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GENERAL HARDY-TYPE INEQUALITIES WITH

NON-CONJUGATE EXPONENTS

A. ČIŽMEŠIJA, M. KRNIĆ∗ AND J. PEČARIĆ

Communicated by Mohammad Sal Moslehian

Abstract. We derive whole series of new integral inequalities of
the Hardy-type, with non-conjugate exponents. First, we prove
and discuss two equivalent general inequalities of such type, as well
as their corresponding reverse inequalities. General results are then
applied to special Hardy-type kernel and power weights. Also, some
estimates of weight functions and constant factors are obtained.
In particular, we obtain generalizations and improvements of some
recent results, in the literature.

1. Introduction

Let p and q be real parameters satisfying

(1.1) p > 1, q > 1,
1

p
+

1

q
≥ 1,

and let p′ = p
p−1 and q′ = q

q−1 , respectively, be their conjugate expo-

nents, that is, 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1. Further, define

(1.2) λ =
1

p′
+

1

q′
,
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and observe that 0 < λ ≤ 1 holds for all p and q as in (1.1). In particular,
equality λ = 1 holds in (1.2) if and only if q = p′, that is, only if p and
q are mutually conjugate. Otherwise, we have 0 < λ < 1, and such
parameters p and q will be referred to as non-conjugate exponents.

These exponents, in conjugate or non-conjugate form, appear in nu-
merous classical inequalities. One of them is the Hardy inequality. In
1925, G. H. Hardy stated and proved in [5] the following integral ine-
quality:

(1.3)

∫ ∞
0

(
1

x

∫ x

0
f(y) dy

)p
dx ≤

(
p

p− 1

)p
‖f‖Lp〈0,∞〉,

where, p > 1, and f ∈ Lp〈0,∞〉 is a non-negative function. This is the
original form of the Hardy integral inequality, which later on has been
extensively studied and used as a model example for investigations of
more general integral inequalities.

During subsequent decades, the Hardy inequality was generalized in
several different ways. Roughly speaking, the Hardy inequality was ex-
tended to what we call nowadays the general Hardy inequality, or the
Hardy-type inequality:
(1.4)[∫ b

a

(∫ x

a
f(y) dy

)q′
u(x) dx

] 1
q′

≤ Cp,q′
(∫ b

a
fp(x)v(x) dx

) 1
p

, f ≥ 0,

with parameters a, b, p, q′, such that −∞ ≤ a < b ≤ ∞, 0 < q′ ≤ ∞,
1 ≤ p ≤ ∞, and with u and v as the given weight functions. The
main problem in connection with the Hardy inequality is to determine
conditions on the parameters p and q′ and on the weight functions u and
v under which the inequality holds for some classes of functions.

The Hardy inequality also plays an important role in various fields
of mathematics, specially in functional and spectral analysis, where one
investigates properties of the Hardy operator, like continuity and com-
pactness, and also behavior in more general function spaces. For more
details about the Hardy inequality, its history and related results, see
[?, 10, 11] and [12].

Although classical, the Hardy inequality is still a field of interest for
numerous mathematicians. In papers [2] and [3], Čizmešija and Pečarić
investigated finite sections of the Hardy inequality, i.e., inequalities of the
same type, where the integrals are taken over certain subsets of 〈0,∞〉.
In such a way, they obtained some generalizations and refinements of
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inequality (1.3). For example, in [3], they proved the inequality
(1.5)∫ b

0
x−k

(∫ x

0
f(y) dy

)p
dx ≤

(
p

k − 1

)p ∫ b

0

[
1−

(x
b

) k−1
p

]
xp−kfp(x)dx,

where, 0 < b <∞, 1 < p, k <∞, f ≥ 0, and x
1− k

p f ∈ Lp〈0, b〉.
The Hardy inequality is closely related to another important classical

inequality, the so-called Hilbert inequality. That relation may be ex-
plained in a more general setting. Namely, in a recent work [7], Krnić
and Pečarić provided an unified treatment of the Hardy and Hilbert in-
equalities in general form and extended them to cover the case when
p and p′ are conjugate exponents. More precisely, they obtained the
following two inequalities:∫ b

a

∫ y

a
(hg)(y)f(x) dµ1(x)dµ2(y)

