Bulletin of the Iranian Mathematical Society Vol. 39 No. 1 (2013), pp 165-173.

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A PERIODIC BOUNDARY VALUE PROBLEM

A. AMINI-HARANDI

Communicated by Behzad Djafari-Rouhani

ABSTRACT. Here, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.

1. Introduction

Recently, some authors applied fixed point theory in partially ordered metric spaces to study the existence of a unique solution to periodic boundary value problems on real line [2,3,5,7–9]. Here, we consider the following periodic boundary value problem,

(1.1)
$$\begin{cases} u'(t) = f(t, u(t)), & \text{if } t \in I = [0, T] \\ u(0) = u(T), \end{cases}$$

where T is a positive real number, (Y, \leq) is a Banach lattice and $f : I \times Y \longrightarrow Y$ is a continuous function.

Definition 1.1. A lower solution for (1.1) is a function $\alpha \in C^1(I, Y)$ such that

MSC(2010): Primary: 34B15; Secondary: 47H10.

Keywords: Fixed point; periodic boundary value problem; Banach lattice.

Received: 1 May 2011, Accepted: 20 June 2011.

^{© 2013} Iranian Mathematical Society.

¹⁶⁵

$$\alpha'(t) \le f(t, \alpha(t)), \text{ for } t \in I,$$

$$\alpha(0) \le \alpha(T).$$

To set up our results in the next section, we recall some definitions and facts.

Throughout the paper, let (Y, \leq) be a Banach lattice with the positive cone P.

Definition 1.2. A Banach lattice Y is said to be

- (a) order complete if every order bounded set in Y has a supremum;
- (b) σ -order continuous, if, for every nonincreasing sequence $\{y_n\}$ in Y with $\inf_n x_n = 0$, we have $\lim_{n \to \infty} ||x_n|| = 0$.

Theorem 1.3. ([6], Proposition 1.a.8) Let Y be a Banach lattice. Suppose that every order bounded nondecreasing sequence in Y is convergent. Then, Y is order complete and σ -order continuous.

Theorem 1.4. ([6], Theorem 1.c.4) The following conditions are equivalent for any Banach lattice Y:

- (i) No subspace of Y is isomorphic to c_0 .
- (ii) Every norm bounded nondecreasing sequence in Y is convergent.

Lemma 1.5. ([4]) Let (X, d) be a cone metric space and $\{x_n\}$ be a sequence in X. Then,

- (i) $\{x_n\}$ converges to x if and only if $\lim_{n\to\infty} d(x_n, x) = 0$. Moreover, the limit of a convergent sequence is unique.
- (ii) $\{x_n\}$ is a Cauchy sequence if and only if

$$\lim_{m,n\to\infty} d(x_n, x_m) = 0.$$

(iii) If $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then $\lim_{n\to\infty} d(x_n, y_n) = d(x, y)$.

The following result is a slightly improved version of Theorem 5 in [1], which we need in the next section.

Theorem 1.6. Let (X, \preceq) be a partially ordered set such that every pairs of elements of X has a lower bound or an upper bound. Suppose that there exists a cone metric d in X such that (X, d) is a complete cone metric space with the normal cone. Let $f : X \to X$ be a nondecreasing map such that there exists $k \in [0, 1)$ with

$$d(f(x), f(y)) \le kd(x, y), \ \forall \ x \le y.$$

Suppose also that if a nondecreasing sequence $\{x_n\}$ converges to x in X, then $x_n \leq x$, for all n. Then, f has a unique fixed point.

Proof. From Theorem 5 in [1], we get that f has a fixed point. To prove the uniqueness, let us suppose that x and y are fixed points of f and z is an upper or lower bound of x and y, that is, there exists $z \in X$ comparable to x and y. Monotonicity of f implies that $f^n(z)$ is comparable to $f^n(x) = x$ and $f^n(y) = y$, for all $n \in \mathbb{N}$. Then,

$$d(x,y) = d(f^n(x), f^n(y)) \le$$

$$d(f^{n}(x), f^{n}(z)) + d(f^{n}(z), f^{n}(y)) \le k^{n}d(x, z) + k^{n}d(z, y).$$

Since $\lim_{n\to\infty} k^n = 0$, from the above we get d(x, y) = 0, that is, x = y.

2. Main results

Lemma 2.1. Let (Y, \leq) be a Banach lattice with int $P \neq \emptyset$. Then, $A \subseteq Y$ is norm bounded if and only if A is order bounded.

