A CHARACTERIZATION OF L-DUAL FRAMES AND L-DUAL RIESZ BASES

A. AHMADI AND A. ASKARI HEMMAT∗

Communicated by Gholam Hossein Eslamzadeh

Abstract. This paper is an investigation of L-dual frames with respect to a function-valued inner product, the so called L-bracket product on $L^2(G)$, where G is a locally compact abelian group with a uniform lattice L. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for L-dual frames and L-dual Riesz bases in $L^2(G)$.

1. Introduction

In [2], the bracket product is defined as a function valued inner product on $L^2(\mathbb{R})$ and, in [9], the ϕ-bracket product is defined as its extension to $L^2(G)$, where G is a locally compact abelian group (LCA) and ϕ is a topological isomorphism on G. As a new inner product on $L^2(G)$, we define the $L-$bracket product which can be applied to extend several ideas and constructions from the theory of shift invariant spaces, factorable operators and Wely-Heisenberg frames on \mathbb{R}^n to the setting of LCA groups. These extensions are, in a more general and different way, using various tools in abstract harmonic analysis.

Dual frames and Riesz Bases for Hilbert spaces are defined in [1, 3].
The present paper deals with characterizing L-dual frames and L-dual Riesz bases on $L^2(G)$, and consists of four sections. In the first section some definitions and preliminaries related to locally compact abelian groups and L-bracket products are introduced. In Section 2, we state some definitions and notations related to L-frames. In Section 3, we define and characterize L-dual frames and, finally, in Section 4, we define L-dual Riesz basis.

2. Preliminaries

In this section we give a brief review of definitions and notations from LCA groups and L-bracket product. For more details on LCA groups we refer to the book [4] and an extensive study of the L-bracket product theory can be found in [7].

Definition 2.1. A subgroup L of G is called a uniform lattice, if it is discrete and co-compact; i.e., G/L is compact.

Definition 2.2. Let $f, g \in L^2(G)$. The L-bracket product of f and g is defined as the mapping $[,]_L: L^2(G) \times L^2(G) \rightarrow L^1(G/L)$ given by

$$[f, g]_L(\hat{x}) = \sum_{k \in L} f(k^{-1}) \overline{g(xk)} \quad \text{for all } \hat{x} \in G/L.$$

We define the L-norm of f as $\|f\|_L(\hat{x}) = ([f, f]_L(\hat{x}))^{\frac{1}{2}}$.

The above definition appears in [7] with the following formula

$$[f, g]_\phi(\hat{x}) = \sum_{\phi(k) \in \phi(L)} f(\phi(k^{-1})) \overline{g(xk^{-1})} \quad \text{for all } \hat{x} \in G/\phi(L),$$

where ϕ is any topological isomorphism on G.

Note 2.3. If $\phi: G \rightarrow G$ is a topological automorphism and L is a uniform lattice in G, then $\phi(L)$ is also a uniform lattice in G [3]. Thus, we assume that G is a LCA group with uniform lattice L' and we set $L = \phi(L')$. In the present paper we always assume that G/L is normalized; i.e., $|G/L|=1$.

Let L be a uniform lattice in G. Choosing the counting measure on L, a relation between the Haar measure dx on G and $d\hat{x}$ on $\frac{G}{L}$ is given by the following case of Weil’s formula [4]. For $f \in L^1(G)$, we have
\[\sum_{k \in L} f(xk^{-1}) \in L^1(G) \text{ and} \]
\[\int_{G} f(x)dx = \int_{G/L} \sum_{k \in L} f(xk^{-1})dx. \]

Example 2.4. Examples of \(L \)-bracket product:

1. Consider \(G = \mathbb{R}^n \) with the uniform lattice \(L' = \mathbb{Z}^n \). Let the topological automorphism \(\phi : \mathbb{R}^n \rightarrow \mathbb{R}^n \), given by \(\phi(x) = Ax \), where \(A \) is an invertible \(n \times n \) matrix. The \(L \)-bracket product is the \(A \)-bracket product defined as \([f, g]_L(x) = \sum_{n \in \mathbb{Z}^n} f\overline{g}(x - An) \), for \(f, g \in L^2(\mathbb{R}^n) \) (see [5]).

