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ON THE SPECTRA OF SOME MATRICES DERIVED

FROM TWO QUADRATIC MATRICES

H. ÖZDEMİR∗ AND T. PETİK

Communicated by Abbas Salemi Parizi

Abstract. The relations between the spectrum of the matrix Q+
R and the spectra of matrices (γ+δ)Q+(α+β)R−QR−RQ, QR−
RQ, αβR−QRQ, αRQR− (QR)2, and βR−QR have been given
assuming that the matrix Q+R is diagonalizable, where Q, R are
{α, β}-quadratic matrix and {γ, δ}-quadratic matrix, respectively,
of order n.

1. Introduction

Let C be the field of complex numbers and C∗ = C\{0}. For a positive
integer n, letMn be the set of all n×n matrices over C. Moreover, let 0
and In denote the zero matrix (of any size) and the n×n identity matrix,
respectively. First we recall some definitions, concepts, and properties
from the linear algebra. For A ∈Mn, the trace, rank and spectrum of A
will be denoted by tr(A), rk(A), and σ(A), respectively. Let p, q ∈ C. A
matrix A ∈Mn is said to be {p, q}-quadratic, if (A− pIn)(A− qIn) = 0
(see, e.g., [1]). If p = q, then we simply say that A is {p}-quadratic.
The matrix A is called an idempotent matrix if {p, q} = {1, 0}, i.e.,
A2 = A. The matrix A is called an involutive matrix if {p, q} = {1,−1},
i.e., A2 = In. Hence, quadratic matrices are a wide class of matrices
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226 Özdemir and Petik

containing idempotent, involutive, and several other types of matrices.
As we shall show (see Theorem 2.1), for any {p, q}-quadratic matrix

A with p 6= q there exist two idempotent matrices X and Y such that
A = pX + qY , In = X + Y , and XY = 0. Therefore, to be quadratic is
closely related to the degrees of freedom of quadratic forms in Statistics.
For example, to be involutive gives the restriction that the sum of de-
grees of freedom of different independent quadratic forms must be equal
to the dimension of the primary quadratic form matrix in the framework
of statistical theory.

Recently, many studies concerning quadratic matrices have been done.
For example, some properties of quadratic matrices have been given in
[1]. In [6], generalized quadratic matrices have been introduced and some
results about them have been presented. The spectral characterizations
of generalized quadratic operators have been obtained in [5]. Idempotent
and involutive matrices, which are special cases of quadratic matrices,
have been extensively studied and there are many results about the spec-
tra of some special types of matrices in the literature. For example, a
linear combination of two involutive matrices has been studied in [10].
Some rank identities for involutive matrices have been obtained in [13].
The spectrum of a linear combination of two projections in C∗-algebras
has been considered in [3]. In [2], the spectrum of a linear combina-
tion of two orthogonal projections has been studied by means of the
CS decomposition, which is closely associated with the principal angles
between two subspaces. It has been shown how the spectrum of the sum
of orthogonal projectors determine the convergence of many parallel it-
erative algorithms in [4].

The concept of spectrum is interesting not only from the algebraic
point of view but also from the role it plays in applied sciences. For
example, eigenvalues, which form the spectrum, are used to study dif-
ferential equations and continuous dynamical systems. They provide
important information in engineering design, and they arise naturally in
fields such as physics and chemistry. Moreover, they are practically the
most important feature of any dynamical system and hold the key to
the discrete evolution of a dynamical system (see, e.g., [8]). Eigenvalues
are also used in the theory of diagonalization, difference equations, Fi-
bonacci numbers, and Markov processes (see, e.g., [12]).

In [9], Liu and Beńıtez discussed the spectra of some matrices de-
pending on two idempotents. We extend those results to a pair of {p, q}-
quadratic matrices with p 6= q. Obviously, any idempotent matrix is a
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{p, q}-quadratic matrices with p 6= q, therefore, the results given here
are nontrivial extensions of the results given in [9].

2. Preliminary Results

In this section, first we establish a result stating some properties of
quadratic matrices.

Theorem 2.1. Let A ∈Mn. The following statements are equivalent.

(1) There exist α, β ∈ C such that α 6= β and (A−αIn)(A−βIn) = 0.
(2) A is diagonalizable and σ(A) ⊂ {α, β}.
(3) There exist α, β ∈ C such that α 6= β and two idempotents

X,Y ∈ Mn such that A = αX + βY , X + Y = In, and
XY = Y X = 0.

(4) There exist a, b ∈ C and an idempotent matrix X such that a 6= 0
and A = aX + bIn.

