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A CHARACTERIZATION OF L-DUAL FRAMES AND
L-DUAL RIESZ BASES
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ABSTRACT. This paper is an investigation of L-dual frames with
respect to a function-valued inner product, the so called L-bracket
product on L*(G), where G is a locally compact abelian group with
a uniform lattice L. We show that several well known theorems for
dual frames and dual Riesz bases in a Hilbert space remain valid
for L-dual frames and L-dual Riesz bases in L*(G).

1. Introduction

In [2], the bracket product is defined as a function valued inner prod-
uct on L2(R) and, in [9], the ¢-bracket product is defined as its extension
to L?(G), where G is a locally compact abelian group (LCA) and ¢ is
a topological isomorphism on G. As a new inner product on L?(G), we
define the L—Dbracket product which can be applied to extend several
ideas and constructions from the theory of shift invariant spaces, fac-
torable operators and Wely-Heisenberg frames on R™ to the setting of
LCA groups. These extensions are, in a more general and different way,
using various tools in abstract harmonic analysis.

Dual frames and Riesz Bases for Hilbert spaces are defined in [, 3].
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The present paper deals with characterizing L-dual frames and L -
dual Riesz bases on L?(G), and consists of four sections. In the first
section some definitions and preliminaries related to locally compact
abelian groups and L-bracket products are introduced. In Section 2, we
state some definitions and notations related to L-frames. In Section 3,
we define and characterize L-dual frames and, finally, in Section 4, we
define L-dual Riesz basis.

2. Preliminaries

In this section we give a brief review of definitions and notations from
LCA groups and L-bracket product. For more details on LCA groups
we refer to the book [1] and an extensive study of the L-bracket product
theory can be found in [7].

Definition 2.1. A subgroup L of G is called a uniform lattice, if it is
discrete and co-compact; i.e., G/L is compact.

Definition 2.2. Let f,g € L?(G). The L-bracket product of f and g is
defined as the mapping [.,.]r: L*(G) x L*(G) — L*(G/L) given by

[ 9](&) =D fglak™) for all i€ G/L.

kel
We define the L-norm of £ as || f||,; () = ([f, f]L(.CC))%

The above definition appears in [7] with the following formula

[f9le(@) = D fgleg(k™")) for all ic G/¢(L),
d(k)egp(L)

where ¢ is any topological isomorphism on G.

Note 2.3. If ¢: G — G is a topological automorphism and L is a uni-
form lattice in G, then ¢(L) is also a uniform lattice in G [3]. Thus,
we assume that G is a LCA group with uniform lattice L' and we set
L = ¢(L'). In the present paper we always assume that G /L is normal-
ized; i.e., |G/L|=1.

Let L be a uniform lattice in G. Choosing the counting measure on

L, a relation between the Haar measure dx on G and di on % is given

by the following case of Weil’s formula [1]. For f € LY(G), we have
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>oker fak™1) € L(G) and

/Gf(a;)dx:/G/LZf(xkl)d;i:.

kel

Example 2.4. Examples of L-bracket product:

(1)

Consider G = R™ with the uniform lattice L' = Z™. Let the
topological automorphism ¢ : R — R"™, given by ¢(x) = Az,
where A is an invertible n X n matrixz. The L-bracket product is

the A-bracket product defined as [f, g|r(x) = ), cpn [G(x — An),
for f,g € L*(R") (see [5]).

In particular, let n = 1 and G = R with the uniform lat-

tice L' = Z. Fix a € RT, we define: ¢(z) = ax, for x € R.
The mapping [.,.]r : L*(R) x L*(R) — L([0,1]), defined by
Lf,9lc(x) = >,z [G(x —na) is the a-pointwise inner product of
f and g (see [2]).
Consider the LCA group G = R x A, where p is a prime and
A, denote the group of p-adic integers as defined in [0]. and let
L be the subgroup {(n,nu)}nez of Rx A,, where u = (1,0,0,...).
Then, L is a uniform lattice in R x A, (obviously L is dis-
crete and by Theorem 10.13 in [0], (R x Ap)/L is compact). Let
a:=(1/p,0,0,...) € Ap. Then, the mapping ¢ : RxA, — RxA,
defined by (z,v) € R x A,, by ¢(z,v) = (2z,av), is a topo-
logical isomorphism on R x A, thus The L-bracket product is
[(fa g]f(]'jvv) = EnGZ fg(l' —2n,v — anu), for f,g € L2(R X AP)
see [3]).

