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ON THE SPECTRA OF SOME MATRICES DERIVED
FROM TWO QUADRATIC MATRICES

H. OZDEMIR* AND T. PETIK

Communicated by Abbas Salemi Parizi

ABSTRACT. The relations between the spectrum of the matrix @ +
R and the spectra of matrices (y+0)Q+ (a«+8)R—QR—RQ, QR—
RQ, aBR — QRQ, aRQR — (QR)?, and SR — QR have been given
assuming that the matrix @ + R is diagonalizable, where @), R are
{a, B}-quadratic matrix and {v, d}-quadratic matrix, respectively,
of order n.

1. Introduction

Let C be the field of complex numbers and C* = C\{0}. For a positive
integer n, let M,, be the set of all n x n matrices over C. Moreover, let 0
and I, denote the zero matrix (of any size) and the n xn identity matrix,
respectively. First we recall some definitions, concepts, and properties
from the linear algebra. For A € M,,, the trace, rank and spectrum of A
will be denoted by tr(A), rk(A), and o(A), respectively. Let p,q € C. A
matrix A € M,, is said to be {p, ¢}-quadratic, if (A —pl,)(A—ql,) =0
(see, e.g., [1]). If p = q, then we simply say that A is {p}-quadratic.
The matrix A is called an idempotent matrix if {p,q} = {1,0}, i.e.,
A% = A. The matrix A is called an involutive matrix if {p, ¢} = {1, -1},
i.e., A> = I,. Hence, quadratic matrices are a wide class of matrices
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containing idempotent, involutive, and several other types of matrices.

As we shall show (see Theorem 2.1), for any {p, ¢}-quadratic matrix
A with p # ¢ there exist two idempotent matrices X and Y such that
A=pX +qY, I, =X +Y, and XY = 0. Therefore, to be quadratic is
closely related to the degrees of freedom of quadratic forms in Statistics.
For example, to be involutive gives the restriction that the sum of de-
grees of freedom of different independent quadratic forms must be equal
to the dimension of the primary quadratic form matrix in the framework
of statistical theory.

Recently, many studies concerning quadratic matrices have been done.
For example, some properties of quadratic matrices have been given in
[1]. In [6], generalized quadratic matrices have been introduced and some
results about them have been presented. The spectral characterizations
of generalized quadratic operators have been obtained in [5]. Idempotent
and involutive matrices, which are special cases of quadratic matrices,
have been extensively studied and there are many results about the spec-
tra of some special types of matrices in the literature. For example, a
linear combination of two involutive matrices has been studied in [10].
Some rank identities for involutive matrices have been obtained in [13].
The spectrum of a linear combination of two projections in C*-algebras
has been considered in [3]. In [2], the spectrum of a linear combina-
tion of two orthogonal projections has been studied by means of the
CS decomposition, which is closely associated with the principal angles
between two subspaces. It has been shown how the spectrum of the sum
of orthogonal projectors determine the convergence of many parallel it-
erative algorithms in [4].

The concept of spectrum is interesting not only from the algebraic
point of view but also from the role it plays in applied sciences. For
example, eigenvalues, which form the spectrum, are used to study dif-
ferential equations and continuous dynamical systems. They provide
important information in engineering design, and they arise naturally in
fields such as physics and chemistry. Moreover, they are practically the
most important feature of any dynamical system and hold the key to
the discrete evolution of a dynamical system (see, e.g., [8]). Eigenvalues
are also used in the theory of diagonalization, difference equations, Fi-
bonacci numbers, and Markov processes (see, e.g., [12]).

In [9], Liu and Benitez discussed the spectra of some matrices de-
pending on two idempotents. We extend those results to a pair of {p, ¢}-
quadratic matrices with p # ¢. Obviously, any idempotent matrix is a
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{p, ¢}-quadratic matrices with p # ¢, therefore, the results given here
are nontrivial extensions of the results given in [9)].

2. Preliminary Results

In this section, first we establish a result stating some properties of
quadratic matrices.

