Bulletin of the Iranian Mathematical Society Vol. 37 No. 3 (2011), pp 33-37.

ON RAINBOW 4-TERM ARITHMETIC PROGRESSIONS

M. H. SHIRDAREH HAGHIGHI* AND P. SALEHI NOWBANDEGANI

Communicated by Michel Waldschimidt

ABSTRACT. Let $[n] = \{1, \ldots, n\}$ be colored in k colors. A rainbow AP(k) in [n] is a k term arithmetic progression whose elements have different colors. Conlon, Jungić and Radoičić [3] prove that there exists an equinumerous 4-coloring of [4n] which is rainbow AP(4) free, when n is even. Based on their construction, we show that such a coloring of [4n] also exists for odd n > 1. We conclude that for nonnegative integers $k \geq 3$ and n > 1, every equinumerous k-coloring of [kn] contains a rainbow AP(k) if and only if k = 3.

1. Introduction and Results

In his efforts to prove the Fermat's last theorem, Schur [7] proved that for each nonnegative integer k, every k-coloring of $[n] = \{1, \ldots, n\}$ contains a monochromatic solution of the equation x + y = z, provided that n is sufficiently large. Alekseev and Savchev [1] turn this problem to rainbow solutions of the equation x + y = z; i.e., solutions in which x, y and z are colored in different colors. Later on, in 2003, Jungić et al. [4] considered the rainbow arithmetic progressions arising in k-colorings of [n]. Jungić and Radoičić [6] proved the following theorem which is conjectured in [4].

MSC(2000): Primary: 05C55; Secondary: 11B25.

Keywords: Rainbow arithmetic progression, 4-term arithmetic progression, AP(4), AP(k). Received: 26 Aug 2009, Accepted: 10 January 2010.

 $[*] Corresponding \ author$

^{© 2011} Iranian Mathematical Society.

³³

Theorem 1.1. [6, Theorem 1] For every equinumerous 3-coloring of [3n], there exists a rainbow AP(3).

What about more than 3 colors? Axenovich and Fon-Der-Flass [2] find equinumerous k-coloring of [2mk] which contains no rainbow AP(k), for every $k \ge 5$. The most challenging case is k = 4 [5, Problem 1]. Sicherman [5, page 4], makes equinumerous 4-coloring of [4n], for $1 < n \le 15$, without rainbow AP(4). In 2007, Conlon, et al.[3] made a rainbow free equinumerous 4-coloring of [4n], whenever n is even.

Theorem 1.2. ([3, Theorem 2]) For every positive integer m, there exists an equinumerous 4-coloring of [8m] with no rainbow AP(4).

Based on their construction, we prove the following theorem. The proof appears in the next section.

Theorem 1.3. For every positive integer m, there exists an equinumerous 4-coloring of [8m + 4] with no rainbow AP(4).

Hence, we have the following theorem, which in some sense finishes the story of the existence of rainbow AP(k) in equinumerous random k-coloring of [kn], n > 1.

Theorem 1.4. For nonnegative integers $k \ge 3$ and n > 1, every equinumerous k-coloring of [kn] contains a rainbow AP(k) if and only if k = 3.

Proof. If k = 3, see Theorem 1. For k = 4, by theorems 2 and 3, a rainbow AP(4) free 4-coloring of [4n] is at hand for every n > 1. To construct 5-coloring of [5n], we use easily a equinumerous 4-coloring of [4n], which has no rainbow AP(4) and then color $\{4n + 1, \ldots, 5n\}$ with the fifth color. Plainly, this equinumerous 5-coloring has no rainbow AP(5). One can inductively use this construction to provide equinumerous k-coloring of [kn] for every k > 5, n > 1, with no rainbow AP(k).

Note that the construction of equinumerous k-coloring of [kn], $k \ge 5$, by Axenovich and Fan-Der-Flaass [2], is only for n even.

2. Proof of Theorem 1.3

The following equinumerous 4-coloring of [4n] in the proof of Theorem 2 in [3] is rainbow AP(4) free, whenever n = 2m is even.