Definition 2.5. The function g € L?(G) is L-bounded, if there exists
M > 0 such that ||g]|; (£) < M; a.e.

For f,g € L?(G) the function [f, g]1g need not generally be in L?(G).
For example consider f(z) = g(z) = X[O’a]x_%, where a € RT and
¢(z) = ax, for x € R. But, if f,g,h € L?*(G) and g, h are L-bounded,
then [f, g]rh € L*(G) (see [7]).

3. L-frame

In [9], ¢-frames and its associated ¢-analysis and ¢-frame operators
are defined. They obtained criteria for a sequence to be a ¢-frame or a
¢-Bessel sequence. In this section we state those concepts in L—bracket
product sense.
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Definition 3.1. The sequence {f,}nen in L?(G) is said to be a L-
frame, if there exist positive constants 0 < A < B < oo such that
for all fe€ LQ(G)

A||f||L Z|ffn <B||fHL() for € G/L a.e..

neN

Those sequences in L*(G), which satisfy only the right-hand inequal-
ity in the above formula are called L-Bessel sequences.

We now intend to define L-pre frame and L-analysis operators. We
need to introduce a vector space which plays the role of I2(N) in the
standard case. To this end, define [3(G/L) as the space all sequences in
L>®(G/L) such that convergent in L'(G/L); i.e

B(G/L) = {{gi}ien € L¥(C/L); / S i) 2 i < oo},
zEN

I2(G/L) is an inner product space with respect to the following inner
product:

[ Je(e/ny: BG/L)xB(G/L) — LYG/L), {gi} {hiYlzyny = D gihi-
ieN
For {gi}ien € 13(G/L), The pointwise norm is defined by
1
H{Qz}||z2 G/L) Z |9i(2)[7)2,

€N

and the uniform norm by

il n) = / Sl

1€N

M\H

Let {fu}nen(= f) be a L-bounded sequence in L?(G). Define the L-
analysis operator as the mapping Tg : L?(G) — I3(G/L) by

T/g={lg, falLInew, for all ge L*(G),

and the L-pre frame operator as the mapping Tzf: 3(G/L) — L*G)
by

Tzf({gn}) = Z fngn, for all {gn}nez € l%(G/L)

neN



A characterization of L-dual frames and L-dual Riesz bases 25

Remark 3.2. Our purpose is to consider a special 1?-orthonormal basis
for 3(G/L). Consider the functions g(i) = 1 and h(z) = 0, for all
i € G/L, and the sequence A, = {AF}2° | of functions AF: G/L — C
forn=1,23... in L°(G/L), defined by

(3.1) An(#) = { i) if k+n.

The vectors {Ap}nen defined by (3.1) constitute an [2-orthonormal basis
for 13(G/L) that, called canonical I3-orthonormal basis.

In the following theorem we characterize L-Bessel sequence in terms
of the L-pre frame operators.

Theorem 3.3. [J] Let {f,}nen be a L-bounded sequence in L?(G).
(1) {fn}nen is L-Bessel with bound B if and only if Tzf is a well de-
fined, bounded operator from [3(G/L) into L?(G) and HTZf ‘ <
VB

(2) {fo}nen is a L-frame if and only if T/ is a well defined, bounded
operator from [3(G/L) onto L*(G).