Theorem 2.1. Let A € M,,. The following statements are equivalent.

(1) There exist o, 5 € C such that o #  and (A—al,)(A—B1,) = 0.

(2) A is diagonalizable and o(A) C {«, B}.

(3) There exist o, € C such that o # [ and two idempotents
XY € M, such that A = aX +38Y, X +Y = I,, and
XY =YX=0.

(4) There exist a,b € C and an idempotent matriz X such that a # 0
and A = aX + bI,,.

Proof. (1) implies (2). It is seen from the fact that a matrix is diago-
nalizable if and only if its minimal polynomial has simple roots (Corol-
lary 3.3.10, [7]).
(2) implies (3). By the hypotheses, there exists a nonsingular ma-
trix S such that
A= S(al,® BI,)S™!
with p,q € {0,1,...,n} and p+ ¢ = n. Define

X=9,®0)S1 and Y =50aI)S

Observe that A = a X+ Y, X4+Y = I,, and XY = Y X = 0 as desired.
(3) implies (4). Since A = aX + Y and Y = I,, — X, we can write
A= (a - B)X +5In’

and the desired result is obtained by taking a = a — 8 and b = S.

(4) implies (1). Since the matrix X is idempotent, there exists a
nonsingular matrix S such that X = S(I, ® 0)S~! with rk(X) = p.
From this, it can be written

A=aS(I,®0)S™ +bS(I,® 1, ,)S™ ' = S((a+b)I,®bl, ,)S™*
by the hypothesis. We define « = a + b, 5 = b. Thus, we have
A—al,=S0& (8- a)l,—p)S™t and A—BI, = S((a— B)I, ®0)S~ L.
Hence, we arrive at the equality (A — al,)(A — B1,) = 0 as desired. O
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It is noteworthy the following result.

Let A € M,, be a {g}-quadratic matrix. By the Jordan canonical
form, there is a nonsingular matrix S € M,, such that

A=S(h @@ J)S ™,

JZ-:(g ;) oo Ji=(q)

for ¢ = 1,...,k. Evidently, if in addition, A is diagonalizable, then
A=ql,.

where

Remark: If X € M, is a {p,¢}-quadratic matrix and ¢ € C*, then
cX is a {cp, cq}-quadratic matrix. This simple observation permits to
study the spectrum of the sum of two {p, ¢}-quadratic matrices instead
of arbitrary linear combinations of two {p, ¢}-quadratic matrices.

Now, we state the following theorem about the spectrum of a matrix
@ + R with @Q and R commuting quadratic matrices.

Theorem 2.2. Let Q € M,, and R € M,, be an {«, B}-quadratic matrix
and {7, d}-quadratic matriz, respectively, such that QR = RQ, a # [,
and v # 6. Then

o(Q@+R)C {0+ 8,7+ 8,0 +a,v+a}.

Proof. By Theorem 2.1(4), there exist idempotent matrices X and Y
such that @ = (a«— )X + I, and R = (y—0)Y +dI,. Since QR = RQ,
then XY = Y X, and therefore, the matrix (o — 5)X + (y — )Y is
diagonalizable and o((a«— )X +(y—90)Y) C {0,7y—0,a—f3,y—0+a—pf}
by Theorem 1 of [9]. Combining the last inclusion with the equality
Q+R=(a—0B)X+(y—0)Y + (6 4+ B)I, proves the theorem. O

Theorem 2.3. Let Q € M,, and R € M,, be an {«, f}-quadratic matrix
and {v,d}-quadratic matriz, respectively, with QR # RQ, o # 3, and
v # 6. Let the matriz Q + R be diagonalizable. If A € o(Q + R)\{d +
B,y 4+ B,0+a,y+a}, then there exists u € o(Q + R) such that A+ u =
a+p+v+0.

