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A CHARACTERIZATION OF L-DUAL FRAMES AND
L-DUAL RIESZ BASES

A. AHMADI AND A. ASKARI HEMMAT∗

Communicated by Gholam Hossein Eslamzadeh

Abstract. This paper is an investigation of L-dual frames with
respect to a function-valued inner product, the so called L-bracket
product on L2(G), where G is a locally compact abelian group with
a uniform lattice L. We show that several well known theorems for
dual frames and dual Riesz bases in a Hilbert space remain valid
for L-dual frames and L-dual Riesz bases in L2(G).

1. Introduction

In [2], the bracket product is defined as a function valued inner prod-
uct on L2(R) and, in [9], the φ-bracket product is defined as its extension
to L2(G), where G is a locally compact abelian group (LCA) and φ is
a topological isomorphism on G. As a new inner product on L2(G), we
define the L−bracket product which can be applied to extend several
ideas and constructions from the theory of shift invariant spaces, fac-
torable operators and Wely-Heisenberg frames on Rn to the setting of
LCA groups. These extensions are, in a more general and different way,
using various tools in abstract harmonic analysis.

Dual frames and Riesz Bases for Hilbert spaces are defined in [1, 3].
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The present paper deals with characterizing L-dual frames and L -
dual Riesz bases on L2(G), and consists of four sections. In the first
section some definitions and preliminaries related to locally compact
abelian groups and L-bracket products are introduced. In Section 2, we
state some definitions and notations related to L-frames. In Section 3,
we define and characterize L-dual frames and, finally, in Section 4, we
define L-dual Riesz basis.

2. Preliminaries

In this section we give a brief review of definitions and notations from
LCA groups and L-bracket product. For more details on LCA groups
we refer to the book [4] and an extensive study of the L-bracket product
theory can be found in [7].

Definition 2.1. A subgroup L of G is called a uniform lattice, if it is
discrete and co-compact; i.e., G/L is compact.

Definition 2.2. Let f, g ∈ L2(G). The L-bracket product of f and g is
defined as the mapping [., .]L : L2(G)× L2(G) → L1(G/L) given by

[f, g]L(ẋ) =
∑
k∈L

fḡ(xk−1) for all ẋ ∈ G/L.

We define the L-norm of f as ‖f‖L (ẋ) = ([f, f ]L(ẋ))
1
2 .

The above definition appears in [7] with the following formula

[f, g]φ(ẋ) =
∑

φ(k)∈φ(L)

fḡ(xφ(k−1)) for all ẋ ∈ G/φ(L),

where φ is any topological isomorphism on G.

Note 2.3. If φ : G → G is a topological automorphism and L is a uni-
form lattice in G, then φ(L) is also a uniform lattice in G [3]. Thus,
we assume that G is a LCA group with uniform lattice L′ and we set
L = φ(L′). In the present paper we always assume that G/L is normal-
ized; i.e., |G/L|=1.

Let L be a uniform lattice in G. Choosing the counting measure on
L, a relation between the Haar measure dx on G and dẋ on G

L is given
by the following case of Weil’s formula [4]. For f ∈ L1(G), we have
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k∈L f(xk−1) ∈ L1(G) and∫

G
f(x)dx =

∫
G/L

∑
k∈L

f(xk−1)dẋ.

Example 2.4. Examples of L-bracket product:
(1) Consider G = Rn with the uniform lattice L′ = Zn. Let the

topological automorphism φ : Rn −→ Rn, given by φ(x) = Ax,
where A is an invertible n× n matrix. The L-bracket product is
the A-bracket product defined as [f, g]L(x) =

∑
n∈Zn fg(x−An),

for f, g ∈ L2(Rn) (see [5]).