 In particular, let \(n = 1 \) and \(G = \mathbb{R} \) with the uniform lattice \(L' = \mathbb{Z} \). Fix \(a \in \mathbb{R}^+ \), we define: \(\phi(x) = ax \), for \(x \in \mathbb{R} \). The mapping \([.,.]_L : L^2(\mathbb{R}) \times L^2(\mathbb{R}) \rightarrow L^1([0,1]) \), defined by \([f, g]_L(x) = \sum_{n \in \mathbb{Z}} f\overline{g}(x - na) \) is the \(a \)-pointwise inner product of \(f \) and \(g \) (see [2]).

2. Consider the LCA group \(G = \mathbb{R} \times \Delta_p \), where \(p \) is a prime and \(\Delta_p \) denote the group of \(p \)-adic integers as defined in [6]. and let \(L \) be the subgroup \(\{(n,nu) \}_{n \in \mathbb{Z}} \) of \(\mathbb{R} \times \Delta_p \), where \(u = (1,0,0,...) \). Then, \(L \) is a uniform lattice in \(\mathbb{R} \times \Delta_p \) (obviously \(L \) is discrete and by Theorem 10.13 in [6], \(\mathbb{R} \times \Delta_p)/L \) is compact). Let \(a := (1/p,0,0,...) \in \Delta_p \). Then, the mapping \(\phi : \mathbb{R} \times \Delta_p \rightarrow \mathbb{R} \times \Delta_p \) defined by \((x,v) \in \mathbb{R} \times \Delta_p \), by \(\phi(x,v) = (2x,av) \), is a topological isomorphism on \(\mathbb{R} \times \Delta_p \), thus The \(L \)-bracket product is \([f, g]_L(x,v) = \sum_{n \in \mathbb{Z}} f\overline{g}(x - 2n,v - anu) \), for \(f, g \in L^2(\mathbb{R} \times \Delta_p) \) (see [8]).

Definition 2.5. The function \(g \in L^2(G) \) is \(L \)-bounded, if there exists \(M > 0 \) such that \(\|g\|_L(\dot{x}) \leq M \); a.e.

For \(f, g \in L^2(G) \) the function \([f, g]_Lg \) need not generally be in \(L^2(G) \). For example consider \(f(x) = g(x) = \chi_{[0,a]}x^{-\frac{1}{2}} \), where \(a \in \mathbb{R}^+ \) and \(\phi(x) = ax \), for \(x \in \mathbb{R} \). But, if \(f, g, h \in L^2(G) \) and \(g, h \) are \(L \)-bounded, then \([f, g]_Lh \in L^2(G) \) (see [7]).

3. \(L \)-frame

In [9], \(\phi \)-frames and its associated \(\phi \)-analysis and \(\phi \)-frame operators are defined. They obtained criteria for a sequence to be a \(\phi \)-frame or a \(\phi \)-Bessel sequence. In this section we state those concepts in \(L \)-bracket product sense.
Definition 3.1. The sequence \(\{f_n\}_{n \in \mathbb{N}} \) in \(L^2(G) \) is said to be a \(L \)-frame, if there exist positive constants \(0 < A \leq B < \infty \) such that for all \(f \in L^2(G) \)

\[
A \|f\|_L^2(\hat{x}) \leq \sum_{n \in \mathbb{N}} |[f, f_n]_L(\hat{x})|^2 \leq B \|f\|_L^2(\hat{x}) \quad \text{for} \quad \hat{x} \in G/L \ a.e..
\]

Those sequences in \(L^2(G) \), which satisfy only the right-hand inequality in the above formula are called \(L \)-Bessel sequences.

We now intend to define \(L \)-pre frame and \(L \)-analysis operators. We need to introduce a vector space which plays the role of \(l^2(\mathbb{N}) \) in the standard case. To this end, define \(l^2_1(G/L) \) as the space all sequences in \(L^\infty(G/L) \) such that convergent in \(L^1(G/L) \); i.e.

\[
l^2_1(G/L) = \{\{g_i\}_{i \in \mathbb{N}} \subset L^\infty(G/L) : \int_{G/L} \sum_{i \in \mathbb{N}} |g_i(\hat{x})|^2 d\hat{x} < \infty\},
\]

