subcategory L of coh-X, which is formed by all
the line bundles on X.

Proof. This is an immediate consequence of (4) and (6) in Theorem
3.2. g

4. Link to algebras and the Cohen-Macaulay modules

4.1. Singularities and finite dimensional algebras. Summarizing
the present status, we have applied the Serre construction to the L-
graded algebra S and obtained the category H = coh-X, which is an
abelian, Hom-finite k-linear category which is Krull-Schmidt and which
has almost-split sequences. So, H is already quite close to the features
of a category of finite dimensional modules. This relationship is not
only a formal one, but it can also be made very explicit, since H also
has a tilting object. (In fact, it does have plenty of them!) Since H is
hereditary, it is convenient to say that an object T of H is a tilting
object if the following two conditions are satisfied:

(a) T has no self-extensions, that is, Ext}, (T, T) = 0;

(b) T generates ‘H homologically, that is, whenever X € H satisfies

Homy (T, X) = 0 = Ext},(T, X), then X = 0.

Theorem 4.1. Assume X = X(p1, p2, p3) is the weighted projective line
given by the weight triple (p1,p2,ps). Then, the object
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is a tilting object in coh-X, whose endomorphism ring A = Endy(T)
is the canonical algebra given by the same weight triple; we write
A = A(p1,p2,p3). That is, A is given by the quiver

1 1 1
O—O0——>:+++——0
1"7‘ Yll
O—O0—0——>+-+++—>0 ——O0
T2 x2

T2 x2 T2
N s

0O—F0—>--+—>0
x3 x3 X9
with three respective arms of lengths p1,p2,p3 and the single relation
o'+ 2+ 2 = 0.

Proof. That T has no self-extensions, it uses the Serre duality combined
with the formula Hom(O(Z), O(y)) = Sj—z. To show that T generates
‘H homologically, the key point is to show that for each simple object S
in ‘H at least one of the O(Z) with Z in the range 0 < ¥ < ¢ admits a
non-zero homomorphism to S. U

Corollary 4.2. The bounded derived categories of D®(mod A) and Db(H)
are triangle-equivalent.

This result allows a number of strong consequences, since the abelian
category H is hereditary, and hence the bounded derived category of H
can be identified with the repetitive category of H. Recall that the
repetitive category is the additive closure of the disjoint union

\/ H[n], where each H[n] is a copy of H,
neZ

with objects of H[n] written as X[n], and where morphism are given by
Hom (X [m],Y[n]) = Exty, ™(X,Y).
A particular consequence of this setting follows here.

Corollary 4.3. The category mod A of modules over the canonical al-
gebra A is equivalent to (the additive closure of ) the union of

{X € H|Ext}, (T, X) =0} vV{Y[1]|Y € H with Homy(T,Y) = 0}
viewed as a full subcategory of H V H[1] C D*(H).

Remark 4.4. We discuss briefly the relationship between the categories
H and mod A as far it is relevant for the matter of singularities.
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(1) As Corollary 4.3 states, the category H contains all the informa-
tion on the category of A-modules (via the repetitive category of
H). In particular, the representation type of H determines the
representation type of A.

(2) The complexity of the classification problem for coh-X = H is
completely determined by the numerical invariant
d(&) =
p(1—(1/p1+1/p2+1/p3)). Since indecomposables of Ho are
explicitly classified by means of 1-parameter families, indexed by
the projective line, the complexity is determined by the category
vect-X = H4 of vector bundles on X.

(a) If (@) < 0, then the Auslander-Reiten quiver for the inde-
composable vector bundles consists of a single component of
shape ZA, where A is the extended Dynkin diagram corre-
sponding to A = [p1, p2, p3].

(b) If 6(&) = 0, then the classification problem for coh-X is still
tame (but complicated). The indecomposable vector bundles
decompose into a rational family (Tq)qcq, where, in turn,
each T, is a PY(k)-family of tubes, each one being of tubu-
lar type (p1,p2,p3). We express this by saying that coh-X,
(correspondingly A) has tubular type. Note that tubular al-
gebras play an important role in tame representation theory.