In particular, let n = 1 and G = R with the uniform lat-
tice L′ = Z. Fix a ∈ R+, we define: φ(x) = ax, for x ∈ R.
The mapping [., .]L : L2(R) × L2(R) −→ L1([0, 1]), defined by
[f, g]L(x) =

∑
n∈Z fg(x−na) is the a-pointwise inner product of

f and g (see [2]).
(2) Consider the LCA group G = R × ∆p, where p is a prime and

∆p denote the group of p-adic integers as defined in [6]. and let
L be the subgroup {(n, nu)}n∈Z of R×∆p, where u = (1, 0, 0, ...).
Then, L is a uniform lattice in R × ∆p (obviously L is dis-
crete and by Theorem 10.13 in [6], (R×∆p)/L is compact). Let
a := (1/p, 0, 0, ...) ∈ ∆p. Then, the mapping φ : R×∆p → R×∆p

defined by (x, v) ∈ R × ∆p, by φ(x, v) = (2x, av), is a topo-
logical isomorphism on R × ∆p, thus The L-bracket product is
[f, g]L(x, v) =

∑
n∈Z fg(x− 2n, v − anu), for f, g ∈ L2(R×∆p)

(see [8]).

Definition 2.5. The function g ∈ L2(G) is L-bounded, if there exists
M > 0 such that ‖g‖L (ẋ) ≤ M ; a.e.

For f, g ∈ L2(G) the function [f, g]Lg need not generally be in L2(G).
For example consider f(x) = g(x) = χ[0,a]x

− 1
3 , where a ∈ R+ and

φ(x) = ax, for x ∈ R. But, if f, g, h ∈ L2(G) and g, h are L-bounded,
then [f, g]Lh ∈ L2(G) (see [7]).

3. L-frame

In [9], φ-frames and its associated φ-analysis and φ-frame operators
are defined. They obtained criteria for a sequence to be a φ-frame or a
φ-Bessel sequence. In this section we state those concepts in L−bracket
product sense.
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Definition 3.1. The sequence {fn}n∈N in L2(G) is said to be a L-
frame, if there exist positive constants 0 < A ≤ B < ∞ such that
for all f ∈ L2(G)

A ‖f‖2
L (ẋ) ≤

∑
n∈N

|[f, fn]L(ẋ)|2 ≤ B ‖f‖2
L (ẋ) for ẋ ∈ G/L a.e..

Those sequences in L2(G), which satisfy only the right-hand inequal-
ity in the above formula are called L-Bessel sequences.

We now intend to define L-pre frame and L-analysis operators. We
need to introduce a vector space which plays the role of l2(N) in the
standard case. To this end, define l21(G/L) as the space all sequences in
L∞(G/L) such that convergent in L1(G/L); i.e.

l21(G/L) = {{gi}i∈N ⊂ L∞(G/L);
∫

G/L

∑
i∈N

|gi(ẋ)|2 dẋ < ∞},

l21(G/L) is an inner product space with respect to the following inner
product:

[., .]l21(G/L) : l21(G/L)×l21(G/L) → L1(G/L), [{gi}, {hi}]l21(G/L) =
∑
i∈N

gih̄i.

For {gi}i∈N ∈ l21(G/L), The pointwise norm is defined by

‖{gi}‖l21(G/L) (ẋ) = (
∑
i∈N

|gi(ẋ)|2)
1
2 ,

and the uniform norm by

‖{gi}‖l21(G/L) = (
∫

G/L

∑
i∈N

|gi(ẋ)|2)dẋ)
1
2 .

Let {fn}n∈N(= f) be a L-bounded sequence in L2(G). Define the L-
analysis operator as the mapping T f

L : L2(G) → l21(G/L) by

T f
Lg = {[g, fn]L}n∈N, for all g ∈ L2(G),

and the L-pre frame operator as the mapping T ∗fL : l21(G/L) → L2(G)
by

T ∗fL ({gn}) =
∑
n∈N

fngn, for all {gn}n∈Z ∈ l21(G/L).
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Remark 3.2. Our purpose is to consider a special l21-orthonormal basis
for l21(G/L). Consider the functions g(ẋ) = 1 and h(ẋ) = 0, for all
ẋ ∈ G/L, and the sequence ∆n = {∆k

n}∞k=1 of functions ∆k
n : G/L → C

for n = 1, 2, 3... in L∞(G/L), defined by

(3.1) ∆k
n(ẋ) =

{
g(ẋ) if k = n,
h(ẋ) if k 6= n.