Proof. Let $A \subseteq Y$ be order bounded. Without loss of generality, we may assume that $A \subseteq P$. Then, there exists $\tau \in Y$ such that $0 \leq y \leq \tau$, for each $y \in A$. Then, for each $y \in A$, $||y|| \leq ||\tau||$, that is, A is norm bounded. Conversely, suppose that A is norm bounded. Then, there exists a constant M > 0 such that $||y|| \leq M$, for each $y \in A$. Let $e \in \text{int } P$. Then, there exists a positive number r > 0 such that $e+u \in P$, for ||u|| < r. Thus, $e - \lambda y \in P$ and $e + \lambda y \in P$, for each $y \in A$, where $0 < \lambda < \frac{r}{M}$. Therefore, $\frac{-e}{\lambda} \leq y \leq \frac{e}{\lambda}$, for each $y \in A$, and so A is order bounded.

Let (Y, \leq) be a Banach lattice with int $P \neq \emptyset$. Let C(I, Y) denote the set of all continuous maps $f: I \to Y$, where I = [0, T], and T > 0. Then, f(I) is a compact subset of Y and then by Lemma 2.1 is order bounded (note that f(I) is norm bounded). Thus, Lemma 2.1 together with Theorem 1.3 and Theorem 1.4 yield that the set $f(I) = \{f(t) : t \in I\}$ has a supremum, for each $f \in C(I, Y)$. For each $x, y \in C(I, Y)$, set (note that $|x(.) - y(.)| \in C(I, Y)$)

$$d(x,y) := \sup_{t \in I} |x(t) - y(t)|.$$

Now, we are ready to prove the following lemma.

Lemma 2.2. Let (Y, \leq) be a Banach lattice with int $P \neq \emptyset$. Suppose that no subspace of Y is isomorphic to c_0 . Then, (C(I, Y), d) is a complete cone metric space with the normal cone.

Proof. It is straightforward to see that (C(I,Y),d) is a cone metric space. Now, we show that (C(I,Y),d) is complete. Let $\{r_n\}$ be a numeration of the rationales of I and let

$$z_n = \sup_{1 \le k \le n} |f(r_k) - g(r_k)|, \text{ where } f, g \in C(I, Y).$$

Since $\{z_n\}$ is a nondecreasing and norm bounded sequence, by Theorem 1.4, it is convergent. Since $\{r_n\}$ is dense in I, for each $t \in I$ there exists a subsequence $\{r_{k_n}\}_n$ such that $r_{k_n} \to t$. Thus,

$$|f(t) - g(t)| = \lim_{n \to \infty} |f(r_{k_n}) - g(r_{k_n})| \le \lim_{n \to \infty} z_n, \ \forall \ t \in I.$$

Therefore,

(2.1)
$$\sup_{t \in I} |f(t) - g(t)| \le \lim_{n \to \infty} z_n$$

Now, let $\{f_n\}$ be a Cauchy sequence in (C(I, Y), d). Then, by Lemma 1.5, we have $\lim_{m,n\to\infty} d(f_n, f_m) = 0$ and then $\lim_{m,n\to\infty} \|d(f_n, f_m)\| = 0$. Hence, for each positive number $\epsilon > 0$ there exists N such that for each $m \ge n \ge N$, we have

$$\epsilon > \|d(f_n, f_m)\| = \|\sup_{t \in I} |f_n(t) - f_m(t)|\| \ge$$
$$\sup_{t \in I} \|f_n(t) - f_m(t)\| = \|f_n - f_m)\|_{\infty}.$$

This shows that $\{f_n\}$ is a Cauchy sequence in $(C(I, Y), \|.\|_{\infty})$. Since $(C(I, Y), \|.\|_{\infty})$ is complete, there exists a $f_0 \in C(I, Y)$ such that $\lim_{n\to\infty} \|f_n - f_0\|_{\infty} = 0$. Now, we prove that $\lim_{n\to\infty} \|d(f_n, f_0)\| = 0$ and then by Lemma 1.5 we are done. On the contrary, assume that there exist a positive number ϵ_0 and a subsequence $\{f_{n_i}\}$ such that $\|d(f_{n_i}, f_0)\| > \epsilon_0$, for each $i \in \mathbb{N}$. From (2.1), we have

$$\sup_{t \in I} |f_{n_i}(t) - f_0(t)| \le \lim_{p \to \infty} \sup_{1 \le k \le p} |f_{n_i}(r_k) - f_0(r_k)|.$$

Thus, for each $i \in \mathbb{N}$, we get

$$\epsilon < \|d(f_{n_i}, f_0)\| = \|\sup_{t \in I} |f_{n_i}(t) - f_0(t)||$$
$$\leq \lim_{p \to \infty} \|\sup_{1 \le k \le p} |f_{n_i}(r_k) - f_0(r_k)|\|.$$

Then, there exists a $p_0 \in \mathbb{N}$ such that

$$\epsilon < \| \sup_{1 \le k \le p_0} |f_{n_i}(r_k) - f_0(r_k)| \|, \ \forall \ i \in \mathbb{N}.$$

Since $\{f_{n_i}\}$ is uniformly convergent to f_0 on I, from the above, we get

$$\epsilon \leq \lim_{i \to \infty} \left\| \sup_{1 \leq k \leq p_0} \left| f_{n_i}(r_k) - f_0(r_k) \right| \right\| = 0,$$

a contradiction. Therefore, (C(I, Y), d) is a complete cone metric space. Now, let $0 \le x \le y$. Then, $||x|| \le ||y||$ and thus P is normal.

