Bulletin of the Iranian Mathematical Society Vol. 37 No. 4 (2011), pp 21-32.

A CHARACTERIZATION OF *L*-DUAL FRAMES AND *L*-DUAL RIESZ BASES

A. AHMADI AND A. ASKARI HEMMAT*

Communicated by Gholam Hossein Eslamzadeh

ABSTRACT. This paper is an investigation of L-dual frames with respect to a function-valued inner product, the so called L-bracket product on $L^2(G)$, where G is a locally compact abelian group with a uniform lattice L. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for L-dual frames and L-dual Riesz bases in $L^2(G)$.

1. Introduction

In [2], the bracket product is defined as a function valued inner product on $L^2(\mathbb{R})$ and, in [9], the ϕ -bracket product is defined as its extension to $L^2(G)$, where G is a locally compact abelian group (LCA) and ϕ is a topological isomorphism on G. As a new inner product on $L^2(G)$, we define the L-bracket product which can be applied to extend several ideas and constructions from the theory of shift invariant spaces, factorable operators and Wely-Heisenberg frames on \mathbb{R}^n to the setting of LCA groups. These extensions are, in a more general and different way, using various tools in abstract harmonic analysis.

Dual frames and Riesz Bases for Hilbert spaces are defined in [1, 3].

MSC(2000): Primary: 42C15.

Keywords: Frame, dual frame, bracket product, *L*-frame, *L*-dual frame, Riesz basis. Received: 12 March 2009, Accepted: 19 April 2010.

 $[*] Corresponding \ author$

^{© 2011} Iranian Mathematical Society.

²¹

The present paper deals with characterizing L-dual frames and Ldual Riesz bases on $L^2(G)$, and consists of four sections. In the first section some definitions and preliminaries related to locally compact abelian groups and L-bracket products are introduced. In Section 2, we state some definitions and notations related to L-frames. In Section 3, we define and characterize L-dual frames and, finally, in Section 4, we define L-dual Riesz basis.

2. Preliminaries

In this section we give a brief review of definitions and notations from LCA groups and *L*-bracket product. For more details on LCA groups we refer to the book [4] and an extensive study of the *L*-bracket product theory can be found in [7].

Definition 2.1. A subgroup L of G is called a uniform lattice, if it is discrete and co-compact; i.e., G/L is compact.

Definition 2.2. Let $f, g \in L^2(G)$. The *L*-bracket product of f and g is defined as the mapping $[.,.]_L \colon L^2(G) \times L^2(G) \to L^1(G/L)$ given by

$$[f,g]_L(\dot{x}) = \sum_{k \in L} f\bar{g}(xk^{-1})$$
 for all $\dot{x} \in G/L$.

We define the *L*-norm of **f** as $\|f\|_L(\dot{x}) = ([f, f]_L(\dot{x}))^{\frac{1}{2}}$.

The above definition appears in [7] with the following formula

$$[f,g]_{\phi}(\dot{x}) = \sum_{\phi(k) \in \phi(L)} f\bar{g}(x\phi(k^{-1})) \quad for \quad all \quad \dot{x} \in G/\phi(L).$$

where ϕ is any topological isomorphism on G.

Note 2.3. If $\phi: G \to G$ is a topological automorphism and L is a uniform lattice in G, then $\phi(L)$ is also a uniform lattice in G [3]. Thus, we assume that G is a LCA group with uniform lattice L' and we set $L = \phi(L')$. In the present paper we always assume that G/L is normalized; i.e., |G/L|=1.

Let L be a uniform lattice in G. Choosing the counting measure on L, a relation between the Haar measure dx on G and $d\dot{x}$ on $\frac{G}{L}$ is given by the following case of Weil's formula [4]. For $f \in L^1(G)$, we have

$$\sum_{k\in L}f(xk^{-1})\in L^1(G)$$
 and
$$\int_Gf(x)dx=\int_{G/L}\sum_{k\in L}f(xk^{-1})d\dot{x}.$$

Example 2.4. Examples of L-bracket product:

(1) Consider $G = \mathbb{R}^n$ with the uniform lattice $L' = \mathbb{Z}^n$. Let the topological automorphism $\phi : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, given by $\phi(x) = Ax$, where A is an invertible $n \times n$ matrix. The L-bracket product is the A-bracket product defined as $[f,g]_L(x) = \sum_{n \in \mathbb{Z}^n} f\overline{g}(x-An)$, for $f,g \in L^2(\mathbb{R}^n)$ (see [5]).

