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A CHARACTERIZATION OF SHELLABLE AND

SEQUENTIALLY COHEN-MACAULAY HYPERCYCLES

S. MORADI∗ AND D. KIANI

Communicated by Jürgen Herzog

Abstract. We consider a class of hypergraphs called hypercycles
and we show that a hypercycle Cd,αn is shellable or sequentially the
Cohen–Macaulay if and only if n ∈ {3, 5}. Also, we characterize
Cohen–Macaulay hypercycles. These results are hypergraph ver-
sions of results proved for cycles in graphs.

1. Introduction

Recently, monomial ideals have been extensively studied. In this con-
text, finding relations between homological invariants of a squarefree
monomial ideal and combinatorial data of the hypergraph associated to
it, is of great interest. Among squarefree monomial ideals, edge ideals of
graphs which first have been introduced in [13] have been studied more.
Interesting classes of graphs like chordal graphs and bipartite graphs
have been considered in several papers and some good algebraic results
for these graphs have been proved. See, for example, [4, 5, 8, 9, 10].
Recently, also edge ideals of hypergraphs have been studied and some
analogous results has been proved for hypergraphs; see [2, 3, 6, 12]. Our
results here have inspiration of the work in [4], where shellable and se-
quentially Cohen–Macaulay cycles have been characterized. Here we will
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generalize these results to analogous concepts in hypergraphs. We study
hypercycles which were first introduced in [3] and classify shellable, se-
quentially Cohen–Macaulay and Cohen–Macaulay hypercycles.

Let X be a finite set and E = {e1, . . . , es} be a finite collection of
non-empty subsets of X . The pair H = (X , E) is called a hypergraph.
The elements of X are called vertices and the elements of E are called
edges of the hypergraph.
A hypergraph is called simple if |ei| ≥ 2, for any 1 ≤ i ≤ s, and ei ⊆ ej
implies i = j. Let H be a hypergraph. A subhypergraph K of H is a
hypergraph such that X (K) ⊆ X (H) and E(K) ⊆ E(H). A hypergraph
H is called d-uniform if |ei| = d for any ei ∈ E(H). A vertex cover
of H is a subset of vertices that contains at least one vertex from each
edge. A vertex cover V is called minimal if no proper subset of V is a
vertex cover of H and a free vertex is a vertex which belongs to exactly
one edge of H.

Throughout the paper, we denote by R the polynomial ring k[x1, . . . ,
xm] over some field k, where {x1, . . . , xm} is the set of vertices of a hyper-
graph considered at the moment. Also, the hypergraphs are simple and
have no isolated vertices, i.e., for a hypergraph H, X (H) =

⋃
e∈E(H) e.

Let H be a hypergraph. For an edge ei, we may consider xei =
∏
x∈ei x

as a monomial in R. The edge ideal I(H) of a hypergraph H is defined
as I(H) = (xei : ei ∈ E(H)) ⊆ R.

A simplicial complex consists of a finite set X of vertices and a
collection ∆ of subsets of X called faces such that

(i) If x ∈ X, then {x} ∈ ∆.
(ii) If F ∈ ∆ and G ⊆ F , then G ∈ ∆.
The simplicial complex

∆H = {F ⊆ X (H) : e 6⊆ F,∀e ∈ E(H)}

is called the independence complex of H and for any simplicial com-
plex ∆ with vertex set X, the Alexander dual simplicial complex
∆∨ to ∆ is defined as follows:

∆∨ = {F ⊆ X;X \ F /∈ ∆}.

For a squarefree monomial ideal I = (x11 · · ·x1n1 , . . . , xt1 · · ·xtnt) of a
polynomial ring, the Alexander dual ideal of I, which is denoted by
I∨, is defined as:

I∨ = (x11, . . . , x1n1) ∩ · · · ∩ (xt1, . . . , xtnt).
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Observe that for a hypergraphH, with I(H) = (xi1 · · ·xik : {xi1 , . . . , xik}
∈ E(H)), we have I(H)∨ = ∩{xi1 ,...,xik}∈E(H)(xi1 , . . . , xik). It is then

easy to see that xF belongs to the minimal generating set of I(H)∨ if
and only if F is a minimal vertex cover of H.