Proof. By Theorem 2.1, we have the equalities Q = (o« — 8)X + 81, and
R = (y—6)Y + I, with X? = X, Y? = Y. Since QR # RQ, then
XY # Y X. There exist a nonsingular matrix T and a diagonal matrix
A such that

(2.1) TAT'=Q+R
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since the matrix () + R is diagonalizable. So, we get
(2.2 (0= B)X + (v — )Y = T(A — (6 + H)L)T"!
considering the equalities Q + R = (o — )X + (v — )Y + (8 +0)I,, and
(2.1). This states that the matrix (o« — )X + (7 —9)Y is diagonalizable.
Now take any A € o(Q + R)\{6 + 5,7+ 5,6 + a,v + a}. Thus
A—(+8)¢{0,y -0, — B,y — 0+ a— B}. Moreover, A — (§ + ) €
o((a—=p)X + (y—9)Y) by (2.2). Since the matrices X and Y are two
noncommuting idempotent matrices, there exists pu* € o((a — B)X +
(y = 90)Y) such that A — (6 + B) + p* = a +v — B — & by Corollary
1 of [9]. Hence, u* 4+ 0 + S € o(Q + R) from the equality Q@ + R =
(a=B)X+(y=080)Y + (6 + B)I,. Thus, weget \+u=a+p5+~v+0
by taking p = p* 4+ 9 + 5. O

3. Main Results

In this section, it has been considered relationships between the spec-
trum of the matrix @ + R and the spectra of the matrices (v + 0)Q +
(a+ B)R — QR — RQ, QR — RQ, aR — QRQ, aRQR — (QR)?, and
BR — QR respectively, where the matrices () and R are noncommuting
quadratic matrices.

Theorem 3.1. Let Q € M,, and R € M, be an {«a, B}-quadratic matriz
and {v,d}-quadratic matriz, respectively, with QR # RQ, « # 3, and
v # 6. Let the matriz Q) + R be diagonalizable.

(1) Ifpeo(@Q@+RN\{6+B,v+B,0+a,y+a}, then p(y+ 0 +a+
B i)~ 76— aBeol(r+0)Q+(a+ AR - QR - RQ).

(i) If A€ a((y+0)Q+ (a+BR—QR— RQ)\{a + 45,75+ ad},
then the roots of the polynomial x> — (y+5+a+p)z+A+v5+af
are the eigenvalues of the matriz Q@ + R.

Proof. By Theorem 2.1, there exist idempotent matrices X and Y such
that Q@ = (o« — B)X + B, and R = (y — )Y + 01,. Since QR # RQ,
then XY # Y X. Also, the matrix (o — )X + (7 —0)Y is diagonalizable
because the matrix @ + R is diagonalizable. Thus, by Lemma 1 (i) of
[9], there exists a nonsingular matrix S € M,, and idempotent matrices
Xo, ..., Xk, Y0, ..., Y such that X;,Y; € M,,, fori =0,1,...,k,

(31) X =S((&_X;) ®X0)S™" and Y =S((&fY;) ®Yp)S™!

with XYy = YpXo and X;Y; # Y; X, for i = 1,...,k. Considering the
equalities Q = (o — )X + BI, and R = (y — 0)Y + I, together with
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the expressions in (3.1) leads to
Q = S((®L1((a = B)Xi + BIm,)) ® (o = B)Xo + Blmy)) S~
and
R = S(®1((y = 0)Yi + 61,) @ (v = 6)Yo + 8Ly ))S
Now, for i =0,1,...,k, we define the matrices @); and R; as
(3.2) Qi=(a—B)X;+BLyn, and R;=(y—06)Y;i+ Ly,

It is clear that all the matrices @Q; are {«, f}-quadratic matrices and all
the matrices R; are {v,0}-quadratic matrices. Also, we get QoRy =
RoQo and Q;R; # R;Q; for i = 1,... k since XpYy = YpXo and
XY, £Y;X; fori =1,...,k. Thus, under the hypotheses of the theo-
rem, there exists a nonsingular matrix S € M,,, {a, B}-quadratic ma-
trices Qo, ..., Qk, and {v,d}-quadratic matrices Ry,..., Ry such that
Qi, Ri € My, for i =0,1,... )k,