Proof. (1) implies (2). It is seen from the fact that a matrix is diago-
nalizable if and only if its minimal polynomial has simple roots (Corol-
lary 3.3.10, [7]).

(2) implies (3). By the hypotheses, there exists a nonsingular ma-
trix S such that

A = S(αIp ⊕ βIq)S−1

with p, q ∈ {0, 1, . . . , n} and p+ q = n. Define

X = S(Ip ⊕ 0)S−1 and Y = S(0⊕ Iq)S−1.

Observe that A = αX+βY , X+Y = In, and XY = Y X = 0 as desired.
(3) implies (4). Since A = αX +βY and Y = In−X, we can write

A = (α− β)X + βIn,

and the desired result is obtained by taking a = α− β and b = β.
(4) implies (1). Since the matrix X is idempotent, there exists a

nonsingular matrix S such that X = S(Ip ⊕ 0)S−1 with rk(X) = p.
From this, it can be written

A = aS(Ip ⊕ 0)S−1 + bS(Ip ⊕ In−p)S−1 = S((a+ b)Ip ⊕ bIn−p)S−1

by the hypothesis. We define α = a+ b, β = b. Thus, we have

A−αIn = S(0⊕ (β −α)In−p)S
−1 and A− βIn = S((α− β)Ip ⊕ 0)S−1.

Hence, we arrive at the equality (A−αIn)(A− βIn) = 0 as desired. �
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It is noteworthy the following result.

Let A ∈ Mn be a {q}-quadratic matrix. By the Jordan canonical
form, there is a nonsingular matrix S ∈Mn such that

A = S(J1 ⊕ · · · ⊕ Jk)S−1,
where

Ji =

(
q 1
0 q

)
or Ji =

(
q
)

for i = 1, . . . , k. Evidently, if in addition, A is diagonalizable, then
A = qIn.

Remark: If X ∈ Mn is a {p, q}-quadratic matrix and c ∈ C∗, then
cX is a {cp, cq}-quadratic matrix. This simple observation permits to
study the spectrum of the sum of two {p, q}-quadratic matrices instead
of arbitrary linear combinations of two {p, q}-quadratic matrices.

Now, we state the following theorem about the spectrum of a matrix
Q+R with Q and R commuting quadratic matrices.

Theorem 2.2. Let Q ∈Mn and R ∈Mn be an {α, β}-quadratic matrix
and {γ, δ}-quadratic matrix, respectively, such that QR = RQ, α 6= β,
and γ 6= δ. Then

σ(Q+R) ⊂ {δ + β, γ + β, δ + α, γ + α}.
Proof. By Theorem 2.1(4), there exist idempotent matrices X and Y
such that Q = (α−β)X+βIn and R = (γ−δ)Y +δIn. Since QR = RQ,
then XY = Y X, and therefore, the matrix (α − β)X + (γ − δ)Y is
diagonalizable and σ((α−β)X+(γ−δ)Y ) ⊂ {0, γ−δ, α−β, γ−δ+α−β}
by Theorem 1 of [9]. Combining the last inclusion with the equality
Q+R = (α− β)X + (γ − δ)Y + (δ + β)In proves the theorem. �

Theorem 2.3. Let Q ∈Mn and R ∈Mn be an {α, β}-quadratic matrix
and {γ, δ}-quadratic matrix, respectively, with QR 6= RQ, α 6= β, and
γ 6= δ. Let the matrix Q + R be diagonalizable. If λ ∈ σ(Q + R)\{δ +
β, γ+β, δ+α, γ+α}, then there exists µ ∈ σ(Q+R) such that λ+µ =
α+ β + γ + δ.

Proof. By Theorem 2.1, we have the equalities Q = (α−β)X+βIn and
R = (γ − δ)Y + δIn with X2 = X, Y 2 = Y . Since QR 6= RQ, then
XY 6= Y X. There exist a nonsingular matrix T and a diagonal matrix
Λ such that

(2.1) TΛT−1 = Q+R
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since the matrix Q+R is diagonalizable. So, we get

(2.2) (α− β)X + (γ − δ)Y = T (Λ− (δ + β)In)T−1

considering the equalities Q+R = (α−β)X + (γ− δ)Y + (β+ δ)In and
(2.1). This states that the matrix (α−β)X+(γ−δ)Y is diagonalizable.