(c) If (&) > 0, then we deal with a wild situation. Here, all
AR-components for vect-X are of type ZA. Moreover,
there is a natural bijection between the set of all such com-
ponents to the set of all AR-components of reqular modules
for the path algebra C of the star [p1,p2,p3], endowed with
an arbitrary orientation; see [22]. Note that in this case the
algebra C' is of wild representation type.

4.2. Shape of the category of vector bundles. For the moment,
our main interest is in the case §(&J) < 0. We illustrate the situation by
an example.

Example 4.5. For the weight type (2,3,4), the corresponding Dynkin
diagram is By = [2,3,4]. Here, the Auslander-Reiten quiver for vect-X
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is given by ZEr7, and therefore looks as follows:

NNAN NN
./‘ \./‘ \./‘ \./‘ \./‘ \.
NN SN NSNS
e >0 202070 e 7006 e e
./ \./‘ \./‘ \./‘ \./‘ \.
\./‘ \./‘ \./‘ \./‘ \./‘
o/ \O/‘ \O/‘ \o/‘ \O/‘ \O

Note that the line bundles form two T-orbits sitting at the border of the
component. We have marked the corresponding vertices by circles o while
the other vertices are marked by fat dots e. We have 8 T-orbits whose
corresponding orbit graph yields the extended Dynkin diagram E;. Since
the rank, introduced in Theorem 3.2, is constant on T-orbits, it yields a
function on Ey which turns out to be the unique ( normalized) additive
function for this extended Dynkin graph. The rank function on vect-X is
thus determined by the following diagram with the attached rank values

|
1—2—3—4—3—2—1.
We thus rediscover that there are two line bundle components sitting at
the border of the AR-quiver.

More is true, also in the other cases of weight triples of Dynkin type
A = [p1,p2,p3]. Namely, the category vect-X, not just its Auslander-
Reiten quiver is completely determined by the mesh category ZA, since
the path category of this mesh category is equivalent to the category of
indecomposable vector bundles on X. This can be derived from the fact
that coh-X has a tilting bundle T whose endomorphism ring is the path

algebra kA of the path algebra of an extended Dynkin quiver of type A.
For the case [2,3,4], we have depicted such a tilting bundle above by
framing the vertices of a section in the Auslander-Reiten quiver.

Concerning the position of a suitable tilting object, we can be more
specific. We have already defined the rank which is constant on 7-
orbits and which is 0 on finite length sheaves and greater than 0 on
non-zero vector bundles. There is another Z-linear form with somewhat
complementary properties, the degree. The degree is greater than 0
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on objects of Hy and there it is also constant on 7-orbits. Moreover, it
vanishes on 0. Each non-zero vector bundle X then has a well-defined
slope given by 4 X = deg X/ rk F. The following result is due to Hiibner
(unpublished), and a proof can be found in [23].

Theorem 4.6. Assume the weight triple (p1,p2,ps3) satisfies 6(@) < 0.
Let A = [p1,p2,ps] be the corresponding Dynkin diagram. Then, there
is only a finite system 11,..., T, of pairwise nonisomorphic indecom-
posable vector bundles E with slope in the range 0 < pE < —0(d).
Moreover, T =T, ® --- T, is a tilting object whose endomorphism alge-
bra is isomorphic to the path algebra kQ of a quiver Q whose underlying
graph is the extended Dynkin diagram A.

If all the three weights are bigger than 2, then (as in the preceding
example) @ has bipartite orientation.

Corollary 4.7. The path algebra kQ of a quiver Q without oriented
cycles is derived equivalent to a canonical algebra if and only if the graph
underlying Q is extended Dynkin.

4.3. From singularities to weights. After this digression on some
representation-theoretic link of singularity theory, we come back to our
main subject.