Now, we prove the existence and uniqueness of the solution for the problem (1.1) in presence of a lower solution.

Theorem 2.3. Let (Y, \leq) be a Banach lattice with int $P \neq \emptyset$ and suppose that no subspace of Y is isomorphic to c_0 . Consider problem (1.1) with $f: I \times Y \to Y$ continuous and suppose that there exist $\lambda > 0$ and $\mu > 0$ with $\mu < \lambda$ such that for $x, y \in Y$ with $y \geq x$,

$$0 \le f(t, y) + \lambda y - [f(t, x) + \lambda x] \le \mu(y - x)$$

Then, the existence of a lower solution for (1.1) provides the existence of an unique solution of (1.1).

Proof. Problem (1.1) can be written as

$$\begin{cases} u'(t) + \lambda u(t) = f(t, u(t)) + \lambda u(t), \ t \in I \\ u(0) = u(T), \end{cases}$$

and equivalently as the integral equation

$$u(t) = \int_0^T G(t,s)[f(s,u(s)) + \lambda u(s)]ds,$$

where

$$G(t,s) = \begin{cases} \frac{e^{\lambda(T+s-t)}}{e^{\lambda T}-1}, & 0 \le s < t \le T\\ \frac{e^{\lambda(s-t)}}{e^{\lambda T}-1}, & 0 \le t < s \le T. \end{cases}$$

Define $F: C(I, Y) \longrightarrow C(I, Y)$ by

$$(Fu)(t) = \int_0^T G(t,s)[f(s,u(s)) + \lambda u(s)]ds.$$

Note that $u \in C(I, Y)$ is a fixed point of F if and only if $u \in C^1(I, Y)$ is a solution of (1.1). Now, we check that the hypotheses in Theorem 1.6 are satisfied. From Lemma 2.2, we have C(I, Y) is a complete cone metric space with the normal cone. Indeed, the complete cone metric

space X = C(I, Y) is a partially ordered set, if we define the following order relation in X:

$$x, y \in C(I, Y), x \leq y$$
 if and only if $x(t) \leq y(t), \forall t \in I$.

For each $x, y \in C(I, Y)$, $z(t) = |x(t)| + |y(t)| \in C(I, Y)$ is an upper bound of x and y. Note that the mapping F is nondecreasing, since, by the hypothesis, for $u \succeq v$,

$$f(t, u(t)) + \lambda u(t) \ge f(t, v(t)) + \lambda v(t)$$

which implies, for $t \in I$, using that G(t,s) > 0, for $(t,s) \in I \times I$, that

$$(Fu)(t) = \int_0^T G(t,s)[f(s,u(s)) + \lambda u(s)]ds \ge$$
$$\int_0^T G(t,s)[f(s,v(s)) + \lambda v(s)]ds = (Fv)(t),$$

that is, $Fu \succeq Fv$. Besides, for $u \succeq v$ (note that $(Fu)(t) - (Fv)(t) \ge 0$),

$$d(Fu, Fv) = \sup_{t \in I} |(Fu)(t) - (Fv)(t)| = \sup_{t \in I} [(Fu)(t) - (Fv)(t)].$$

For each $t \in I$, we have

$$\begin{split} [(Fu)(t) - (Fv)(t)] \\ = \int_0^T G(t,s)[f(s,u(s)) + \lambda u(s) - f(s,v(s)) - \lambda v(s)]ds \\ \leq \int_0^T G(t,s) \ \mu(u(s) - v(s))ds \\ \leq \mu d(u,v) \int_0^T G(t,s)ds. \end{split}$$

Thus,

$$\begin{split} d(Fu, Fv) &= \sup_{t \in I} [(Fu)(t) - (Fv)(t)] \leq \\ \mu d(u, v) \sup_{t \in I} \int_0^T G(t, s) ds = \\ \mu d(u, v) \sup_{t \in I} \frac{1}{e^{\lambda T} - 1} (\frac{1}{\lambda} e^{\lambda (T + s - t)} |_0^t + \frac{1}{\lambda} e^{\lambda (s - t)} |_t^T) = \\ \mu d(u, v) \frac{1}{\lambda (e^{\lambda T} - 1)} (e^{\lambda T} - 1) = \frac{\mu}{\lambda} d(u, v). \end{split}$$