(33) Q=S((®1Q) ®Q)S™" and R=S((®_1Ri) ® Ro)S™",
with QoRo = RoQo and Q;R; # R;Q; for i = 1,... k. There exist

distinct complex numbers &1, 171; . . . ; &, Mk such that
(34) &GH+ni=aty—B6-0, o(la—B)Xi+(yv—9)Y:)={& m}
(3.5) (o= B)(y = 6)(Xi = Yi)* = &milm,

fori=1,...,k by Lemma 1 (ii) of [9]. From the equalities (3.2) and the
second equality of (3.4), we obtain o(Q; + R;) = {& + 0+ 8,mi+ + B}.
Fori=1,...,k, we define u; and v; as

(3.6) wi=&+6+p5 and vi=m+95+p.

Thus, we have o(Q; + R;) = {ui,v;} for i = 1,... k. Considering the
first equality of (3.4) and the equalities (3.6), we arrive at

(3.7) witvi=a+pB+v+04.

Using the expressions (3.2), (3.6), and (3.7) in the equality (3.5) we have

(38) (v+0)Qi+ (a+ B)Ri — QiR — RiQ; = (nivi — v — aff) L,
fori =1,..., k. From the equalities (3.3), it can be shown that

(v +8)Q + (a+ B)R — QR — RQ = S((BE, (v + 0)Q; + (a + H)R; —
QiRi — RiQ;) © (v + 0)Qo + (a + B)Ro — 2QuRo))S ™.

Observe that (y+9)Qo+ (a+ B)Ro —2QoRo = (7 —0)(a—B)(Xo+ Yo —
2X0Y0) + (78 + ad) I, and the matrix X+ Yy — 2XoY) is idempotent.
Moreover, (y—6)(a— ) # 0. Thus, the matrix (y+0)Qo+ (v + 5)Ro —
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2Q0 Ry is a {ay + 68,78 + ad}-quadratic matrix.

Now, take any p € o(Q + R)\{d + 8,7 + 8,0 + a,7 + a}. Then
¢ o(Qo+ Ro) by Theorem 2.2. Hence, there exists i € {1,...,k} such
that p € 0(Q; + R;), and therefore 0(Q; + R;) = {p,a+B8+~v+0 — u}
on account of Theorem 2.3. Thus, it can be written u(a+ f+v+ 9 —
) —v0 —af €o((y+90)Qi + (a+ B)R; — QiR; — R;Q;) from (3.8). It
is obtained the desired result in (i) by considering o((y + 0)Q; + (a +
B)R; — QiRi — RiQ;) Co((v+6)Q + (a+ B)R — QR — RQ).

Next, take any A € o((yv +0)Q + (o + B)R — QR — RQ)\{ay +
B0,v8 + ad}. Since A ¢ {ay+ 55,78+ ad} and the matrix (y+ 9)Qo +
(o + B)Ro — 2Qo Ry is {ay + B9, 78 + ad}-quadratic, then A ¢ o((y +
0)Qo + (a+ B)Ro — 2QoRp). Thus, there exists ¢ € {1,...,k} such that
A = piv; — 0 — aff from the equality (3.8). By the equality (3.7), we
have p+v =a+ g+ v+ 6 with 4 = p; and v = v;. Considering the
equality puv = A 4+ vé + a8 together with the last expression completes
the proof of (ii). O

If we consider Theorem 3.1 together with the Remark preceding The-
orem 2.2, we get the following corollary.

Corollary 3.2. Let Q € M,, and R € M,, be an {«, 5}-quadratic
matriz and {7, § }-quadratic matriz, respectively, with QR # RQ, o # B,
and v # 0. Let c¢,d, ¢,d € C* such that the matrices cR + dQ and
¢ R+d Q are diagonalizable. If i € o(cR~+ dQ)\{cd + df, ey + dB, cd +
da, ey + da}, then the roots of the polynomial 2% — (¢ (v + 0) + d (a +
Bz + L(u(c(y+68) +dla+ B) — p) — 2y — d?aB)cd + s +d%ap
are the eigenvalues of the matriz ¢ R+ d Q.

