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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR
A PERIODIC BOUNDARY VALUE PROBLEM

A. AMINI-HARANDI

Communicated by Behzad Djafari-Rouhani

ABSTRACT. Here, using the fixed point theory in cone metric spaces,
we prove the existence of a unique solution to a first-order ordinary
differential equation with periodic boundary conditions in Banach
spaces admitting the existence of a lower solution.

1. Introduction

Recently, some authors applied fixed point theory in partially ordered
metric spaces to study the existence of a unique solution to periodic
boundary value problems on real line [2,3,5,7-9]. Here, we consider the
following periodic boundary value problem,

W () = f(t,u(t)), iftel=][0,T]
(11) { u(0) = u(T),

where T' is a positive real number, (Y, <) is a Banach lattice and f :
I xY — Y is a continuous function.

Definition 1.1. A lower solution for (1.1) is a function o € CY(I,Y)
such that
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o (t) < f(t,alt)), fortel,
a(0) < a(T).

To set up our results in the next section, we recall some definitions
and facts.
Throughout the paper, let (Y, <) be a Banach lattice with the positive
cone P.

Definition 1.2. A Banach lattice Y s said to be

(a) order complete if every order bounded set in'Y has a supremum;
(b) o-order continuous, if, for every nonincreasing sequence {yn} in
Y with inf, x, = 0, we have lim,_, ||| = 0.

Theorem 1.3. ( [6/, Proposition 1.a.8) Let Y be a Banach lattice. Sup-
pose that every order bounded nondecreasing sequence in'Y is convergent.
Then, Y is order complete and o-order continuous.

Theorem 1.4. ( [6], Theorem 1.c.4) The following conditions are equiv-
alent for any Banach lattice Y :

(i) No subspace of Y is isomorphic to cg.

(ii) Ewvery norm bounded nondecreasing sequence in'Y is convergent.

Lemma 1.5. ( [{]) Let (X,d) be a cone metric space and {x,} be a
sequence in X. Then,
(1) {zn} converges to = if and only if lim,_ oo d(zpn,x) = 0. More-
over, the limit of a convergent sequence is unique.
(ii) {zn} is a Cauchy sequence if and only if

ml7lzg>loo d(xy, zm) = 0.

(iii) If limy oo Tp = = and limy, o0 Yp, = ¥y, then limy, oo d(p, yn) =
d(z,y).

The following result is a slightly improved version of Theorem 5 in [1],
which we need in the next section.

Theorem 1.6. Let (X, <) be a partially ordered set such that every pairs
of elements of X has a lower bound or an upper bound. Suppose that
there ezists a cone metric d in X such that (X,d) is a complete cone
metric space with the normal cone. Let f : X — X be a nondecreasing
map such that there exists k € [0,1) with

d(f(z), f(y)) < kd(z,y), Vx 2 y.
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Suppose also that if a nondecreasing sequence {xy,} converges to x in X,
then x, = x, for all n. Then, f has a unique fized point.

Proof. From Theorem 5 in [1], we get that f has a fixed point. To
prove the uniqueness, let us suppose that x and y are fixed points of
f and z is an upper or lower bound of x and y, that is, there exists
z € X comparable to  and y. Monotonicity of f implies that f(z) is
comparable to f"(z) = z and f"(y) =y, for all n € N. Then,

d(z,y) = d(f"(z), [*(y)) <

d(f"(z), f"(2)) + d(f"(2), f*(y)) < k"d(z, 2) + k"d(z,y).
Since lim, o k™ = 0, from the above we get d(z,y) = 0, that is, x =
Y. O

2. Main results

Lemma 2.1. Let (Y,<) be a Banach lattice with int P # (). Then,
A CY is norm bounded if and only if A is order bounded.

