EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A PERIODIC BOUNDARY VALUE PROBLEM

A. AMINI-HARANDI

Communicated by Behzad Djafari-Rouhani

Abstract

Here, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.

1. Introduction

Recently, some authors applied fixed point theory in partially ordered metric spaces to study the existence of a unique solution to periodic boundary value problems on real line $[2,3,5,7-9]$. Here, we consider the following periodic boundary value problem,

$$
\left\{\begin{array}{l}
u^{\prime}(t)=f(t, u(t)), \quad \text { if } t \in I=[0, T] \tag{1.1}\\
u(0)=u(T),
\end{array}\right.
$$

where T is a positive real number, (Y, \leq) is a Banach lattice and f : $I \times Y \longrightarrow Y$ is a continuous function.

Definition 1.1. A lower solution for (1.1) is a function $\alpha \in C^{1}(I, Y)$ such that

[^0]\[

$$
\begin{aligned}
& \alpha^{\prime}(t) \leq f(t, \alpha(t)), \text { for } t \in I, \\
& \alpha(0) \leq \alpha(T) .
\end{aligned}
$$
\]

To set up our results in the next section, we recall some definitions and facts.
Throughout the paper, let (Y, \leq) be a Banach lattice with the positive cone P.

Definition 1.2. A Banach lattice Y is said to be
(a) order complete if every order bounded set in Y has a supremum;
(b) σ-order continuous, if, for every nonincreasing sequence $\left\{y_{n}\right\}$ in Y with $\inf _{n} x_{n}=0$, we have $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=0$.

Theorem 1.3. ([6], Proposition 1.a.8) Let Y be a Banach lattice. Suppose that every order bounded nondecreasing sequence in Y is convergent. Then, Y is order complete and σ-order continuous.

Theorem 1.4. ([6], Theorem 1.c.4) The following conditions are equivalent for any Banach lattice Y :
(i) No subspace of Y is isomorphic to c_{0}.
(ii) Every norm bounded nondecreasing sequence in Y is convergent.

Lemma 1.5. ([4]) Let (X, d) be a cone metric space and $\left\{x_{n}\right\}$ be a sequence in X. Then,
(i) $\left\{x_{n}\right\}$ converges to x if and only if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$. Moreover, the limit of a convergent sequence is unique.
(ii) $\left\{x_{n}\right\}$ is a Cauchy sequence if and only if

$$
\lim _{m, n \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0 .
$$

(iii) If $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$, then $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=$ $d(x, y)$.

The following result is a slightly improved version of Theorem 5 in [1], which we need in the next section.

Theorem 1.6. Let (X, \preceq) be a partially ordered set such that every pairs of elements of X has a lower bound or an upper bound. Suppose that there exists a cone metric d in X such that (X, d) is a complete cone metric space with the normal cone. Let $f: X \rightarrow X$ be a nondecreasing map such that there exists $k \in[0,1)$ with

$$
d(f(x), f(y)) \leq k d(x, y), \forall x \preceq y
$$

Suppose also that if a nondecreasing sequence $\left\{x_{n}\right\}$ converges to x in X, then $x_{n} \preceq x$, for all n. Then, f has a unique fixed point.

Proof. From Theorem 5 in [1], we get that f has a fixed point. To prove the uniqueness, let us suppose that x and y are fixed points of f and z is an upper or lower bound of x and y, that is, there exists $z \in X$ comparable to x and y. Monotonicity of f implies that $f^{n}(z)$ is comparable to $f^{n}(x)=x$ and $f^{n}(y)=y$, for all $n \in \mathbb{N}$. Then,

$$
\begin{gathered}
d(x, y)=d\left(f^{n}(x), f^{n}(y)\right) \leq \\
d\left(f^{n}(x), f^{n}(z)\right)+d\left(f^{n}(z), f^{n}(y)\right) \leq k^{n} d(x, z)+k^{n} d(z, y) .
\end{gathered}
$$

Since $\lim _{n \rightarrow \infty} k^{n}=0$, from the above we get $d(x, y)=0$, that is, $x=$ y.

2. Main results

Lemma 2.1. Let (Y, \leq) be a Banach lattice with int $P \neq \emptyset$. Then, $A \subseteq Y$ is norm bounded if and only if A is order bounded.