≤
[∫ b

a
ϕp(x)

(∫ b

x
H(y) dµ2(y)

)
fp(x) dµ1(x)

] 1
p

·

[∫ b

a
(ψp

′
h)(y)

(∫ y

a
ϕ−p

′
(x) dµ1(x)

)
gp
′
(y) dµ2(y)

] 1
p′

(1.6)

and ∫ b

a
H(y)

(∫ y

a
ϕ−p

′
(x) dµ1(x)

)1−p(∫ y

a
f(x) dµ1(x)

)p
dµ2(y)

≤
∫ b

a
(ψp

′
h)(y)

(∫ y

a
ϕ−p

′
(x) dµ1(x)

)
gp
′
(y) dµ2(y),(1.7)

where, p > 1, µ1, µ2 are positive σ-finite measures, h, f, g, ϕ, ψ are mea-
surable, positive functions a.e. on 〈a, b〉 and H = hψ−p. Inequalities
(1.6) and (1.7) are equivalent in the sense that one is a consequence of
another. Also, the same authors obtained inequalities (1.6) and (1.7) in
a more general manner, with arbitrary measurable kernel instead of fun-
ction h (see [7], Theorem 1). Such inequalities are generalizations of the
classical Hilbert and Hardy inequalities. So, inequalities deduced from
(1.6) will be referred to as the Hilbert-type inequalities and inequalities
deduced from (1.7), as the Hardy-type inequalities. Hence, inequality
(1.7) generalizes the inequality (1.5), as well as some other results in [2]
and [3] and numerous other results, in the literature.
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Very recently, Čižmešija et al. [4] developed a unified treatment of the
general Hilbert-type inequalities extended to the case of non-conjugate
exponents. Our aim here is also an extension of the general Hardy-
type inequalities to the case of non-conjugate exponents. Similarly, as
in [4], we use one Bonsall’s idea, developed in [1], about reducing the
case of non-conjugate parameters to the case of conjugate exponents.
In particular, we obtain a series of integral Hardy-type inequalities for
some special Hardy-type kernels. All results are given in two equivalent
forms, analogous to (1.6) and (1.7).

The remainder of our work is organized in the following way: in Sec-
tion 2 we state and prove a pair of new equivalent Hilbert and Hardy-
type inequalities with non-conjugate exponents p and q, related to gen-
eral measure spaces with positive σ-finite measures, and to the Hardy-
type kernels. These relations are also discussed with respect to param-
eters p and q, in order to obtain the corresponding reverse inequalities.
We also give necessary and sufficient conditions for equality in the in-
equalities obtained. In Section 3, we discuss duality in the Hardy-type
inequalities. Moreover, we obtain dual analogues of the results in Se-
ction 2. Also, we prove the equivalence of these results in the case of the
Lebesgue measure. Further, in Section 4, we apply our general results to
the special Hardy-type kernels and power weights with integrals taken
over intervals in R+. We obtain a whole series of inequalities with ex-
plicit constant factors on their right-hand sides. In Section 5, we further
estimate the inequalities from the previous section. More precisely, we
estimate some factors included in integrals of the inequalities from the
previous section, depending on non-conjugate parameters and the expo-
nents of power weights. Section 6 is dedicated to some uniform bounds
for constant factors in the Hardy-type inequalities. We perform a de-
tailed analysis for optimal constant factor, depending on non-conjugate
factors p and q which give the Hardy-type or the reversed Hardy-type
inequality. Finally, in the last section, we synthesize the methods deve-
loped in Sections 4, 5, and 6, and consider some special cases. In that
manner, we obtain both generalizations and refinements of some known
results.

Conventions. Throughout, let r′ be the conjugate exponent to a posi-
tive real number r 6= 1, that is, 1

r + 1
r′ = 1, or r′ = r

r−1 . All measures are
assumed to be positive and σ-finite, and functions to be a non-negative
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and measurable. A weight function is assumed to be a non-negative mea-
surable function. Further, Lp(µ) denotes measure space Lp (〈a, b〉;µ) and

‖f‖Lp(µ) =
(∫ b

a f
p(x) dµ(x)

) 1
p

is the corresponding norm. Moreover, in

the case of the Lebesgue measure, Lp(µ) will be simply denoted as Lp.
Expressions of the form 0 · ∞, 0

∞ , ∞∞ , and 0
0 are taken to be equal to

zero.