In particular, let n = 1 and $G = \mathbb{R}$ with the uniform lattice $L' = \mathbb{Z}$. Fix $a \in \mathbb{R}^+$, we define: $\phi(x) = ax$, for $x \in \mathbb{R}$. The mapping $[.,.]_L : L^2(\mathbb{R}) \times L^2(\mathbb{R}) \longrightarrow L^1([0,1])$, defined by $[f,g]_L(x) = \sum_{n \in \mathbb{Z}} f\overline{g}(x-na)$ is the a-pointwise inner product of f and g (see [2]).

(2) Consider the LCA group G = ℝ × Δ_p, where p is a prime and Δ_p denote the group of p-adic integers as defined in [6]. and let L be the subgroup {(n, nu)}_{n∈ℤ} of ℝ × Δ_p, where u = (1,0,0,...). Then, L is a uniform lattice in ℝ × Δ_p (obviously L is discrete and by Theorem 10.13 in [6], (ℝ × Δ_p)/L is compact). Let a := (1/p,0,0,...) ∈ Δ_p. Then, the mapping φ : ℝ×Δ_p → ℝ×Δ_p defined by (x, v) ∈ ℝ × Δ_p, by φ(x, v) = (2x, av), is a topological isomorphism on ℝ × Δ_p, thus The L-bracket product is [f,g]_L(x,v) = ∑_{n∈ℤ} f ḡ(x - 2n, v - anu), for f, g ∈ L²(ℝ × Δ_p) (see [8]).

Definition 2.5. The function $g \in L^2(G)$ is *L*-bounded, if there exists M > 0 such that $||g||_L(\dot{x}) \leq M$; a.e.

For $f, g \in L^2(G)$ the function $[f, g]_L g$ need not generally be in $L^2(G)$. For example consider $f(x) = g(x) = \chi_{[0,a]} x^{-\frac{1}{3}}$, where $a \in \mathbb{R}^+$ and $\phi(x) = ax$, for $x \in \mathbb{R}$. But, if $f, g, h \in L^2(G)$ and g, h are L-bounded, then $[f, g]_L h \in L^2(G)$ (see [7]).

3. L-frame

In [9], ϕ -frames and its associated ϕ -analysis and ϕ -frame operators are defined. They obtained criteria for a sequence to be a ϕ -frame or a ϕ -Bessel sequence. In this section we state those concepts in L-bracket product sense. **Definition 3.1.** The sequence $\{f_n\}_{n\in\mathbb{N}}$ in $L^2(G)$ is said to be a *L*-frame, if there exist positive constants $0 < A \leq B < \infty$ such that for all $f \in L^2(G)$

$$A \|f\|_{L}^{2}(\dot{x}) \leq \sum_{n \in \mathbb{N}} |[f, f_{n}]_{L}(\dot{x})|^{2} \leq B \|f\|_{L}^{2}(\dot{x}) \quad for \quad \dot{x} \in G/L \ a.e..$$

Those sequences in $L^2(G)$, which satisfy only the right-hand inequality in the above formula are called L-Bessel sequences.

We now intend to define *L*-pre frame and *L*-analysis operators. We need to introduce a vector space which plays the role of $l^2(\mathbb{N})$ in the standard case. To this end, define $l_1^2(G/L)$ as the space all sequences in $L^{\infty}(G/L)$ such that convergent in $L^1(G/L)$; i.e.

$$l_1^2(G/L) = \{\{g_i\}_{i \in \mathbb{N}} \subset L^\infty(G/L); \int_{G/L} \sum_{i \in \mathbb{N}} |g_i(\dot{x})|^2 \, d\dot{x} < \infty\},\$$

 $l_1^2(G/L)$ is an inner product space with respect to the following inner product:

$$[.,.]_{l_1^2(G/L)} \colon l_1^2(G/L) \times l_1^2(G/L) \to L^1(G/L), [\{g_i\}, \{h_i\}]_{l_1^2(G/L)} = \sum_{i \in \mathbb{N}} g_i \bar{h_i}.$$