Proof. Let $A \subseteq Y$ be order bounded. Without loss of generality, we may assume that $A \subseteq P$. Then, there exists $\tau \in Y$ such that $0 \leq y \leq \tau$, for each $y \in A$. Then, for each $y \in A,\|y\| \leq\|\tau\|$, that is, A is norm bounded. Conversely, suppose that A is norm bounded. Then, there exists a constant $M>0$ such that $\|y\| \leq M$, for each $y \in A$. Let $e \in \operatorname{int} P$. Then, there exists a positive number $r>0$ such that $e+u \in P$, for $\|u\|<r$. Thus, $e-\lambda y \in P$ and $e+\lambda y \in P$, for each $y \in A$, where $0<\lambda<\frac{r}{M}$. Therefore, $\frac{-e}{\lambda} \leq y \leq \frac{e}{\lambda}$, for each $y \in A$, and so A is order bounded.

Let (Y, \leq) be a Banach lattice with int $P \neq \emptyset$. Let $C(I, Y)$ denote the set of all continuous maps $f: I \rightarrow Y$, where $I=[0, T]$, and $T>0$. Then, $f(I)$ is a compact subset of Y and then by Lemma 2.1 is order bounded (note that $f(I)$ is norm bounded). Thus, Lemma 2.1 together with Theorem 1.3 and Theorem 1.4 yield that the set $f(I)=\{f(t): t \in I\}$ has a supremum, for each $f \in C(I, Y)$. For each $x, y \in C(I, Y)$, set (note that $|x()-.y().| \in C(I, Y))$

$$
d(x, y):=\sup _{t \in I}|x(t)-y(t)| .
$$

Now, we are ready to prove the following lemma.

Lemma 2.2. Let (Y, \leq) be a Banach lattice with int $P \neq \emptyset$. Suppose that no subspace of Y is isomorphic to c_{0}. Then, $(C(I, Y), d)$ is a complete cone metric space with the normal cone.

Proof. It is straightforward to see that $(C(I, Y), d)$ is a cone metric space. Now, we show that $(C(I, Y), d)$ is complete. Let $\left\{r_{n}\right\}$ be a numeration of the rationales of I and let

$$
z_{n}=\sup _{1 \leq k \leq n}\left|f\left(r_{k}\right)-g\left(r_{k}\right)\right|, \text { where } f, g \in C(I, Y)
$$

Since $\left\{z_{n}\right\}$ is a nondecreasing and norm bounded sequence, by Theorem 1.4, it is convergent. Since $\left\{r_{n}\right\}$ is dense in I, for each $t \in I$ there exists a subsequence $\left\{r_{k_{n}}\right\}_{n}$ such that $r_{k_{n}} \rightarrow t$. Thus,

$$
|f(t)-g(t)|=\lim _{n \rightarrow \infty}\left|f\left(r_{k_{n}}\right)-g\left(r_{k_{n}}\right)\right| \leq \lim _{n \rightarrow \infty} z_{n}, \forall t \in I .
$$

Therefore,

$$
\begin{equation*}
\sup _{t \in I}|f(t)-g(t)| \leq \lim _{n \rightarrow \infty} z_{n} \tag{2.1}
\end{equation*}
$$

Now, let $\left\{f_{n}\right\}$ be a Cauchy sequence in $(C(I, Y), d)$. Then, by Lemma 1.5, we have $\lim _{m, n \rightarrow \infty} d\left(f_{n}, f_{m}\right)=0$ and then $\lim _{m, n \rightarrow \infty}\left\|d\left(f_{n}, f_{m}\right)\right\|=$ 0 . Hence, for each positive number $\epsilon>0$ there exists N such that for each $m \geq n \geq N$, we have

$$
\begin{gathered}
\epsilon>\left\|d\left(f_{n}, f_{m}\right)\right\|=\left\|\sup _{t \in I}\left|f_{n}(t)-f_{m}(t)\right|\right\| \geq \\
\left.\sup _{t \in I}\left\|f_{n}(t)-f_{m}(t)\right\|=\| f_{n}-f_{m}\right) \|_{\infty} .
\end{gathered}
$$