Now take any λ ∈ σ(Q + R)\{δ + β, γ + β, δ + α, γ + α}. Thus
λ− (δ + β) /∈ {0, γ − δ, α − β, γ − δ + α − β}. Moreover, λ− (δ + β) ∈
σ((α− β)X + (γ − δ)Y ) by (2.2). Since the matrices X and Y are two
noncommuting idempotent matrices, there exists µ∗ ∈ σ((α − β)X +
(γ − δ)Y ) such that λ − (δ + β) + µ∗ = α + γ − β − δ by Corollary
1 of [9]. Hence, µ∗ + δ + β ∈ σ(Q + R) from the equality Q + R =
(α − β)X + (γ − δ)Y + (δ + β)In. Thus, we get λ+ µ = α + β + γ + δ
by taking µ = µ∗ + δ + β. �

3. Main Results

In this section, it has been considered relationships between the spec-
trum of the matrix Q + R and the spectra of the matrices (γ + δ)Q +
(α + β)R − QR − RQ, QR − RQ, αβR − QRQ, αRQR − (QR)2, and
βR −QR respectively, where the matrices Q and R are noncommuting
quadratic matrices.

Theorem 3.1. Let Q ∈Mn and R ∈Mn be an {α, β}-quadratic matrix
and {γ, δ}-quadratic matrix, respectively, with QR 6= RQ, α 6= β, and
γ 6= δ. Let the matrix Q+R be diagonalizable.

(i) If µ ∈ σ(Q+R)\{δ+ β, γ + β, δ+α, γ +α}, then µ(γ + δ+α+
β − µ)− γδ − αβ ∈ σ((γ + δ)Q+ (α+ β)R−QR−RQ).

(ii) If λ ∈ σ((γ + δ)Q+ (α+ β)R−QR−RQ)\{αγ + βδ, γβ + αδ},
then the roots of the polynomial x2−(γ+δ+α+β)x+λ+γδ+αβ
are the eigenvalues of the matrix Q+R.

Proof. By Theorem 2.1, there exist idempotent matrices X and Y such
that Q = (α − β)X + βIn and R = (γ − δ)Y + δIn. Since QR 6= RQ,
then XY 6= Y X. Also, the matrix (α−β)X+(γ−δ)Y is diagonalizable
because the matrix Q + R is diagonalizable. Thus, by Lemma 1 (i) of
[9], there exists a nonsingular matrix S ∈Mn and idempotent matrices
X0, . . . , Xk, Y0, . . . , Yk such that Xi, Yi ∈Mmi for i = 0, 1, . . . , k,

(3.1) X = S((⊕ki=1Xi)⊕X0)S
−1 and Y = S((⊕ki=1Yi)⊕ Y0)S−1

with X0Y0 = Y0X0 and XiYi 6= YiXi for i = 1, . . . , k. Considering the
equalities Q = (α − β)X + βIn and R = (γ − δ)Y + δIn together with
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the expressions in (3.1) leads to

Q = S((⊕ki=1((α− β)Xi + βImi))⊕ ((α− β)X0 + βIm0))S−1

and

R = S((⊕ki=1((γ − δ)Yi + δImi))⊕ ((γ − δ)Y0 + δIm0))S−1.

Now, for i = 0, 1, . . . , k, we define the matrices Qi and Ri as

(3.2) Qi = (α− β)Xi + βImi and Ri = (γ − δ)Yi + δImi .

It is clear that all the matrices Qi are {α, β}-quadratic matrices and all
the matrices Ri are {γ, δ}-quadratic matrices. Also, we get Q0R0 =
R0Q0 and QiRi 6= RiQi for i = 1, . . . , k since X0Y0 = Y0X0 and
XiYi 6= YiXi for i = 1, . . . , k. Thus, under the hypotheses of the theo-
rem, there exists a nonsingular matrix S ∈ Mn, {α, β}-quadratic ma-
trices Q0, . . . , Qk, and {γ, δ}-quadratic matrices R0, . . . , Rk such that
Qi, Ri ∈Mmi for i = 0, 1, . . . , k,

(3.3) Q = S((⊕ki=1Qi)⊕Q0)S
−1 and R = S((⊕ki=1Ri)⊕R0)S

−1,

with Q0R0 = R0Q0 and QiRi 6= RiQi for i = 1, . . . , k. There exist
distinct complex numbers ξ1, η1; . . . ; ξk, ηk such that

(3.4) ξi + ηi = α+ γ − β − δ, σ((α− β)Xi + (γ − δ)Yi) = {ξi, ηi},

(3.5) (α− β)(γ − δ)(Xi − Yi)2 = ξiηiImi

for i = 1, . . . , k by Lemma 1 (ii) of [9]. From the equalities (3.2) and the
second equality of (3.4), we obtain σ(Qi +Ri) = {ξi + δ+β, ηi + δ+β}.
For i = 1, . . . , k, we define µi and νi as

(3.6) µi = ξi + δ + β and νi = ηi + δ + β.