For $\{g_i\}_{i\in\mathbb{N}}\in l_1^2(G/L)$, The pointwise norm is defined by

$$\|\{g_i\}\|_{l^2_1(G/L)}(\dot{x}) = (\sum_{i \in \mathbb{N}} |g_i(\dot{x})|^2)^{\frac{1}{2}},$$

and the uniform norm by

$$\|\{g_i\}\|_{l^2_1(G/L)} = (\int_{G/L} \sum_{i \in \mathbb{N}} |g_i(\dot{x})|^2) d\dot{x})^{\frac{1}{2}}.$$

Let $\{f_n\}_{n\in\mathbb{N}}(=f)$ be a *L*-bounded sequence in $L^2(G)$. Define the *L*-analysis operator as the mapping $T_L^f \colon L^2(G) \to l_1^2(G/L)$ by

$$T_L^f g = \{ [g, f_n]_L \}_{n \in \mathbb{N}}, \text{ for all } g \in L^2(G),$$

and the L-pre frame operator as the mapping $T_L^{*f}\colon l_1^2(G/L)\to L^2(G)$ by

$$T_L^{*f}(\{g_n\}) = \sum_{n \in \mathbb{N}} f_n g_n, \text{ for all } \{g_n\}_{n \in \mathbb{Z}} \in l_1^2(G/L).$$

Remark 3.2. Our purpose is to consider a special l_1^2 -orthonormal basis for $l_1^2(G/L)$. Consider the functions $g(\dot{x}) = 1$ and $h(\dot{x}) = 0$, for all $\dot{x} \in G/L$, and the sequence $\Delta_n = \{\Delta_n^k\}_{k=1}^\infty$ of functions $\Delta_n^k \colon G/L \to \mathbb{C}$ for n = 1, 2, 3... in $L^{\infty}(G/L)$, defined by

(3.1)
$$\Delta_n^k(\dot{x}) = \begin{cases} g(\dot{x}) & \text{if } k = n \\ h(\dot{x}) & \text{if } k \neq n \end{cases}$$

The vectors $\{\Delta_n\}_{n\in\mathbb{N}}$ defined by (3.1) constitute an l_1^2 -orthonormal basis for $l_1^2(G/L)$ that, called canonical l_1^2 -orthonormal basis.

In the following theorem we characterize L-Bessel sequence in terms of the L-pre frame operators.

Theorem 3.3. [9] Let $\{f_n\}_{n \in \mathbb{N}}$ be a *L*-bounded sequence in $L^2(G)$.

- (1) $\{f_n\}_{n\in\mathbb{N}}$ is *L*-Bessel with bound B if and only if T_L^{*f} is a well defined, bounded operator from $l_1^2(G/L)$ into $L^2(G)$ and $\left\|T_L^{*f}\right\| \leq \sqrt{B}$.
- (2) $\{f_n\}_{n\in\mathbb{N}}$ is a *L*-frame if and only if T_L^{*f} is a well defined, bounded operator from $l_1^2(G/L)$ onto $L^2(G)$.

Remark 3.4. Let $\{f_n\}_{n\in\mathbb{N}}$ be a *L*-frame. Assume that each $f_n, n\in\mathbb{N}$, is *L*-bounded in $L^2(G)$. Then, the *L*-frame operator defined by $S_L := T_L^{*f}T_L^f$ is bounded. For all $g \in L^2(G)$ we have $[S_Lg,g]_L(\dot{x}) = [\sum_{n\in\mathbb{N}} [g,f_n]_L(\dot{x})f_n,g]_L(\dot{x}) = \sum_{n\in\mathbb{N}} [g,f_n]_L[\overline{g},f_n]_L(\dot{x})$ $= \sum_{n\in\mathbb{N}} |[g,f_n]_L(\dot{x})|^2$, a.e., $\dot{x} \in G/L$.

So, we have: $A[g,g]_L(\dot{x}) \leq [S_{\phi}g,g]_L(\dot{x}) \leq B[g,g]_L(\dot{x})$ a.e. Therefore, $AI \leq S_L \leq BI$. By a standard argument as in the frame theory S_L is invertible (see [9]), and

(3.2)
$$B^{-1}I \le S_L^{-1} \le A^{-1}I.$$

Definition 3.5. A function $h \in L^{\infty}(G)$ is said to be *L*-periodic, if h(xk) = h(x) for all $k \in L, x \in G$. We will denote by $B_L(G)$ the set of all *L*-periodic functions in $L^{\infty}(G)$.