This shows that $\left\{f_{n}\right\}$ is a Cauchy sequence in $\left(C(I, Y),\|\cdot\|_{\infty}\right)$. Since $\left(C(I, Y),\|\cdot\|_{\infty}\right)$ is complete, there exists a $f_{0} \in C(I, Y)$ such that $\lim _{n \rightarrow \infty}$ $\left\|f_{n}-f_{0}\right\|_{\infty}=0$. Now, we prove that $\lim _{n \rightarrow \infty}\left\|d\left(f_{n}, f_{0}\right)\right\|=0$ and then by Lemma 1.5 we are done. On the contrary, assume that there exist a positive number ϵ_{0} and a subsequence $\left\{f_{n_{i}}\right\}$ such that $\left\|d\left(f_{n_{i}}, f_{0}\right)\right\|>\epsilon_{0}$, for each $i \in \mathbb{N}$. From (2.1), we have

$$
\sup _{t \in I}\left|f_{n_{i}}(t)-f_{0}(t)\right| \leq \lim _{p \rightarrow \infty} \sup _{1 \leq k \leq p}\left|f_{n_{i}}\left(r_{k}\right)-f_{0}\left(r_{k}\right)\right| .
$$

Thus, for each $i \in \mathbb{N}$, we get

$$
\begin{gathered}
\epsilon<\left\|d\left(f_{n_{i}}, f_{0}\right)\right\|=\left\|\sup _{t \in I}\left|f_{n_{i}}(t)-f_{0}(t)\right|\right\| \\
\quad \leq \lim _{p \rightarrow \infty}\left\|\sup _{1 \leq k \leq p}\left|f_{n_{i}}\left(r_{k}\right)-f_{0}\left(r_{k}\right)\right|\right\| .
\end{gathered}
$$

Then, there exists a $p_{0} \in \mathbb{N}$ such that

$$
\epsilon<\left\|\sup _{1 \leq k \leq p_{0}}\left|f_{n_{i}}\left(r_{k}\right)-f_{0}\left(r_{k}\right)\right|\right\|, \forall i \in \mathbb{N} .
$$

Since $\left\{f_{n_{i}}\right\}$ is uniformly convergent to f_{0} on I, from the above, we get

$$
\epsilon \leq \lim _{i \rightarrow \infty}\left\|\sup _{1 \leq k \leq p_{0}}\left|f_{n_{i}}\left(r_{k}\right)-f_{0}\left(r_{k}\right)\right|\right\|=0
$$

a contradiction. Therefore, $(C(I, Y), d)$ is a complete cone metric space. Now, let $0 \leq x \leq y$. Then, $\|x\| \leq\|y\|$ and thus P is normal.

Now, we prove the existence and uniqueness of the solution for the problem (1.1) in presence of a lower solution.
Theorem 2.3. Let (Y, \leq) be a Banach lattice with int $P \neq \emptyset$ and suppose that no subspace of Y is isomorphic to c_{0}. Consider problem (1.1) with $f: I \times Y \rightarrow Y$ continuous and suppose that there exist $\lambda>0$ and $\mu>0$ with $\mu<\lambda$ such that for $x, y \in Y$ with $y \geq x$,

$$
0 \leq f(t, y)+\lambda y-[f(t, x)+\lambda x] \leq \mu(y-x) .
$$

Then, the existence of a lower solution for (1.1) provides the existence of an unique solution of (1.1).

Proof. Problem (1.1) can be written as

$$
\left\{\begin{array}{c}
u^{\prime}(t)+\lambda u(t)=f(t, u(t))+\lambda u(t), t \in I \\
u(0)=u(T),
\end{array}\right.
$$

and equivalently as the integral equation

$$
u(t)=\int_{0}^{T} G(t, s)[f(s, u(s))+\lambda u(s)] d s
$$

where

$$
G(t, s)=\left\{\begin{array}{l}
\frac{e^{\lambda(T+s-t)}}{e^{\lambda T}-1}, 0 \leq s<t \leq T \\
\frac{e^{\lambda(s-t)}}{e^{\lambda T}-1} \cdot 0 \leq t<s \leq T .
\end{array}\right.
$$