Theorem 3.3. Let Q € M,, and R € M,, be an {«, f}-quadratic ma-
triz and {~,d}-quadratic matriz, respectively, with QR # RQ, o # B,
and v # §. Let the matriz QQ + R be diagonalizable.

(i) If X € 0o(QR — RQ)\{0}, then there exist p,v € o(R+ Q) such
that p+v=~y+0+a+8 and \2 = (uv — (y+ a)(B+9)) (uv —
(B+7)(0+a)).

(i) If p € o(Q+ R\{0 + B,v + 5,0 + a,v + a}, then there exists
A € 0(QR — RQ) such that \2 = (u(y+d+a+B—p)— (v +
a)(B+ )y +d+a+B—pu) = (B+7)0 +a)).

Proof. Let @ and R be as in (3.3). So, we have the equality QR —
RQ = S((®%,(QiR; — R;Q;)) ® 0)S~1. By Theorem 2.1, there exist
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two idempotent matrices X and Y such that Q@ = (o — 8)X + B,
and R = (v — )Y + 01,. Since QR # RQ, then XY # Y X. Also,
the matrix (o — )X + (v — §)Y is diagonalizable because @ + R is
diagonalizable. Thus, by in [9, Lemma 1,(iii)], for i« = 1,...,k, there
exist nonsingular matrices S; such that X; = 5; ( Iy 0 ) S, Ly, =

0 0
S A; B; 5.~ wh (X)) A€ Mo D e M 1
7 07, D’L 7 where r; =T ( Z)? 7 mis 4 m;—z;s A1
D; = pfIm,—; With pf = ¢

& - iati
(CEOIeE) and &;, n; are distinct complex

numbers satisfying the equalities (3.4). Since X; = S; < Igi g > St
and Q; = (o — B)X; + B, for i =1,... k, we get

_ q. O[Ixi 0 1
(3.9) Qi =S; < 0 Bl ) S;
. . . Az Bz 1
Likewise, since Y; = S; D S; " and R; = (v —0)Y; + 01, for
i=1,...,k, we obtain
o Ki L -1
(3.10) R =S < Mo >Si
with
(3'11) Ki = (7_5)142““5[9“ = ((1 _p;)(7_5)+/8)1$i7
(312) LMy = (v~ 02BiCi = (v — 620 (1 — g},
(3.13) M;Li = (v = 8)*CiBi = (v = 8)?p; (1 = p} ) In; —a
and
(3.14) Ni= (v =0)Di + 0lpm;—z; = (v = 6)p; + 6) L —a;-
By considering the equalities (3.6) and (3.7), it follows that
1 1

B15) 0 = TR S @ g g () B).
Hence, we get

_MiVi—Oé(’Y+5) —d(a+1)
a—f

(3.16) (I=p)y—0)+d=
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Now, for i =1,...,k we define p; as
Vi — —0
(3.17) oy — ¥ a(y +5) —da+7)
a—p
Thus, we obtain (1 — p¥)(y —d) + 6 = —p;, that is, v+ p; = éf’é, and
therefore &;n; = (a—B)(y+p;). It is clear that pf(1—p}) = —%
&ini

in view of pj = m=35t—5 and &mi = (a=PB)(y+pi), fori=1,... k.
Hence, it follows that
(3.18)

LiM; = —(v+pi)(6 + pi)Iz; and  M;L; = — (v + pi)(0 + pi) L, —a

by (3.12) and (3.13). From (3.9), (3.10), and (3.18), we get

(3.19) (QiRi — RiQ:)* = (a = B)* (v + pi) (6 + pi) Im,

fori=1,...,k.