Definition 3.6. Let E be a subgroup of G or G/L. An operator $U: L^2(G) \to L^p(E), 1 \le p \le \infty$, is said to be L -factorable, if U(hf) = hU(f) for all $f \in L^2(G)$ and all L-periodic functions $h \in L^{\infty}(G)$.

Lemma 3.7. [8]

- (1) Let U be a bounded L-factorable operator on $L^2(G)$. Then, for every $f \in L^2(G)$ we have $||Uf||_L(\dot{x}) \leq ||U|| ||f||_L(\dot{x})$ a.e.,
- (2) Let $f, g \in L^2(G)$. Then, for all periodic functions h,

$$[fh,g]_L = h[f,g]_L, \quad [f,hg]_L = h[f,g]_L.$$

The following proposition shows that every bounded L-factorable operator on $L^2(G)$ is adjointable.

Proposition 3.8. [8] Let $U: L^2(G) \to L^2(G)$ be a bounded *L*-factorable operator and U^* be its adjoint. Then, U^* is *L*-factorable. Moreover, for all $f, g \in L^2(G), [U(f), g]_L(\dot{x}) = [f, U^*(g)]_L(\dot{x})$ a.e., $\dot{x} \in G/L$.

Lemma 3.9. Let $\{f_n\}_{n\in\mathbb{N}}$ be a *L*-frame that is *L*-bounded and S_L is *L*-frame operator for $\{f_n\}_{n\in\mathbb{N}}$ then S_L is *L*-factorable.

Proof. Let h be a L-periodic function we show that

$$S_L(hf) = hS_L(f)$$
 for all $f \in L^2(G)$.

 $S_L(hf) = \sum_{n \in \mathbb{N}} [hf, f_n]_L f_n$, on the other hand, by Lemma 3.7(2) we have $S_L(hf) = \sum_{n \in \mathbb{N}} h[f, f_n]_L f_n = hS_L(f)$. Thus, S_L is a *L*-factorable.

4. L -dual frame

Our goal in this section is to define and characterize L-dual frames for L-frames in $L^2(G)$.

Definition 4.1. Let $\{f_n\}_{n\in\mathbb{N}}$ be a *L*-bounded, *L*-frame, then the *L*-bounded, *L*-frame $\{g_n\}_{n\in\mathbb{N}}$ is called a *L*-dual frame for $\{f_n\}_{n\in\mathbb{N}}$ if

(4.1)
$$g = \sum_{n \in \mathbb{N}} [g, g_n]_L f_n \quad for \quad all \quad g \in L^2(G)$$

Remark 4.2. Let $\{g_n\}_{n\in\mathbb{N}}$ be a *L*-dual frame for $\{f_n\}_{n\in\mathbb{N}}$, thus they are *L*-Bessel sequences and we denote the *L*-pre frame operator for $\{f_n\}_{n\in\mathbb{N}}$ by T_L^{*f} , and the *L*-pre frame operator for $\{g_n\}_{n\in\mathbb{N}}$ by T_L^{*g} . In terms of these operators (4.1) means

(4.2)
$$T_L^{*f}T_L^g = I$$

26

Remark 4.3. By the equation (3.2), $\{S_L^{-1}f_n\}_{n\in\mathbb{N}}$ is a L-frame and by Lemma 3.9, S_L^{-1} is L-factorable and then by Lemma 3.7(1):

$$\|S_L^{-1}(f_n)\|_L(\dot{x}) \le \|S_L^{-1}\| \|f_n\|_L(\dot{x}) \quad a.e., \quad for \quad all \quad n \in \mathbb{N}$$

thus $\{S_L^{-1}f_n\}_{n\in\mathbb{N}}$ is L-bounded and also we have

$$g = S_L S_L^{-1} g = \sum_{i \in \mathbb{N}} [g, S^{-1} f_n]_L f_n$$

and $\{S_L^{-1}f_n\}_{n\in\mathbb{N}}$ is a L-dual frame for $\{f_n\}_{n\in\mathbb{N}}$, that is called the canonical or standard L-dual frame.