Thus, we have σ(Qi + Ri) = {µi, νi} for i = 1, . . . , k. Considering the
first equality of (3.4) and the equalities (3.6), we arrive at

(3.7) µi + νi = α+ β + γ + δ.

Using the expressions (3.2), (3.6), and (3.7) in the equality (3.5) we have

(3.8) (γ + δ)Qi + (α+ β)Ri −QiRi −RiQi = (µiνi − γδ − αβ)Imi

for i = 1, . . . , k. From the equalities (3.3), it can be shown that
(γ + δ)Q + (α + β)R − QR − RQ = S((⊕ki=1(γ + δ)Qi + (α + β)Ri −
QiRi −RiQi)⊕ ((γ + δ)Q0 + (α+ β)R0 − 2Q0R0))S

−1.
Observe that (γ+δ)Q0 +(α+β)R0−2Q0R0 = (γ−δ)(α−β)(X0 +Y0−
2X0Y0) + (γβ +αδ)Im0 and the matrix X0 + Y0− 2X0Y0 is idempotent.
Moreover, (γ− δ)(α−β) 6= 0. Thus, the matrix (γ+ δ)Q0 + (α+β)R0−



On the spectra of some matrices 231

2Q0R0 is a {αγ + δβ, γβ + αδ}-quadratic matrix.
Now, take any µ ∈ σ(Q + R)\{δ + β, γ + β, δ + α, γ + α}. Then

µ /∈ σ(Q0 +R0) by Theorem 2.2. Hence, there exists i ∈ {1, . . . , k} such
that µ ∈ σ(Qi +Ri), and therefore σ(Qi +Ri) = {µ, α+ β + γ + δ − µ}
on account of Theorem 2.3. Thus, it can be written µ(α + β + γ + δ −
µ)− γδ − αβ ∈ σ((γ + δ)Qi + (α+ β)Ri −QiRi −RiQi) from (3.8). It
is obtained the desired result in (i) by considering σ((γ + δ)Qi + (α +
β)Ri −QiRi −RiQi) ⊂ σ((γ + δ)Q+ (α+ β)R−QR−RQ).

Next, take any λ ∈ σ((γ + δ)Q + (α + β)R − QR − RQ)\{αγ +
βδ, γβ +αδ}. Since λ /∈ {αγ + βδ, γβ +αδ} and the matrix (γ + δ)Q0 +
(α + β)R0 − 2Q0R0 is {αγ + βδ, γβ + αδ}-quadratic, then λ /∈ σ((γ +
δ)Q0 + (α+ β)R0 − 2Q0R0). Thus, there exists i ∈ {1, . . . , k} such that
λ = µiνi − γδ − αβ from the equality (3.8). By the equality (3.7), we
have µ + ν = α + β + γ + δ with µ = µi and ν = νi. Considering the
equality µν = λ + γδ + αβ together with the last expression completes
the proof of (ii). �

If we consider Theorem 3.1 together with the Remark preceding The-
orem 2.2, we get the following corollary.

Corollary 3.2. Let Q ∈ Mn and R ∈ Mn be an {α, β}-quadratic
matrix and {γ, δ}-quadratic matrix, respectively, with QR 6= RQ, α 6= β,

and γ 6= δ. Let c, d, c
′
, d
′ ∈ C∗ such that the matrices cR + dQ and

c
′
R+ d

′
Q are diagonalizable. If µ ∈ σ(cR+ dQ)\{cδ+ dβ, cγ + dβ, cδ+

dα, cγ + dα}, then the roots of the polynomial x2 − (c
′
(γ + δ) + d

′
(α +

β))x+ 1
cd(µ(c(γ + δ) + d(α+ β)− µ)− c2γδ− d2αβ)c

′
d
′
+ c

′2
γδ+ d

′2
αβ

are the eigenvalues of the matrix c
′
R+ d

′
Q.

Theorem 3.3. Let Q ∈ Mn and R ∈ Mn be an {α, β}-quadratic ma-
trix and {γ, δ}-quadratic matrix, respectively, with QR 6= RQ, α 6= β,
and γ 6= δ. Let the matrix Q+R be diagonalizable.