\(l^2_1(G/L) \) is an inner product space with respect to the following inner product:

\[
[.,.]_{l^2_1(G/L)} : l^2_1(G/L) \times l^2_1(G/L) \rightarrow L^1(G/L), \{\{g_i\}, \{h_i\}\}_{l^2_1(G/L)} = \sum_{i \in \mathbb{N}} g_i h_i.
\]

For \(\{g_i\}_{i \in \mathbb{N}} \in l^2_1(G/L) \), The pointwise norm is defined by

\[
\|\{g_i\}\|_{l^2_1(G/L)}(\hat{x}) = \left(\sum_{i \in \mathbb{N}} |g_i(\hat{x})|^2 \right)^{\frac{1}{2}},
\]

and the uniform norm by

\[
\|\{g_i\}\|_{l^2_1(G/L)} = \left(\int_{G/L} \sum_{i \in \mathbb{N}} |g_i(\hat{x})|^2 d\hat{x} \right)^{\frac{1}{2}}.
\]

Let \(\{f_n\}_{n \in \mathbb{N}}(= f) \) be a \(L \)-bounded sequence in \(L^2(G) \). Define the \(L \)-analysis operator as the mapping \(T^f_L : L^2(G) \rightarrow l^2_1(G/L) \) by

\[
T^f_Lg = \{[g, f_n]_L\}_{n \in \mathbb{N}}, \quad \text{for all} \quad g \in L^2(G),
\]

and the \(L \)-pre frame operator as the mapping \(T^{sf}_L : l^2_1(G/L) \rightarrow L^2(G) \) by

\[
T^{sf}_L(\{g_n\}) = \sum_{n \in \mathbb{N}} f_n g_n, \quad \text{for all} \quad \{g_n\}_{n \in \mathbb{Z}} \in l^2_1(G/L).
\]
Remark 3.2. Our purpose is to consider a special l^2_1-orthonormal basis for $l^2_1(G/L)$. Consider the functions $g(\hat{x}) = 1$ and $h(\hat{x}) = 0$, for all $\hat{x} \in G/L$, and the sequence $\Delta_n = \{\Delta_n^k\}_{k=1}^{\infty}$ of functions $\Delta_n^k: G/L \to \mathbb{C}$ for $n = 1, 2, 3...$ in $L^\infty(G/L)$, defined by

$$
\Delta_n^k(\hat{x}) = \begin{cases}
g(\hat{x}) & \text{if } k = n, \\
h(\hat{x}) & \text{if } k \neq n.
\end{cases}
$$

(3.1)

The vectors $\{\Delta_n\}_{n \in \mathbb{N}}$ defined by (3.1) constitute an l^2_1-orthonormal basis for $l^2_1(G/L)$ that, called canonical l^2_1-orthonormal basis.

In the following theorem we characterize L-Bessel sequence in terms of the L-pre frame operators.

Theorem 3.3. [9] Let $\{f_n\}_{n \in \mathbb{N}}$ be a L-bounded sequence in $L^2(G)$.

1. $\{f_n\}_{n \in \mathbb{N}}$ is L-Bessel with bound B if and only if T_L^f is a well defined, bounded operator from $l^2_1(G/L)$ into $L^2(G)$ and $\|T_L^f\| \leq \sqrt{B}$.

2. $\{f_n\}_{n \in \mathbb{N}}$ is a L-frame if and only if T_L^s is a well defined, bounded operator from $l^2_1(G/L)$ onto $L^2(G)$.

Remark 3.4. Let $\{f_n\}_{n \in \mathbb{N}}$ be a L-frame. Assume that each f_n, $n \in \mathbb{N}$, is L-bounded in $L^2(G)$. Then, the L-frame operator defined by $S_L := T_L^s T_L^f$ is bounded. For all $g \in L^2(G)$ we have

$$
[S_L g, g]_L(\hat{x}) = \sum_{n \in \mathbb{N}} \langle g, f_n \rangle L(\hat{x}) f_n, g \rangle L(\hat{x}) = \sum_{n \in \mathbb{N}} \langle g, f_n \rangle L(\hat{x}) \langle g, f_n \rangle L(\hat{x})
$$

$$
= \sum_{n \in \mathbb{N}} \|g, f_n \rangle L(\hat{x})\|^2, \ a.e., \ \hat{x} \in G/L.
$$

So, we have: $A[g, g]_L(\hat{x}) \leq [S_L g, g]_L(\hat{x}) \leq B[g, g]_L(\hat{x})$ a.e. Therefore, $AI \leq S_L \leq BI$. By a standard argument as in the frame theory S_L is invertible (see [9]), and

$$
(3.2)
$$

$$
B^{-1}I \leq S_L^{-1} \leq A^{-1}I.
$$

Definition 3.5. A function $h \in L^\infty(G)$ is said to be L-periodic, if $h(xk) = h(x)$ for all $k \in L, x \in G$. We will denote by $B_L(G)$ the set of all L-periodic functions in $L^\infty(G)$.