The vectors {∆n}n∈N defined by (3.1) constitute an l21-orthonormal basis
for l21(G/L) that, called canonical l21-orthonormal basis.

In the following theorem we characterize L-Bessel sequence in terms
of the L-pre frame operators.

Theorem 3.3. [9] Let {fn}n∈N be a L-bounded sequence in L2(G).

(1) {fn}n∈N is L-Bessel with bound B if and only if T ∗fL is a well de-

fined, bounded operator from l21(G/L) into L2(G) and
∥∥∥T ∗fL

∥∥∥ ≤
√

B.
(2) {fn}n∈N is a L-frame if and only if T ∗fL is a well defined, bounded

operator from l21(G/L) onto L2(G).

Remark 3.4. Let {fn}n∈N be a L-frame. Assume that each fn, n ∈ N,
is L-bounded in L2(G). Then, the L-frame operator defined by SL :=
T ∗fL T f

L is bounded. For all g ∈ L2(G) we have
[SLg, g]L(ẋ) = [

∑
n∈N[g, fn]L(ẋ)fn, g]L(ẋ) =

∑
n∈N[g, fn]L[g, fn]L(ẋ)

=
∑
n∈N

|[g, fn]L(ẋ)|2 , a.e., ẋ ∈ G/L.

So, we have: A[g, g]L(ẋ) ≤ [Sφg, g]L(ẋ) ≤ B[g, g]L(ẋ) a.e. Therefore,
AI ≤ SL ≤ BI. By a standard argument as in the frame theory SL is
invertible (see [9]), and

(3.2) B−1I ≤ S−1
L ≤ A−1I.

Definition 3.5. A function h ∈ L∞(G) is said to be L-periodic, if
h(xk) = h(x) for all k ∈ L, x ∈ G. We will denote by BL(G) the set
of all L-periodic functions in L∞(G).

Definition 3.6. Let E be a subgroup of G or G/L. An operator
U : L2(G) → Lp(E), 1 ≤ p ≤ ∞, is said to be L -factorable, if U(hf) =
hU(f) for all f ∈ L2(G) and all L-periodic functions h ∈ L∞(G) .
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Lemma 3.7. [8]
(1) Let U be a bounded L-factorable operator on L2(G). Then, for

every f ∈ L2(G) we have ‖Uf‖L (ẋ) ≤ ‖U‖ ‖f‖L (ẋ) a.e.,
(2) Let f, g ∈ L2(G). Then, for all periodic functions h,

[fh, g]L = h[f, g]L, [f, h̄g]L = h[f, g]L.

The following proposition shows that every bounded L-factorable op-
erator on L2(G) is adjointable.

Proposition 3.8. [8] Let U : L2(G) → L2(G) be a bounded L-factorable
operator and U∗ be its adjoint. Then, U∗ is L-factorable. Moreover, for
all f, g ∈ L2(G), [U(f), g]L(ẋ) = [f, U∗(g)]L(ẋ) a.e., ẋ ∈ G/L.

Lemma 3.9. Let {fn}n∈N be a L-frame that is L-bounded and SL is
L-frame operator for {fn}n∈N then SL is L-factorable.

Proof. Let h be a L-periodic function we show that

SL(hf) = hSL(f) for all f ∈ L2(G).

SL(hf) =
∑

n∈N[hf, fn]Lfn, on the other hand, by Lemma 3.7(2) we
have SL(hf) =

∑
n∈N h[f, fn]Lfn = hSL(f). Thus, SL is a L-factorable.

4. L -dual frame

Our goal in this section is to define and characterize L-dual frames
for L-frames in L2(G).