Theorem 4.8. We assume a weight triple (p1, p2, p3) with 6(&J) different
from zero. Let R = Sz, considered as a Z-graded k-algebra (with & <
—1 for (&) <0 and & < 1 for 6(J) > 0). Then, the restriction functor
res : mod“-$ — mod?-R, M — Mz induces an equivalence

mod“-S . mod?-R
L — Z p°
modg-S mody-R

Proof. We first observe that the restriction of L-graded S-modules to Z-
graded R-modules preserves finite length, and thus induces a restriction
functor for the two quotient categories. The main ingredients of the
proof then are the following two facts:

(1) For each simple object £ in H, the image is non-zero (and then
also simple).

(2) Each finitely generated Zd-graded R-module M extends to a
finitely generated L-graded S-module M (such that the restriction of
M to Z& equals M). This part of the proof uses the left Kan-extension
or, in a different terminology, the graded tensor product S ®g —. O




258 Lenzing

With Theorem 4.8 at hand, we have solved our problem to discover
the Dynkin diagram from the Z-graded simple surface singularity fa.

Corollary 4.9. Let fa be a Z-graded simple surface singularity fao and
R = k[z,y,2]/(fa). Then, the quotient category mod”-R/mod%-R is
equivalent to the category of coherent sheaves coh-X on the weighted
projective line of weight type (p1,p2,p3), where A = [p1, pa2, p3).

As we have seen before, the weight type of X can be recovered as the
tubular type of H, that is, by determining the 7-periods of the tubes in
the AR-quiver of H,.

4.4. The link to the graded Cohen-Macaulay modules. We start
with a definition of the graded maximal Cohen-Macaulay modules for
graded-local algebras of dimension two (like the L-graded algebra S or
the Z-graded algebra R).

Definition 4.10. A finitely generated L-graded S-module M is called
(mazimal) Cohen-Macaulay if

Homg(E, M) = 0 = Exty(E, M)

holds for each simple L-graded S-module E. (Recall these are of the form
k(Z).) By CM“-S, we denote the category of all L-graded CM-modules
as a full subcategory of mod“-S.

A similar definition applies to Z-graded R-modules. We remark here
that for algebras one always has the implications (hypersurface) = (com-
plete intersection) = (Gorenstein) = (Cohen-Macaulay) in the graded
and ungraded sense. Hence, the algebra S is always graded Gorenstein.
For §(&J) # 0, one can show the same for the Z-graded algebra R. It is
not so obvious for §(d) > 0, while for 6(<J) < 0 it follows from the list
of simple graded singularities, which all are hypersurfaces.

Theorem 4.11. Let (p1,p2,ps) be a weight triple.

(a) If ¢ : mod“-S — mod“-S/mod?-S = coh-X denotes the natural
quotient functor, then q induces an equivalence q : CM¥-S 5 vect-X.
This equivalence sends the indecomposable projective S(Z) to O(Z) and
induces an equivalence between the category proj“-S of finitely gener-
ated LL-graded projective S-modules and the full subcategory L of vect-X,
consisting of all line bundles.
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(b) If we exclude the tubular weights, then the restriction functor from
L-graded S-modules to Z-graded R-modules induces an equivalence

res : CMF-§ =5 CMZ-R, M — Mz

This equivalence sends the indecomposable projective R(n) to O(—ndJ)
if 6(&) < 0, respectively to O(n@) if §(d) > 0, and thus induces an
equivalence between proj”-R and the T-orbit 72O.

Proof. The first assertion (a) follows from the existence of an inverse
I : vect-X — CMY-S to ¢, where T'(E) = Dzer, Homx (O(—7), E). The
point here is to prove that I'(M) is finitely generated over S which
uses that E is a vector bundle. The first part of (b) then follows from
Theorem 4.8. The remaining assertions in (a) and (b) are obvious. [

The combination of Theorem 4.11 with Remark 4.4 immediately yields
the following theorem.

Theorem 4.12. Assume [p1,p2,ps] is a Dynkin diagram. With the
notation introduced previously, the k-linear categories

vect-X, CME-S  and CM%-R

can be naturally identified. Their Auslander-Reiten quiver forms a single
component of shape ZA = {(n,v)|n € Z, v € Ag}.