Definition 3.6. Let E be a subgroup of G or G/L. An operator $U: L^2(G) \to L^p(E), 1 \leq p \leq \infty$, is said to be L-factorable, if $U(hf) = hU(f)$ for all $f \in L^2(G)$ and all L-periodic functions $h \in L^\infty(G)$.

Lemma 3.7. [8]

(1) Let U be a bounded L-factorable operator on $L^2(G)$. Then, for every $f \in L^2(G)$ we have $\|Uf\|_L(\hat{x}) \leq \|U\| \|f\|_L(\hat{x})$ a.e.,

(2) Let $f, g \in L^2(G)$. Then, for all periodic functions h,

$$[fh, g]_L = h[f, g]_L, \quad [f, \bar{h}g]_L = h[f, g]_L.$$

The following proposition shows that every bounded L-factorable operator on $L^2(G)$ is adjointable.

Proposition 3.8. [8] Let $U : L^2(G) \to L^2(G)$ be a bounded L-factorable operator and U^* be its adjoint. Then, U^* is L-factorable. Moreover, for all $f, g \in L^2(G)$, $[U(f), g]_L(\hat{x}) = [f, U^*(g)]_L(\hat{x})$ a.e., $\hat{x} \in G/L$.

Lemma 3.9. Let $\{f_n\}_{n \in \mathbb{N}}$ be a L-frame that is L-bounded and S_L is L-frame operator for $\{f_n\}_{n \in \mathbb{N}}$ then S_L is L-factorable.

Proof. Let h be a L-periodic function we show that

$$S_L(hf) = hS_L(f) \text{ for all } f \in L^2(G).$$

$$S_L(hf) = \sum_{n \in \mathbb{N}} [hf, f_n]_L f_n, \text{ on the other hand, by Lemma 3.7 (2) we have }$$

$$S_L(hf) = \sum_{n \in \mathbb{N}} h[f, f_n]_L f_n = hS_L(f). \text{ Thus, } S_L \text{ is a } L \text{-factorable.}$$

4. L-dual frame

Our goal in this section is to define and characterize L-dual frames for L-frames in $L^2(G)$.

Definition 4.1. Let $\{f_n\}_{n \in \mathbb{N}}$ be a L-bounded, L-frame, then the L-bounded, L-frame $\{g_n\}_{n \in \mathbb{N}}$ is called a L-dual frame for $\{f_n\}_{n \in \mathbb{N}}$ if

$$g = \sum_{n \in \mathbb{N}} [g, g_n]_L f_n \text{ for all } g \in L^2(G).$$

(4.1)

Remark 4.2. Let $\{g_n\}_{n \in \mathbb{N}}$ be a L-dual frame for $\{f_n\}_{n \in \mathbb{N}}$, thus they are L-Bessel sequences and we denote the L-pre frame operator for $\{f_n\}_{n \in \mathbb{N}}$ by T_L^{*f}, and the L-pre frame operator for $\{g_n\}_{n \in \mathbb{N}}$ by T_L^{*g}. In terms of these operators (4.1) means

$$T_L^{*f}T_L^{*g} = I.$$
Remark 4.3. By the equation (3.2), \(\{S_L^{-1}f_n\}_{n \in \mathbb{N}} \) is a L-frame and by Lemma 3.9, \(S_L^{-1} \) is L-factorable and then by Lemma 3.7(1):

\[
\|S_L^{-1}(f_n)\|_L(\hat{x}) \leq \|S_L^{-1}\| \|f_n\|_L(\hat{x}) \text{ a.e., for all } n \in \mathbb{N}
\]

thus \(\{S_L^{-1}f_n\}_{n \in \mathbb{N}} \) is L-bounded and also we have

\[
g = S_LS_L^{-1}g = \sum_{i \in \mathbb{N}} [g, S^{-1}f_n]_L f_n,
\]

and \(\{S_L^{-1}f_n\}_{n \in \mathbb{N}} \) is a L-dual frame for \(\{f_n\}_{n \in \mathbb{N}} \), that is called the canonical or standard L-dual frame.