(i) If λ ∈ σ(QR − RQ)\{0}, then there exist µ, ν ∈ σ(R + Q) such
that µ+ ν = γ + δ+α+ β and λ2 = (µν − (γ +α)(β + δ))(µν −
(β + γ)(δ + α)).

(ii) If µ ∈ σ(Q + R)\{δ + β, γ + β, δ + α, γ + α}, then there exists
λ ∈ σ(QR − RQ) such that λ2 = (µ(γ + δ + α + β − µ) − (γ +
α)(β + δ))(µ(γ + δ + α+ β − µ)− (β + γ)(δ + α)).

Proof. Let Q and R be as in (3.3). So, we have the equality QR −
RQ = S((⊕ki=1(QiRi − RiQi)) ⊕ 0)S−1. By Theorem 2.1, there exist
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two idempotent matrices X and Y such that Q = (α − β)X + βIn
and R = (γ − δ)Y + δIn. Since QR 6= RQ, then XY 6= Y X. Also,
the matrix (α − β)X + (γ − δ)Y is diagonalizable because Q + R is
diagonalizable. Thus, by in [9, Lemma 1,(iii)], for i = 1, . . . , k, there

exist nonsingular matrices Si such that Xi = Si

(
Ixi 0
0 0

)
S−1i , Yi =

Si

(
Ai Bi
Ci Di

)
Si
−1 where xi = rk(Xi), Ai ∈ Mmi , Di ∈ Mmi−xi , and

Ai = (1 − ρ∗i )Ixi , BiCi = ρ∗i (1 − ρ∗i )Ixi , CiBi = ρ∗i (1 − ρ∗i )Imi−xi , and

Di = ρ∗i Imi−xi with ρ∗i = ξiηi
(α−β)(γ−δ) and ξi, ηi are distinct complex

numbers satisfying the equalities (3.4). Since Xi = Si

(
Ixi 0
0 0

)
S−1i

and Qi = (α− β)Xi + βIn for i = 1, . . . , k, we get

(3.9) Qi = Si

(
αIxi 0
0 βImi−xi

)
S−1i

Likewise, since Yi = Si

(
Ai Bi
Ci Di

)
S−1i and Ri = (γ − δ)Yi + δIn for

i = 1, . . . , k, we obtain

(3.10) Ri = Si

(
Ki Li
Mi Ni

)
S−1i

with

(3.11) Ki = (γ − δ)Ai + βIxi = ((1− ρ∗i )(γ − δ) + β)Ixi ,

(3.12) LiMi = (γ − δ)2BiCi = (γ − δ)2ρ∗i (1− ρ∗i )Ixi ,

(3.13) MiLi = (γ − δ)2CiBi = (γ − δ)2ρ∗i (1− ρ∗i )Imi−xi ,

and

(3.14) Ni = (γ − δ)Di + δImi−xi = ((γ − δ)ρ∗i + δ)Imi−xi .

By considering the equalities (3.6) and (3.7), it follows that

(3.15) ρ∗i =
1

(α− β)(γ − δ)
ξiηi =

1

(α− β)(γ − δ)
(µiνi−(γ+α)(β+δ)).

Hence, we get

(3.16) (1− ρ∗i )(γ − δ) + δ = −µiνi − α(γ + β)− δ(α+ γ)

α− β



On the spectra of some matrices 233

Now, for i = 1, . . . , k we define ρi as

(3.17) ρi =
µiνi − α(γ + β)− δ(α+ γ)

α− β
.

Thus, we obtain (1 − ρ∗i )(γ − δ) + δ = −ρi, that is, γ + ρi = ξiηi
α−β , and

therefore ξiηi = (α−β)(γ+ρi). It is clear that ρ∗i (1−ρ∗i ) = − (γ+ρi)(δ+ρi)
(γ−δ)2

in view of ρ∗i = ξiηi
(α−β)(γ−δ) and ξiηi = (α − β)(γ + ρi), for i = 1, . . . , k.

Hence, it follows that
(3.18)
LiMi = −(γ + ρi)(δ + ρi)Ixi and MiLi = −(γ + ρi)(δ + ρi)Imi−xi

by (3.12) and (3.13). From (3.9), (3.10), and (3.18), we get

(3.19) (QiRi −RiQi)2 = (α− β)2(γ + ρi)(δ + ρi)Imi

for i = 1, . . . , k.
Now, take any λ ∈ σ(QR−RQ)\{0}. From this, we have λ2 ∈ σ[(QR−

RQ)2]\{0}. So, there exists i ∈ {1, . . . , k} such that λ2 ∈ σ[(QiRi −
RiQi)

2]. Considering the equalities (3.7), (3.19) and taking µi = µ and
νi = ν, we obtain the desired result in (i).