Moreover, in this component the indecomposable Z-graded projective
R-modules form a single T-orbit lying at the boundary of the component
if all the weights are > 2.

As an immediate consequence we obtain the information on the shape
of the Auslander-Reiten quiver of (maximal) CM-modules over the com-
plete simple surface singularities.

Corollary 4.13. Assume A = [p1,p2,p3] is Dynkin and fa is the cor-
responding singularity. Then, the Auslander-Reiten quiver of

R = K[[z,y,2]]/(fa) is obtained from the extended Dynkin diagram A
by replacing each edge o — o by a 2-cycle o 2 o.

For instance, the Dynkin diagram Eg with the corresponding singu-
larity fa = 22 + 3 + 25 yields a category CM(k[[z,v,2]]/(fa)) with
Auslander-Reiten quiver
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We have marked by o the indecomposable projective module R.

Proof of Corollary 4.13. The proof uses the completion functor
*: CM?%-R — CM(R), M [I.cz M, as studied by Auslander-Reiten in
[1]. In the present setting, completion preserves indecomposability and
almost-split sequences; moreover, two indecomposable graded modules
have the same image if and only if they belong to the same 7-orbit of
Z-graded CM-modules. Hence, the image of the completion functor is a

finite component of CM(R). By a Brauer-Thrall type argument, it then
follows that the functor is dense. This proves the claim. O

Corollary 4.14. Let k be a field. Then, the k-algebra R = k[[z,y, 2]]/
(22 + y3 + 2%) is a factorial domain, that is, R is a domain and each
non-zero element is a product of prime elements.

Proof. Since completion preserves the rank, it follows that R is the only
CM-module over R having rank one. It is a well-known fact that, in the
present setting, this property implies factoriality of R. O

Corollary 4.15. Let QQ be an extended Dynkin quiver associated with the
Dynkin diagram A; we fix a vertex v of Q, where ‘the’ additive function
for the graph underlying Q attains value 1. Denote by P the indecom-
posable projective kQ-module corresponding to the vertex v. Then, the
orbit algebra

A(r™, P) := @ Homyo(P, 7 "P)
n>0

with multiplication y, - vy = T~ ™ Uy 0 Uy, 18 a positively Z-graded algebra
which is isomorphic to the graded simple surface singularity

k[l‘,y, Z]/(fA)

Proof. Using the identifications of the theorem, we may identify

A(77, P) with the orbit algebra of the Z-graded R-module R with regard
to the grading shift M — M (1), which obviously brings us back to the
Z-graded algebra R. ]

Remark 4.16. From a general perspective, the last result is quite re-
markable. It tells us that a study of the (graded) simple singularities is
equivalent to the analysis of the Auslander-Reiten translation for path
algebras of an extended Dynkin quiver, or alternatively for the category
of coherent sheaves on a weighted projective line whose weight triple
determines the Dynkin diagram. Thus, the simple singularities can be
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thought of as mathematical objects capturing the homological informa-
tion on either category, there given by either Auslander-Reiten or Serre
duality.

A K-theoretic shadow of this is contained in the list of simple graded
singularities, where we have seen in Comments 2.10 that the degree of
the singularity fan agrees with the Coxeter number ha.

5. Vector bundles as a Frobenius category

Now, we are dealing with a recent joint work with de la Pena [21], and
Kussin and Meltzer [17]; see also [16]. In the previous section, we have
seen in Theorem 4.8 that for each non-tubular weight triple (p1,p2,p3)
we have a commutative diagram

CME-S —=— vect-X

q
%lres

CMZ-R —— vect-X
q

where, ¢ and ¢’ are equivalences induced by the natural quotient func-
tors. Since S and R are graded Gorenstein, each of the categories CM™-$
and CM?-R inherits an exact structure from the ambient abelian cat-
egories of finitely generated graded modules mod™-S and mod?-R, re-
spectively, which turns the two categories of graded CM-modules into
Frobenius categories have the category of indecomposable graded pro-
jective modules as their indecomposable projective-injective objects. By
transport of structure, we thus obtain on vect-X two, usually different,
structures of Frobenius categories.
In more detail, we arrive at the following setting

(a) From the L-graded setting, we obtain that vect-X is a Frobenius
category with the system L of line bundles being the indecom-
posable projective-injective objects.