Let ∆ be a simplicial complex with vertex set {x1, . . . , xn}. The
Stanley–Reisner ideal I∆ is an ideal in the polynomial ring k[x1, . . . ,
xn], generated by monomials xi1 · · ·xik , where i1 < · · · < ik and {xi1 , . . .
, xik} /∈ ∆. For a hypergraph H, one can see that I∆H = I(H).

Given a simplicial complex ∆, we denote by C.(∆) its reduced chain

complex, and by H̃n(∆, k) = Zn(∆)/Bn(∆) its nth reduced homology
group with coefficients in the field k.

Recall that a squarefree monomial ideal I of the polynomial ring
k[x1, . . . , xn] has linear quotients, if there exists an order f1 < · · · <
fm on the minimal generators of I such that the colon ideal (f1, . . . , fi−1) :
fi is generated by a subset of variables for all 2 ≤ i ≤ m. This is equiva-
lent to say that there is an order f1 < · · · < fm such that for any i < j,
there exists a variable xk|(fi : fj) and l < j such that (fl : fj) = (xk).
Hypercycles, generalizing cycles in graphs, were defined in [3] as follows:

For positive integers n, α and d ≥ 2α, a hypercycle Cd,αn is a hyper-

graph with edge set E(Cd,αn ) = {e1, . . . , en} such that
(i.) for any i 6= j, we have ei ∩ ej 6= ∅ if and only if |j − i| ≡ 1 mod

(n).
(ii.) |ei ∩ ei+1| = α, for all i, 1 ≤ i ≤ n− 1, and |e1 ∩ en| = α.

Sequentially Cohen–Macaulay cycle graphs are classified in [4].
Theorem A [4, Proposition 4.1] Let G be an n-cycle for some n ≥ 3.
Then, G is sequentially Cohen–Macaulay if and only if n ∈ {3, 5}.

It is known that any shellable hypergraph is sequentially Cohen–
Macaulay. From this fact and Theorem A, one can see that a cycle
Cn is shellable if and only if n ∈ {3, 5}. In this paper it is shown that

the hypercycles Cd,αn is shellable or sequentially Cohen–Macaulay if and

only if n ∈ {3, 5}. As a corollary we see that Cd,αn is Cohen–Macaulay if
and only if n ∈ {3, 5} and d = 2α.

2. Main Results

We begin by recalling the relevant definition of a shellable simplicial
complex.
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Definition 2.1. A simplicial complex ∆ is shellable if the facets (max-
imal faces) of ∆ can be ordered as F1, . . . , Fs such that for all 1 ≤ i <
j ≤ s, there exists some v ∈ Fj \ Fi and some l ∈ {1, . . . , j − 1} with
Fj \ Fl = {v}. We call F1, . . . , Fs a shelling for ∆.

The above concept is often referred to as non-pure shellability and is
due to Björner and Wachs [1]. Here, we will drop the adjective “non-
pure”. A hypergraph H is called shellable, if the simplicial complex ∆H
is shellable.

The following result relates squarefree monomial ideals with linear
quotients and shellable simplicial complexes.
Theorem B [9, Theorem 1.4] The simplicial complex ∆ is shellable if
and only if I∨∆ has linear quotients. To prove Theorem given below, we
need the following easy lemma.

Lemma 2.2. For arbitrary pairwise disjoint sets Pi = {ai1, . . . , aini},
1 ≤ i ≤ m, there exists an order of linear quotients for the ideal I =
(a1r1 · · · amrm : 1 ≤ ri ≤ ni), which comes from the lex order on the
vertices as follows:

aij < ars if i < r or i = r and j < s.

Proof. Let a1r1 · · · amrm and a1s1 · · · amsm be two monomials in the min-
imal generating set of I such that a1r1 · · · amrm <lex a1s1 · · · amsm . Let
t be the integer for which st > rt and for any t′ > t, st = rt. Then,
atrt |a1r1 · · · amrm : a1s1 · · · amsm and (f : a1s1 · · · amsm) = (atrt), where
f = a1s1 · · · at−1st−1atrtat+1st+1 · · · amsm . Since f <lex a1s1 · · · amsm , the
result holds. �

Let Pi = {ai1, . . . , aini}, 1 ≤ i ≤ m, be pairwise disjoint sets. We
use the notation a1 · · · am to denote the order of linear quotients for the
ideal (a1r1 · · · amrm : 1 ≤ ri ≤ ni), which comes from the lex order that
is described in the above Lemma 2.2.