2. General Inequalities of the Hardy-Type

Here we prove our main result that extends relations (1.6) and (1.7)
to the case of non-conjugate exponents.

Let 〈a, b〉 be an interval in R, let T = {(x, y) ∈ R2 : a < x ≤ y < b},
and let µ1 and µ2 be positive σ−finite measures on 〈a, b〉. We define the
Hardy-type kernel K : 〈a, b〉 × 〈a, b〉 → R as:

(2.1) K(x, y) = h(y)χT (x, y) =

{
h(y) , x ≤ y,

0 , x > y,

where, h is a measurable a.e. positive function on 〈a, b〉. Further, we
define the functions F : 〈a, b〉 → R and G : 〈a, b〉 → R as:

F (x) =

[∫ b

x
h(y)ψ−q

′
(y) dµ2(y)

] 1
q′

, x ∈ 〈a, b〉,

G(y) =

[
h(y)

∫ y

a
ϕ−p

′
(x) dµ1(x)

] 1
p′

, y ∈ 〈a, b〉,(2.2)

where, ψ and ϕ are measurable a.e. positive functions on 〈a, b〉.
We also introduce the related Hardy-type operator by the formula

(2.3) (Hf) (y) =

∫ y

a
f(x) dµ1(x), y ∈ 〈a, b〉.

Now, we are ready to state and prove our main result.

Theorem 2.1. Let real parameters p, q, and λ be as in (1.1) and (1.2),
and let µ1 and µ2 be σ-finite measures on 〈a, b〉, −∞ ≤ a < b ≤ ∞. Let
h, ϕ, ψ be measurable, a.e. positive functions on 〈a, b〉 and let H be the
operator defined by (2.3). If the functions F and G are defined by (2.2),
then the inequalities

(2.4)

∫ b

a
(hλg)(y) (Hf) (y) dµ2(y) ≤ ‖ϕFf‖Lp(µ1)‖ψGg‖Lq(µ2)
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and {∫ b

a
(hψ−q

′
)(y)

[∫ y

a
ϕ−p

′
(x) dµ1(x)

]− q′
p′

(Hf)q
′
(y) dµ2(y)

} 1
q′

≤ ‖ϕFf‖Lp(µ1)(2.5)

hold for all non-negative functions f and g on 〈a, b〉, such that ϕFf ∈
Lp(µ1) and ψGg ∈ Lq(µ2), and are equivalent.

Proof. We prove the inequality (2.4) first. Let h, ϕ, and ψ be as given in
the statement of the theorem and let f and g be arbitrary non-negative
measurable functions on 〈a, b〉. Let L denote the left-hand side of in-
equality (2.4). Since 1

q′ +
1
p′ + (1−λ) = 1, the left-hand side of (2.4) can

be rewritten as follows:

L =

∫ b

a

∫ y

a
(hλg)(y)f(x) dµ1(x)dµ2(y)

=

∫ b

a

∫ y

a

[
(hψ−q

′
)(y)(ϕpF p−q

′
fp)(x)

] 1
q′ ·[

ϕ−p
′
(x)(hψqGq−p

′
gq)(y)

] 1
p′ ·

[(ϕFf)p (x) (ψGg)q (y)]1−λ dµ1(x)dµ2(y).(2.6)

Further, by using the Hölder inequality, either with the parameters
q′, p′, 1

1−λ > 1 in the case of non-conjugate exponents p and q, or with

the parameters p and p′ when q′ = p (that is, when λ = 1), and then
applying the Fubini theorem, we obtain that L is not greater than

R =

{∫ b

a

[∫ b

x
(hψ−q

′
)(y) dµ2(y)

]
(ϕpF p−q

′
fp)(x) dµ1(x)

} 1
q′

·

{∫ b

a

[
h(y)