(b) In the non-tubular case, we also obtain from the Z-graded setting
that vect-X is a Frobenius category with the 7-orbit 720 of the
structure sheaf, that is, a single 7-orbit of line bundles, being
the indecomposable projective-injective objects.
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Explanations 5.1.

(1) A Frobenius category is defined to be an exact category which
has sufficiently many (relative) projective and (relative) injective objects
and where the projectives coincide with the injectives.

(2) The term exact category is used here in the sense of Quillen. An
exact category C, by definition, admits a full embedding as an extension-
closed subcategory into an abelian category A. The exact structure on C
then is induced from A consisting of all short exact sequences in A with
all their terms in C.

(8) More concretely, a sequence n:0 — A — B — C — 0 in vect-X
is exact with regard to the exact structure (a) if and only if for each
line bundle L the sequence Hom(L,n) is exact. The Serre duality then
implies that it is equivalent to request exactness of Hom(n, L) for each
line bundle L. By contrast, in case (b) the sequence n is exact if and only
if Hom(7"O, n), equivalently Hom(n, 7"O), is exact for each integer n.

(4) By a result due to Happel [3], the associated stable categories

vect-X/[L]  and  vect-X/[rZ0)]

are triangulated. Here, a notation like vect-X/[L] means the fac-
tor category of vect-X modulo the ideal generated by L. In more de-
tail, this is the category having the same objects as vect-X with mor-
phisms given by the quotient Hom(X,Y) = Hom(X,Y)/{u : X —
Y | u factors through an object of add(L)}.

(5) The stable categories (a) vect-X/[L] and (b) vect-X/[r20] are
triangulated categories with the Serre duality induced from the Serre
duality of coh-X. In particular, the categories (a) and (b) have almost-
split triangles and the Auslander-Reiten translation is induced from the
Auslander-Reiten translation of coh-X.

It follows that the Auslander-Reiten quiver for (a) and (b) is obtained
from the Auslander-Reiten quiver of vect-X in case (a) by deleting all
orbits of line bundles and in case (b), assuming non-tubular type, by
deleting just a single T-orbit of line bundles.

(6) The stable categories of vector bundles (type (a) or (b)) will always
have a tilting object. For 6(&) > 0, this will be a highly non-trivial
matter. We are going to return to this aspect later.

Here, we mainly concentrate on the stable category vect-X/[r20].

Remark 5.2. We assume a non-tubular weight triple. What is then
the role of vect-X/[r20)], equivalently of CMZ-R = CMZ-R/[proj*-R]?
By old work of Buchweitz (1986), see [2], revived by Orlov in 2005,
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see [24], ‘this’ stable category is a measure for the complexity of the
graded singularity R. It is equivalent moreover to the triangulated cat-
egory of graded singularities of R defined as Dfmg(R) = D’(mod%-R)/
DP(proj2-R). For instance, the polynomial algebra R = kl[z,y], with
x and y homogeneous of positive degree, becomes graded-regular-local,
yielding CMZ-R = 0.

Because of the canonical equivalences between the categories vect-X/
720], CM%-R and DSng(R) it is advisable to think of all three as being
incarnations of a single triangulated category. We will encounter further
triangulated categories, which are triangle equivalent to the above, but in

a non-canonical way.

5.1. The Case (&) < 0 shape of the stable category. Concerning
the existence of a tilting object we start with the case (&) < 0.

Theorem 5.3 (Kajiura-Saito-Takahashi, 2006). Assume a weight triple
(p1,p2,p3) such that A = [p1,pa, p3] is a Dynkin diagram. Then, the tri-
angulated category vect-X/[1%0O] has a tilting object T such that End(T)
1s isomorphic to the path algebra kA of a quiver A with underlying graph
A. In particular, we have the equivalence,

vect-X/[%20] = Db(mod kA).