Theorem 2.3. The hypercycle Cd,αn is shellable if and only if n ∈ {3, 5}.

Proof. “Only if” Assume that Cd,αn is shellable and E(Cd,αn ) = {e1, . . . ,

en}. Then, by Theorem B, I(Cd,αn )∨ has linear quotients. Let I(Cd,αn )∨ =
(xF1 , . . . , xFr) and xF1 < · · · < xFr be an order of linear quotients. We

know that {F1, . . . , Fr} is the set of minimal vertex covers of Cd,αn . For
any i, 1 ≤ i ≤ n − 1, let xi ∈ ei ∩ ei+1 and xn ∈ e1 ∩ en. Then,

{x1, . . . , xn} is a vertex cover of Cd,αn . Let Fl1 , . . . , Flk be all minimal

vertex covers of Cd,αn which are contained in {x1, . . . , xn} and Fl1 <
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· · · < Flk be the order induced from the order of linear quotients for

I(Cd,αn )∨. Then, {Fl1 , . . . , Flk} is the set of minimal vertex covers of
the cycle Cn : x1, . . . , xn. We claim that I(Cn)∨ has linear quotients

with the ordering xFl1 < · · · < xFlk . Let Fli < Flj . Then, from the

definition of linear quotients, there exists t < lj and u ∈ X (Cd,αn ) such

that u|xFli : x
Flj and xFt : x

Flj = (u). Since u ∈ Fli and Ft \ {u} ⊆ Flj ,
then Ft ⊆ {x1, . . . , xn}. Therefore, t = ls, for some 1 ≤ s ≤ k, and the
claim is proved. It means that Cn is shellable. Thus, by Theorem A,
n ∈ {3, 5}.

“If” In order to show that Cd,α3 is shellable, it is enough to show that

I(Cd,α3 )∨ has linear quotients. A monomial xF is a minimal generator

of I(Cd,α3 )∨ if and only if F is a minimal vertex cover of Cd,α3 . Let e1 =
{x1, . . . , xα, u1, . . . , ud−2α, y1, . . . , yα}, e2 = {y1, . . . , yα, v1, . . . , vd−2α, z1,
. . . , zα}, e3 = {z1, . . . , zα, w1, . . . , wd−2α, x1, . . . , xα}. The set of mini-

mal vertex covers of Cd,α3 is equal to {{xi, yj}, {xi, zj}, {yi, zj}, {xi, vk},
{yi, wk}, {zi, uk}, {uk, vl, wt} : 1 ≤ i, j ≤ α, 1 ≤ k, l, t ≤ d − 2α}. One
can check that the following ordering is an order of linear quotients for

I(Cd,α3 )∨:

xy < xz < yz < xv < yw < zu < uvw.

For example, consider two monomials xizj and ylwt, for some 1 ≤ i, j, l ≤
α and 1 ≤ t ≤ d − 2α. Since xi|xizj : ylwt and xiyl : ylwt = (xi) and
xiyl < ylwt, for these monomials the property of linear quotients holds.

Now, let E(Cd,α5 ) = {e1, . . . , e5}, where e1 = {x1, . . . , xα, a1, . . . , ad−2α,
y1, . . . , yα}, e2 = {y1, . . . , yα, b1, . . . , bd−2α, z1, . . . , zα}, e3 = {z1, . . . , zα,
c1, . . . , cd−2α, s1, . . . , sα}, e4 = {s1, . . . , sα, e1, . . . , ed−2α, t1, . . . , tα}, e5 =
{t1, . . . , tα, f1, . . . , fd−2α, x1, . . . , xα}. Then, with the above notation,
xys
< xzs < xzt < yzt < yst < xze < xsb < ysf < ytc < zta <
xyec < xtbc < stab < zsaf < yzef < xbce < ycef < zefa <

sabf < tabc < abcef is an order of linear quotients for I(Cd,α5 )∨.
For example, consider two monomials xizjek and si′aj′bk′fl, for some
1 ≤ i, j, i′ ≤ α and 1 ≤ k, j′, k′, l ≤ d− 2α. For the monomial zjsi′aj′fl,
observe that zjsi′aj′fl < si′aj′bk′fl and zjsi′aj′fl : si′aj′bk′fl = (zj) ,
zj |xizjek : si′aj′bk′fl. �



