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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR

A PERIODIC BOUNDARY VALUE PROBLEM

A. AMINI-HARANDI

Communicated by Behzad Djafari-Rouhani

Abstract. Here, using the fixed point theory in cone metric spaces,
we prove the existence of a unique solution to a first-order ordinary
differential equation with periodic boundary conditions in Banach
spaces admitting the existence of a lower solution.

1. Introduction

Recently, some authors applied fixed point theory in partially ordered
metric spaces to study the existence of a unique solution to periodic
boundary value problems on real line [2,3,5,7–9]. Here, we consider the
following periodic boundary value problem,

(1.1)

{
u′(t) = f(t, u(t)), if t ∈ I = [0, T ]
u(0) = u(T ),

where T is a positive real number, (Y,≤) is a Banach lattice and f :
I × Y −→ Y is a continuous function.

Definition 1.1. A lower solution for (1.1) is a function α ∈ C1(I, Y )
such that
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α′(t) ≤ f(t, α(t)), for t ∈ I,
α(0) ≤ α(T ).

To set up our results in the next section, we recall some definitions
and facts.
Throughout the paper, let (Y,≤) be a Banach lattice with the positive
cone P .

Definition 1.2. A Banach lattice Y is said to be

(a) order complete if every order bounded set in Y has a supremum;
(b) σ-order continuous, if, for every nonincreasing sequence {yn} in

Y with infn xn = 0, we have limn→∞ ‖xn‖ = 0.

Theorem 1.3. ( [6], Proposition 1.a.8) Let Y be a Banach lattice. Sup-
pose that every order bounded nondecreasing sequence in Y is convergent.
Then, Y is order complete and σ-order continuous.

Theorem 1.4. ( [6], Theorem 1.c.4) The following conditions are equiv-
alent for any Banach lattice Y :

(i) No subspace of Y is isomorphic to c0.
(ii) Every norm bounded nondecreasing sequence in Y is convergent.

Lemma 1.5. ( [4]) Let (X, d) be a cone metric space and {xn} be a
sequence in X. Then,

(i) {xn} converges to x if and only if limn→∞ d(xn, x) = 0. More-
over, the limit of a convergent sequence is unique.

(ii) {xn} is a Cauchy sequence if and only if

lim
m,n→∞

d(xn, xm) = 0.

(iii) If limn→∞ xn = x and limn→∞ yn = y, then limn→∞ d(xn, yn) =
d(x, y).

The following result is a slightly improved version of Theorem 5 in [1],
which we need in the next section.

Theorem 1.6. Let (X,�) be a partially ordered set such that every pairs
of elements of X has a lower bound or an upper bound. Suppose that
there exists a cone metric d in X such that (X, d) is a complete cone
metric space with the normal cone. Let f : X → X be a nondecreasing
map such that there exists k ∈ [0, 1) with

d(f(x), f(y)) ≤ kd(x, y), ∀ x � y.
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Suppose also that if a nondecreasing sequence {xn} converges to x in X,
then xn � x, for all n. Then, f has a unique fixed point.

Proof. From Theorem 5 in [1], we get that f has a fixed point. To
prove the uniqueness, let us suppose that x and y are fixed points of
f and z is an upper or lower bound of x and y, that is, there exists
z ∈ X comparable to x and y. Monotonicity of f implies that fn(z) is
comparable to fn(x) = x and fn(y) = y, for all n ∈ N. Then,

d(x, y) = d(fn(x), fn(y)) ≤

d(fn(x), fn(z)) + d(fn(z), fn(y)) ≤ knd(x, z) + knd(z, y).

Since limn→∞ k
n = 0, from the above we get d(x, y) = 0, that is, x =

y. �

2. Main results

Lemma 2.1. Let (Y,≤) be a Banach lattice with int P 6= ∅. Then,
A ⊆ Y is norm bounded if and only if A is order bounded.

Proof. Let A ⊆ Y be order bounded. Without loss of generality, we may
assume that A ⊆ P . Then, there exists τ ∈ Y such that 0 ≤ y ≤ τ ,
for each y ∈ A. Then, for each y ∈ A, ‖y‖ ≤ ‖τ‖, that is, A is norm
bounded. Conversely, suppose that A is norm bounded. Then, there
exists a constant M > 0 such that ‖y‖ ≤ M, for each y ∈ A. Let
e ∈ int P . Then, there exists a positive number r > 0 such that e+u ∈ P ,
for ‖u‖ < r. Thus, e − λy ∈ P and e + λy ∈ P , for each y ∈ A, where
0 < λ < r

M . Therefore, −eλ ≤ y ≤ e
λ , for each y ∈ A, and so A is order

bounded. �

Let (Y,≤) be a Banach lattice with int P 6= ∅. Let C(I, Y ) denote the
set of all continuous maps f : I → Y , where I = [0, T ], and T > 0. Then,
f(I) is a compact subset of Y and then by Lemma 2.1 is order bounded
(note that f(I) is norm bounded). Thus, Lemma 2.1 together with
Theorem 1.3 and Theorem 1.4 yield that the set f(I) = {f(t) : t ∈ I}
has a supremum, for each f ∈ C(I, Y ). For each x, y ∈ C(I, Y ), set
(note that |x(.)− y(.)| ∈ C(I, Y ))

d(x, y) := sup
t∈I
|x(t)− y(t)|.