Now, take any A € o(QR—RQ)\{0}. From this, we have \? € o[(QR—
RQ)?\{0}. So, there exists i € {1,...,k} such that \? € o[(Q;R; —
R;Q;)?). Considering the equalities (3.7), (3.19) and taking p; = u and
v; = v, we obtain the desired result in (i).

Next, take any p € o(Q + R)\{0 + 8,7 + 5,0 + a,7 + a}. Then
there exists i € {1,...,k} such that u € o(R; + @Q;). Thus it follows
that (Oz - 6)2(’}’ + p)((S + p) S J[(QZRZ - RZQZ)Q] C U[(QR - RQ)Q] from
(3.7) and (3.19) with p = ulat By +o—p)—a(y+8)=0(aty) - fepce by the

spectral mapping theorem (see, e.g., [11], Theorem 9.33), there exists
A € 0(QR — RQ) such that A2 = (a — B)%(y + p)(§ + p) . So, the proof
of (ii) is complete. O

Theorem 3.4. Let Q € M,, and R € M,, be an {«, B}-quadratic ma-
triz and {7, d}-quadratic matriz, respectively, with QR # RQ, a # [,
and vy # §. Let the matriz QQ + R be diagonalizable.

(i) If A € o(aBR—QRQ)\{av(B— a), ad(5 — ), 56(a— B), 7Bla—
B)}, then the roots of the polynomial 2 — (a4 B+~y+8)x+a(B+
8)+7y(a+8)+ A or 2® —(a+f+y+8)z+B(a+8)+7(8+08)+ 5
are the eigenvalues of the matriz @ + R.

(i) If p € o(Q+R)\{0+8,v+08,0+a,y+a}, then there exist A1, Ao €
o(afR—QRQ) such that \y = a(u(y+d+a+5—p)—a(d+5)—
Y(a+9)) and A2 = B(pu(y+6+a+B—p) = Bla+d) —v(B+9)).
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Proof. Let the matrices Q and R be as in (3.3). Then we can write

afR — QRQ = S((®}_; (aBR; — QiRiQi)) ® (aBRy — QoRoQo))S ™"
Since Qo = (a— B)Xo+ BIm, and Ry = (y—08)Yy+01m, (with X2 = X,
Y$ = Yo, and XYy = Y5 Xp), we get
afRy — QoRoQo =

(8 = o®)((7 — 9)XoYo + 6. Xo)

+HaB = B%)((v = 6)Yo + 0Lmy).-
Also, the matrices Xy and Y[ are simultaneously diagonalizable because
XoYy = YpXo. Thus, we obtain o(aSRy—QoRoQo) C {ay(f—a), ad(f—
@), 0B(a — B),yB(cr — B8)} from (3.20).

Now, take any A € o(afR — QRQ)\{ay(f — a),ad (8 — a),d5(a —
B),v8(a—B)}. So, we have A ¢ o(aSRy — QoRoQop). Thus, there exists
i€ {l,...,k} such that A € o(afR; — Q;R;Q;). On the other hand, the
equalities (3.9) and (3.10) lead to the equality

0 (@B — B*)N;
fori=1,...,k. From (3.11) and (3.16) we have the relation
(3.21) Ki = _PiI:ci

with p; = “"”i_aw;rfg_%a%) for i =1,...,k. Similarly, from (3.14) and
(3.15), we get

(3.20) w&—@&@—&<@5‘ﬂm 0 >$1

i — (B +9) —ﬁ(a‘*“s)l
= 04—6 mi—T;*

(3.22) N;

Hence by combining (3.20) with (3.21) and (3.22) it is seen that A =
a(pivi —y(a+06) —a(d+B)) or A = B(uiv; — B(6+a) —y(B+6)). From
this, we have y;v; = 2+ (6 + B) +y(a +0) or piv; = %)\ +B(a+9)+
¥(B + 6). The equality (3.7) assures that the roots of the polynomial
22— (a+B+y+0)z+a(d+8)+v(a+d) +Ixora® — (a+B+v+
Nzr+PL0+a)+~y(B+9d)+ %/\ are the eigenvalues of the matrix @ + R.
So the proof of (i) is complete.