6 Moradi and Kiani

Definition 2.4. Let R = k[x1, . . . , xn]. A graded R-module M is called
sequentially Cohen–Macaulay (over k) if there exists a finite filter-
ation of graded R-modules

0 = M0 ⊂M1 ⊂ · · · ⊂Mr = M

such that each Mi/Mi−1 is Cohen–Macaulay and

dim(M1/M0) < dim(M2/M1) < · · · < dim(Mr/Mr−1).

A hypergraph H is called sequentially Cohen–Macaulay if R/I(H) is
sequentially Cohen–Macaulay.

For a monomial ideal I, let (I)j be the ideal generated by all mono-
mials of degree j belonging to I. Then, I is called componentwise
linear if (I)j has a linear resolution for all j. To prove Theorem below,
we need the following result.
Theorem C [7, Theorem 2.1] Let I be a squarefree monomial ideal.
Then, R/I is sequentially Cohen–Macaulay if and only if I∨ is compo-
nentwise linear.

Theorem 2.5. The hypercycle Cd,αn is sequentially Cohen–Macaulay if
and only if n ∈ {3, 5}.

Proof. From Theorem 2.3, we have that Cd,α3 and Cd,α5 are shellable.
Thus, from the fact that every shellable hypergraph is sequentially Cohen–

Macaulay, one implication is clear. Now, let n /∈ {3, 5} , E(Cd,αn ) =

{e1, . . . , en} and I = I(Cd,αn ). First, assume that n = 2r, for some r ≥ 2.
Since we have 2r edges to cover, each minimal vertex cover has at least
r elements. For any 1 ≤ i ≤ n − 1, let ei ∩ ei+1 = {xi,1, . . . , xi,α} and

e1∩ en = {xn,1, . . . , xn,α}. A minimal vertex cover of Cd,αn of cardinality
r is of the form {x1,l1 , x3,l3 , . . . , x2r−1,l2r−1} or {x2,l2 , x4,l4 , . . . , x2r,l2r},
for some 1 ≤ li ≤ α, i ∈ {1, . . . , 2r}. Let

J = (x1,l1x3,l3 , · · ·x2r−1,l2r−1 : 1 ≤ l1, . . . , l2r−1 ≤ α),

K = (x2,l2x4,l4 , · · ·x2r,l2r : 1 ≤ l2, . . . , l2r ≤ α).

Then, (I∨)r = J + K. We show that β1,2r((I
∨)r) 6= 0. Let M be a

monomial ideal and

Kb(M) = { squarefree vectors τ : xb−τ ∈M}
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be the Koszul simplicial complex of M for a vector b ∈ Nm. Then,
the multigraded Betti numbers of M can be computed from the formula

βi,b(M) = dimk H̃i−1(Kb(M), k);

see [11, Theorem 1.34].

We have β1,b((I∨)r) = dimk H̃0(Kb((I∨)r), k) = λ − 1, where λ is

the number of connected components of Kb((I∨)r) (see [14, Proposition
5.2.3]). Let b be the squarefree vector whose support (see for example,
[11, Theorem 1.13]) corresponds to {x1,i1 , . . . , x2r,i2r} (with the above
notation), for some 1 ≤ ij ≤ α, 1 ≤ j ≤ 2r. Consider a face F of

Kb((I∨)r). Then, F is contained in {x1,i1 , x3,i3 , . . . , x2r−1,i2r−1} or in
{x2,i2 , x4,i4 , . . . , x2r,i2r}. In other words, F does not contain xk,ik and
xl,il , for some odd integer k and even integer l. Otherwise, x1,i1x2,i2x3,i3

· · · x̂k,ik · · · x̂l,il · · ·x2r,i2r ∈ (I∨)r, a contradiction, since x1,i1x2,i2x3,i3 · · ·
x̂k,ik · · · x̂l,il · · ·x2r,i2r /∈ J,K. Therefore, λ ≥ 2 and β1,b((I∨)r) 6= 0.
Thus, β1,2r((I

∨)r) 6= 0. This shows that the minimal free resolution of
(I∨)r is not linear. Thus, I∨ is not componentwise linear and then I is
not sequentially Cohen–Macaulay.