∫ y

a
ϕ−p

′
(x) dµ1(x)

]
(ψqGq−p

′
gq)(y) dµ2(y)

} 1
p′

·{∫ b

a
(ψGg)q (y)

∫ y

a
(ϕFf)p (x) dµ1(x)dµ2(y)

}1−λ

.
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Now, by considering definitions (2.2) of functions F and G, the above
expression can be rewritten as

R =‖ϕFf‖
p
q′

Lp(µ1)‖ψGg‖
q
p′

Lq(µ2)·{
‖ϕFf‖pLp(µ1)‖ψGg‖

q
Lq(µ2) −

−
∫ b

a

∫ b

y
(ϕFf)p (x) (ψGg)q (y) dµ1(x)dµ2(y)

}1−λ

.

(2.7)

Of course, from relations (2.6) and (2.7) we obtain the inequality

(2.8) L ≤ R.
Finally, considering (2.7), we easily have

R ≤ ‖ϕFf‖
p
q′+p(1−λ)

Lp(µ1) ‖ψGg‖
q
p′+q(1−λ)

Lq(µ2) = ‖ϕFf‖Lp(µ1)‖ψGg‖Lq(µ2),

and so (2.4) is proved. The further step is to prove that (2.4) implies
(2.5) to hold for all non-negative measurable functions f on 〈a, b〉. In
particular, for any such f and the function g defined by
(2.9)

g(y) = (ψ−q
′
h1−λ)(y)

[∫ y

a
ϕ−p

′
(x) dµ1(x)

]− q′
p′

(Hf)q
′−1(y), y ∈ 〈a, b〉,

applying the Fubini theorem, the left-hand side of (2.4) becomes

Lf =

∫ b

a
(hψ−q

′
)(y)

[∫ y

a
ϕ−p

′
(x) dµ1(x)

]− q′
p′

(Hf)q
′
(y) dµ2(y),

that is, we get the integral on the left-hand side of (2.5), while on the
right-hand side of (2.4) we have

Rf = ‖ϕFf‖Lp(µ1)

{∫ b

a
(hψ−q

′
)(y)

[∫ y

a
ϕ−p

′
(x) dµ1(x)

]− q′
p′

·

(Hf)q
′
(y) dµ2(y)

} 1
q

= ‖ϕFf‖Lp(µ1)Lf
1
q .

Hence,

Lf ≤ ‖ϕFf‖Lp(µ1)Lf
1
q ,
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which directly yields (2.5), and so the implication (2.4)⇒ (2.5) is proved.
Conversely, by using the Hölder inequality for the conjugate exponents
q and q′, together with relation (2.5) and definitions (2.2), for arbitrary
f, g ≥ 0, we have∫ b

a
(hλg)(y)(Hf)(y) dµ2(y)

=

∫ b

a
(ψGg)(y)

[
(ψG)−1(y)hλ(y)(Hf)(y)

]
dµ2(y)

≤ ‖ψGg‖Lq(µ2)

{∫ b

a
(hψ−q

′
)(y)

[∫ y

a
ϕ−p

′
(x) dµ1(x)

]− q′
p′

·

(Hf)q
′
(y) dµ2(y)

} 1
q′

≤ ‖ϕFf‖Lp(µ1)‖ψGg‖Lq(µ2).

Thus, (2.5) implies (2.4), so these inequalities are equivalent. The proof
of Theorem 2.1 is now complete.

Remark 2.2. Note that equality in (2.4) holds if and only if it holds
in the Hölder inequality and in (2.8). Equality in the Hölder inequality

holds if and only if the functions hψ−q
′
ϕpF p−q

′
fp, hϕ−p

′
ψqGq−p

′
gq, and

(ϕFf)p(ψGg)q are effectively proportional on the set T . Clearly, this
trivially happens if at least one of the functions involved in the left-hand
side of (2.4) is a zero-function. To discuss other non-trivial cases of
equality in (2.4), we can, without loss of generality, assume that the
functions f and g are positive. Otherwise, instead of T , we consider
the set S = {(x, y) ∈ T : f(x)g(y) > 0}, which has a positive measure.
Under such assumptions, equality in (2.4) occurs if and only if there
exist positive real constants α1, β1, and γ1, such that the relations