Definition 4.1. Let {fn}n∈N be a L-bounded, L-frame, then the L-
bounded, L-frame {gn}n∈N is called a L -dual frame for {fn}n∈N if

(4.1) g =
∑
n∈N

[g, gn]Lfn for all g ∈ L2(G)

Remark 4.2. Let {gn}n∈N be a L-dual frame for {fn}n∈N, thus they are
L-Bessel sequences and we denote the L-pre frame operator for {fn}n∈N
by T ∗fL , and the L-pre frame operator for {gn}n∈N by T ∗gL . In terms of
these operators (4.1) means

(4.2) T ∗fL T g
L = I.
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Remark 4.3. By the equation (3.2), {S−1
L fn}n∈N is a L-frame and by

Lemma 3.9, S−1
L is L-factorable and then by Lemma 3.7(1):

∥∥S−1
L (fn)

∥∥
L

(ẋ) ≤
∥∥S−1

L

∥∥ ‖fn‖L (ẋ) a.e., for all n ∈ N

thus {S−1
L fn}n∈N is L-bounded and also we have

g = SLS−1
L g =

∑
i∈N

[g, S−1fn]Lfn,

and {S−1
L fn}n∈N is a L-dual frame for {fn}n∈N, that is called the canon-

ical or standard L-dual frame.

We begin with a lemma, which shows the roles of {fn}n∈N and {gn}n∈N
can be interchanged:

Lemma 4.4. Assume that {fn}n∈N and{gn}n∈N are L-bounded, L-
Bessel sequences in L2(G). Then, the following are equivalent:

(i) g = Σn∈N[g, gn]Lfn for all g ∈ L2(G)
(ii) g = Σn∈N[g, fn]Lgn for all g ∈ L2(G)

Proof. In terms of the L-pre frame operators (i) means that T ∗fL T g
L = I

(4.3) (T ∗fL T g
L = I)∗ = T ∗gL T f

L = I

which is identical to the statement in (ii). In a similar way (ii) implies
(i).

When (4.3) is satisfied, we say that T ∗gL is a left inverse of T f
L .

Lemma 4.5. Let{fn}n∈N be a L-bounded, L-frame for L2(G) and
{∆k}k∈N be the canonical l2-orthonormal basis for l2(G/L). The L-dual
frames for {fn}n∈N are precisely the family {gn}n∈N = {V (∆n)}, where
V : l2(G/L) → L2(G) is a bounded left inverse of T f

L .

Proof. If V is a bounded, left inverse of T f
L , then V is surjective and

{gn}n∈N = {V (∆n)} is L-frame by Theorem 3.3(2). Since

‖gk‖L2(G) = ‖V (∆k)‖L2(G) ≤ ‖V ‖ ‖∆k‖l2(G/L) ,

‖∆k‖l2(G/L) = 1 and ‖V ‖ ≤ M , this implies that ‖gk‖L2(G) ≤ M and by
Weil’s formula we have∫

G/L
‖gk‖L (ẋ)dẋ =

∫
G/L

∑
l∈L

|gk(xl)|2 dẋ =
∫

G
|gk(x)|2 dx = ‖gk‖L2(G) ≤ M.
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Therefore, we have ‖gk‖L (ẋ) ≤ M a.e., for all k ∈ N. Thus, {gk}k∈N is
a L-bounded sequence. Also, we have,

T f
Lg = {[g, fk]L}k∈N =

∞∑
k=1

[g, fk]L∆k, for all g ∈ L2(G),

thus g = V T f
Lg =

∑∞
k=1[g, fk]Lgk for all g ∈ L2(G); i.e., {gk}k∈N is

L-dual frame of {fk}k∈N. Assume that {gk}k∈N is the L-dual frame of
{fk}k∈N, then, by Theorem 3.3(2), the L-pre frame T ∗gL of {gk}k∈N is
bounded, In fact, {gk}k∈N = {T ∗gL (∆k)}k∈N , by Lemma 4.4, T ∗gL T f

L = I
and the proof is complete.

Lemma 4.6. Let {fn}n∈N be a L-bounded, L-frame with L-pre frame
operator T ∗fL . Then, the bounded left inverses of T ∗fL are precisely
the operators having the form S−1

L T ∗fL + W (I − T f
LS−1

L T ∗fL ), where
W : l21(G/L) → L2(G) and I denote the identity operator on l21(G/L).