Now, let n = 2r+1, for some r ≥ 3. We will show that β2,2r+1((I∨)r+1)
6= 0, which implies that the minimal free resolution of (I∨)r+1 is not

linear, since 2r + 1 > r + 3. Each minimal vertex cover of Cd,αn has
at least r + 1 elements. One can see that {x1,1, x2,1, x4,1, . . . , x2r,1}
is a minimal vertex cover of Cd,αn . Consider the cycle graph Cn :
x1,1, x2,1, x3,1, . . . , x2r+1,1 and let J = (I(Cn)∨)r+1. Then, as shown
in the proof of [4, Proposition 4.1], β2,2r+1(J) 6= 0. From Hochster’s for-
mula (see [10, Theorem 1.5.21]), we have β2,2r+1(J) =

∑
|V |=2r+1,V⊆X

dimk H̃2r−3(∆V , k), where ∆ is the Stanley–Reisner simplicial complex

of J and X = {x1,1, x2,1, x3,1, . . . , x2r+1,1}. Thus, dimk H̃2r−3(∆, k) 6= 0.

Also, β2,2r+1((I∨)r+1) =
∑
|V |=2r+1,V⊆Y dimk H̃2r−3(∆′V , k), where ∆′

is the Stanley–Reisner simplicial complex of (I∨)r+1 on some vertex
set Y . We show that ∆′X = ∆. Any F ⊆ X is a vertex cover of

Cn if and only if F is a vertex cover of Cd,αn . Let F be a face of
∆. Then, Πx∈Fx /∈ J . Since J is generated by all minimal vertex
covers of Cn, then F is not a vertex cover of Cn. Thus, F is not

a vertex cover of Cd,αn and then Πx∈Fx /∈ (I∨)r+1. This means that
F ∈ ∆′X . The proof of the other inclusion is similar. Therefore,

dimk H̃2r−3(∆′X , k) = dimk H̃2r−3(∆, k) 6= 0. Since |X| = 2r + 1, we
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have β2,2r+1((I∨)r+1) ≥ dimk H̃2r−3(∆′X , k) > 0. Therefore, I∨ is not
componentwise linear. �

Corollary 2.6. The hypercycle Cd,αn is shellable if and only if it is se-
quentially Cohen–Macaulay.

Corollary 2.7. The hypercycle Cd,αn is Cohen–Macaulay if and only if
n ∈ {3, 5} and d = 2α.

Proof. Assume that Cd,αn is Cohen–Macaulay. Then, it is sequentially
Cohen–Macaulay. Thus by the Theorem 2.5 n = 3 or n = 5. Also, all

minimal vertex covers of Cd,αn have the same cardinality. Let E(Cd,α3 ) =
{e1, e2, e3}, x1 ∈ e1 ∩ e2 and x2 ∈ e2 ∩ e3. Then, {x1, x2} is a minimal

vertex cover of Cd,α3 . If d > 2α, then each edge of Cd,α3 has a free
vertex. Therefore, {u1, u2, u3}, where ui ∈ ei is a free vertex, is also
a minimal vertex cover, a contradiction. Thus, d = 2α. In the case
n = 5, if d > 2α, then similarly one can find two minimal vertex covers
{x1, x2, x4}, xi ∈ ei∩ei+1, and {u1, . . . , u5}, where ui ∈ ei is a free vertex
to get a contradiction. Conversely, if d = 2α, then each minimal vertex

cover of Cd,α3 has cardinality two and each minimal vertex cover of Cd,α5
is of cardinality three. Since they are sequentially Cohen–Macaulay, the
result holds. �
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