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A CHARACTERIZATION OF SHELLABLE AND
SEQUENTIALLY COHEN-MACAULAY HYPERCYCLES

S. MORADI* AND D. KIANI

Communicated by Jiirgen Herzog

ABSTRACT. We consider a class of hypergraphs called hypercycles
and we show that a hypercycle C&® is shellable or sequentially the
Cohen—Macaulay if and only if n € {3,5}. Also, we characterize
Cohen—Macaulay hypercycles. These results are hypergraph ver-
sions of results proved for cycles in graphs.

1. Introduction

Recently, monomial ideals have been extensively studied. In this con-
text, finding relations between homological invariants of a squarefree
monomial ideal and combinatorial data of the hypergraph associated to
it, is of great interest. Among squarefree monomial ideals, edge ideals of
graphs which first have been introduced in [13] have been studied more.
Interesting classes of graphs like chordal graphs and bipartite graphs
have been considered in several papers and some good algebraic results
for these graphs have been proved. See, for example, [1, 5, 8, 9, 10].
Recently, also edge ideals of hypergraphs have been studied and some
analogous results has been proved for hypergraphs; see [2, 3, 6, 12]. Our
results here have inspiration of the work in [41], where shellable and se-
quentially Cohen—Macaulay cycles have been characterized. Here we will
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generalize these results to analogous concepts in hypergraphs. We study
hypercycles which were first introduced in [3] and classify shellable, se-
quentially Cohen—Macaulay and Cohen—Macaulay hypercycles.

Let X be a finite set and €& = {e1,...,es} be a finite collection of

non-empty subsets of X'. The pair H = (X, ) is called a hypergraph.
The elements of X are called vertices and the elements of £ are called
edges of the hypergraph.
A hypergraph is called simple if |e;| > 2, for any 1 <i < s, and ¢; C e;
implies i = j. Let H be a hypergraph. A subhypergraph I of H is a
hypergraph such that X'(K) C X(#H) and £(K) C E(H). A hypergraph
H is called d-uniform if |e;| = d for any e; € E(H). A vertex cover
of H is a subset of vertices that contains at least one vertex from each
edge. A vertex cover V is called minimal if no proper subset of V is a
vertex cover of H and a free vertex is a vertex which belongs to exactly
one edge of H.

Throughout the paper, we denote by R the polynomial ring k[z1, ...,
Ty over some field k, where {x1, ..., z,,} is the set of vertices of a hyper-
graph considered at the moment. Also, the hypergraphs are simple and
have no isolated vertices, i.e., for a hypergraph H, X (H) = Uees(H) e.
Let H be a hypergraph. For an edge e;, we may consider 2% = []_. e, T
as a monomial in R. The edge ideal I(H) of a hypergraph H is defined
as [(H) = (2% :¢; € E(H)) C R.

A simplicial complex consists of a finite set X of vertices and a
collection A of subsets of X called faces such that

(1) If x € X, then {z} € A.

(13) If F € A and G C F, then G € A.

The simplicial complex
Ay ={FCXH):eZFVec&(H)}

is called the independence complex of H and for any simplicial com-
plex A with vertex set X, the Alexander dual simplicial complex
AV to A is defined as follows:

AV={FCX;X\F¢A}.

For a squarefree monomial ideal I = (211 - Z1pyy ..., %41 -+ Tyn, ) Of &
polynomial ring, the Alexander dual ideal of I, which is denoted by
IV, is defined as:

[V = (a;n,...,:clm)ﬂ-"ﬂ(azﬂ,...,xmt).
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Observe that for a hypergraph M, with I(H) = (x4, - - - @i, : {®iy, ..., T, }
€ E(H)), we have I(H)V = ﬂ{$i17.._7mik}eE(H)(aEil,...,:nik). It is then
easy to see that z" belongs to the minimal generating set of I(H)Y if
and only if F' is a minimal vertex cover of H.

Let A be a simplicial complex with vertex set {zi,...,z,}. The
Stanley—Reisner ideal I is an ideal in the polynomial ring k[z1,. ..,
Ty, generated by monomials x;, - - - z;, , where i} < --- <'ij and {z;,, ...
, i, } ¢ A. For a hypergraph #, one can see that Ia, = I(H).

Given a simplicial complex A, we denote by C (A) its reduced chain
complex, and by Hy(A, k) = Zn(A)/By(A) its nth reduced homology
group with coefficients in the field k.