Proof. We show that S−1
L T ∗fL + W (I − T f

LS−1
L T ∗fL ) is bounded and a

left inverse of T f
L . By Theorem 3.3(2) T ∗fL , SL and S−1

L are bounded,
So, S−1

L T ∗fL + W (I − T f
LS−1

L T ∗fL ) is bounded too, and

(S−1
L T ∗fL + W (I − T f

LS−1
L T ∗fL ))T f

L = I.

For implication, if U is a given left inverse of T f
L , then by taking W = U

we have

S−1
L T ∗fL + W (I − T f

LS−1
L T ∗fL ) = S−1

L T ∗fL + U − UT f
LS−1

L T ∗fL = U.

Now, we are ready to characterize all L-dual frames associated to a given
L-frame.

Theorem 4.7. Let{fn}n∈N be a L-bounded, L-frame for L2(G), then
the L-dual frames of {fn}n∈N are precisely the families

{gn}n∈N = {S−1
L fn + hn −

∞∑
k=1

[s−1
L fn, fk]Lhk}n∈N,

where {hn}n∈N is a L-bounded, L-Bessel sequence in L2(G).

Proof. By Lemmas 4.5 and 4.6 we can characterize the L-dual frames
as all families of the form

{gk}k∈N = {S−1
L T ∗fL (∆k) + W (I − T f

LS−1
L T ∗fL )∆k},
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where, W : l21(G/L) → L2(G) is an operator of the form W{kj}j∈N =∑∞
j=1 kjhj , such that {hn}n∈N is a L-bounded L-Bessel sequence in

L2(G). Thus, W{∆k}k∈N = {hn}n∈N,

{gk}k∈N = {S−1
L T ∗fL (∆k) + W (I − T f

LS−1
L T ∗fL )(∆k)}

= {S−1
L fn + hn −

∞∑
k=1

[S−1
L fn, fk]Lhk}n∈N,

that completes the proof.

5. A characterization of L - dual Riesz bases

In this section we show that every L-Riesz basis is a L-bounded, L-
frame sequence in L2(G). Thus, it has a L-dual frame which is a L-Riesz
basis. Similar to the usual inner product, we define L-orthogonality.

Definition 5.1. Let f, g ∈ L2(G). We say that f and g are L-orthogonal
if [f, g]L = 0.
A sequence {gn}n∈N ⊆ L2(G) is called L-orthonormal, if [gn, gm]L = 0
for all n 6= m ∈ N and ‖gn‖L = 1 for all n ∈ N. For Λ ⊆ L2(G), the
L-orthogonal complement of Λ is

Λ⊥L = {g ∈ L2(G); [f, g]L = 0, a.e., for all f ∈ Λ}.

Remark 5.2. If {gn}n∈N is a L-orthonormal basis in L2(G), in [9] it is
proved that the following are equivalent:
(a) For each f ∈ L2(G), f(x) =

∑
n∈N([f, gn]L(ẋ))gn(x), a.e., x ∈ G.

(b) For all f ∈ L2(G), ‖f‖2
L (ẋ) =

∑
n∈N |[f, gn]L(ẋ)|2 , a.e., (Parseval

Identity).

Definition 5.3. A sequence {fn}n∈N in L2(G) is said to be L-Riesz
basis, if there exists a L-orthonormal basis {gn}n∈N and L-factorable
operator U : L2(G) → L2(G), which is a topological automorphism such
that U(gn) = fn, for every n ∈ N.

Remark 5.4. (i) If U : L2(G) → L2(G) is invertible, then U is L-
factorable. Indeed, for h ∈ BL(G), we have

UU−1(hf) = hf = hUU−1f = U(hU−1f).