Proof. We will give two proofs which is different from the proof in [11]
and actually is much shorter. The first proof is inspired by the proof of
Theorem 4.6, where we have shown that the direct sum 7" of a repre-
sentative system T17,...,T, of pairwise indecomposable vector bundles
in the slope range 0 < p(F) < —§(@) is tilting in coh-X. Now, observe
that the structure sheaf O belongs to this system. Let’s assume that
O = T;. Tt is then not difficult to check that T =T @ - - - T}, is a tilting
object in vect-X/[r20] with endomorphism ring kA.

We next present another proof that perhaps is providing more insight
in the mechanism. By way of illustration, we restrict to the weight type
(2,3,4); the other cases can be dealt with in a similar fashion. The
relevant facts, we are going to use, are all present in Example 4.5. We
recall that the category of indecomposable vector bundles for this weight
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type is given by the mesh category kZE; depicted below:

'\./"\./\/'\./\./'
SINININ TN TN
NN AN AN AN S

o700 70707070070 e e

NN SN T N S N
NN NSNS NS

o o o o o o o o o

We depicted the vertices corresponding to the line bundles from the 7-
orbit of O by small circles o and all arrows starting or ending in such
a vertex are marked by dotted arrows. Passing to the stable category
vect-X/[720)] just kills the orbit 72O and the morphisms factor through
a finite direct sum of those. On the level of mesh-categories this means
to kill the marked vertices and the adjacent arrows, yielding the mesh
category of kKA of the Dynkin diagram A. It is a fundamental result by
Happel [3] that the mesh category of kA is equivalent to the bounded
derived category D®(mod k:&) for any orientation A of A. It is further
well-known that each slice in the AR-quiver kZA yields a tilting object
in the triangulated category D?(mod k:&) In the above picture, we have
marked one such tilting object. O

5.2. The case §(J) = 0.

Comment 5.4. What is going to happen for the tubular weight triples
(3,3,3), (2,4,4) and (2,3,6)? In this case, Z& is a finite cyclic group
and so restriction of S to Z& does not yield a Z-graded algebra. More-
over, it can be shown that the restriction R = S|y of S to any infinite
cyclic subgroup U of L is never Z-graded Gorenstein; in particular, it
will never be generated by three homogeneous elements.

The conclusion from this is that for tubular weight triples it only makes
sense to study alternatively the stable category of vector bundles T =
vect-X/[L], where one factors out all line bundles. Here, Ueda [30] shows
that T is triangle-equivalent to the category D®(coh-X). Ueda’s proof
uses an L-graded version of a recent theorem of Orlov [24]. It is also
possible to directly construct a tilting object in T whose endomorphism
algebra is the canonical algebra of the corresponding weight type; see [17].
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Ueda’s result (actually Orlov’s result underlying Ueda’s proof) looks
paradozical. Namely, we start with the category coh-X of coherent
sheaves, and then pass to the subcategory vect-X of vector bundles and
in the next step make the category additionally smaller when passing to
the stable category T = vect-X/[L]. This, by Ueda’s result, is triangle-
equivalent to the bounded derived category Db(coh-X) which, being equiv-
alent to the repetitive category \/, o, coh-X[n], looks much bigger than the
category we started with. Note, in this context, that for a tubular weight
type the category coh-X has tame representation type.

5.3. The case §(J) > 0, the Arnold’s strange duality list. We are
now going to discuss what happens with the restriction procedure if we
apply it to the weight triples with 6(<J) > 0. The following result is
taken from [18] and [21], where additional information is available.

Proposition 5.5. Let k be a field and assume (p1,p2,p3) is a weight
triple with §(&) > 0. Let R = S|z be the Z-graded restriction of the L-
graded triangle singularity S to the subgroup 7w which we identify with
Z by the correspondence @ <> 1. Then, the followings holds.

(a) The algebra R is always graded Gorenstein.