Remark 3.4. Let {fn}nen be a L-frame. Assume that each fp, n € N,
is L-bounded in L*(G). Then, the L-frame operator defined by Sp :=
TL*fTIJj is bounded. For all g € L*(G) we have

1S1.9, 910.(2) = [3en0s Ful(2) Fur 912(2) = 3 penles FulLlg, FalL(£)
=S llg. fale (@), ae. @e€G/L.

neN
So, we have: Alg, g1(¥) < [Spg,9]L(¢) < Blg,gle(¢) a.e. Therefore,
Al < S;, < BI. By a standard argument as in the frame theory Sy, is
invertible (see [9]), and

(3.2) Blr<s;t <A

Definition 3.5. A function h € L*°(G) is said to be L-periodic, if
h(zk) = h(z) for all k€ L,z € G. We will denote by Br(G) the set
of all L-periodic functions in L*°(G).

Definition 3.6. Let E be a subgroup of G or G/L. An operator
U: L}(G) — LP(E), 1 < p < o0, is said to be L -factorable, if U(hf) =
RU(f) for all f € L*(G) and all L-periodic functions h € L>(G) .
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Lemma 3.7. [§]

(1) Let U be a bounded L-factorable operator on L?(G). Then, for
every f € L*(G) we have |Uf|, (&) < [U||[Ifll, (£) a.e.,
(2) Let f,g € L?>(G). Then, for all periodic functions h,

[fh7g]L :h[fag][n [fvﬁg]L:h[fvg]L

The following proposition shows that every bounded L-factorable op-
erator on L?(G) is adjointable.

Proposition 3.8. [¢] Let U: L*(G) — L?*(G) be a bounded L-factorable
operator and U* be its adjoint. Then, U* is L-factorable. Moreover, for

all f,g € L*(G), [U(f), g9lo() = [f,U*(9)lL(#) ae., &€ G/L.

Lemma 3.9. Let {f,},en be a L-frame that is L-bounded and Sy, is
L-frame operator for {fy,}nen then Sy is L-factorable.

Proof. Let h be a L-periodic function we show that
Sp(hf) = hSL(f) for all fe L*G).

Sr(hf) = > ,enlhfs fnlr fn, on the other hand, by Lemma 3.7(2) we
have Sp.(hf) = ,en PLS, falofn = hSL(f). Thus, S, is a L-factorable.

4. L -dual frame

Our goal in this section is to define and characterize L-dual frames
for L-frames in L?(G).

Definition 4.1. Let {f,}neny be a L-bounded, L-frame, then the L-
bounded, L-frame {gy}nen is called a L -dual frame for {f,}nen if

(4.1) 9= 9. gnlrfn for all ge L*G)
neN

Remark 4.2. Let {gn}nen be a L-dual frame for { fu }nen, thus they are
L-Bessel sequences and we denote the L-pre frame operator for { fu}nen

by T*f, and the L-pre frame operator for {gn}tnen by ng. In terms of
these operators (/.1) means

(4.2) T Td = 1.
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Remark 4.3. By the equation (3.2), {S;lfn}neN is a L-frame and by
Lemma 3.9, SZI is L-factorable and then by Lemma 3.7(1):

HSZI(fn)HL (z) < HSZIH | fall, (&) a.e., for all neN

thus {S; fnlnen is L-bounded and also we have
9="5.8"9="> [9.5" falLn:
1EN
and {Sglfn}neN is a L-dual frame for { fn}nen, that is called the canon-

ical or standard L-dual frame.

We begin with a lemma, which shows the roles of { f,, }nen and {gn }nen
can be interchanged:

Lemma 4.4. Assume that {f,}nen and{gn}nen are L-bounded, L-
Bessel sequences in L?(G). Then, the following are equivalent:

(i) 9 = Znenlg, gnlrfn for all g€ L*(G)
(ii) g = EnEN[g7 fn]Lgn fO’I” all ge L2<G)

Proof. In terms of the L-pre frame operators (i) means that Tzf T =1
(4.3) (T ¢ =1 =197 =1
which is identical to the statement in (ii). In a similar way (ii) implies

(i)-

When (4.3) is satisfied, we say that 777 is a left inverse of Tg .