Recall that a squarefree monomial ideal I of the polynomial ring
klx1,...,z,] has linear quotients, if there exists an order f; < --- <
fm on the minimal generators of I such that the colon ideal (f1,..., fi—1) :
fi is generated by a subset of variables for all 2 < ¢ < m. This is equiva-
lent to say that there is an order f; < --- < f,, such that for any ¢ < j,
there exists a variable zi|(f; : f;) and [ < j such that (f; : f;) = (zx).
Hypercycles, generalizing cycles in graphs, were defined in [3] as follows:

For positive integers n,a and d > 2a, a hypercycle C;f*" is a hyper-
graph with edge set £(C2®) = {e1,...,e,} such that

(i.) for any ¢ # j, we have e; Ne; # 0 if and only if |j —i| = 1 mod

(13.) le;Nejy1| =, forall i, 1 <i<n-—1, and |e; Ney| = a.
Sequentially Cohen—-Macaulay cycle graphs are classified in [4].
Theorem A [!, Proposition 4.1] Let G be an n-cycle for some n > 3.
Then, G is sequentially Cohen—Macaulay if and only if n € {3,5}.

It is known that any shellable hypergraph is sequentially Cohen—
Macaulay. From this fact and Theorem A, one can see that a cycle
C,, is shellable if and only if n € {3,5}. In this paper it is shown that
the hypercycles C% is shellable or sequentially Cohen—Macaulay if and
only if n € {3,5}. As a corollary we see that O i Cohen—Macaulay if
and only if n € {3,5} and d = 2a.

2. Main Results

We begin by recalling the relevant definition of a shellable simplicial
complex.
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Definition 2.1. A simplicial complex A is shellable if the facets (max-
imal faces) of A can be ordered as Fi,..., Fs such that for all 1 <1i <
J < s, there exists some v € F; \ Fj and some [ € {1,...,5 — 1} with
F;\ F; = {v}. We call Fi,...,F, ashelling for A.

The above concept is often referred to as non-pure shellability and is
due to Bjorner and Wachs [!]. Here, we will drop the adjective “non-
pure”. A hypergraph H is called shellable, if the simplicial complex Ay
is shellable.

The following result relates squarefree monomial ideals with linear
quotients and shellable simplicial complexes.

Theorem B [9, Theorem 1.4] The simplicial complex A is shellable if
and only if IX has linear quotients. To prove Theorem given below, we
need the following easy lemma.

Lemma 2.2. For arbitrary pairwise disjoint sets P; = {a;1,...,amn, |,
1 < i < m, there exists an order of linear quotients for the ideal I =
(a1ry Gy, © 1 < 1y < ny), which comes from the lex order on the
vertices as follows:

aij < ars ifi <rori=r andj<s.

Proof. Let a1y, -+ - Gy, and ais, - - - s, be two monomials in the min-
imal generating set of I such that a1y, - amr,, <tex Q1s, *** Ams,,- Let
t be the integer for which s; > 7, and for any ¢’ > ¢, s; = r;. Then,
Atr |17y Qi Q1sy s, a0 (f 2 a1s, c 0 Qs ) = (agr, ), where
f=a1s; Q415 Qtry Oty 15y " Qmsy, - OINCE [ <jep A1y« * U, , the
result holds. ]

Let P, = {ai1,...,ain;}, 1 < i < m, be pairwise disjoint sets. We
use the notation aj - - a,, to denote the order of linear quotients for the
ideal (a1y, - amy,, : 1 < r; < n;), which comes from the lex order that
is described in the above Lemma 2.2.

Theorem 2.3. The hypercycle C&® is shellable if and only if n € {3,5}.

Proof. “Only if* Assume that C>® is shellable and S(C’g’a) ={e,...,
en}. Then, by Theorem B, I(C“)Y has linear quotients. Let I(C2®)Y =

(xfr,.. . 2f") and 't < ... < 2f" be an order of linear quotients. We
know that {Fi,..., F,} is the set of minimal vertex covers of C*. For
any i, 1 <1 < n-—1,let z; € ¢, Ne;4+1 and x, € e; Ne,. Then,
{z1,...,2,} is a vertex cover of C4e. Let F,,...,F, be all minimal

vertex covers of C® which are contained in {z1,...,z,} and F, <
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- < Fj, be the order induced from the order of linear quotients for
I(C&*)Y. Then, {F,,...,F,} is the set of minimal vertex covers of
the cycle Cy, : x1,...,2,. We claim that I(C,)" has linear quotients
with the ordering zf1 < ... < 2Fie . Let F; < F;. Then, from the

definition of linear quotients, there exists ¢ < [; and u € X (CS’O‘) such

that u|zf 2™ and 2t : 2™ = (u). Since u € Fy, and Fy \ {u} C Fy,
then Fy C {z1,...,2,}. Therefore, t = [, for some 1 < s < k, and the
claim is proved. It means that C), is shellable. Thus, by Theorem A,
n € {3,5}.