(b) Ezactly for the weights triples of Arnold’s strange duality list,
the algebra R is generated by three homogeneous elements x,y, z
and then has the form

R =klz,y,2]/(f),
where the generators x,y, z, the relation f and their degrees are
given by the list below.

l (p1,p2,p3) ‘ generators (z,y, z) ‘ deg(z,y, 2) ‘ relation f ‘ deg f ‘ N ‘ ‘
(2,3,7) (1’3, T2, T1) (6,14,21) [ 22+ + 27 42 [ 12
(2,3,8) (x3, T2, T123) (6,8,15) 22 4+ 2° + xy? 30 |13

2,39 x5 \ @23, 21 6,8,9 3 p2? a2t 24 | 14
( ) 3 ) Y
(2,4,5) | (z3,23, 2122) (4,10,15) | 27 + ¢ + 2%y 30 |11
(2,4,6) (z 37x2,z1m2m3) (4,6,11) 22+ aty + ay? 22 |12
(2,4,7) (23, 233, xla:g) (4,6,7) Y3+ 2Py + x2? 18 13
2,55 Toks, T1, Lo 4,5,10 224?42 20 12 | e
(
(2,5,6) (zox3, 123, T3) (4,5,6) 22 + 2z + 2t 16 13
(3,3,4) (mg, T129,37) (3,8,12) 224+ + 2tz 24 10| e
(3,3,5) (x3 3, T122, 3331)1) (3,5,9) 22+ ayd + 232 18 11| e
(3,3,6) (3, $1$2$3, x3) (3,5,6) y> 4+ 23z 4 x2? 15 12 | e
(3,4,4) (xzxg, xl, T123) (3,4,8) 22—z + 'y 16 11| e
(3,4,5) (zoxh, 2ias, x123) | (3,4,5) 22y + x2? + y22 13 12
(4,4,4) (z12013, 21, T3) (3,4,4) ot —y2? + %2 12 12 | e
Arnold’s strange duality list
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Here, the bullet marks the cases where one has a choice for the monomial
generators. Further more, IV denotes the sum of the three weights, whose
mathematical significance will be revealed later.

Remark 5.6.

(1) For each graded singularity f from Arnold’s list, the original
weight type can be recovered by the procedure discussed already for the
weight triples of the Dynkin type: the Serre construction, when applied to
the Z-graded algebra R = k[x,y, z|/(f), yields back the category coh-X on
the weighted projective line X(p1,p2,p3), and the tubular type of coh-X
jJust coincides with (p1,p2,p3). In the classical context, where k = C,
this triple runs under the name of the Dolgachev numbers of f.

(2) For the base field k = C, this list is (equivalent to) Arnold’s list
of the 14 exceptional unimodular singularities.

This list, slightly extended by the so-called Gabrielov numbers, gives
rise to what is called Arnold’s strange duality, which is also related
to mirror symmetry. As pointed out before, the weight triples, we are
using, will in this context be called the Dolgachev numbers. On an
ad-hoc basis, we point out that the above list is equipped with an involu-
tion, keeping all the weight triples (p1,p2,p2) with Z?:l p; = 12 fized
and otherwise sends a weight triple (p1,p2,p3) (the Dolgachev num-
bers) to the conjugate triple (py,ph,ps) (the Gabrielov numbers) such
that E?:lpi + Z?:l P, = 24, and moreover the degrees of the relations
attached to the two weight triples are identical. We refer to the intro-
ductory account of Ebeling [1] for the definition and properties of the
Gabrielov numbers.

