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ON RAINBOW 4-TERM ARITHMETIC PROGRESSIONS

M. H. SHIRDAREH HAGHIGHI∗ AND P. SALEHI NOWBANDEGANI

Communicated by Michel Waldschimidt

Abstract. Let [n] = {1, . . . , n} be colored in k colors. A rainbow
AP(k) in [n] is a k term arithmetic progression whose elements have
different colors. Conlon, Jungić and Radoičić [3] prove that there
exists an equinumerous 4-coloring of [4n] which is rainbow AP(4)
free, when n is even. Based on their construction, we show that
such a coloring of [4n] also exists for odd n > 1. We conclude
that for nonnegative integers k ≥ 3 and n > 1, every equinumerous
k-coloring of [kn] contains a rainbow AP(k) if and only if k = 3.

1. Introduction and Results

In his efforts to prove the Fermat’s last theorem, Schur [7] proved
that for each nonnegative integer k, every k-coloring of [n] = {1, . . . , n}
contains a monochromatic solution of the equation x + y = z, provided
that n is sufficiently large. Alekseev and Savchev [1] turn this problem
to rainbow solutions of the equation x + y = z; i.e., solutions in which
x, y and z are colored in different colors. Later on, in 2003, Jungić et al.
[4] considered the rainbow arithmetic progressions arising in k-colorings
of [n]. Jungić and Radoičić [6] proved the following theorem which is
conjectured in [4].
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Theorem 1.1. [6, Theorem 1] For every equinumerous 3-coloring of
[3n], there exists a rainbow AP(3).

What about more than 3 colors? Axenovich and Fon-Der-Flass [2]
find equinumerous k-coloring of [2mk] which contains no rainbow AP(k),
for every k ≥ 5. The most challenging case is k = 4 [5, Problem 1].
Sicherman [5, page 4], makes equinumerous 4-coloring of [4n], for 1 <
n ≤ 15, without rainbow AP(4). In 2007, Conlon, et al.[3] made a
rainbow free equinumerous 4-coloring of [4n], whenever n is even.

Theorem 1.2. ([3, Theorem 2]) For every positive integer m, there
exists an equinumerous 4-coloring of [8m] with no rainbow AP(4).

Based on their construction, we prove the following theorem. The
proof appears in the next section.

Theorem 1.3. For every positive integer m, there exists an equinumer-
ous 4-coloring of [8m + 4] with no rainbow AP(4).

Hence, we have the following theorem, which in some sense finishes
the story of the existence of rainbow AP(k) in equinumerous random
k-coloring of [kn], n > 1.

Theorem 1.4. For nonnegative integers k ≥ 3 and n > 1, every equinu-
merous k-coloring of [kn] contains a rainbow AP(k) if and only if k = 3.

Proof. If k = 3, see Theorem 1. For k = 4, by theorems 2 and 3, a
rainbow AP(4) free 4-coloring of [4n] is at hand for every n > 1. To
construct 5-coloring of [5n], we use easily a equinumerous 4-coloring of
[4n], which has no rainbow AP(4) and then color {4n + 1, . . . , 5n} with
the fifth color. Plainly, this equinumerous 5-coloring has no rainbow
AP(5). One can inductively use this construction to provide equinumer-
ous k-coloring of [kn] for every k > 5, n > 1, with no rainbow AP(k).

�

Note that the construction of equinumerous k-coloring of [kn], k ≥ 5,
by Axenovich and Fan-Der-Flaass [2], is only for n even.
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2. Proof of Theorem 1.3

The following equinumerous 4-coloring of [4n] in the proof of Theorem
2 in [3] is rainbow AP(4) free, whenever n = 2m is even.

Let W , X, Y and Z be our four colors and denote by A the block
WXY Y and by B the block ZZWX. The coloring

(∗) A . . .A︸ ︷︷ ︸
m times

B . . .B︸ ︷︷ ︸
m times

is the desired coloring of [4n] = [8m].

Our construction for [4n], whenever n = 2m + 1 > 1, is as follows:

(∗∗) XWY A . . .A︸ ︷︷ ︸
m times

B . . .B︸ ︷︷ ︸
m times

Z

What remains is to check that this coloring of [8m+4] is rainbow AP(4)
free.

To get a contradiction, let t1 < t2 < t3 < t4 denote the terms of a
rainbow AP(4) in (∗∗) with common difference d. Obviously, d > 1.
Since (∗) is rainbow AP(4) free, we must have either t1 ∈ {1, 2, 3} or
t4 = 8m + 4 or both. Since the left side (the first 4m + 3 numbers) of
(∗∗) is colored only by W , X and Y , therefore t4 > 4m + 3. Similarly,
t1 ≤ 4m + 3. Now, five cases occur.