Now, we are ready to prove the following lemma.
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Lemma 2.2. Let (Y,≤) be a Banach lattice with int P 6= ∅. Suppose that
no subspace of Y is isomorphic to c0. Then, (C(I, Y ), d) is a complete
cone metric space with the normal cone.

Proof. It is straightforward to see that (C(I, Y ), d) is a cone metric
space. Now, we show that (C(I, Y ), d) is complete. Let {rn} be a
numeration of the rationales of I and let

zn = sup
1≤k≤n

|f(rk)− g(rk)|, where f, g ∈ C(I, Y ).

Since {zn} is a nondecreasing and norm bounded sequence, by Theorem
1.4, it is convergent. Since {rn} is dense in I, for each t ∈ I there exists
a subsequence {rkn}n such that rkn → t. Thus,

|f(t)− g(t)| = lim
n→∞

|f(rkn)− g(rkn)| ≤ lim
n→∞

zn, ∀ t ∈ I.

Therefore,

(2.1) sup
t∈I
|f(t)− g(t)| ≤ lim

n→∞
zn.

Now, let {fn} be a Cauchy sequence in (C(I, Y ), d). Then, by Lemma
1.5, we have limm,n→∞ d(fn, fm) = 0 and then limm,n→∞ ‖d(fn, fm)‖ =
0. Hence, for each positive number ε > 0 there exists N such that for
each m ≥ n ≥ N , we have

ε > ‖d(fn, fm)‖ = ‖ sup
t∈I
|fn(t)− fm(t)|‖ ≥

sup
t∈I
‖fn(t)− fm(t)‖ = ‖fn − fm)‖∞.

This shows that {fn} is a Cauchy sequence in (C(I, Y ), ‖.‖∞). Since
(C(I, Y ), ‖.‖∞) is complete, there exists a f0 ∈ C(I, Y ) such that limn→∞
‖fn − f0‖∞ = 0. Now, we prove that limn→∞ ‖d(fn, f0)‖ = 0 and then
by Lemma 1.5 we are done. On the contrary, assume that there exist a
positive number ε0 and a subsequence {fni} such that ‖d(fni , f0)‖ > ε0,
for each i ∈ N. From (2.1), we have

sup
t∈I
|fni(t)− f0(t)| ≤ lim

p→∞
sup

1≤k≤p
|fni(rk)− f0(rk)|.

Thus, for each i ∈ N, we get

ε < ‖d(fni , f0)‖ = ‖ sup
t∈I
|fni(t)− f0(t)|‖

≤ lim
p→∞

‖ sup
1≤k≤p

|fni(rk)− f0(rk)|‖.
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Then, there exists a p0 ∈ N such that

ε < ‖ sup
1≤k≤p0

|fni(rk)− f0(rk)|‖, ∀ i ∈ N.

Since {fni} is uniformly convergent to f0 on I, from the above, we get

ε ≤ lim
i→∞
‖ sup
1≤k≤p0

|fni(rk)− f0(rk)|‖ = 0,

a contradiction. Therefore, (C(I, Y ), d) is a complete cone metric space.
Now, let 0 ≤ x ≤ y. Then, ‖x‖ ≤ ‖y‖ and thus P is normal. �

Now, we prove the existence and uniqueness of the solution for the
problem (1.1) in presence of a lower solution.

Theorem 2.3. Let (Y,≤) be a Banach lattice with int P 6= ∅ and sup-
pose that no subspace of Y is isomorphic to c0. Consider problem (1.1)
with f : I × Y → Y continuous and suppose that there exist λ > 0 and
µ > 0 with µ < λ such that for x, y ∈ Y with y ≥ x,

0 ≤ f(t, y) + λy − [f(t, x) + λx] ≤ µ(y − x).

Then, the existence of a lower solution for (1.1) provides the existence
of an unique solution of (1.1).