Lemma 4.5. Let{f,}nen be a L-bounded, L-frame for L?(G) and
{A}ren be the canonical [?-orthonormal basis for [2(G//L). The L-dual
frames for {f,, }nen are precisely the family {g, }neny = {V(Ay)}, where
V:13(G/L) — L*(G) is a bounded left inverse of T}j.

Proof. If V is a bounded, left inverse of Tf , then V is surjective and

{gn}nen = {V(A,)} is L-frame by Theorem 3.3(2). Since

19l 22y = IV (Al L2y < IVIHTARN 26y 5

[Aklli2(/ry = 1 and [[V[| < M, this implies that ||gx|;2() < M and by
Weil’s formula we have

/ gl (#)di: = / S lgw (o) di = /rgk@:)r?dx:ugknLQ@SM
G/L G/L G

leL
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Therefore, we have ||gi||; () < M a.e., for all k£ € N. Thus, {gx}ren is
a L-bounded sequence. Also, we have,

o0

Tl g = {9, frlr}ren = Z[Qa filLAy, for all g€ L*(G),
=1

thus g = VTg = 332 (g, filuge for all g € L*(G); ie., {gi}ren is
L-dual frame of {fi}ren. Assume that {gx}ren is the L-dual frame of
{fx}ken, then, by Theorem 3.3(2), the L-pre frame T of {gi}ren is

bounded, In fact, {gr}ren = {T39(Ax) bhen , by Lemma 4.4, Ti9T] = 1
and the proof is complete.

Lemma 4.6. Let {f,}nen be a L-bounded, L-frame with L-pre frame
operator Tzf . Then, the bounded left inverses of Tzf are precisely
the operators having the form SL_szf + W(I — TgS;szf), where
W:12(G/L) — L*(G) and I denote the identity operator on I2(G/L).

Proof. We show that SZszf +W(I - TgSngzf) is bounded and a

left inverse of Tg . By Theorem 3.3(2) Tzf , Sp, and S; ! are bounded,
So, SngZf + W(I — TgSngZf) is bounded too, and

(S +wa -Tis )Tl = 1.

For implication, if U is a given left inverse of T! , then by taking W = U
we have
ST + w(I - Tls;iT) = ;T v U —uTls;iT = U

Now, we are ready to characterize all L-dual frames associated to a given
L-frame.

Theorem 4.7. Let{f,},en be a L-bounded, L-frame for L?(G), then
the L-dual frames of {f, }nen are precisely the families

o

{gn}neN = {Sglfn + hy — Z[Silfm fk]Lhk}neN
k=1

where {hp}nen is a L-bounded, L-Bessel sequence in L*(G).

Proof. By Lemmas 4.5 and 4.6 we can characterize the L-dual frames
as all families of the form

{giteen = {STAT (AR) + W(I = TS T ALY,
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where, W: I2(G/L) — L*(G) is an operator of the form W{k;}jen =
Z?; kjh;, such that {hy,}nen is a L-bounded L-Bessel sequence in
L*(@G). Thus, W{Ag}ren = {hn}nen,

{ondrern = {S. T (D) + W (I = TL ST ) (M)

[e.9]

= {87 fu b = D _[Sp s Sl LPk e,
k=1

that completes the proof.

5. A characterization of L - dual Riesz bases

In this section we show that every L-Riesz basis is a L-bounded, L-
frame sequence in L?(G). Thus, it has a L-dual frame which is a L-Riesz
basis. Similar to the usual inner product, we define L-orthogonality.

Definition 5.1. Let f, g € L?>(G). We say that f and g are L-orthogonal

A sequence {g,nen € L?(G) is called L-orthonormal, if [gn, gm]r = 0
for all n # m € N and ||g,||;, = 1 for all n € N. For A C L*(G), the
L-orthogonal complement of A is

AL = {g e L*(G);[f,9]lL =0, a.e., for all fec A}

Remark 5.2. If {g, }nen is a L-orthonormal basis in L?(G), in [9] it is
proved that the following are equivalent:

(a) For each f € L*(G), f(z) = X ,en((f: 9nl(2))gn (), ae., z € G.
(b) For all f € L*(G), |fII7 (&) = X en Ifs 90l (®)?, a.e., (Parseval
Identity).