Define $F: C(I, Y) \longrightarrow C(I, Y)$ by

$$
(F u)(t)=\int_{0}^{T} G(t, s)[f(s, u(s))+\lambda u(s)] d s
$$

Note that $u \in C(I, Y)$ is a fixed point of F if and only if $u \in C^{1}(I, Y)$ is a solution of (1.1). Now, we check that the hypotheses in Theorem 1.6 are satisfied. From Lemma 2.2, we have $C(I, Y)$ is a complete cone metric space with the normal cone. Indeed, the complete cone metric
space $X=C(I, Y)$ is a partially ordered set, if we define the following order relation in X :

$$
x, y \in C(I, Y), x \preceq y \text { if and only if } x(t) \leq y(t), \forall t \in I
$$

For each $x, y \in C(I, Y), z(t)=|x(t)|+|y(t)| \in C(I, Y)$ is an upper bound of x and y. Note that the mapping F is nondecreasing, since, by the hypothesis, for $u \succeq v$,

$$
f(t, u(t))+\lambda u(t) \geq f(t, v(t))+\lambda v(t)
$$

which implies, for $t \in I$, using that $G(t, s)>0$, for $(t, s) \in I \times I$, that

$$
\begin{gathered}
(F u)(t)=\int_{0}^{T} G(t, s)[f(s, u(s))+\lambda u(s)] d s \geq \\
\int_{0}^{T} G(t, s)[f(s, v(s))+\lambda v(s)] d s=(F v)(t)
\end{gathered}
$$

that is, $F u \succeq F v$. Besides, for $u \succeq v$ (note that $(F u)(t)-(F v)(t) \geq 0)$,

$$
d(F u, F v)=\sup _{t \in I}|(F u)(t)-(F v)(t)|=\sup _{t \in I}[(F u)(t)-(F v)(t)]
$$

For each $t \in I$, we have

$$
\begin{gathered}
{[(F u)(t)-(F v)(t)]} \\
=\int_{0}^{T} G(t, s)[f(s, u(s))+\lambda u(s)-f(s, v(s))-\lambda v(s)] d s \\
\leq \int_{0}^{T} G(t, s) \mu(u(s)-v(s)) d s \\
\leq \mu d(u, v) \int_{0}^{T} G(t, s) d s
\end{gathered}
$$

Thus,

$$
\begin{gathered}
d(F u, F v)=\sup _{t \in I}[(F u)(t)-(F v)(t)] \leq \\
\mu d(u, v) \sup _{t \in I} \int_{0}^{T} G(t, s) d s= \\
\mu d(u, v) \sup _{t \in I} \frac{1}{e^{\lambda T}-1}\left(\left.\frac{1}{\lambda} e^{\lambda(T+s-t)}\right|_{0} ^{t}+\left.\frac{1}{\lambda} e^{\lambda(s-t)}\right|_{t} ^{T}\right)= \\
\mu d(u, v) \frac{1}{\lambda\left(e^{\lambda T}-1\right)}\left(e^{\lambda T}-1\right)=\frac{\mu}{\lambda} d(u, v) .
\end{gathered}
$$

Then, for $u \succeq v\left(\right.$ notice $\left.\frac{\mu}{\lambda}<1\right)$,

$$
d(F u, F v) \leq \frac{\mu}{\lambda} d(u, v)
$$

Finally, let $\alpha(t)$ be a lower solution for (1.1) and we will show that $\alpha \leq F \alpha$. Indeed,

$$
\alpha^{\prime}(t)+\lambda \alpha(t) \leq f(t, \alpha(t))+\lambda \alpha(t) \text { for } t \in I .
$$

Multiplying by $e^{\lambda t}$, we get

$$
\left(\alpha(t) e^{\lambda t}\right)^{\prime} \leq[f(t, \alpha(t))+\lambda \alpha(t)] e^{\lambda t}, \text { for } t \in I,
$$

and this gives

$$
\begin{equation*}
\alpha(t) e^{\lambda t} \leq \alpha(0)+\int_{0}^{t}[f(s, \alpha(s))+\lambda \alpha(t)] e^{\lambda s} d s, \text { for } t \in I, \tag{2.2}
\end{equation*}
$$

which implies

$$
\alpha(0) e^{\lambda T} \leq \alpha(T) e^{\lambda T} \leq \alpha(0)+\int_{0}^{T}[f(s, \alpha(s))+\lambda \alpha(s)] e^{\lambda s} d s,
$$

and thus,

$$
\alpha(0) \leq \int_{0}^{T} \frac{e^{\lambda s}}{e^{\lambda T}-1}[f(s, \alpha(s))+\lambda \alpha(s)] d s
$$