“If” In order to show that C’g "“ is shellable, it is enough to show that
I (Cg **)V has linear quotients. A monomial x" is a minimal generator
of I(C&*)V if and only if F is a minimal vertex cover of C®. Let e; =
{Z1, o Ty ULy oo oy Ud—20, YLy - s Yoty €2 = {ULy -+ s Yo, ULy -« + s Ud—20s 21,
ceyZaty €3 = {21,y Zay Wi, oo, Wa—20, X1, - - -, Lo} The set of mini-
mal vertex covers of C’éi’a is equal to {{x;, y;}, {zi, 2}, {ws, 2}, {wi, vi },
{yi, wi }, {zis ug }, {ug, v, we} 0 1 < i, < a,1 < k,l,t < d—2a}. One
can check that the following ordering is an order of linear quotients for

d,a\ v,
I(C3 )V
TY <TZ <Yz <70 < yw < zu < uvw.

For example, consider two monomials z;z; and y;w;, for some 1 <4, j,1 <
aand 1 <t <d-—2a. Since z;|z;z; : yywy and z;y; : yywy = () and
x;y; < yywe, for these monomials the property of linear quotients holds.

d,x
Now, let £(C5™) = {e1,...,es5}, wheree; = {x1,...,2q,0a1,...,04-24,
yl)"'aya}a €2 = {yla"'Jyaab17"‘7bd—2aazla"'JZOc}v €3 = {217"‘7'2(17
617"‘7Cd72a7817"‘7804}764 = {817'"7Sa7617"‘7ed72a7t17"'7t0¢}7 €5 =

{t1,..sta, f1,--+, fa—20, 21, .-, Za}. Then, with the above notation,
zys

< 775 < wal < yzt < yst < TzEe < xsb < ysf < ytc < zta <
Tyec < xtbe < stab < zsaf < yzef < xbce < ycef < zefa <
sabf < tabc < abcef is an order of linear quotients for I(Cg’a)v.
For example, consider two monomials x;zje; and syaj by f;, for some
1<4,5,! <aand 1<k, j K, <d—2a. For the monomial z;s;yaj fi,
observe that z;jsyaj fi < syajby fi and zjsypay fi : spajby fi = (25) ,
zj|xizjek : si/aj/bk/fl. O
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Definition 2.4. Let R = k[z1,...,zy,). A graded R-module M is called
sequentially Cohen—Macaulay (over k) if there exists a finite filter-
ation of graded R-modules

O=MyCcMyC---CM,=M
such that each M;/M;_; is Cohen—Macaulay and
dim(Ml/Mo) < dim(MQ/Ml) < e < dim(Mr/Mr_l).

A hypergraph H is called sequentially Cohen—-Macaulay if R/I(H) is
sequentially Cohen—Macaulay.

For a monomial ideal I, let (I); be the ideal generated by all mono-
mials of degree j belonging to I. Then, I is called componentwise
linear if (I); has a linear resolution for all j. To prove Theorem below,
we need the following result.

Theorem C [7, Theorem 2.1] Let I be a squarefree monomial ideal.
Then, R/I is sequentially Cohen—Macaulay if and only if IV is compo-
nentwise linear.

Theorem 2.5. The hypercycle cde s sequentially Cohen—Macaulay if
and only if n € {3,5}.

Proof. From Theorem 2.3, we have that C’g’a and C'g’a are shellable.
Thus, from the fact that every shellable hypergraph is sequentially Cohen—
Macaulay, one implication is clear. Now, let n ¢ {3,5} , & (Cg’a) =
{e1,...,en} and I = I(CE®). First, assume that n = 2r, for some r > 2.
Since we have 2r edges to cover, each minimal vertex cover has at least
r elements. For any 1 <i <n—1, let e;Nejy1 = {zi1,...,Tiq} and
e1Nen, ={Tn1,...,ZTna}. A minimal vertex cover of Cff’“ of cardinality
r is of the form {1, 23.,,..., %2115, } OF {@21y, Tatys--- T2 1y, },
for some 1 <l; < a,i€{l,...,2r}. Let

J = (21,2305, Tor—1o,, 2 1 <11, lopm1 S @),

K = (x2712x4,l47 C o T2p g, 1 < 127 ce 7127’ < a)

Then, (IV), = J + K. We show that 812,((IV),) # 0. Let M be a
monomial ideal and

KP(M) = { squarefree vectors 7 : P~ € M}
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be the Koszul simplicial complex of M for a vector b € N". Then,
the multigraded Betti numbers of M can be computed from the formula

Bip(M) = dimy, H;_1(KP(M), k);

see [11, Theorem 1.34].