Proof. Let A CY be order bounded. Without loss of generality, we may
assume that A C P. Then, there exists 7 € Y such that 0 < y < 7,
for each y € A. Then, for each y € A, ||y|| < |||, that is, A is norm
bounded. Conversely, suppose that A is norm bounded. Then, there
exists a constant M > 0 such that ||y|| < M, for each y € A. Let
e € int P. Then, there exists a positive number r > 0 such that e+u € P,
for ||u|| < r. Thus, e — Ay € P and e + Ay € P, for each y € A, where
0 < A < 7. Therefore, 5¢ <y < £, for each y € A, and so A is order
bounded. O

Let (Y, <) be a Banach lattice with int P # (). Let C(I,Y") denote the
set of all continuous maps f : I — Y, where I = [0,7T], and T' > 0. Then,
f(I) is a compact subset of Y and then by Lemma 2.1 is order bounded
(note that f(I) is norm bounded). Thus, Lemma 2.1 together with
Theorem 1.3 and Theorem 1.4 yield that the set f(I) = {f(t) : ¢t € I}
has a supremum, for each f € C(I,Y). For each z,y € C(1,Y), set
(note that |z(.) —y(.)] € C(I,Y))

d(w,y) := supfa(t) = y()]

Now, we are ready to prove the following lemma.
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Lemma 2.2. Let (Y, <) be a Banach lattice with int P # (). Suppose that
no subspace of Y is isomorphic to cg. Then, (C(I1,Y),d) is a complete
cone metric space with the normal cone.

Proof. 1t is straightforward to see that (C([,Y),d) is a cone metric
space. Now, we show that (C(I,Y),d) is complete. Let {r,} be a
numeration of the rationales of I and let

Zp = Sup ’f(rk) _g(rk)’7 where f?g € C(I7Y)

1<k<n

Since {zy} is a nondecreasing and norm bounded sequence, by Theorem
1.4, it is convergent. Since {r,} is dense in I, for each t € I there exists
a subsequence {rg, }» such that r;, — ¢t. Thus,

7(0) — g(t)] = lim | () — g(rs,)| < lim 2, Vi€ L
Therefore,

(2.1) sup |f(t) — g(t)| < lim zp.
tel n—0o0

Now, let {f,} be a Cauchy sequence in (C(I,Y),d). Then, by Lemma
1.5, we have limy, p—so0 d(frn, fm) = 0 and then limy, oo [|d(fr, frn) || =
0. Hence, for each positive number ¢ > 0 there exists N such that for
each m > n > N, we have

€ > Hd(fnafm)H - H Sup‘fn(t) - fm(t)w >
tel

sup [[fn(t) = fm (Ol = [1fn = fm)lloo-
tel

This shows that {f,} is a Cauchy sequence in (C(I,Y),].||s). Since
(C(I1,Y),]|-]|) is complete, there exists a fy € C(I,Y) such that lim,,
| fr = folloo = 0. Now, we prove that lim, o ||d(frn, fo)|| = 0 and then
by Lemma 1.5 we are done. On the contrary, assume that there exist a
positive number €y and a subsequence { fy, } such that ||d(fn,, fo)| > o,
for each ¢ € N. From (2.1), we have

sup | fp, (t) — fo(t)| < lm  sup |[fn, (1) — fo(ri)|-
tel P01 <k<p

Thus, for each i € N, we get

€ < |[|d(fn:> fo)ll = [ sup [fn; () = fo(D)]]
tel

< lim || sup |fp, (%) = fo(re)|ll-
P00 1<k<p
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Then, there exists a py € N such that
e< || sup |fo,(rx) = fo(ri)lll, VieN.

1<k<po

Since {fp,} is uniformly convergent to fp on I, from the above, we get

e < lim || sup | fn,(rr) = fo(r)lll = O,
t700  1<k<po
a contradiction. Therefore, (C(1,Y),d) is a complete cone metric space.
Now, let 0 < z < y. Then, ||z|| < ||y|| and thus P is normal. O

Now, we prove the existence and uniqueness of the solution for the
problem (1.1) in presence of a lower solution.

Theorem 2.3. Let (Y, <) be a Banach lattice with int P # () and sup-
pose that no subspace of Y is isomorphic to co. Consider problem (1.1)
with f: 1 XY — Y continuous and suppose that there exist X > 0 and
w >0 with < X\ such that for x, y € Y with y > x,

0< f(t,y) + Ay — [f(t,2) + Az] < ply — ).

Then, the existence of a lower solution for (1.1) provides the existence
of an unique solution of (1.1).