α1(hψ−q
′
)(y)(ϕpF p−q

′
fp)(x) = β1ϕ

−p′(x)(hψqGq−p
′
gq)(y)

= γ1 (ϕFf)p (x) (ψGg)q (y)

hold for a.e. a < x ≤ y < b. Further, these relations can be rewritten in
a more suitable, equivalent form, as:
(2.10)

α1(ϕp+p
′
F p−q

′
fp)(x) = β1(ψq+q

′
Gq−p

′
gq)(y), for a.e. a < x ≤ y < b,
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and

(2.11) α1F
−q′(x) = γ1(h−1ψq+q

′
Gqgq)(y), for a.e. a < x ≤ y < b.

Since the left-hand side of (2.10) depends only on x ∈ 〈a, b〉, while the
right-hand side of this relation is a single-variable function in y ∈ 〈a, b〉,
(2.10) holds only if

ϕp+p
′
F p−q

′
fp = αp = const. a.e. on 〈a, b〉

and

ψq+q
′
Gq−p

′
gq = βp = const. a.e. on 〈a, b〉,

for some positive real constants α and β. Considering 1 + p′

p = p′ and

1 + q′

q = q′, these identities can be finally transformed to:

(2.12) f = αϕ−p
′
F
q′
p
−1

and g = βψ−q
′
G
p′
q
−1

a.e. on 〈a, b〉.
By using the same argument, we obtain from (2.11) that F = const.

Further, by inserting (2.12) in (2.11), we also get that h−1Gp
′

= const.
Hence, considering definitions (2.2), we arrive at a contradiction since
the functions h, ϕ, and ψ are positive a.e. on 〈a, b〉. So, equality in the
Hölder inequality holds only if f = 0 or g = 0 a.e. on 〈a, b〉. Clearly, in
that case, equality holds in (2.8) and consequently in (2.4). Moreover, it
is clear from the proof of Theorem 2.1 that equality in (2.5) holds only
if it holds in (2.4), that is, if f = 0 a.e. on 〈a, b〉. �

Remark 2.3. Note that the sign of inequality in (2.4) depends only
on the parameters p′, q′, and λ, since the crucial step in proving this
relation was an application of the Hölder inequality. Therefore, besides
p′, q′ > 1 and λ ∈ 〈0, 1], as in (1.1) and (1.2), we can consider exponents
which provide the reversed sign of inequality in (2.4). Specially, if the
parameters p and q from Theorem 2.1 are such that

(2.13) p < 0, q ∈ 〈0, 1〉, 1

p
+

1

q
≤ 1,

and λ is defined by (1.2), we have p′ ∈ 〈0, 1〉, q′ < 0, and 1−λ ≤ 0, and so
the sign of inequality in (2.4) is reversed as a direct consequence of the so-
called reversed Hölder inequality (for details, see e.g., [12, Chapter V]).
The same result is also obtained with the parameters p and q satisfying

(2.14) p ∈ 〈0, 1〉, q < 0,
1

p
+

1

q
≤ 1,
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since from (2.14) one obtains p′ < 0, q′ ∈ 〈0, 1〉, and 1 − λ ≤ 0. Fur-
ther, it is obvious that for all cases of the parameters p′, q′, and λ, the
relations (2.4) and (2.5) hold with the same sign of inequality since they
are equivalent. �

Remark 2.4. In the case of conjugate exponents, that is, when q = p′

and λ = 1, inequalities (2.4) and (2.5) reduce to relations (1.6) and
(1.7) from the Introduction. Thus, our Theorem 2.1 may be regarded as
an extension of the corresponding results from [7] to the case of non-
conjugate exponents. Clearly, reversed inequalities in (1.6) and (1.7)
hold if 0 6= p < 1. �

Remark 2.5. In the proof of Theorem 2.1, we have obtained the ine-
quality (2.8), which is a refinement of inequality (2.4). Let us write that
inequality once again:∫ b

a
(hλg)(y) (Hf) (y) dµ2(y) ≤ ‖ϕFf‖

p
q′

Lp(µ1)‖ψGg‖
q
p′

Lq(µ2)·{∫ b

a

∫ y

a
(ϕFf)p (x) (ψGg)q (y) dµ1(x)dµ2(y)