Next, take any µ ∈ σ(Q + R)\{δ + β, γ + β, δ + α, γ + α}. Then
there exists i ∈ {1, . . . , k} such that µ ∈ σ(Ri + Qi). Thus it follows
that (α− β)2(γ + ρ)(δ+ ρ) ∈ σ[(QiRi −RiQi)2] ⊂ σ[(QR−RQ)2] from

(3.7) and (3.19) with ρ = µ(α+β+γ+δ−µ)−α(γ+β)−δ(α+γ)
α−β . Hence by the

spectral mapping theorem (see, e.g., [11], Theorem 9.33), there exists
λ ∈ σ(QR−RQ) such that λ2 = (α− β)2(γ + ρ)(δ + ρ) . So, the proof
of (ii) is complete. �

Theorem 3.4. Let Q ∈ Mn and R ∈ Mn be an {α, β}-quadratic ma-
trix and {γ, δ}-quadratic matrix, respectively, with QR 6= RQ, α 6= β,
and γ 6= δ. Let the matrix Q+R be diagonalizable.

(i) If λ ∈ σ(αβR−QRQ)\{αγ(β−α), αδ(β−α), δβ(α−β), γβ(α−
β)}, then the roots of the polynomial x2−(α+β+γ+δ)x+α(β+
δ)+γ(α+δ)+ 1

αλ or x2−(α+β+γ+δ)x+β(α+δ)+γ(β+δ)+ 1
βλ

are the eigenvalues of the matrix Q+R.
(ii) If µ ∈ σ(Q+R)\{δ+β, γ+β, δ+α, γ+α}, then there exist λ1, λ2 ∈

σ(αβR−QRQ) such that λ1 = α(µ(γ+δ+α+β−µ)−α(δ+β)−
γ(α+ δ)) and λ2 = β(µ(γ+ δ+α+β−µ)−β(α+ δ)−γ(β+ δ)).
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Proof. Let the matrices Q and R be as in (3.3). Then we can write

αβR−QRQ = S((⊕ki=1(αβRi −QiRiQi))⊕ (αβR0 −Q0R0Q0))S
−1.

Since Q0 = (α−β)X0+βIm0 and R0 = (γ−δ)Y0+δIm0 (with X2
0 = X0,

Y 2
0 = Y0, and X0Y0 = Y0X0), we get

αβR0 −Q0R0Q0 =

(β2 − α2)((γ − δ)X0Y0 + δX0)

+(αβ − β2)((γ − δ)Y0 + δIm0).

Also, the matrices X0 and Y0 are simultaneously diagonalizable because
X0Y0 = Y0X0. Thus, we obtain σ(αβR0−Q0R0Q0) ⊂ {αγ(β−α), αδ(β−
α), δβ(α− β), γβ(α− β)} from (3.20).

Now, take any λ ∈ σ(αβR − QRQ)\{αγ(β − α), αδ(β − α), δβ(α −
β), γβ(α−β)}. So, we have λ /∈ σ(αβR0−Q0R0Q0). Thus, there exists
i ∈ {1, . . . , k} such that λ ∈ σ(αβRi−QiRiQi). On the other hand, the
equalities (3.9) and (3.10) lead to the equality

(3.20) αβRi −QiRiQi = Si

(
(αβ − α2)Ki 0

0 (αβ − β2)Ni

)
S−1i

for i = 1, . . . , k. From (3.11) and (3.16) we have the relation

(3.21) Ki = −ρiIxi
with ρi = µiνi−α(δ+β)−γ(α+δ)

α−β for i = 1, . . . , k. Similarly, from (3.14) and

(3.15), we get

(3.22) Ni =
µiνi − γ(β + δ)− β(α+ δ)

α− β
Imi−xi .

Hence by combining (3.20) with (3.21) and (3.22) it is seen that λ =
α(µiνi−γ(α+ δ)−α(δ+β)) or λ = β(µiνi−β(δ+α)−γ(β+ δ)). From
this, we have µiνi = 1

αλ+α(δ+β) + γ(α+ δ) or µiνi = 1
βλ+β(α+ δ) +

γ(β + δ). The equality (3.7) assures that the roots of the polynomial
x2 − (α+ β + γ + δ)x+ α(δ + β) + γ(α+ δ) + 1

αλ or x2 − (α+ β + γ +

δ)x+ β(δ+α) + γ(β+ δ) + 1
βλ are the eigenvalues of the matrix Q+R.