Therefore, U−1(hf) = hU−1f for all f ∈ L2(G), and so U−1 is L-
factorable.
(ii) If {gn}n∈N is a L-Riesz basis for L2(G). According to the definition
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we can write {gn}n∈N = {U(fn)}n∈N, where U is a L-factorable oper-
ator which is a topological automorphism on L2(G) and {fn}n∈N is a
L-orthonormal basis for L2(G). Since U is a topological automorphism
then U is bounded, thus by Lemma 3.7(1) we have

‖gn‖L (ẋ) = ‖U(fn)‖L (ẋ) ≤ ‖U‖ ‖fn‖L (ẋ) a.e.

Since ‖fn‖L (ẋ) = 1 a.e. so ‖gn‖L (ẋ) ≤ ‖U‖ a.e., that is, gn is a
L-bounded for all n ∈ N.

Proposition 5.5. Let {gn}n∈N be a L-Riesz basis for L2(G). Then,
{gn}n∈N is a L-frame for L2(G).

Proof. According to the definition we can write {gn}n∈N = {U(fn)}n∈N,
where U is a L-factorable operator which is a topological automor-
phism on L2(G) and {fn}n∈N is L-orthonormal basis for L2(G). By
Remark 5.2(b) we have for g ∈ L2(G),

∞∑
n=1

|[g, gn]L(ẋ)|2 =
∞∑

n=1

|[g, Ufn]L(ẋ)|2 = ‖U∗g‖2
L (ẋ) a.e.,

by Lemma 3.7(1) we have
∑∞

n=1 |[g, gn]L(ẋ)|2 ≤ ‖U∗‖2 ‖g‖2
L (ẋ) a.e., this

implies that a L-Riesz basis is a L-Bessel sequence. The lower bound
property follows from

‖g‖L (ẋ) =
∥∥(U∗)−1U∗g

∥∥
L

(ẋ) ≤∥∥(U∗)−1
∥∥ ‖(U∗)g‖L (ẋ) =

∥∥U−1
∥∥ ‖(U∗)g‖L (ẋ) a.e..

Using the above proposition, Remarks 5.4(i) and 5.4(ii) and the fol-
lowing theorem we have the characterization of L-dual frames for L-Riesz
basis.

Theorem 5.6. Let {fn}n∈N be a L-Riesz basis for L2(G). Then, there
exists a L-Riesz basis {gn}n∈N in L2(G) such that

g =
∞∑

n=1

[g, gn]Lfn for all g ∈ L2(G).

Proof. By definition we have {fn}n∈N = {U(en)}n∈N, where U is a L-
factorable operator which is a topological automorphism on L2(G) and
{en}n∈N is a L-orthonormal basis for L2(G).
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Let g ∈ L2(G). By expanding U−1g in the L-orthonormal basis {en}n∈N,
we have

U−1g =
∞∑

n=1

[U−1g, en]Len =
∞∑

n=1

[g, (U−1)∗en]Len.

Setting gn := (U−1)∗en, we have g = UU−1g = U
∑∞

n=1[g, gn]Len. Then,
[g, (U−1)∗en] = [U−1g, en]L and [U−1g, en]L ∈ L∞(G/L) for every n ∈ N
and by Bessel’s Inequality

∞∑
n=1

∣∣[g, (U−1)∗en]L(ẋ)
∣∣2 ≤ ‖g‖L (ẋ) < ∞ for a.e., ẋ ∈ G/L.

Also,

g = U
∞∑

n=1

[g, (U−1)∗en]Len =
∞∑

n=1

[g, (U−1)∗en]LUen =
∞∑

n=1

[g, gn]Lfn.

This completes the proof.
The sequence {gn}n∈N in the above proof is called the L-dual Riesz

basis, and so a L-dual frame, for {fn}n∈N.

Example 5.7. Let G be a LCA group with a uniform lattice L. In [9], it
is proved that L2(G) admits a L-orthonormal basis. Let {En}n∈N be a L-
orthonormal basis for L2(G) then F = {E1, E1, E2, E2, . . . Ek, Ek, . . .}
is a L-frame for L2(G). Also, {1

2E1,
1
2E1, . . . ,

1
2Ek,

1
2Ek, . . .} and {E1, 0,

. . . , Ek, 0, . . .} are L-dual frames for F .
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