ON RAINBOW 4-TERM ARITHMETIC PROGRESSIONS

M. H. SHIRDAREH HAGHIGHI* AND P. SALEHI NOWBANDEGANI

Communicated by Michel Waldschimidt

Abstract

Let $[n]=\{1, \ldots, n\}$ be colored in k colors. A rainbow $\mathrm{AP}(k)$ in $[n]$ is a k term arithmetic progression whose elements have different colors. Conlon, Jungić and Radoičić [3] prove that there exists an equinumerous 4 -coloring of [4n] which is rainbow $\mathrm{AP}(4)$ free, when n is even. Based on their construction, we show that such a coloring of [4n] also exists for odd $n>1$. We conclude that for nonnegative integers $k \geq 3$ and $n>1$, every equinumerous k-coloring of $[k n]$ contains a rainbow $\operatorname{AP}(k)$ if and only if $k=3$.

1. Introduction and Results

In his efforts to prove the Fermat's last theorem, Schur [7] proved that for each nonnegative integer k, every k-coloring of $[n]=\{1, \ldots, n\}$ contains a monochromatic solution of the equation $x+y=z$, provided that n is sufficiently large. Alekseev and Savchev [1] turn this problem to rainbow solutions of the equation $x+y=z$; i.e., solutions in which x, y and z are colored in different colors. Later on, in 2003, Jungić et al. [4] considered the rainbow arithmetic progressions arising in k-colorings of [n]. Jungić and Radoičić [6] proved the following theorem which is conjectured in [4].

[^0]Theorem 1.1. [6, Theorem 1] For every equinumerous 3-coloring of [3n], there exists a rainbow $A P(3)$.

What about more than 3 colors? Axenovich and Fon-Der-Flass [2] find equinumerous k-coloring of $[2 m k]$ which contains no rainbow $\operatorname{AP}(k)$, for every $k \geq 5$. The most challenging case is $k=4$ [5, Problem 1$]$. Sicherman [5, page 4], makes equinumerous 4-coloring of [4n], for $1<$ $n \leq 15$, without rainbow $\mathrm{AP}(4)$. In 2007, Conlon, et al.[3] made a rainbow free equinumerous 4-coloring of $[4 n]$, whenever n is even.

Theorem 1.2. ([3, Theorem 2]) For every positive integer m, there exists an equinumerous 4 -coloring of $[8 m]$ with no rainbow $A P(4)$.

Based on their construction, we prove the following theorem. The proof appears in the next section.

Theorem 1.3. For every positive integer m, there exists an equinumerous 4 -coloring of $[8 m+4]$ with no rainbow $A P(4)$.

Hence, we have the following theorem, which in some sense finishes the story of the existence of rainbow $\mathrm{AP}(k)$ in equinumerous random k-coloring of $[k n], n>1$.

Theorem 1.4. For nonnegative integers $k \geq 3$ and $n>1$, every equinumerous k-coloring of $[k n]$ contains a rainbow $A P(k)$ if and only if $k=3$.

Proof. If $k=3$, see Theorem 1. For $k=4$, by theorems 2 and 3, a rainbow $\mathrm{AP}(4)$ free 4 -coloring of $[4 n]$ is at hand for every $n>1$. To construct 5 -coloring of $[5 n]$, we use easily a equinumerous 4 -coloring of [4n], which has no rainbow $\mathrm{AP}(4)$ and then color $\{4 n+1, \ldots, 5 n\}$ with the fifth color. Plainly, this equinumerous 5 -coloring has no rainbow $\mathrm{AP}(5)$. One can inductively use this construction to provide equinumerous k-coloring of $[k n]$ for every $k>5, n>1$, with no rainbow $\operatorname{AP}(k)$.

Note that the construction of equinumerous k-coloring of $[k n], k \geq 5$, by Axenovich and Fan-Der-Flaass [2], is only for n even.

2. Proof of Theorem 1.3

The following equinumerous 4 -coloring of [$4 n]$ in the proof of Theorem 2 in [3] is rainbow $\operatorname{AP}(4)$ free, whenever $n=2 m$ is even.