We begin with a lemma, which shows the roles of $\{f_n\}_{n\in\mathbb{N}}$ and $\{g_n\}_{n\in\mathbb{N}}$ can be interchanged:

Lemma 4.4. Assume that $\{f_n\}_{n\in\mathbb{N}}$ and $\{g_n\}_{n\in\mathbb{N}}$ are *L*-bounded, *L*-Bessel sequences in $L^2(G)$. Then, the following are equivalent:

- $\begin{array}{ll} \text{(i)} & g = \Sigma_{n \in \mathbb{N}}[g,g_n]_L f_n & for \quad all \quad g \in L^2(G) \\ \text{(ii)} & g = \Sigma_{n \in \mathbb{N}}[g,f_n]_L g_n & for \quad all \quad g \in L^2(G) \end{array}$

Proof. In terms of the *L*-pre frame operators (i) means that $T_L^{*f}T_L^g = I$

(4.3)
$$(T_L^{*f} T_L^g = I)^* = T_L^{*g} T_L^f = I$$

which is identical to the statement in (ii). In a similar way (ii) implies (i).

When (4.3) is satisfied, we say that T_L^{*g} is a left inverse of T_L^f .

Lemma 4.5. Let $\{f_n\}_{n\in\mathbb{N}}$ be a *L*-bounded, *L*-frame for $L^2(G)$ and $\{\Delta_k\}_{k\in\mathbb{N}}$ be the canonical l^2 -orthonormal basis for $l^2(G/L)$. The *L*-dual frames for $\{f_n\}_{n\in\mathbb{N}}$ are precisely the family $\{g_n\}_{n\in\mathbb{N}} = \{V(\Delta_n)\}$, where $V: l^2(G/L) \to L^2(G)$ is a bounded left inverse of T_L^f .

Proof. If V is a bounded, left inverse of T_L^f , then V is surjective and $\{g_n\}_{n\in\mathbb{N}} = \{V(\Delta_n)\}$ is *L*-frame by Theorem 3.3(2). Since

$$||g_k||_{L^2(G)} = ||V(\Delta_k)||_{L^2(G)} \le ||V|| \, ||\Delta_k||_{l^2(G/L)},$$

 $\|\Delta_k\|_{l^2(G/L)} = 1$ and $\|V\| \le M$, this implies that $\|g_k\|_{L^2(G)} \le M$ and by Weil's formula we have

$$\int_{G/L} \|g_k\|_L(\dot{x}) d\dot{x} = \int_{G/L} \sum_{l \in L} |g_k(xl)|^2 d\dot{x} = \int_G |g_k(x)|^2 dx = \|g_k\|_{L^2(G)} \le M$$

Therefore, we have $||g_k||_L(\dot{x}) \leq M$ a.e., for all $k \in \mathbb{N}$. Thus, $\{g_k\}_{k \in \mathbb{N}}$ is a *L*-bounded sequence. Also, we have,

$$T_L^f g = \{[g, f_k]_L\}_{k \in \mathbb{N}} = \sum_{k=1}^{\infty} [g, f_k]_L \Delta_k, \text{ for all } g \in L^2(G),$$

thus $g = VT_L^f g = \sum_{k=1}^{\infty} [g, f_k]_L g_k$ for all $g \in L^2(G)$; i.e., $\{g_k\}_{k \in \mathbb{N}}$ is *L*-dual frame of $\{f_k\}_{k \in \mathbb{N}}$. Assume that $\{g_k\}_{k \in \mathbb{N}}$ is the *L*-dual frame of $\{f_k\}_{k \in \mathbb{N}}$, then, by Theorem 3.3(2), the *L*-pre frame T_L^{*g} of $\{g_k\}_{k \in \mathbb{N}}$ is bounded, In fact, $\{g_k\}_{k \in \mathbb{N}} = \{T_L^{*g}(\Delta_k)\}_{k \in \mathbb{N}}$, by Lemma 4.4, $T_L^{*g}T_L^f = I$ and the proof is complete.

Lemma 4.6. Let $\{f_n\}_{n\in\mathbb{N}}$ be a *L*-bounded, *L*-frame with *L*-pre frame operator T_L^{*f} . Then, the bounded left inverses of T_L^{*f} are precisely the operators having the form $S_L^{-1}T_L^{*f} + W(I - T_L^f S_L^{-1}T_L^{*f})$, where $W: l_1^2(G/L) \to L^2(G)$ and *I* denote the identity operator on $l_1^2(G/L)$.