We begin with a lemma, which shows the roles of \(\{f_n\}_{n \in \mathbb{N}} \) and \(\{g_n\}_{n \in \mathbb{N}} \) can be interchanged:

Lemma 4.4. Assume that \(\{f_n\}_{n \in \mathbb{N}} \) and \(\{g_n\}_{n \in \mathbb{N}} \) are L-bounded, L-Bessel sequences in \(L^2(G) \). Then, the following are equivalent:

(i) \(g = \sum_{n \in \mathbb{N}} [g, g_n]_L f_n \) for all \(g \in L^2(G) \)
(ii) \(g = \sum_{n \in \mathbb{N}} [f_n, g_n]_L g_n \) for all \(g \in L^2(G) \)

Proof. In terms of the L-pre frame operators (i) means that \(T^sfL^q = I \)

\[
(T^sfL^q = I)^* = T^{s^q}T^fL = I
\]

which is identical to the statement in (ii). In a similar way (ii) implies (i).

When (4.3) is satisfied, we say that \(T^{s^q} \) is a left inverse of \(T^fL \).

Lemma 4.5. Let \(\{f_n\}_{n \in \mathbb{N}} \) be a L-bounded, L-frame for \(L^2(G) \) and \(\{\Delta_k\}_{k \in \mathbb{N}} \) be the canonical \(l^2 \)-orthonormal basis for \(l^2(G/L) \). The L-dual frames for \(\{f_n\}_{n \in \mathbb{N}} \) are precisely the family \(\{g_n\}_{n \in \mathbb{N}} = \{V(\Delta_n)\} \), where \(V: l^2(G/L) \to L^2(G) \) is a bounded left inverse of \(T^fL \).

Proof. If \(V \) is a bounded, left inverse of \(T^fL \), then \(V \) is surjective and \(\{g_n\}_{n \in \mathbb{N}} = \{V(\Delta_n)\} \) is L-frame by Theorem 3.3(2). Since

\[
\|g_k\|_{L^2(G)} = \|V(\Delta_k)\|_{L^2(G)} \leq \|V\| \|\Delta_k\|_{l^2(G/L)},
\]

\(\|\Delta_k\|_{l^2(G/L)} = 1 \) and \(\|V\| \leq M \), this implies that \(\|g_k\|_{L^2(G)} \leq M \) and by Weil’s formula we have

\[
\int_{G/L} \|g_k\|_L(\hat{x}) d\hat{x} = \int_{G/L} \sum_{l \in L} |g_k(xl)|^2 d\hat{x} = \int_G |g_k(x)|^2 dx = \|g_k\|_{L^2(G)} \leq M.
\]
Therefore, we have \(\|g_k\| \leq M \) a.e., for all \(k \in \mathbb{N} \). Thus, \(\{g_k\}_{k \in \mathbb{N}} \) is a \(L \)-bounded sequence. Also, we have,

\[
T_L^f g = \{[g, f_k]_L\}_{k \in \mathbb{N}} = \sum_{k=1}^{\infty} [g, f_k]_L \Delta_k, \quad \text{for all} \quad g \in L^2(G),
\]

thus \(g = VT_L^f g = \sum_{k=1}^{\infty} [g, f_k]_L g_k \) for all \(g \in L^2(G) \); i.e., \(\{g_k\}_{k \in \mathbb{N}} \) is \(L \)-dual frame of \(\{f_k\}_{k \in \mathbb{N}} \). Assume that \(\{g_k\}_{k \in \mathbb{N}} \) is the \(L \)-dual frame of \(\{f_k\}_{k \in \mathbb{N}} \), then, by Theorem 3.3(2), the \(L \)-pre frame \(T_L^{sf} \) of \(\{g_k\}_{k \in \mathbb{N}} \) is bounded. In fact, \(\{g_k\}_{k \in \mathbb{N}} = \{T_L^{sg}(\Delta_k)\}_{k \in \mathbb{N}} \), by Lemma 4.4, \(T_L^{sg}T_L^f = I \) and the proof is complete.