}1−λ

.(2.15)

Clearly, by substituting the function g, defined by (2.9), in the preceding
inequality, we obtain its equivalent Hardy-type form{∫ b

a
(hψ−q

′
)(y)

[∫ y

a
ϕ−p

′
(x) dµ1(x)

]− q′
p′

(Hf)q
′
(y) dµ2(y)

} 1
p

≤ ‖ϕFf‖
p
q′

Lp(µ1) ·

{∫ b

a
(hψ−q

′
)(y)

[∫ y

a
ϕ−p

′
(x) dµ1(x)

]− q′
p′

·

(Hf)q
′
(y)

∫ y

a
(ϕFf)p dµ1(x)dµ2(y)

}1−λ

.(2.16)

Inequality (2.16) is also a slight refinement of (2.5). Note that these
refinements hold only in the non-conjugate case. Further, the reversed
sign of inequality in (2.15) and (2.16) holds as in Remark 2 (conditions
(2.13) or (2.14)) and also in the case when p, q ∈ 〈0, 1〉. �
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3. General Inequalities with Dual Hardy-Type Kernel

One important property of the Hardy inequality is duality. Here, we
obtain dual analogues of the relations in the previous section.

Let 〈a, b〉 be an interval in R, let T̃ = {(x, y) ∈ R2 : a < y ≤ x < b},
and let µ1 and µ2 be positive σ−finite measures on 〈a, b〉. We define the

dual Hardy-type kernel K̃ : 〈a, b〉 × 〈a, b〉 → R as:

(3.1) K(x, y) = h(y)χ
T̃

(x, y) =

{
h(y), x ≥ y,

0, x < y,

where, h is a measurable a.e. positive function on 〈a, b〉. Moreover, we

define the functions F̃ : 〈a, b〉 → R and G̃ : 〈a, b〉 → R as:

F̃ (x) =

[∫ x

a
(hψ−q

′
)(y) dµ2(y)

] 1
q′

, x ∈ 〈a, b〉,

G̃(y) =

[
h(y)

∫ b

y
ϕ−p

′
(x) dµ1(x)

] 1
p′

, y ∈ 〈a, b〉,(3.2)

where, ψ and ϕ are measurable a.e. positive functions on 〈a, b〉 with
respect to the corresponding σ-finite measures.

Further, the dual Hardy-type operator to the operator H in (2.3) is
defined in the following way:

(3.3) (H̃f)(y) =

∫ b

y
f(x) dµ1(x), y ∈ 〈a, b〉.

In this setting, we obtain a dual analogue of Theorem 2.1.

Theorem 3.1. Let real parameters p, q, and λ be as in (1.1) and (1.2),
and let µ1 and µ2 be σ-finite measures on 〈a, b〉, −∞ ≤ a < b ≤ ∞. Let

h, ϕ, ψ be measurable a.e. positive functions on 〈a, b〉 and let H̃ be the

operator defined by (3.3). If the functions F̃ and G̃ are defined by (3.2),
then the inequalities

(3.4)

∫ b

a
(hλg)(y)(H̃f)(y) dµ2(y) ≤ ‖ϕF̃f‖Lp(µ1)‖ψG̃g‖Lq(µ2)
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and {∫ b

a
(hψ−q

′
)(y)

[∫ b

y
ϕ−p

′
(x) dµ1(x)

]− q′
p′

(H̃f)q
′
(y) dµ2(y)

} 1
q′

≤ ‖ϕF̃f‖Lp(µ1)(3.5)

hold for all non-negative functions f and g on 〈a, b〉, such that ϕF̃f ∈
Lp(µ1) and ψG̃g ∈ Lq(µ2), and are equivalent.