Let W, X, Y and Z be our four colors and denote by \mathcal{A} the block $W X Y Y$ and by \mathcal{B} the block $Z Z W X$. The coloring

$$
\begin{equation*}
\underbrace{\mathcal{A} \ldots \mathcal{A}}_{m \text { times }} \underbrace{\mathcal{B} \ldots \mathcal{B}}_{m \text { times }} \tag{*}
\end{equation*}
$$

is the desired coloring of $[4 n]=[8 m]$.
Our construction for [4n], whenever $n=2 m+1>1$, is as follows:

$$
\begin{equation*}
X W Y \underbrace{\mathcal{A} \ldots \mathcal{A}}_{m \text { times }} \underbrace{\mathcal{B} \ldots \mathcal{B}}_{m \text { times }} Z \tag{**}
\end{equation*}
$$

What remains is to check that this coloring of $[8 m+4]$ is rainbow $\operatorname{AP}(4)$ free.

To get a contradiction, let $t_{1}<t_{2}<t_{3}<t_{4}$ denote the terms of a rainbow $\mathrm{AP}(4)$ in (**) with common difference d. Obviously, $d>1$. Since (*) is rainbow $\mathrm{AP}(4)$ free, we must have either $t_{1} \in\{1,2,3\}$ or $t_{4}=8 m+4$ or both. Since the left side (the first $4 m+3$ numbers) of $(* *)$ is colored only by W, X and Y, therefore $t_{4}>4 m+3$. Similarly, $t_{1} \leq 4 m+3$. Now, five cases occur.

Case 1. $t_{1}=1$ and $t_{4} \neq 8 m+4$.
subcase 1a. $t_{1}<t_{2} \leq 4 m+3<t_{3}<t_{4}$. If $d \equiv 0(\bmod 4)$, then t_{1} and t_{2} are colored X. If $d \equiv 1(\bmod 4)$, then t_{1} and t_{3} are colored X. If $d \equiv 2(\bmod 4)$, then t_{1} and t_{4} are colored X. If $d \equiv 3(\bmod 4)$, then t_{1} and t_{3} are colored X.
subcase 1b. $t_{1}<t_{2}<t_{3} \leq 4 m+3<t_{4}$. If $d \equiv 0(\bmod 4)$, then t_{1} and t_{2} are colored X. If $d \equiv 1(\bmod 4)$, then t_{2} and t_{3} are colored Y. If $d \equiv 2(\bmod 4)$, then t_{1} and t_{3} are colored X. If $d \equiv 3(\bmod 4)$, then t_{2} and t_{4} are colored W.

Case 2. $t_{1}=2$ and $t_{4} \neq 8 m+4$.
subcase 2a. $t_{1}<t_{2} \leq 4 m+3<t_{3}<t_{4}$. If $d \equiv 0(\bmod 4)$, then t_{1} and t_{3} are colored W. If $d \equiv 1(\bmod 4)$, then t_{3} and t_{4} are colored Z. If $d \equiv 2(\bmod 4)$, then t_{1} and t_{2} are colored W. If $d \equiv 3(\bmod 4)$, then t_{2} and t_{4} are colored X.
subcase 2b. $t_{1}<t_{2}<t_{3} \leq 4 m+3<t_{4}$. If $d \equiv 0(\bmod 4)$, then t_{2} and t_{3} are colored Y. If $d \equiv 1(\bmod 4)$, then t_{1} and t_{3} are colored W. If $d \equiv 2(\bmod 4)$, then t_{1} and t_{2} are colored W. If $d \equiv 3(\bmod 4)$, then t_{1} and t_{3} are colored W.

Case 3. $t_{1}=3$ and $t_{4} \neq 8 m+4$.
subcase 3a. $t_{1}<t_{2} \leq 4 m+3<t_{3}<t_{4}$. If $d \equiv 0(\bmod 4)$, then t_{1} and t_{2} are colored Y. If $d \equiv 1(\bmod 4)$, then t_{2} and t_{4} are colored W. If $d \equiv 2(\bmod 4)$, then t_{2} and t_{3} are colored X. If $d \equiv 3(\bmod 4)$, then t_{1} and t_{2} are colored Y.
subcase 3b. $t_{1}<t_{2}<t_{3} \leq 4 m+3<t_{4}$. If $d \equiv 0(\bmod 4)$, then t_{1} and t_{2} are colored Y. If $d \equiv 1(\bmod 4)$, then t_{2} and t_{4} are colored W. If $d \equiv 2(\bmod 4)$, then t_{1} and t_{3} are colored Y. If $d \equiv 3(\bmod 4)$, then t_{1} and t_{2} are colored Y.