So the proof of (i) is complete.
Next, take any µ ∈ σ(Q+R)\{δ+β, γ+β, δ+α, γ+α}. So there exists

i ∈ {1, . . . , k} such that µ ∈ σ(Qi +Ri). Since σ(Qi +Ri) = {µi, νi} and
µi+νi = α+β+γ+δ, we can write σ(Qi+Ri) = {µ, α+β+γ+δ−µ}.
Hence by the equalities (3.20)-(3.22),
α(µ(α+β+γ+δ−µ)−α(β+δ)−γ(α+δ)), β(µ(α+β+γ+δ−µ)−β(α+
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δ)− γ(β+ δ)) ∈ σ(αβRi−QiRiQi). The inclusion σ(αβRi−QiRiQi) ⊂
σ(αβR−QRQ) gives (ii). �

Theorem 3.5. Let Q ∈ Mn and R ∈ Mn be an {α, β}-quadratic ma-
trix and {γ, δ}-quadratic matrix, respectively, with QR 6= RQ, α 6= β,
and γ 6= δ. Let the matrix Q+R be diagonalizable.

(i) If λ ∈ σ(αRQR− (QR)2)\{0, βγ2(α− β), βδ2(α− β)}, then the
roots of the polynomial
x2 − (α+ β + γ + δ)x+ 1

2((α+ 2β)(γ + δ)±√
α2(γ − δ)2 + 4(αβγδ − λ)) + γδ + αβ
are eigenvalues of the matrix Q+R.

(ii) If µ ∈ σ(Q+R)\{δ + β, γ + β, δ + α, γ + α}, then
−(µ(γ+δ+α+β−µ)−γδ−αβ)2− 1

α−β ((γ+δ)(2β2−α2−αβ)(µ(γ+

δ+α+β−µ)− γδ−αβ) +α(γβ+αδ)(δβ+αγ)−β3(γ+ δ)2) ∈
σ(αRQR− (QR)2).

Proof. By the expressions (3.3), we get

αRQR−(QR)2=

S((⊕ki=1(αRiQiRi − (QiRi)
2))⊕(αR0Q0R0−(Q0R0)

2))S−1.

By the equalities Q0 = (α − β)X0 + βIm0 , R0 = (γ − δ)Y0 + δIm0 ,
and X0Y0 = Y0X0, we obtain
(3.23)
αR0Q0R0−(Q0R0)

2 = β(β−α)(γ2−δ2)(X0Y0−Y0)+βδ2(β−α)(X0−Im0).

Since the matrices X0 and Y0 are simultaneously diagonalizable, it fol-
lows from (3.23) that σ(αR0Q0R0− (Q0R0)

2) ⊂ {0, βγ2(α−β), βδ2(α−
β)}.

Now, take any λ ∈ σ(αRQR − (QR)2)\{0, βγ2(α − β), βδ2(α − β)}.
So, λ /∈ σ(αR0Q0R0 − (Q0R0)

2). Thus there exists i ∈ {1, . . . , k} such
that λ ∈ σ(αRiQiRi − (QiRi)

2). Since, for i = 1, . . . , k,

αRiQiRi − (QiRi)
2 =

Si

(
0 0

(α2 − αβ)MiKi + (αβ − β2)NiMi (α
2 − αβ)MiLi + (αβ − β2)N2

i

)
S−1i
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by (3.9) and (3.10) and

(α2 − αβ)MiLi + (αβ − β2)N2
i = {−(µiνi − γδ − αβ)2(3.24)

− 1

α− β
((2β2 − α2 − αβ)(γ + δ)(µiνi − γδ − αβ)

+ α(γβ + αδ)(δβ + αγ)− β3(γ + δ)2)}Imi−xi ,

by the equalities (3.14), (3.15), (3.17), and (3.18), then it can be written
λ = −(µiνi− γδ−αβ)2− 1

α−β ((γ+ δ)(2β2−α2−αβ)(µiνi− γδ−αβ) +

α(γβ + αδ)(δβ + αγ)− β3(γ + δ)2). From this,

µiνi = 1
2((α+2β)(γ+δ)±

√
α2(γ2 + δ2 − 2γδ) + 4(αβγδ − λ))+γδ+αβ.

Taking into account the equality (3.7) it is seen that assertion in (i) is
true.