Proof. Follows the same lines as the proof of Theorem 2.1. �

Remark 3.2. Similarly as in Remark 2.2, one obtains that equality in
(3.4) holds if and only if f = 0 or g = 0 a.e. on 〈a, b〉. Equality in (3.5)
holds if and only if f = 0 a.e. on 〈a, b〉. Finally, the reversed inequalities
of (3.4) and (3.5) hold under the same assumptions as in Remark 2.3.�

Remark 3.3. In the case of conjugate exponents, that is, when q = p′

and λ = 1, Theorem 3.1 reduces to Theorem in [7], and so our Theorem
3.1 can be regarded as an extension of the mentioned results to non-
conjugate exponents. �

Remark 3.4. Similarly as in Remark 2.5, one easily obtains a refine-
ment of (3.4) in the non-conjugate case:∫ b

a
(hλg)(y)(H̃f)(y) dµ2(y) ≤ ‖ϕF̃f‖

p
q′

Lp(µ1)‖ψG̃g‖
q
p′

Lq(µ2)·{∫ b

a

∫ b

y
(ϕF̃f)p(x)(ψG̃g)q(y) dµ1(x)dµ2(y)

}1−λ

,(3.6)

with sharp inequality for f, g 6= 0 a.e. on 〈a, b〉. Furthermore, by substi-
tuting the function g, defined by

g(y) = (ψ−q
′
h1−λ)(y)

[∫ b

y
ϕ−p

′
(x) dµ1(x)

]− q′
p′

(H̃f)q
′−1(y), y ∈ 〈a, b〉,
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in (3.6), we obtain the inequality{∫ b

a
(hψ−q

′
)(y)

[∫ b

y
ϕ−p

′
(x) dµ1(x)

]− q′
p′

(H̃f)q
′
(y) dµ2(y)

} 1
p

≤ ‖ϕF̃f‖
p
q′

Lp(µ1)

{∫ b

a
(hψ−q

′
)(y)

[∫ b

y
ϕ−p

′
(x) dµ1(x)

]− q′
p′

·

(H̃f)q
′
(y)

∫ b

y
(ϕF̃f)p dµ1(x)dµ2(y)

}1−λ

,(3.7)

which can be regarded as a refinement of (3.5). Of course, the reversed
sign of inequality in (3.6) and (3.7) holds as in Remark 2.5. �

The most interesting case in our work appears when the interval 〈a, b〉
is a subset of the set of non-negative real numbers, that is, 0 ≤ a < b ≤
∞. Namely, we show that Theorems 2.1 and 3.1 are equivalent in the
case of Lebesgue measures.

Theorem 3.5. Let 0 ≤ a < b ≤ ∞ and under conditions of Theorem 2.1
and Theorem 3.1, let dµ1(x) = dx, dµ2(y) = dy. Then, the inequalities
(2.4) and (3.4) are equivalent. Moreover, the inequalities (2.5) and (3.5)
are equivalent as well.

Proof. Suppose that the inequality (2.4) holds for an arbitrary interval
〈a, b〉 ⊆ R+ and arbitrary non-negative measurable functions ϕ,ψ, h, f, g

on 〈a, b〉. We define ã = 1
b and b̃ = 1

a , with conventions ã = 0 for b =∞
and b̃ = ∞ for a = 0. We also define the functions h̃, ϕ̃, ψ̃, f̃ , and g̃ on

〈ã, b̃〉 by h̃(t) = h
(

1
t

)
, ϕ̃(t) = t

2
p′ ϕ
(

1
t

)
, ψ̃(t) = t

2
q′ ψ

(
1
t

)
, f̃(t) = t−2f

(
1
t

)
,

and g̃(t) = t−2g
(

1
t

)
.

Rewrite (2.4) with these new parameters. More precisely, by using
the substitutions x = 1

u and y = 1
v , the left-hand side of (2.4) becomes:∫ b̃

ã
(h̃λg̃)(y)t(Hf̃)(y) dy =

∫ b

a
(hλg)(v)

∫ b

v
f(u) du dv,

that is, the left hand side of inequality (3.4). Analogously, for the first
factor on the right-hand side of (2.4), we have

‖ϕ̃F f̃‖p
Lp(ã,̃b)

=

∫ b

a
(ϕf)p(u)

[∫ u

a
(hψ−q

′
)(v)dv

] p
q′

du,
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which obviously represents the first factor on the right-hand side of ine-
quality (3.4). The same argument holds for the second factor on the
right-hand side of (2.4). Thus, inequality (2.4) implies (3.4). In the
same manner, one obtains the reverse implication, and so inequalities
(2.4) and (3.4) are equivalent.