We have S1p((IY),) = dimy Ho(KP((IY),), k) = A — 1, where X is
the number of connected components of KP((1Y),.) (see [14, Proposition
5.2.3]). Let b be the squarefree vector whose support (see for example,
[11, Theorem 1.13]) corresponds to {Z1,,..., %24, } (With the above
notation), for some 1 < i; < o, 1 < j < 2r. Consider a face F' of
KP((IY),;). Then, F is contained in {1, 3,5, -, %214y, } OF in
{224y, Taiy, -+ T2riy, }. In other words, F' does not contain Tk,i, and
x1,, for some odd integer £ and even integer [. Otherwise, 1,2 ,%3.i,
C Bl gy Tore, € (1Y), a contradiction, since x4, 22,4, %344 -
Thi, 14, Tory, ¢ J, K. Therefore, A > 2 and By p((IY),) # O.
Thus, SB1,2,((IV)r) # 0. This shows that the minimal free resolution of
(IV), is not linear. Thus, IV is not componentwise linear and then I is
not sequentially Cohen—Macaulay.

Now, let n = 2r+1, for some 7 > 3. We will show that 82.2,+1((IY)r+1)
# 0, which implies that the minimal free resolution of (IV),4+1 is not
linear, since 2r + 1 > r + 3. Each minimal vertex cover of Cﬁf’“ has
at least 7 + 1 elements. One can see that {xi1,221,241,...,%2.1}
is a minimal vertex cover of C&®. Consider the cycle graph C), :
T11,221,%31,---,T2r411 and let J = (I(Cp)Y)r41. Then, as shown
in the proof of [1, Proposition 4.1}, 52 2,+1(J) # 0. From Hochster’s for-
mula (see [10, Theorem 1.5.21]), we have B22r+1(J) = > jvor1,vcx
dimy, fIQT_g(AV, k), where A is the Stanley—Reisner simplicial complex
of Jand X = {561’1, L21,L315---5 .TQH_Ll}. Thus, dimk ﬁ2r_3(A, k‘) 7'5 0.
Also, B2.9r41((IV)r41) = Z|V|:2r+1,V§Y dimy, Ho,—3(AY,, k), where A/
is the Stanley—Reisner simplicial complex of (IV),41 on some vertex
set Y. We show that Ay, = A. Any F C X is a vertex cover of
C, if and only if F is a vertex cover of C®  Let F be a face of
A. Then, Iyepx ¢ J. Since J is generated by all minimal vertex
covers of C,, then F' is not a vertex cover of C,. Thus, F' is not
a vertex cover of C4® and then Iyepx ¢ (IY)y41. This means that
F e As. The proof of the other inclusion is similar. Therefore,
dimy, ﬁQT_g(A/X,k) = dimy ﬁgr_3(A7k) # 0. Since ‘X‘ =2r+1, we
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have 829,41 ((IY)r41) > dimy fIQT,g(A’X,k) > 0. Therefore, IV is not
componentwise linear. O

Corollary 2.6. The hypercycle C,%O‘ is shellable if and only if it is se-
quentially Cohen—Macaulay.

Corollary 2.7. The hypercycle cde s Cohen—Macaulay if and only if
n € {3,5} and d = 2a.

Proof. Assume that C’g’a is Cohen—Macaulay. Then, it is sequentially
Cohen—Macaulay. Thus by the Theorem 2.5 n = 3 or n = 5. Also, all
minimal vertex covers of Ci*® have the same cardinality. Let £(Co®) =
{e1,e2,e3},21 € e; Neg and z2 € e2 Ne3. Then, {z1,z2} is a minimal
vertex cover of Cg’o‘. If d > 2a, then each edge of Cg’a has a free
vertex. Therefore, {u1,us,us}, where u; € e; is a free vertex, is also
a minimal vertex cover, a contradiction. Thus, d = 2«a. In the case
n =5, if d > 2a, then similarly one can find two minimal vertex covers
{z1,29,24}, z; € €;Ne;q1, and {uy,...,us}, where u; € e; is a free vertex
to get a contradiction. Conversely, if d = 2a, then each minimal vertex
cover of Cg "“ has cardinality two and each minimal vertex cover of C5d “
is of cardinality three. Since they are sequentially Cohen—Macaulay, the
result holds. O
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