Case 1. t1 = 1 and t4 6= 8m + 4.

subcase 1a. t1 < t2 ≤ 4m + 3 < t3 < t4. If d ≡ 0 (mod 4), then t1
and t2 are colored X. If d ≡ 1 (mod 4), then t1 and t3 are colored X.
If d ≡ 2 (mod 4), then t1 and t4 are colored X. If d ≡ 3 (mod 4), then
t1 and t3 are colored X.
subcase 1b. t1 < t2 < t3 ≤ 4m + 3 < t4. If d ≡ 0 (mod 4), then t1
and t2 are colored X. If d ≡ 1 (mod 4), then t2 and t3 are colored Y .
If d ≡ 2 (mod 4), then t1 and t3 are colored X. If d ≡ 3 (mod 4), then
t2 and t4 are colored W .

Case 2. t1 = 2 and t4 6= 8m + 4.

subcase 2a. t1 < t2 ≤ 4m + 3 < t3 < t4. If d ≡ 0 (mod 4), then t1
and t3 are colored W . If d ≡ 1 (mod 4), then t3 and t4 are colored Z.
If d ≡ 2 (mod 4), then t1 and t2 are colored W . If d ≡ 3 (mod 4), then
t2 and t4 are colored X.
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subcase 2b. t1 < t2 < t3 ≤ 4m + 3 < t4. If d ≡ 0 (mod 4), then t2
and t3 are colored Y . If d ≡ 1 (mod 4), then t1 and t3 are colored W .
If d ≡ 2 (mod 4), then t1 and t2 are colored W . If d ≡ 3 (mod 4), then
t1 and t3 are colored W .

Case 3. t1 = 3 and t4 6= 8m + 4.

subcase 3a. t1 < t2 ≤ 4m + 3 < t3 < t4. If d ≡ 0 (mod 4), then t1
and t2 are colored Y . If d ≡ 1 (mod 4), then t2 and t4 are colored W .
If d ≡ 2 (mod 4), then t2 and t3 are colored X. If d ≡ 3 (mod 4), then
t1 and t2 are colored Y .
subcase 3b. t1 < t2 < t3 ≤ 4m + 3 < t4. If d ≡ 0 (mod 4), then t1
and t2 are colored Y . If d ≡ 1 (mod 4), then t2 and t4 are colored W .
If d ≡ 2 (mod 4), then t1 and t3 are colored Y . If d ≡ 3 (mod 4), then
t1 and t2 are colored Y .

Case 4. t1 > 3 and t4 = 8m + 4.

subcase 4a. t1 < t2 ≤ 4m + 3 < t3 < t4. If d ≡ 0 (mod 4), then t3
and t4 are colored Z. If d ≡ 1 (mod 4), then t1 and t3 are colored X. If
d ≡ 2 (mod 4), then t2 and t3 are colored W . If d ≡ 3 (mod 4), then t3
and t4 are colored Z.
subcase 4b. t1 ≤ 4m + 3 < t2 < t3 < t4. If d ≡ 0 (mod 4), then t3
and t4 are colored Z. If d ≡ 1 (mod 4), then t1 and t3 are colored X. If
d ≡ 2 (mod 4), then t2 and t4 are colored Z. If d ≡ 3 (mod 4), then t3
and t4 are colored Z.

Case 5. t1 ∈ {1, 2, 3} and t4 = 8m + 4. In this case, since t4 ≡ 0
(mod 4) and t4 − t1 = 3d, it follows that d ≡ t1 (mod 4). Also, t2 <
4m + 3 < t3 and t4 is colored Z.

subcase 5a. 1 = t1 < t2 < 4m + 3 < t3 < t4 = 8m + 4. Here, by our
construction, t1 and t3 are colored X because d ≡ t1 ≡ 1 (mod 4).
subcase 5b. 2 = t1 < t2 < 4m+ 3 < t3 < t4 = 8m+ 4. In this subcase,
we have d ≡ t1 ≡ 2 (mod 4). Therefore, t1 and t2 are colored W .
subcase 5c. 3 = t1 < t2 < 4m+ 3 < t3 < t4 = 8m+ 4. In this subcase,
since d ≡ t1 ≡ 3 (mod 4), t1 and t2 are colored Y . �
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progressions and anti-Ramsey results, Combin. Probab. Comput. 12 (2003) 599-
620.
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