Case 4. $t_{1}>3$ and $t_{4}=8 m+4$.
subcase 4a. $t_{1}<t_{2} \leq 4 m+3<t_{3}<t_{4}$. If $d \equiv 0(\bmod 4)$, then t_{3} and t_{4} are colored Z. If $d \equiv 1(\bmod 4)$, then t_{1} and t_{3} are colored X. If $d \equiv 2(\bmod 4)$, then t_{2} and t_{3} are colored W. If $d \equiv 3(\bmod 4)$, then t_{3} and t_{4} are colored Z.
subcase 4b. $t_{1} \leq 4 m+3<t_{2}<t_{3}<t_{4}$. If $d \equiv 0(\bmod 4)$, then t_{3} and t_{4} are colored Z. If $d \equiv 1(\bmod 4)$, then t_{1} and t_{3} are colored X. If $d \equiv 2(\bmod 4)$, then t_{2} and t_{4} are colored Z. If $d \equiv 3(\bmod 4)$, then t_{3} and t_{4} are colored Z.

Case 5. $t_{1} \in\{1,2,3\}$ and $t_{4}=8 m+4$. In this case, since $t_{4} \equiv 0$ $(\bmod 4)$ and $t_{4}-t_{1}=3 d$, it follows that $d \equiv t_{1}(\bmod 4)$. Also, $t_{2}<$ $4 m+3<t_{3}$ and t_{4} is colored Z.
subcase 5a. $1=t_{1}<t_{2}<4 m+3<t_{3}<t_{4}=8 m+4$. Here, by our construction, t_{1} and t_{3} are colored X because $d \equiv t_{1} \equiv 1(\bmod 4)$.
subcase 5b. $2=t_{1}<t_{2}<4 m+3<t_{3}<t_{4}=8 m+4$. In this subcase, we have $d \equiv t_{1} \equiv 2(\bmod 4)$. Therefore, t_{1} and t_{2} are colored W.
subcase 5c. $3=t_{1}<t_{2}<4 m+3<t_{3}<t_{4}=8 m+4$. In this subcase, since $d \equiv t_{1} \equiv 3(\bmod 4), t_{1}$ and t_{2} are colored Y.

Acknowledgments

The authors thank the referee for constructive comments and shortening the proof.

References

[1] V. E. Alekseev and S. Savchev, Problem M. 1040, Kvant, 4:23 ,1987.
[2] M. Axenovich and D. Fan-Der-Flaass, On rainbow arithmetic progressions, Electron. J. Combin. 11(1) (2004).
[3] D. Conlon, V. Jungić and R. Radoičić, On the existence of rainbow 4-term arithmetic progressions, Graphs Combin. 23(3) (2007) 249-254.
[4] V. Jungić, J. Licht, M. Mahdian, J. Nešetřil and R. Radoičić, Rainbow arithmetic progressions and anti-Ramsey results, Combin. Probab. Comput. 12 (2003) 599620.
[5] V. Jungić, J. Nešetřil and R. Radoičić, Rainbow Ramsey theory, Integers A09 (2005).
[6] V. Jungić and R. Radoičić, Rainbow 3-term arithmetic progressions, Integers $\mathbf{3}$ A18 (2003).
[7] I. Schur, Über die Kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$, Jahresber. Deutsch. Math.Verein. 25 (1916) 114-117.
M. H. Shirdareh Haghighi

Department of Mathematics, Shiraz University, P.O. Box 71454, Shiraz, Iran Email: shirdareh@susc.ac.ir
P. Salehi Nowbandegani

Department of Mathematics, Shiraz University, P.O. Box 71454, Shiraz, Iran
Email: pouria.salehi@gmail.com

[^0]: MSC(2000): Primary: 05C55; Secondary: 11B25.
 Keywords: Rainbow arithmetic progression, 4-term arithmetic progression, $\operatorname{AP}(4), \operatorname{AP}(k)$. Received: 26 Aug 2009, Accepted: 10 January 2010.
 *Corresponding author
 (c) 2011 Iranian Mathematical Society.