From this inequality and (2.2), we obtain

$$
\begin{gathered}
\alpha(t) e^{\lambda t} \leq \int_{0}^{t} \frac{e^{\lambda(T+s)}}{e^{\lambda T}-1}[f(s, \alpha(s))+\lambda \alpha(s)] d s \\
\quad+\int_{t}^{T} \frac{e^{\lambda s}}{e^{\lambda T}-1}[f(s, \alpha(s))+\lambda \alpha(s)] d s,
\end{gathered}
$$

and consequently,

$$
\begin{aligned}
& \alpha(t) \leq \int_{0}^{t} \frac{e^{\lambda(T+s-t)}}{e^{\lambda T}-1}[f(s, \alpha(s))+\lambda \alpha(s)] d s \\
& +\int_{t}^{T} \frac{e^{\lambda(s-t)}}{e^{\lambda T}-1}[f(s, \alpha(s))+\lambda \alpha(s)] d s .
\end{aligned}
$$

Hence,

$$
\alpha(t) \leq \int_{0}^{T} G(t, s)[f(s, \alpha(s))+\lambda \alpha(s)] d s=(F \alpha)(t) \text { for } t \in I .
$$

Thus, $\alpha \preceq F \alpha$. Now, suppose that $\left\{x_{n}\right\}$ is a nondecreasing sequence convergent to x in $C(I, Y)$. For each $t_{0} \in I$, we have

$$
\left|x_{n}\left(t_{0}\right)-x\left(t_{0}\right)\right| \leq d\left(x_{n}, x\right),
$$

and thus $\lim _{n \rightarrow \infty} x_{n}\left(t_{0}\right)=x\left(t_{0}\right)$. Since $\left\{x_{n}\right\}$ is a nondecreasing sequence, we have

$$
x_{1}\left(t_{0}\right) \leq x_{2}\left(t_{0}\right) \leq \ldots \leq x_{n}\left(t_{0}\right) \leq x_{n+1}\left(t_{0}\right) \leq \cdots .
$$

Since Y is σ-order continuous, we get

$$
\sup _{n} x_{n}\left(t_{0}\right)=\lim _{n \rightarrow \infty} x_{n}\left(t_{0}\right)=x\left(t_{0}\right)
$$

and so $x_{n}\left(t_{0}\right) \leq x\left(t_{0}\right)$, for each n. Finally, Theorem 1.6 gives that F has a unique fixed point.

Acknowledgments

This research was in part supported by a grant from IPM (No. 90470017). The author was also partially supported by the Center of Excellence for Mathematics, University of Shahrekord.

References

[1] I. Altun and G. Durmaz, Some fixed point theorems on ordered cone metric spaces, Rend. Circ. Mat. Palermo (2) 58 (2009), no. 2, 319-325.
[2] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 13791393.
[3] J. Harjani and K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 (2009), no. 7-8, 34033410.
[4] L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468-1476.
[5] V. Lakshmikantham and L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), no. 12, 4341-4349.
[6] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin-New York, 1977.
[7] J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order $\mathbf{2 2}$ (2005), no. 3, 223-239.
[8] J. J. Nieto and, R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. 23 (2007), no. 12, 2205-2212.
[9] J. J. Nieto, R. L. Pouso and R. Rodríguez-López, Fixed point theorems in ordered abstract spaces, Proc. Amer. Math. Soc. 135 (2007), no. 8, 2505-2517.

A. Amini-Harandi

Department of Mathematics, University of Shahrekord, P. O. Box 115, Shahrekord, Iran
and
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran
Email: aminih_ayahoo.com

[^0]: MSC(2010): Primary: 34B15; Secondary: 47H10.
 Keywords: Fixed point; periodic boundary value problem; Banach lattice.
 Received: 1 May 2011, Accepted: 20 June 2011.
 (c) 2013 Iranian Mathematical Society.