Next, take any p € o(Q+R)\{d+5,v+5,d+a,y+a}. So there exists
i€ {l,...,k} such that p € 0(Q; + R;). Since 0(Q; + R;) = {s,vi} and
Wi +v; = a+B+v+9, we can write o(Q; + R;) = {,a++~v+5 — u}.
Hence by the equalities (3.20)-(3.22),
a(platfry+i—p)—a(f+8)—(a+d)), BlulatB+y+d—p)—Flat
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0)—v(B+9)) € o(afR; — Q; R;Q;). The inclusion o(afR; — Q; R;Q;) C
o(afR — QRQ) gives (ii). O

Theorem 3.5. Let Q € M,, and R € M,, be an {«, B}-quadratic ma-
triz and {v, d}-quadratic matriz, respectively, with QR # RQ, a # 3,
and vy # §. Let the matriz QQ + R be diagonalizable.

(i) If X € o(aRQR — (QR)2)\{0, Bv2(cr — B), B6%(c — B)}, then the
roots of the polynomial
2 — (a4 B+y+0)r+5((a+28)(y+0)+
Va2(y =82 + 4(aByd = X)) +10 + o

are eigenvalues of the matriz QQ + R.

(i) If peo(@+R)\{0+ 8,7+ 5,0+ a,y+a}, then
—(u(y+o+atB—p)—yi—ap)?— 15 ((v+6) (262 —a®—af) (u(r+
0+a+p—p) —v0—aB)+a(yB+ad)(68+ay)— B3 (y+6)%) €
o(aRQR — (QR)?),

Proof. By the expressions (3.3), we get

aRQR—(QR)*=
S((@r1 (aRiQiR; — (QiR:)?))B(aRoQoRo—(QoRo)?)S ™"

By the equalities Qo = (o — 8)Xo + Blmy, Ro = (v — 0)Yo + 611,
and XyYy = Y5 X, we obtain
(3.23)
aRyQoRo—(QoRo)* = B(B—a)(v*—6%)(XoYo—Y0)+B6(B—a)(Xo—Im,)-

Since the matrices Xy and Yy are simultaneously diagonalizable, it fol-
lows from (3.23) that o(aRyQoRo — (QoRo)?) C {0, Bv*(a— B), B*(a—
8)}.

Now, take any A € o(aRQR — (QR)2)\{0, 72(ax — B), 38%(cx — B)}.
So, A ¢ a(aRoQoRo — (QoRo)?). Thus there exists i € {1,...,k} such
that A € o(aR;Q;R; — (Q;R;)?). Since, for i = 1,...,k,

aRiQiR; — (QiR;)* =
S. 0 0 g-1
¢ (042 — (Xﬂ)MlKZ -+ (Oéﬂ — ﬁ2)NzMZ (a2 - aﬁ)MzLZ + (aﬂ — ,82)Nz2 @
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by (3.9) and (3.10) and

(3.24) (o — aB)M;L; + (afp — B*)N}? = {— (v — 0 — aB)?
1

— a3\ — o’ —aB)(y + ) (i — 8 — ab)

04(7/8 + aé)(dﬂ + 0‘7) - 63(7 + 5)2)}Imi—$i’

by the equalities (3.14), (3.15), (3.17), and (3.18), then it can be written
A= —(pivi =78 —aB)? = 25 ((v+0)(28° — a® — af) (i — 70 — af) +
a(yB + ad)(6B + ay) — B3(y + 6)?). From this,
pivi = 3((a+28)(v+8)£1/a?(v2 + 62 — 290) + 4(aBy5 — X)) +y6+ap.
Taking into account the equality (3.7) it is seen that assertion in (i) is
true.