Proof. We show that $S_L^{-1}T_L^{*f} + W(I - T_L^f S_L^{-1}T_L^{*f})$ is bounded and a left inverse of T_L^f . By Theorem 3.3(2) T_L^{*f} , S_L and S_L^{-1} are bounded, So, $S_L^{-1}T_L^{*f} + W(I - T_L^f S_L^{-1}T_L^{*f})$ is bounded too, and

$$(S_L^{-1}T_L^{*f} + W(I - T_L^f S_L^{-1}T_L^{*f}))T_L^f = I.$$

For implication, if U is a given left inverse of T_L^f , then by taking W = U we have

$$S_L^{-1}T_L^{*f} + W(I - T_L^f S_L^{-1} T_L^{*f}) = S_L^{-1}T_L^{*f} + U - UT_L^f S_L^{-1} T_L^{*f} = U.$$

Now, we are ready to characterize all L-dual frames associated to a given L-frame.

Theorem 4.7. Let $\{f_n\}_{n\in\mathbb{N}}$ be a *L*-bounded, *L*-frame for $L^2(G)$, then the *L*-dual frames of $\{f_n\}_{n\in\mathbb{N}}$ are precisely the families

$$\{g_n\}_{n\in\mathbb{N}} = \{S_L^{-1}f_n + h_n - \sum_{k=1}^{\infty} [s_L^{-1}f_n, f_k]_L h_k\}_{n\in\mathbb{N}},$$

where $\{h_n\}_{n \in \mathbb{N}}$ is a L-bounded, L-Bessel sequence in $L^2(G)$.

Proof. By Lemmas 4.5 and 4.6 we can characterize the *L*-dual frames as all families of the form

$$\{g_k\}_{k\in\mathbb{N}} = \{S_L^{-1}T_L^{*f}(\Delta_k) + W(I - T_L^f S_L^{-1}T_L^{*f})\Delta_k\},\$$

28

where, $W: l_1^2(G/L) \to L^2(G)$ is an operator of the form $W\{k_j\}_{j\in\mathbb{N}} = \sum_{j=1}^{\infty} k_j h_j$, such that $\{h_n\}_{n\in\mathbb{N}}$ is a *L*-bounded *L*-Bessel sequence in $L^2(G)$. Thus, $W\{\Delta_k\}_{k\in\mathbb{N}} = \{h_n\}_{n\in\mathbb{N}}$,

$$\{g_k\}_{k\in\mathbb{N}} = \{S_L^{-1}T_L^{*f}(\Delta_k) + W(I - T_L^f S_L^{-1}T_L^{*f})(\Delta_k)\} \\ = \{S_L^{-1}f_n + h_n - \sum_{k=1}^{\infty} [S_L^{-1}f_n, f_k]_L h_k\}_{n\in\mathbb{N}},$$

that completes the proof.

5. A characterization of L - dual Riesz bases

In this section we show that every L-Riesz basis is a L-bounded, Lframe sequence in $L^2(G)$. Thus, it has a L-dual frame which is a L-Riesz basis. Similar to the usual inner product, we define L-orthogonality.

Definition 5.1. Let $f, g \in L^2(G)$. We say that f and g are L-orthogonal if $[f, g]_L = 0$.

A sequence $\{g_n\}_{n\in\mathbb{N}} \subseteq L^2(G)$ is called *L*-orthonormal, if $[g_n, g_m]_L = 0$ for all $n \neq m \in \mathbb{N}$ and $||g_n||_L = 1$ for all $n \in \mathbb{N}$. For $\Lambda \subseteq L^2(G)$, the *L*-orthogonal complement of Λ is

$$\Lambda^{\perp_{L}} = \{ g \in L^{2}(G); [f,g]_{L} = 0, \ a.e., \ for \ all \ f \in \Lambda \}.$$

Remark 5.2. If $\{g_n\}_{n \in \mathbb{N}}$ is a *L*-orthonormal basis in $L^2(G)$, in [9] it is proved that the following are equivalent:

(a) For each $f \in L^2(G)$, $f(x) = \sum_{n \in \mathbb{N}} ([f, g_n]_L(\dot{x}))g_n(x)$, a.e., $x \in G$. (b) For all $f \in L^2(G)$, $||f||_L^2(\dot{x}) = \sum_{n \in \mathbb{N}} |[f, g_n]_L(\dot{x})|^2$, a.e., (Parseval Identity).