Proof. Problem (1.1) can be written as

{ () + Au(t) = f(t,u(t)) + du(t), tel
u(0) = u(T),

and equivalently as the integral equation
T
u(®) = [ Glt.5)[f(s,u(s)) + Nu(o))ds,
0
where

eM(s—t)

or—7- 0<t<s<T.
Define F': C(1,Y) — C(I1,Y) by

T
(Pu)(®) = [ Gl (s.u(s) + du(s))ds.

Note that u € C(I,Y) is a fixed point of F if and only if u € C1(I,Y)
is a solution of (1.1). Now, we check that the hypotheses in Theorem
1.6 are satisfied. From Lemma 2.2, we have C'(1,Y’) is a complete cone
metric space with the normal cone. Indeed, the complete cone metric

eMT+s—t)
QO 0<s<t<T
G(t7 8) = { el —1 - -
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space X = C(I1,Y) is a partially ordered set, if we define the following
order relation in X:

z,y € C(1,Y), x <y if and only if () < y(t), Vt e I.

For each z,y € C(I,Y), z(t) = |z(t)| + |y(¢)| € C(I,Y) is an upper
bound of x and y. Note that the mapping F' is nondecreasing, since, by
the hypothesis, for u = v,

[t u(t) + Au(t) = f(tv(t) + Av(t)
which implies, for ¢ € I, using that G(t,s) > 0, for (t,s) € I x I, that

T
(Fu)(t) = /0 Gt 8)[ (s, u(s)) + Au(s)|ds >

T
| Gl v + dots)as = (P,
that is, F'u = Fv. Besides, for u > v (note that (Fu)(t) — (Fv)(t) > 0),

d(Fu, Fv) = Sup |((Fu)(t) = (Fo)(t)] = sup [(Fu)(t) = (Fo)(®)]-

For each t € I, we have

[(Fu)(t) — (Fo) ()]
T
= /0 G(t,s)[f(s,u(s)) + Au(s) — f(s,v(s)) — Av(s)]ds

T
< /O Glt,s) p(u(s) — v(s))ds

T
Syd(u,v)/o G(t,s)ds.

Thus,

d(Fu, Fv) = Stteu;[(FU)(t) — (Fo)(t)] <

T
ud(u,v)sup/ G(t,s)ds =
tel JO
11,
Md(uav)stlel?m(XQ

1
S0 =

(T+s—t)’6 + s
RO e —
p, ) oo (T = 1)
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Then, for u = v (notice § < 1),

d(Fu, Fv) < % d(u,v).

Finally, let «(t) be a lower solution for (1.1) and we will show that
a < Fa. Indeed,

o (t) + da(t) < f(t,at)) + Aa(t) fortel.
Multiplying by e, we get
(a(t)eM) < [f(t,a(t)) + Aa(t)]eM, fortel,

and this gives
t

(2.2) a(t)eM < a(0) —l—/o [f(s,a(s)) + Xa(t)]eds, fortel,

which implies
T
a2(0)erM < a(T)e < a(0) —i—/o [£(s,a(s)) + Aa(s)]eMds,
and thus,
T e)\s
a@)ﬁA e (s, a(s)) + Aa(s)]ds

From this inequality and (2.2), we obtain

t €>\(T+s)
at)eM < /0 T_l[f(s,a(s)) + Aa(s)]ds

(&

T 6)\5
+A‘a@_1wﬁﬂ®D+AM$W&

and consequently,

t e}\(T‘i’Sft)
o)< [ Sl (s.0(9) + Xa(s)lds

T eA(sft)
+ /t e/\Ti_l[f(s,a(s)) + Aa(s)]ds.
Hence,
T
at) < /0 G(t,s)[f(s,a(s)) + Aa(s)]ds = (Fa)(t) fortel.

Thus, @ < Fa. Now, suppose that {z,} is a nondecreasing sequence
convergent to z in C(I,Y’). For each tg € I, we have

[z (to) — z(to)| < d(zn, ),
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and thus lim,,_, o0 x,(tg) = x(to). Since {z,, } is a nondecreasing sequence,
we have

x1(to) < wa(to) < ... < anlto) < xpg1(to) < -+

Since Y is o-order continuous, we get

sup x,(to) = lim x,(tg) = x(to),
n N—00

and so x,(to) < z(to), for each n. Finally, Theorem 1.6 gives that F* has
a unique fixed point. O
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