Let W, X, Y and Z be our four colors and denote by \mathcal{A} the block WXYY and by \mathcal{B} the block ZZWX. The coloring

(*)
$$\underbrace{\mathcal{A}\dots\mathcal{A}}_{m \text{ times}} \underbrace{\mathcal{B}\dots\mathcal{B}}_{m \text{ times}}$$

is the desired coloring of [4n] = [8m].

Our construction for [4n], whenever n = 2m + 1 > 1, is as follows:

$$(**) \qquad \qquad XWY \underbrace{\mathcal{A} \dots \mathcal{A}}_{m \text{ times}} \underbrace{\mathcal{B} \dots \mathcal{B}}_{m \text{ times}} Z$$

What remains is to check that this coloring of [8m+4] is rainbow AP(4) free.

To get a contradiction, let $t_1 < t_2 < t_3 < t_4$ denote the terms of a rainbow AP(4) in (**) with common difference d. Obviously, d > 1. Since (*) is rainbow AP(4) free, we must have either $t_1 \in \{1, 2, 3\}$ or $t_4 = 8m + 4$ or both. Since the left side (the first 4m + 3 numbers) of (**) is colored only by W, X and Y, therefore $t_4 > 4m + 3$. Similarly, $t_1 \leq 4m + 3$. Now, five cases occur.

Case 1. $t_1 = 1$ and $t_4 \neq 8m + 4$.

subcase 1a. $t_1 < t_2 \le 4m + 3 < t_3 < t_4$. If $d \equiv 0 \pmod{4}$, then t_1 and t_2 are colored X. If $d \equiv 1 \pmod{4}$, then t_1 and t_3 are colored X. If $d \equiv 2 \pmod{4}$, then t_1 and t_4 are colored X. If $d \equiv 3 \pmod{4}$, then t_1 and t_3 are colored X.

subcase 1b. $t_1 < t_2 < t_3 \leq 4m + 3 < t_4$. If $d \equiv 0 \pmod{4}$, then t_1 and t_2 are colored X. If $d \equiv 1 \pmod{4}$, then t_2 and t_3 are colored Y. If $d \equiv 2 \pmod{4}$, then t_1 and t_3 are colored X. If $d \equiv 3 \pmod{4}$, then t_2 and t_4 are colored W.

Case 2. $t_1 = 2$ and $t_4 \neq 8m + 4$.

subcase 2a. $t_1 < t_2 \le 4m + 3 < t_3 < t_4$. If $d \equiv 0 \pmod{4}$, then t_1 and t_3 are colored W. If $d \equiv 1 \pmod{4}$, then t_3 and t_4 are colored Z. If $d \equiv 2 \pmod{4}$, then t_1 and t_2 are colored W. If $d \equiv 3 \pmod{4}$, then t_2 and t_4 are colored X.

subcase 2b. $t_1 < t_2 < t_3 \leq 4m + 3 < t_4$. If $d \equiv 0 \pmod{4}$, then t_2 and t_3 are colored Y. If $d \equiv 1 \pmod{4}$, then t_1 and t_3 are colored W. If $d \equiv 2 \pmod{4}$, then t_1 and t_2 are colored W. If $d \equiv 3 \pmod{4}$, then t_1 and t_3 are colored W.

Case 3. $t_1 = 3$ and $t_4 \neq 8m + 4$.

subcase 3a. $t_1 < t_2 \le 4m + 3 < t_3 < t_4$. If $d \equiv 0 \pmod{4}$, then t_1 and t_2 are colored Y. If $d \equiv 1 \pmod{4}$, then t_2 and t_4 are colored W. If $d \equiv 2 \pmod{4}$, then t_2 and t_3 are colored X. If $d \equiv 3 \pmod{4}$, then t_1 and t_2 are colored Y.

subcase 3b. $t_1 < t_2 < t_3 \leq 4m + 3 < t_4$. If $d \equiv 0 \pmod{4}$, then t_1 and t_2 are colored Y. If $d \equiv 1 \pmod{4}$, then t_2 and t_4 are colored W. If $d \equiv 2 \pmod{4}$, then t_1 and t_3 are colored Y. If $d \equiv 3 \pmod{4}$, then t_1 and t_2 are colored Y.