Definition 5.3. A sequence $\{f_n\}_{n\in\mathbb{N}}$ in $L^2(G)$ is said to be *L*-Riesz basis, if there exists a *L*-orthonormal basis $\{g_n\}_{n\in\mathbb{N}}$ and *L*-factorable operator $U: L^2(G) \to L^2(G)$, which is a topological automorphism such that $U(g_n) = f_n$, for every $n \in \mathbb{N}$.

Remark 5.4. (i) If $U: L^2(G) \to L^2(G)$ is invertible, then U is L-factorable. Indeed, for $h \in B_L(G)$, we have

$$UU^{-1}(hf) = hf = hUU^{-1}f = U(hU^{-1}f)$$

Therefore, $U^{-1}(hf) = hU^{-1}f$ for all $f \in L^2(G)$, and so U^{-1} is L-factorable.

(ii) If $\{g_n\}_{n\in\mathbb{N}}$ is a L-Riesz basis for $L^2(G)$. According to the definition

we can write $\{g_n\}_{n\in\mathbb{N}} = \{U(f_n)\}_{n\in\mathbb{N}}$, where U is a L-factorable operator which is a topological automorphism on $L^2(G)$ and $\{f_n\}_{n\in\mathbb{N}}$ is a L-orthonormal basis for $L^2(G)$. Since U is a topological automorphism then U is bounded, thus by Lemma 3.7(1) we have

$$|g_n||_L(\dot{x}) = ||U(f_n)||_L(\dot{x}) \le ||U|| ||f_n||_L(\dot{x}) \quad a.e.$$

Since $||f_n||_L(\dot{x}) = 1$ a.e. so $||g_n||_L(\dot{x}) \leq ||U||$ a.e., that is, g_n is a L-bounded for all $n \in \mathbb{N}$.

Proposition 5.5. Let $\{g_n\}_{n\in\mathbb{N}}$ be a L-Riesz basis for $L^2(G)$. Then, $\{g_n\}_{n\in\mathbb{N}}$ is a L-frame for $L^2(G)$.

Proof. According to the definition we can write $\{g_n\}_{n\in\mathbb{N}} = \{U(f_n)\}_{n\in\mathbb{N}}$, where U is a L-factorable operator which is a topological automorphism on $L^2(G)$ and $\{f_n\}_{n\in\mathbb{N}}$ is L-orthonormal basis for $L^2(G)$. By Remark 5.2(b) we have for $g \in L^2(G)$,

$$\sum_{n=1}^{\infty} |[g,g_n]_L(\dot{x})|^2 = \sum_{n=1}^{\infty} |[g,Uf_n]_L(\dot{x})|^2 = ||U^*g||_L^2(\dot{x}) \quad a.e.,$$

by Lemma 3.7(1) we have $\sum_{n=1}^{\infty} |[g, g_n]_L(\dot{x})|^2 \leq ||U^*||^2 ||g||_L^2(\dot{x})$ a.e., this implies that a *L*-Riesz basis is a *L*-Bessel sequence. The lower bound property follows from

$$\begin{split} \|g\|_{L}\left(\dot{x}\right) &= \left\|(U^{*})^{-1}U^{*}g\right\|_{L}\left(\dot{x}\right) \leq \\ \left\|(U^{*})^{-1}\right\| \left\|(U^{*})g\right\|_{L}\left(\dot{x}\right) &= \left\|U^{-1}\right\| \left\|(U^{*})g\right\|_{L}\left(\dot{x}\right) \ a.e.. \end{split}$$

Using the above proposition, Remarks 5.4(i) and 5.4(ii) and the following theorem we have the characterization of *L*-dual frames for *L*-Riesz basis.

Theorem 5.6. Let $\{f_n\}_{n\in\mathbb{N}}$ be a L-Riesz basis for $L^2(G)$. Then, there exists a L-Riesz basis $\{g_n\}_{n\in\mathbb{N}}$ in $L^2(G)$ such that

$$g = \sum_{n=1}^{\infty} [g, g_n]_L f_n \quad for \quad all \quad g \in L^2(G).$$

Proof. By definition we have $\{f_n\}_{n\in\mathbb{N}} = \{U(e_n)\}_{n\in\mathbb{N}}$, where U is a *L*-factorable operator which is a topological automorphism on $L^2(G)$ and $\{e_n\}_{n\in\mathbb{N}}$ is a *L*-orthonormal basis for $L^2(G)$.