Lemma 4.6. Let \(\{f_n\}_{n \in \mathbb{N}} \) be a \(L \)-bounded, \(L \)-frame with \(L \)-pre frame operator \(T_L^{sf} \). Then, the bounded left inverses of \(T_L^{sf} \) are precisely the operators having the form \(S_L^{-1}T_L^{sf} + W(I - T_L^{sf}S_L^{-1}T_L^{sf}) \), where \(W: I_1^2(G/L) \to L^2(G) \) and \(I \) denote the identity operator on \(I_1^2(G/L) \).

Proof. We show that \(S_L^{-1}T_L^{sf} + W(I - T_L^{sf}S_L^{-1}T_L^{sf}) \) is bounded and a left inverse of \(T_L^{sf} \). By Theorem 3.3.2, \(T_L^{sf} \), \(S_L \) and \(S_L^{-1} \) are bounded, so, \(S_L^{-1}T_L^{sf} + W(I - T_L^{sf}S_L^{-1}T_L^{sf}) \) is bounded too, and

\[
(S_L^{-1}T_L^{sf} + W(I - T_L^{sf}S_L^{-1}T_L^{sf}))T_L^{sf} = I.
\]

For implication, if \(U \) is a given left inverse of \(T_L^{sf} \), then by taking \(W = U \) we have

\[
S_L^{-1}T_L^{sf} + W(I - T_L^{sf}S_L^{-1}T_L^{sf}) = S_L^{-1}T_L^{sf} + U - UT_L^{sf}S_L^{-1}T_L^{sf} = U.
\]

Now, we are ready to characterize all \(L \)-dual frames associated to a given \(L \)-frame.

Theorem 4.7. Let \(\{f_n\}_{n \in \mathbb{N}} \) be a \(L \)-bounded, \(L \)-frame for \(L^2(G) \), then the \(L \)-dual frames of \(\{f_n\}_{n \in \mathbb{N}} \) are precisely the families

\[
\{g_n\}_{n \in \mathbb{N}} = \{S_L^{-1}f_n + h_n - \sum_{k=1}^{\infty} [S_L^{-1}f_n, f_k]_L h_k\}_{n \in \mathbb{N}},
\]

where \(\{h_n\}_{n \in \mathbb{N}} \) is a \(L \)-bounded, \(L \)-Bessel sequence in \(L^2(G) \).

Proof. By Lemmas 4.5 and 4.6 we can characterize the \(L \)-dual frames as all families of the form

\[
\{g_k\}_{k \in \mathbb{N}} = \{S_L^{-1}T_L^{sf}(\Delta_k) + W(I - T_L^{sf}S_L^{-1}T_L^{sf})\Delta_k\},
\]
where, \(W: L^2(G/L) \to L^2(G) \) is an operator of the form \(W\{k_j\}_{j \in \mathbb{N}} = \sum_{j=1}^{\infty} k_j h_j \), such that \(\{h_n\}_{n \in \mathbb{N}} \) is a \(L \)-bounded \(L \)-Bessel sequence in \(L^2(G) \). Thus, \(W\{\Delta_k\}_{k \in \mathbb{N}} = \{h_n\}_{n \in \mathbb{N}} \),

\[
\{g_k\}_{k \in \mathbb{N}} = \{S^{-1}_L T_s f(\Delta_k) + W(I - T_s^f S^{-1}_L T_s f)(\Delta_k)\} = \{S^{-1}_L f_n + h_n - \sum_{k=1}^{\infty} [S^{-1}_L f_n, f_k] L h_k\}_{n \in \mathbb{N}},
\]

that completes the proof.

5. A characterization of \(L \)-dual Riesz bases

In this section we show that every \(L \)-Riesz basis is a \(L \)-bounded, \(L \)-frame sequence in \(L^2(G) \). Thus, it has a \(L \)-dual frame which is a \(L \)-Riesz basis. Similar to the usual inner product, we define \(L \)-orthogonality.

Definition 5.1. Let \(f, g \in L^2(G) \). We say that \(f \) and \(g \) are \(L \)-orthogonal if \([f, g]_L = 0 \).