Case 4. $t_1 > 3$ and $t_4 = 8m + 4$.

subcase 4a. $t_1 < t_2 \le 4m + 3 < t_3 < t_4$. If $d \equiv 0 \pmod{4}$, then t_3 and t_4 are colored Z. If $d \equiv 1 \pmod{4}$, then t_1 and t_3 are colored X. If $d \equiv 2 \pmod{4}$, then t_2 and t_3 are colored W. If $d \equiv 3 \pmod{4}$, then t_3 and t_4 are colored Z.

subcase 4b. $t_1 \leq 4m + 3 < t_2 < t_3 < t_4$. If $d \equiv 0 \pmod{4}$, then t_3 and t_4 are colored Z. If $d \equiv 1 \pmod{4}$, then t_1 and t_3 are colored X. If $d \equiv 2 \pmod{4}$, then t_2 and t_4 are colored Z. If $d \equiv 3 \pmod{4}$, then t_3 and t_4 are colored Z.

Case 5. $t_1 \in \{1, 2, 3\}$ and $t_4 = 8m + 4$. In this case, since $t_4 \equiv 0 \pmod{4}$ and $t_4 - t_1 = 3d$, it follows that $d \equiv t_1 \pmod{4}$. Also, $t_2 < 4m + 3 < t_3$ and t_4 is colored Z.

subcase 5a. $1 = t_1 < t_2 < 4m + 3 < t_3 < t_4 = 8m + 4$. Here, by our construction, t_1 and t_3 are colored X because $d \equiv t_1 \equiv 1 \pmod{4}$.

subcase 5b. $2 = t_1 < t_2 < 4m + 3 < t_3 < t_4 = 8m + 4$. In this subcase, we have $d \equiv t_1 \equiv 2 \pmod{4}$. Therefore, t_1 and t_2 are colored W.

subcase 5c. $3 = t_1 < t_2 < 4m + 3 < t_3 < t_4 = 8m + 4$. In this subcase, since $d \equiv t_1 \equiv 3 \pmod{4}$, t_1 and t_2 are colored Y.

Acknowledgments

The authors thank the referee for constructive comments and shortening the proof.

References

- [1] V. E. Alekseev and S. Savchev, Problem M. 1040, Kvant, 4:23, 1987.
- [2] M. Axenovich and D. Fan-Der-Flaass, On rainbow arithmetic progressions, *Electron. J. Combin.* 11(1) (2004).
- [3] D. Conlon, V. Jungić and R. Radoičić, On the existence of rainbow 4-term arithmetic progressions, *Graphs Combin.* 23(3) (2007) 249-254.
- [4] V. Jungić, J. Licht, M. Mahdian, J. Nešetřil and R. Radoičić, Rainbow arithmetic progressions and anti-Ramsey results, *Combin. Probab. Comput.* **12** (2003) 599-620.
- [5] V. Jungić, J. Nešetřil and R. Radoičić, Rainbow Ramsey theory, *Integers* A09 (2005).
- [6] V. Jungić and R. Radoičić, Rainbow 3-term arithmetic progressions, *Integers* 3 A18 (2003).
- [7] I. Schur, Über die Kongruen
z $x^m + y^m \equiv z^m \pmod{p}$, Jahresber. Deutsch. Math.-Verein. 25 (1916) 114-117.

M. H. Shirdareh Haghighi

Department of Mathematics, Shiraz University, P.O. Box 71454, Shiraz, Iran Email: shirdareh@susc.ac.ir

P. Salehi Nowbandegani

Department of Mathematics, Shiraz University, P.O. Box 71454, Shiraz, Iran Email: pouria.salehi@gmail.com