Next, take any p € o(Q + R)\{d + 8,7+ 5,9 + a,7 + a}. So, there
exists ¢ € {1,...,k} such that p € 0(Q; + R;). By Theorem 2.3, there
exists A\ € 0(Q; + R;) such that A+ = a+ 4+ v+ J. Hence, we have

o(Qi+ Ri) ={ma+B+v+6—p}
Thus, from (3.24), the desired result in (ii) is obtained. O

Theorem 3.6. Let Q,R € M, be an {«,S}-quadratic and {v,0}-
quadratic matrices, respectively, with QR # RQ, o # B, and v # 0.
Let the matriz Q + R be diagonalizable.

() If A € o(BR — QR\0, (8 — o), (8 — )3},
then the roots of the polynomial
22— (a+B+v+8)x+ A+ a(B+03)+7(a+0) are eigenvalues
of the matriz R+ Q.
(i) If peo(@Q@+R\{0+ 8,7+ B,0+a,v+a}, then
(wla+B+v+6—p) —a(d+8) —v(a+d) €o(BR—QR).
Proof. Let  and R be as in (3.3). Then we have

BR— QR = S((®=1(BR; — QiR:)) ® (BRo — QoRo))S ™
By the representations (3.9), (3.10), and the relation (3.21) we get

_ (= B)pils, (B—a)Li | o
(3.25) BR; — QiR; = S; ( o X ) s

for all i = 1,...,k with p; = 2= (6+’8) 12+9) On the other hand,

o(BRy — QoRo) C {0, (B — o)y, (B — a)5} since SRy — QoRo = (8 —
a)(y—90)XoYo+ (8 — )6 X and the matrices X and Y are commuting
idempotents.
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Now, take any A € o(BR — QR)\{0, (8 — a)v, (8 — «)d}. There ex-
ists ¢ € {1,...,k} such that A = (o — B)p; by the equality (3.25).
Also, by (3.7) and (3.17) there exist u,v € o(R + Q) such that p; =

“V_G(B:i)/g%am) and p+v =a+ B3+ +4J. So we have the equalities

p+v=a+pB+~v+0and ur = A+ a(8+9)+y(a+9). Thus, u and v
are the roots of the polynomial mentioned in (i).

Next, take any pu € o(Q + R)\{d + 8,7 + 3,0 + a,v + a}. So, there
exists i € {1,...,k} such that y,a+58+~v+ 9 — p € 0(Q; + R;) from
Theorem 2.3. Hence, in view of (3.25), it follows that u(a+ 8+ +06 —
p) —a(d+B) —v(a+6) € o(BR; — QiR;) C o(BR — QR). [

Observe that we obtain the same relations in Theorems 3, 4, 6, 5,
respectively, of [9] when in Theorems 3.1, 3.3, 3.4, 3.6, respectively, we
substitute aP = R/, bQ = Q' and apply our results for R’ + Q.

Necessary conditions has been given in order that the matrix c¢; P, +
c2 P be involutive in Theorem 2.5 (b) of [10] with ¢;,co € C* and P,
P, two noncommuting idempotent matrices, in Theorem 2.4 (b) of [10]
with ¢1,co € C* and Py, P» two noncommuting involutive matrices. Take
c1P1 = R and co P> = @ in Theorem 2.4 (b) of [10]. Then R is {c1, —c1}-
quadratic and @ is {c2, —c2 }-quadratic since Pj, P are involutive matri-
ces. Moreover, ¢; # —c1 and ¢co # —co since ¢q, co € C*. Thus, following
the proof of Theorem 3.1, it is seen that the converse of the result in
Theorem 2.4 (b) of [10] is also true. Similarly, take again ¢; P = R and
2Py = @ in Theorem 2.5 of [10]. Then R is {c1,0}-quadratic and Q
is {c2,0}-quadratic since Pj, P, are idempotents. Furthermore, ¢; # 0
and ¢y # 0 because c1,co € C*. Thus, following the proof of Theorem
3.1, it is seen that the converse of Theorem 2.5 (b) of [10] is also true.
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