A sequence \(\{g_n\}_{n \in \mathbb{N}} \subseteq L^2(G) \) is called \(L \)-orthonormal, if \([g_n, g_m]_L = 0 \) for all \(n \neq m \in \mathbb{N} \) and \(\|g_n\|_L = 1 \) for all \(n \in \mathbb{N} \). For \(\Lambda \subseteq L^2(G) \), the \(L \)-orthogonal complement of \(\Lambda \) is

\[
\Lambda^\perp_L = \{g \in L^2(G); [f, g]_L = 0, \text{ a.e., for all } f \in \Lambda\}.
\]

Remark 5.2. If \(\{g_n\}_{n \in \mathbb{N}} \) is a \(L \)-orthonormal basis in \(L^2(G) \), in [9] it is proved that the following are equivalent:
(a) For each \(f \in L^2(G) \), \(f(x) = \sum_{n \in \mathbb{N}} ([f, g_n]_L(\hat{x})) g_n(x) \), a.e., \(x \in G \).
(b) For all \(f \in L^2(G) \), \(\|f\|^2_L(\hat{x}) = \sum_{n \in \mathbb{N}} \|f, g_n\|^2_L(\hat{x}) \), a.e., (Parseval Identity).

Definition 5.3. A sequence \(\{f_n\}_{n \in \mathbb{N}} \) in \(L^2(G) \) is said to be \(L \)-Riesz basis, if there exists a \(L \)-orthonormal basis \(\{g_n\}_{n \in \mathbb{N}} \) and \(L \)-factorable operator \(U: L^2(G) \to L^2(G) \), which is a topological automorphism such that \(U(g_n) = f_n \), for every \(n \in \mathbb{N} \).

Remark 5.4. (i) If \(U: L^2(G) \to L^2(G) \) is invertible, then \(U \) is \(L \)-factorable. Indeed, for \(h \in B_L(G) \), we have

\[
UU^{-1}(h f) = h f = hUU^{-1} f = U(hU^{-1} f).
\]

Therefore, \(U^{-1}(h f) = hU^{-1} f \) for all \(f \in L^2(G) \), and so \(U^{-1} \) is \(L \)-factorable.

(ii) If \(\{g_n\}_{n \in \mathbb{N}} \) is a \(L \)-Riesz basis for \(L^2(G) \). According to the definition
we can write \(\{g_n\}_{n \in \mathbb{N}} = \{U(f_n)\}_{n \in \mathbb{N}} \), where \(U \) is a \(L \)-factorable operator which is a topological automorphism on \(L^2(G) \) and \(\{f_n\}_{n \in \mathbb{N}} \) is a \(L \)-orthonormal basis for \(L^2(G) \). Since \(U \) is a topological automorphism then \(U \) is bounded, thus by Lemma 3.7(1) we have

\[
\|g_n\|_L(\hat{x}) = \|U(f_n)\|_L(\hat{x}) \leq \|U\| \|f_n\|_L(\hat{x}) \text{ a.e.}
\]

Since \(\|f_n\|_L(\hat{x}) = 1 \text{ a.e. so } \|g_n\|_L(\hat{x}) \leq \|U\| \text{ a.e., that is, } g_n \text{ is a } L \text{-bounded for all } n \in \mathbb{N}.

Proposition 5.5. Let \(\{g_n\}_{n \in \mathbb{N}} \) be a \(L \)-Riesz basis for \(L^2(G) \). Then, \(\{g_n\}_{n \in \mathbb{N}} \) is a \(L \)-frame for \(L^2(G) \).

Proof. According to the definition we can write \(\{g_n\}_{n \in \mathbb{N}} = \{U(f_n)\}_{n \in \mathbb{N}} \), where \(U \) is a \(L \)-factorable operator which is a topological automorphism on \(L^2(G) \) and \(\{f_n\}_{n \in \mathbb{N}} \) is \(L \)-orthonormal basis for \(L^2(G) \). By Remark 5.2(b) we have for \(g \in L^2(G) \),

\[
\sum_{n=1}^{\infty} |\langle g, g_n \rangle_{L(\hat{x})}|^2 = \sum_{n=1}^{\infty} |\langle g, U f_n \rangle_{L(\hat{x})}|^2 = \|U^* g\|_{L(\hat{x})}^2 \text{ a.e.,}
\]

by Lemma 3.7(1) we have \(\sum_{n=1}^{\infty} |\langle g, g_n \rangle_{L(\hat{x})}|^2 \leq \|U^*\|^2 \|g\|_{L(\hat{x})}^2 \text{ a.e., this implies that a } L \text{-Riesz basis is a } L \text{-Bessel sequence. Thus the lower bound property follows from}

\[
\|g\|_L(\hat{x}) = \|(U^*)^{-1} U^* g\|_L(\hat{x}) \leq \\
\|(U^*)^{-1}\| \|(U^*) g\|_L(\hat{x}) = \|U^{-1}\| \|(U^*) g\|_L(\hat{x}) \text{ a.e.}
\]