Existence and uniqueness of solutions for a periodic boundary value problem

Then, for $u \succeq v$ (notice $\frac{\mu}{\lambda} < 1$),

$$d(Fu,Fv) \leq \frac{\mu}{\lambda} \ d(u,v)$$

Finally, let $\alpha(t)$ be a lower solution for (1.1) and we will show that $\alpha \leq F\alpha$. Indeed,

$$\alpha'(t) + \lambda \alpha(t) \le f(t, \alpha(t)) + \lambda \alpha(t) \text{ for } t \in I.$$

Multiplying by $e^{\lambda t}$, we get

$$(\alpha(t)e^{\lambda t})' \leq [f(t,\alpha(t)) + \lambda\alpha(t)]e^{\lambda t}, \text{ for } t \in I,$$

and this gives

(2.2)
$$\alpha(t)e^{\lambda t} \le \alpha(0) + \int_0^t [f(s,\alpha(s)) + \lambda\alpha(t)]e^{\lambda s} ds, \text{ for } t \in I,$$

which implies

$$\alpha(0)e^{\lambda T} \le \alpha(T)e^{\lambda T} \le \alpha(0) + \int_0^T [f(s,\alpha(s)) + \lambda\alpha(s)]e^{\lambda s} ds,$$

and thus,

$$\alpha(0) \le \int_0^T \frac{e^{\lambda s}}{e^{\lambda T} - 1} [f(s, \alpha(s)) + \lambda \alpha(s)] ds.$$

From this inequality and (2.2), we obtain

$$\begin{split} \alpha(t)e^{\lambda t} &\leq \int_0^t \frac{e^{\lambda(T+s)}}{e^{\lambda T}-1} [f(s,\alpha(s)) + \lambda \alpha(s)] ds \\ &+ \int_t^T \frac{e^{\lambda s}}{e^{\lambda T}-1} [f(s,\alpha(s)) + \lambda \alpha(s)] ds, \end{split}$$

and consequently,

$$\begin{split} \alpha(t) &\leq \int_0^t \frac{e^{\lambda(T+s-t)}}{e^{\lambda T}-1} [f(s,\alpha(s)) + \lambda \alpha(s)] ds \\ &+ \int_t^T \frac{e^{\lambda(s-t)}}{e^{\lambda T}-1} [f(s,\alpha(s)) + \lambda \alpha(s)] ds. \end{split}$$

Hence,

$$\alpha(t) \le \int_0^T G(t,s)[f(s,\alpha(s)) + \lambda\alpha(s)]ds = (F\alpha)(t) \text{ for } t \in I.$$

Thus, $\alpha \leq F\alpha$. Now, suppose that $\{x_n\}$ is a nondecreasing sequence convergent to x in C(I, Y). For each $t_0 \in I$, we have

$$|x_n(t_0) - x(t_0)| \le d(x_n, x),$$

and thus $\lim_{n\to\infty} x_n(t_0) = x(t_0)$. Since $\{x_n\}$ is a nondecreasing sequence, we have

$$x_1(t_0) \le x_2(t_0) \le \dots \le x_n(t_0) \le x_{n+1}(t_0) \le \cdots$$

Since Y is σ -order continuous, we get

$$\sup_{n} x_n(t_0) = \lim_{n \to \infty} x_n(t_0) = x(t_0),$$

and so $x_n(t_0) \leq x(t_0)$, for each *n*. Finally, Theorem 1.6 gives that *F* has a unique fixed point.

Acknowledgments

This research was in part supported by a grant from IPM (No. 90470017). The author was also partially supported by the Center of Excellence for Mathematics, University of Shahrekord.

References

- I. Altun and G. Durmaz, Some fixed point theorems on ordered cone metric spaces, *Rend. Circ. Mat. Palermo (2)* 58 (2009), no. 2, 319–325.
- [2] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, *Nonlinear Anal.* 65 (2006), no. 7, 1379– 1393.
- [3] J. Harjani and K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, *Nonlinear Anal.* **71** (2009), no. 7-8, 3403– 3410.
- [4] L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468–1476.
- [5] V. Lakshmikantham and L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, *Nonlinear Anal.* **70** (2009), no. 12, 4341–4349.
- [6] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin-New York, 1977.
- [7] J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, *Order* 22 (2005), no. 3, 223–239.
- [8] J. J. Nieto and, R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, *Acta Math. Sin.* 23 (2007), no. 12, 2205–2212.
- [9] J. J. Nieto, R. L. Pouso and R. Rodríguez-López, Fixed point theorems in ordered abstract spaces, Proc. Amer. Math. Soc. 135 (2007), no. 8, 2505–2517.

Existence and uniqueness of solutions for a periodic boundary value problem

A. Amini-Harandi

Department of Mathematics, University of Shahrekord, P. O. Box 115, Shahrekord, Iran

 $\quad \text{and} \quad$

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran

Email: aminih_ayahoo.com