Next, take any µ ∈ σ(Q + R)\{δ + β, γ + β, δ + α, γ + α}. So, there
exists i ∈ {1, . . . , k} such that µ ∈ σ(Qi + Ri). By Theorem 2.3, there
exists λ ∈ σ(Qi +Ri) such that λ+ µ = α+ β + γ + δ. Hence, we have
σ(Qi +Ri) = {µ, α+ β + γ + δ − µ}.
Thus, from (3.24), the desired result in (ii) is obtained. �

Theorem 3.6. Let Q,R ∈ Mn be an {α, β}-quadratic and {γ, δ}-
quadratic matrices, respectively, with QR 6= RQ, α 6= β, and γ 6= δ.
Let the matrix Q+R be diagonalizable.

(i) If λ ∈ σ(βR−QR)\{0, (β − α)γ, (β − α)δ},
then the roots of the polynomial
x2 − (α+ β + γ + δ)x+ λ+ α(β + δ) + γ(α+ δ) are eigenvalues
of the matrix R+Q.

(ii) If µ ∈ σ(Q+R)\{δ + β, γ + β, δ + α, γ + α}, then
(µ(α+ β + γ + δ − µ)− α(δ + β)− γ(α+ δ) ∈ σ(βR−QR).

Proof. Let Q and R be as in (3.3). Then we have

βR−QR = S((⊕ki=1(βRi −QiRi))⊕ (βR0 −Q0R0))S
−1.

By the representations (3.9), (3.10), and the relation (3.21) we get

(3.25) βRi −QiRi = Si

(
(α− β)ρiIxi (β − α)Li

0 0

)
S−1i

for all i = 1, . . . , k with ρi = µiνi−α(δ+β)−γ(α+δ)
α−β . On the other hand,

σ(βR0 − Q0R0) ⊂ {0, (β − α)γ, (β − α)δ} since βR0 − Q0R0 = (β −
α)(γ− δ)X0Y0 +(β−α)δX0 and the matrices X0 and Y0 are commuting
idempotents.
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Now, take any λ ∈ σ(βR − QR)\{0, (β − α)γ, (β − α)δ}. There ex-
ists i ∈ {1, . . . , k} such that λ = (α − β)ρi by the equality (3.25).
Also, by (3.7) and (3.17) there exist µ, ν ∈ σ(R + Q) such that ρi =
µν−α(β+δ)−γ(α+δ)

α−β and µ+ ν = α+ β + γ + δ. So we have the equalities

µ+ ν = α+ β + γ + δ and µν = λ+α(β + δ) + γ(α+ δ). Thus, µ and ν
are the roots of the polynomial mentioned in (i).

Next, take any µ ∈ σ(Q + R)\{δ + β, γ + β, δ + α, γ + α}. So, there
exists i ∈ {1, . . . , k} such that µ, α + β + γ + δ − µ ∈ σ(Qi + Ri) from
Theorem 2.3. Hence, in view of (3.25), it follows that µ(α+ β+ γ+ δ−
µ)− α(δ + β)− γ(α+ δ) ∈ σ(βRi −QiRi) ⊂ σ(βR−QR). �

Observe that we obtain the same relations in Theorems 3, 4, 6, 5,
respectively, of [9] when in Theorems 3.1, 3.3, 3.4, 3.6, respectively, we
substitute aP = R′, bQ = Q′ and apply our results for R′ +Q′.

Necessary conditions has been given in order that the matrix c1P1 +
c2P2 be involutive in Theorem 2.5 (b) of [10] with c1, c2 ∈ C∗ and P1,
P2 two noncommuting idempotent matrices, in Theorem 2.4 (b) of [10]
with c1, c2 ∈ C∗ and P1, P2 two noncommuting involutive matrices. Take
c1P1 = R and c2P2 = Q in Theorem 2.4 (b) of [10]. Then R is {c1,−c1}-
quadratic and Q is {c2,−c2}-quadratic since P1, P2 are involutive matri-
ces. Moreover, c1 6= −c1 and c2 6= −c2 since c1, c2 ∈ C∗. Thus, following
the proof of Theorem 3.1, it is seen that the converse of the result in
Theorem 2.4 (b) of [10] is also true. Similarly, take again c1P1 = R and
c2P2 = Q in Theorem 2.5 of [10]. Then R is {c1, 0}-quadratic and Q
is {c2, 0}-quadratic since P1, P2 are idempotents. Furthermore, c1 6= 0
and c2 6= 0 because c1, c2 ∈ C∗. Thus, following the proof of Theorem
3.1, it is seen that the converse of Theorem 2.5 (b) of [10] is also true.
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[9] X. Liu and J. Beńıtez, The spectrum of matrices depending on two idempotents,
Appl. Math. Lett. 24 (2011), no. 10, 1640–1646.
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