Proof. Problem (1.1) can be written as{
u′(t) + λu(t) = f(t, u(t)) + λu(t), t ∈ I

u(0) = u(T ),

and equivalently as the integral equation

u(t) =

∫ T

0
G(t, s)[f(s, u(s)) + λu(s)]ds,

where

G(t, s) =

{
eλ(T+s−t)

eλT−1 , 0 ≤ s < t ≤ T
eλ(s−t)

eλT−1 . 0 ≤ t < s ≤ T.
Define F : C(I, Y ) −→ C(I, Y ) by

(Fu)(t) =

∫ T

0
G(t, s)[f(s, u(s)) + λu(s)]ds.

Note that u ∈ C(I, Y ) is a fixed point of F if and only if u ∈ C1(I, Y )
is a solution of (1.1). Now, we check that the hypotheses in Theorem
1.6 are satisfied. From Lemma 2.2, we have C(I, Y ) is a complete cone
metric space with the normal cone. Indeed, the complete cone metric
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space X = C(I, Y ) is a partially ordered set, if we define the following
order relation in X:

x, y ∈ C(I, Y ), x � y if and only if x(t) ≤ y(t), ∀ t ∈ I.

For each x, y ∈ C(I, Y ), z(t) = |x(t)| + |y(t)| ∈ C(I, Y ) is an upper
bound of x and y. Note that the mapping F is nondecreasing, since, by
the hypothesis, for u � v,

f(t, u(t)) + λu(t) ≥ f(t, v(t)) + λv(t)

which implies, for t ∈ I, using that G(t, s) > 0, for (t, s) ∈ I × I, that

(Fu)(t) =

∫ T

0
G(t, s)[f(s, u(s)) + λu(s)]ds ≥

∫ T

0
G(t, s)[f(s, v(s)) + λv(s)]ds = (Fv)(t),

that is, Fu � Fv. Besides, for u � v (note that (Fu)(t)− (Fv)(t) ≥ 0),

d(Fu, Fv) = sup
t∈I
|(Fu)(t)− (Fv)(t)| = sup

t∈I
[(Fu)(t)− (Fv)(t)].

For each t ∈ I, we have

[(Fu)(t)− (Fv)(t)]

=

∫ T

0
G(t, s)[f(s, u(s)) + λu(s)− f(s, v(s))− λv(s)]ds

≤
∫ T

0
G(t, s) µ(u(s)− v(s))ds

≤ µd(u, v)

∫ T

0
G(t, s)ds.

Thus,

d(Fu, Fv) = sup
t∈I

[(Fu)(t)− (Fv)(t)] ≤

µd(u, v) sup
t∈I

∫ T

0
G(t, s)ds =

µd(u, v) sup
t∈I

1

eλT − 1
(
1

λ
eλ(T+s−t)|t0 +

1

λ
eλ(s−t)|Tt ) =

µd(u, v)
1

λ(eλT − 1)
(eλT − 1) =

µ

λ
d(u, v).
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Then, for u � v (notice µ
λ < 1),

d(Fu, Fv) ≤ µ

λ
d(u, v).

Finally, let α(t) be a lower solution for (1.1) and we will show that
α ≤ Fα. Indeed,

α′(t) + λα(t) ≤ f(t, α(t)) + λα(t) for t ∈ I.
Multiplying by eλt, we get

(α(t)eλt)′ ≤ [f(t, α(t)) + λα(t)]eλt, for t ∈ I,
and this gives

(2.2) α(t)eλt ≤ α(0) +

∫ t

0
[f(s, α(s)) + λα(t)]eλsds, for t ∈ I,

which implies

α(0)eλT ≤ α(T )eλT ≤ α(0) +

∫ T

0
[f(s, α(s)) + λα(s)]eλsds,

and thus,

α(0) ≤
∫ T

0

eλs

eλT − 1
[f(s, α(s)) + λα(s)]ds.

From this inequality and (2.2), we obtain

α(t)eλt ≤
∫ t

0

eλ(T+s)

eλT − 1
[f(s, α(s)) + λα(s)]ds

+

∫ T

t

eλs

eλT − 1
[f(s, α(s)) + λα(s)]ds,

and consequently,

α(t) ≤
∫ t

0

eλ(T+s−t)

eλT − 1
[f(s, α(s)) + λα(s)]ds

+

∫ T

t

eλ(s−t)

eλT − 1
[f(s, α(s)) + λα(s)]ds.

Hence,

α(t) ≤
∫ T

0
G(t, s)[f(s, α(s)) + λα(s)]ds = (Fα)(t) for t ∈ I.

Thus, α � Fα. Now, suppose that {xn} is a nondecreasing sequence
convergent to x in C(I, Y ). For each t0 ∈ I, we have

|xn(t0)− x(t0)| ≤ d(xn, x),
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and thus limn→∞ xn(t0) = x(t0). Since {xn} is a nondecreasing sequence,
we have

x1(t0) ≤ x2(t0) ≤ ... ≤ xn(t0) ≤ xn+1(t0) ≤ · · · .

Since Y is σ-order continuous, we get

sup
n
xn(t0) = lim

n→∞
xn(t0) = x(t0),

and so xn(t0) ≤ x(t0), for each n. Finally, Theorem 1.6 gives that F has
a unique fixed point. �
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