Our next theorem is taken from a joint work with de la Pena [21]. We
point out that the work of Kajiura-Saito-Takahashi [12] is related by
subject and results; language and setting are however different. Be-
fore stating the result, we need to introduce the concept of an ex-
tended canonical algebra. By definition, an extended canonical al-
gebra A = A(p1, pa, p3) arises from a canonical algebra A = A(p1, pa, p3)
by attaching one new arrow (with a new vertex) to a vertex of the quiver
of A, keeping the relation for A, and not introducing any new relation.
The algebra given by the quiver below,
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x1 xq
O—O0——--+——0
v N
0—30—30—>:++—3>0—>0—>%
T2 T2 2

T2 x2 T
:EA %3

0—30—3--+—>0
x3 x3

having three arms of lengths p1, po, p3, respectively, and with the sin-
gle relation zi' + z8? + 25° = 0 is thus an extended canonical algebra
A(p1,p2,p3). (We have marked the extension vertex by %.) Any other
attachment of a new arrow and a new vertex would have led to a derived-
equivalent algebra, which indicates already some important feature of

the extended canonical algebras.

Theorem 5.7. For any weight triple (p1,p2,p3) with §(J) > 0 there
exists a tilting object T in the stable category vect-X/[r%O] whose endo-
morphism ring is the extended canonical algebra A(p1,pa,p3). Accord-
ingly, we have equivalences of triangulated categories

CMZ-R = vect-X = D®(mod A),
and the Grothendieck group Ko(vect-X) is finitely generated free of rank

3
> i1 bi-

Proof. We fix a weight triple (p1, p2, p3) with 6(&) > 0. Let us say first
that we do not know any ’concrete’ vector bundle 7" in vect-X produc-
ing a tilting object in the stable category vect-X. Our construction of
such a tilting object T is thus done by a theoretical argument using a
recent theorem of Orlov: actually we need to apply the proof of Orlov’s
theorem to the present situation. Since the details are quite techni-
cal, we only describe the basic idea of the proof. It follows from our
assumption on the weight type and from the construction of R that
R is always graded Gorenstein and moreover, the so-called Gorenstein
parameter equals —1. Orlov’s theorem then states that there is an
exceptional object F in vect-X such that its right perpendicular cat-
egory, that is, the triangulated subcategory consisting of all objects
X such that Hom(FE[n], X) = 0 for each integer n, is equivalent to
D?(coh-X). Choosing in coh-X a tilting object T' with endomorphism
algebra A = A(p1,p2,p3) it then can be shown that the direct sum
T =T @ E is a tilting object in vect-X.
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It follows that the Grothendieck group of the triangulated category
vect-X is finitely generated free. Since, moreover, the quiver of the
extended canonical algebra has N = Z§:1 p; vertices, it follows that the
rank of Ko(vect-X) equals the sum N of the weights. O

The theorem has interesting applications; and up to now no other
method is known to derive these assertions. We assume throughout
that §(a) > 0.

Corollary 5.8. Each Auslander-Reiten component in vect-X 2 D¥(mod

A) has shape ZA .

Proof. The corresponding statement is known for the category vect-X;
see [22]. By a stability argument, all line bundles form AR-orbits be-
longing to the boundary of ZA,-components. It follows that after sta-
bilization the components still have shape ZA . O

Corollary 5.9. The set of Auslander-Reiten components of vect-X =
D?(mod A) is in a natural bijection with the set of reqular Auslander-
Reiten components for any path algebra kQ of a quiver Q with underlying

graph [p1, p2,p3).

Proof. For the set of AR-components for vect-X this is shown in [22].
By the previous argument, stabilization does not change the set of AR-
components. O

Remark 5.10.

(1) As for the simple graded singularities, the degrees of the relations
f from Arnold’s list have an interpretation as the period of the Coxeter
transformation for D?(mod A), and equivalently as the period of the Coz-
eter transformation for the triangulated category vect-X. In fact, the two
triangulated categories (which are equivalent) are fractional Calabi-Yau,
yielding a conceptual reason for the observed periodicity.

(2) Howewver, the fractional Calabi-Yau property for vect-X/[7%0] is
not true for arbitrary weight triples. The weight type (2,3,11) already
yields an example.

(2) Finally, we remark that the stable categories of vector bundles of
shape vect-X/[L] are in a certain sense much better behaved than those
discussed here. The main reason is that they have more symmetry since
the Picard group IL acts on them. For instance, one then has tilting
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objects for each weight triple, given by an explicit construction. For
details in this direction we refer to [17] and [16].
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