Using the above proposition, Remarks 5.4(i) and 5.4(ii) and the following theorem we have the characterization of \(L \)-dual frames for \(L \)-Riesz basis.

Theorem 5.6. Let \(\{f_n\}_{n \in \mathbb{N}} \) be a \(L \)-Riesz basis for \(L^2(G) \). Then, there exists a \(L \)-Riesz basis \(\{g_n\}_{n \in \mathbb{N}} \) in \(L^2(G) \) such that

\[
g = \sum_{n=1}^{\infty} \langle g, g_n \rangle_{L(\hat{x})} f_n \text{ for all } g \in L^2(G).
\]

Proof. By definition we have \(\{f_n\}_{n \in \mathbb{N}} = \{U(e_n)\}_{n \in \mathbb{N}} \), where \(U \) is a \(L \)-factorable operator which is a topological automorphism on \(L^2(G) \) and \(\{e_n\}_{n \in \mathbb{N}} \) is a \(L \)-orthonormal basis for \(L^2(G) \).
Let $g \in L^2(G)$. By expanding $U^{-1}g$ in the L-orthonormal basis $\{e_n\}_{n \in \mathbb{N}}$, we have

$$U^{-1}g = \sum_{n=1}^{\infty} [U^{-1}g, e_n]_L e_n = \sum_{n=1}^{\infty} [g, (U^{-1})^* e_n]_L e_n.$$

Setting $g_n := (U^{-1})^* e_n$, we have $g = UU^{-1}g = U \sum_{n=1}^{\infty} [g, g_n]_L e_n$. Then, $[g, (U^{-1})^* e_n] = [U^{-1}g, e_n]_L$ and $[U^{-1}g, e_n]_L \in L^\infty(G/L)$ for every $n \in \mathbb{N}$ and by Bessel’s Inequality

$$\sum_{n=1}^{\infty} \| [g, (U^{-1})^* e_n]_L (\dot{x}) \|^2 \leq \| g \|_L (\dot{x}) < \infty \text{ for a.e., } \dot{x} \in G/L.$$

Also,

$$g = U \sum_{n=1}^{\infty} [g, (U^{-1})^* e_n]_L e_n = \sum_{n=1}^{\infty} [g, (U^{-1})^* e_n]_L U e_n = \sum_{n=1}^{\infty} [g, g_n]_L f_n.$$

This completes the proof.

The sequence $\{g_n\}_{n \in \mathbb{N}}$ in the above proof is called the L-dual Riesz basis, and so a L-dual frame, for $\{f_n\}_{n \in \mathbb{N}}$.

Example 5.7. Let G be a LCA group with a uniform lattice L. In [9], it is proved that $L^2(G)$ admits a L-orthonormal basis. Let $\{E_n\}_{n \in \mathbb{N}}$ be a L-orthonormal basis for $L^2(G)$ then $\mathcal{F} = \{E_1, E_1, E_2, E_2, \ldots, E_k, E_k, \ldots\}$ is a L-frame for $L^2(G)$. Also, $\{\frac{1}{2}E_1, \frac{1}{2}E_1, \ldots, \frac{1}{2}E_k, \frac{1}{2}E_k, \ldots\}$ and $\{E_1, 0, \ldots, E_k, 0, \ldots\}$ are L-dual frames for \mathcal{F}.

Acknowledgements: (i) The authors would like to thank the referee for his good comments and for providing references.

(ii) This research has been financially supported by Mahani mathematical research center.

References

A. Ahmadi
Department of Mathematics, Vali-e-Asr university of Rafsanjan, Rafsanjan, Iran
Email:ahmadi@mail.vru.ac.ir

A. Askari Hemmat
Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran
Email:askari@mail.uk.ac.ir