Let $g \in L^2(G)$. By expanding $U^{-1}g$ in the *L*-orthonormal basis $\{e_n\}_{n \in \mathbb{N}}$, we have

$$U^{-1}g = \sum_{n=1}^{\infty} [U^{-1}g, e_n]_L e_n = \sum_{n=1}^{\infty} [g, (U^{-1})^* e_n]_L e_n.$$

Setting $g_n := (U^{-1})^* e_n$, we have $g = UU^{-1}g = U\sum_{n=1}^{\infty} [g, g_n]_L e_n$. Then, $[g, (U^{-1})^* e_n] = [U^{-1}g, e_n]_L$ and $[U^{-1}g, e_n]_L \in L^{\infty}(G/L)$ for every $n \in \mathbb{N}$ and by Bessel's Inequality

$$\sum_{n=1}^{\infty} \left| [g, (U^{-1})^* e_n]_L(\dot{x}) \right|^2 \le \|g\|_L(\dot{x}) < \infty \quad for \quad a.e., \quad \dot{x} \in G/L.$$

Also,

$$g = U \sum_{n=1}^{\infty} [g, (U^{-1})^* e_n]_L e_n = \sum_{n=1}^{\infty} [g, (U^{-1})^* e_n]_L U e_n = \sum_{n=1}^{\infty} [g, g_n]_L f_n.$$

This completes the proof.

The sequence $\{g_n\}_{n\in\mathbb{N}}$ in the above proof is called the *L*-dual Riesz basis, and so a *L*-dual frame, for $\{f_n\}_{n\in\mathbb{N}}$.

Example 5.7. Let G be a LCA group with a uniform lattice L. In [9], it is proved that $L^2(G)$ admits a L-orthonormal basis. Let $\{E_n\}_{n\in\mathbb{N}}$ be a Lorthonormal basis for $L^2(G)$ then $\mathcal{F} = \{E_1, E_1, E_2, E_2, \dots, E_k, E_k, \dots\}$ is a L-frame for $L^2(G)$. Also, $\{\frac{1}{2}E_1, \frac{1}{2}E_1, \dots, \frac{1}{2}E_k, \frac{1}{2}E_k, \dots\}$ and $\{E_1, 0, \dots, E_k, 0, \dots\}$ are L-dual frames for \mathcal{F} .

Acknowledgements:(i) The authors would like to thank the referee for his good comments and for providing references.

(ii) This research has been financially supported by Mahani mathematical research center.

References

- 1. P. G. Casazza, The art of frame theory, Taiwanese J. Math. 4(2) (2000) 129-201.
- 2. P. G. Casazza and M. C. Lammers, Bracket products for Weyl-Heisenberg frames, Advance in Gabor analysis, *Appl. Numer. Harmon. Anal.* (2003) 71-89.
- 3. O. Christensen, An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003.
- G. B. Folland, A Course in Abstract Harmonic Analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
- 5. E. Hernández, D. Labate and G. Weiss, A unified characterization of reproducing systems generated by a finite family, II, J. Geom. Anal. 12 (2002) 615-662.

- E. Hewitt and K. A. Ross, *Abstract Harmonic Analysis*, Vol 1, Springer-Verlag, 1963.
- 7. R. A Kamyabi Gol and R. Raisi Tousi, Bracket products on locally compact abelian groups, J. Sci. Islam. Repub. Iran 19(2) (2008) 153-157.
- 8. R. A Kamyabi Gol and R. Raisi Tousi, φ -Factorable operators and Weyl-Heisenberg frames on LCA groups, *Bull. Iran Math. Soc.*, to appear.
- R. A Kamyabi Gol and R. Raisi Tousi, φ-Frames and φ-Riesz bases on locally compact abelian groups, J. Korean. Math. Soc., to appear.

A. Ahmadi

Department of Mathematics, Vali-e-Asr university of Rafsanjan, Rafsanjan, Iran Email:ahmadi@mail.vru.ac.ir

A. Askari Hemmat

Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran Email:askari@mail.uk.ac.ir