Definition 5.3. A sequence {f,}nen in L?(G) is said to be L-Riesz
basis, if there exists a L-orthonormal basis {g,}nen and L-factorable
operator U: L?(G) — L*(G), which is a topological automorphism such
that U(gn) = fn, for every n € N.

Remark 5.4. (i) If U: L*(G) — L*(G) is invertible, then U is L-
factorable. Indeed, for h € Br(G), we have
UU N hf)=hf=nUUf =UMLUf).

Therefore, U=Y(hf) = hU~Lf for all f € L*(G), and so U~' is L-
factorable.
(i1) If {gn}nen is a L-Riesz basis for L*(G). According to the definition
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we can write {gntnen = {U(fn)}nen, where U is a L-factorable oper-
ator which is a topological automorphism on L*(G) and {fn}nen is a
L-orthonormal basis for L>(G). Since U is a topological automorphism
then U is bounded, thus by Lemma 3.7(1) we have

lgnllz () = Ul (@) < (U fall, (2) a-e.

Since || fullp () =1 ae. so ||lgnllp (%) < [[U|| a.e., that is, g is a
L-bounded for allm € N.

Proposition 5.5. Let {g,}nen be a L-Riesz basis for L*(G). Then,
{gn}nen is a L-frame for L*(G).

Proof. According to the definition we can write {gn }nen = {U(fn) }nen,
where U is a L-factorable operator which is a topological automor-
phism on L?(G) and {f,}nen is L-orthonormal basis for L?*(G). By
Remark 5.2(b) we have for g € L*(G),

S g gl @) = 3 llgs USal (@) = 10711 () ace.,
n=1 n=1

by Lemma 3.7(1) we have 322 |[g, gn]z.(2)[> < [|U*||* 9113 (£) a-e., this
implies that a L-Riesz basis is a L-Bessel sequence. The lower bound
property follows from

gl (@) = [[(U) U], (&) <
[ HI@ gl @) = [T 1Tl (2) ae..

Using the above proposition, Remarks 5.4(i) and 5.4(ii) and the fol-
lowing theorem we have the characterization of L-dual frames for L-Riesz
basis.

Theorem 5.6. Let {f,}nen be a L-Riesz basis for L>(G). Then, there
exists a L-Riesz basis {gn }nen in L?(G) such that
9= _[9:9nlfn for all g L*G).
n=1
Proof. By definition we have {f,, }nen = {U(en) tnen, where U is a L-
factorable operator which is a topological automorphism on L?(G) and
{en}nen is a L-orthonormal basis for L?(G).
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Let g € L?(G). By expanding U~ 'g in the L-orthonormal basis {e, }nen,
we have

Uﬁlg = Z[Uﬁl.%en]Len = 2[97 (Uﬁl)*en]Len-
n=1 n=1

Setting gn := (U™ 1)*ep, we have g = UU 1g = U Y% |9, gn]L.n. Then,
[9, (U™ Y*e,] = [U g, e,]r and [Utg, e,]r € L°(G/L) for every n € N
and by Bessel’s Inequality

Sl (U enlr @) < llgll, (&) < 0o for ae., i€ G/L.
n=1

Also,
9= UZ[97 (Uﬁl)*en]Len = Z[g’ (Uﬁl)*en]LUen = Z[gvgn]Lfn
n=1 n=1 n=1

This completes the proof.
The sequence {gy }nen in the above proof is called the L-dual Riesz
basis, and so a L-dual frame, for {f,}nen.

Example 5.7. Let G be a LCA group with a uniform lattice L. In [9], it
is proved that L*>(G) admits a L-orthonormal basis. Let {Ey,}nen be a L-
orthonormal basis for L*(G) then F = {E1,F1,E2, Es,...Ey, Ey,...}
is a L-frame for L*(G). Also, {%El, %El, ey %Ek, %Ek, ...} and {E1,0,
ooy By, 0,...} are L-dual frames for F.
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