Finally, the pairs of inequalities (2.4) and (2.5) as well as (3.4) and
(3.5) are equivalent (see Theorems 2.1 and 3.1), which implies the equi-
valence of (2.5) and (3.5). �

4. Some Special Hardy-Type Kernels and Weight Functions

Here, we consider the case with Lebesgue measure for some particular
Hardy-type kernels and weight functions. Namely, let 0 ≤ a < b ≤ ∞
and h, ϕ, ψ : 〈a, b〉 → R be, respectively, defined by h(y) = 1

y , ϕ(x) =

xA1 , ψ(y) = yA2 , A1, A2 ∈ R. As shown in the previous section, it is
sufficient to consider only the Hardy-type inequalities in Theorem 2.1,
since their duals are equivalent with them.

In particular, we have to distinguish the cases

0 < a < b <∞,(4.1)

0 = a < b <∞,(4.2)

0 < a < b =∞,(4.3)

0 = a < b =∞,(4.4)

since one obtains different integration formulas for the functions F and
G, defined by (2.2).

Specially, if 0 < a < b <∞, then

(4.5) F (x) =

 |q′A2|
− 1
q′ x−A2

∣∣∣1− (xb )q′A2

∣∣∣ 1
q′
, A2 6= 0,(

ln b
x

) 1
q′ , A2 = 0,

and

(4.6) G(y) =

 |1− p
′A1|

− 1
p′ y−A1

∣∣∣∣1− (ay)1−p′A1

∣∣∣∣ 1
p′

, A1 6= 1
p′ ,

y
− 1
p′
(
ln y

a

) 1
p′ , A1 = 1

p′ .

Note that we have, in previous two relations, included the cases A1 >
1
p′

and A2 < 0, by means of the modulus function. In this setting, we
obtain four corollaries arising from Theorem 2.1.
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If A1 6= 1
p′ and A2 6= 0, then we have the following result.

Corollary 4.1. Let −∞ < a < b < ∞, let real parameters p, q, and λ
be as in (1.1) and (1.2), let A1, A2 be real parameters such that A1 6=
1
p′ , A2 6= 0, and let H be the operator defined by (2.3). Then, the

inequalities∫ b

a
y−λg(y)(Hf)(y) dy

≤ |1− p
′A1|

− 1
p′

|q′A2|
1
q′

[∫ b

a
x(A1−A2)p

∣∣∣∣1− (xb )q′A2

∣∣∣∣ pq′ fp(x) dx

] 1
p

·

∫ b

a
y(A2−A1)q

∣∣∣∣∣1−
(
a

y

)1−p′A1

∣∣∣∣∣
q
p′

gq(y) dy

 1
q

(4.7)

and ∫ b

a
y(A1−A2−λ)q′

∣∣∣∣∣1−
(
a

y

)1−p′A1

∣∣∣∣∣
− q
′
p′

(Hf)q
′
(y) dy


1
q′

≤ |1− p
′A1|

− 1
p′

|q′A2|
1
q′

[∫ b

a
x(A1−A2)p

∣∣∣∣1− (xb )q′A2

∣∣∣∣ pq′ fp(x) dx

] 1
p

(4.8)

hold for all non-negative measurable functions f and g on 〈a, b〉, and are
equivalent.

In the case A1 6= 1
p′ , A2 = 0 we have the following result.

Corollary 4.2. Let −∞ < a < b < ∞, let real parameters p, q, and λ
be as in (1.1) and (1.2), let A1 be real parameter such that A1 6= 1

p′ , and

let H be the operator defined by (2.3). Then the inequalities∫ b

a
y−λg(y)(Hf)(y) dy ≤ |1− p′A1|

− 1
p′

[∫ b

a
xA1p

(
ln
b

x

) p
q′

fp(x) dx

] 1
p

·

∫ b

a
y−A1q

∣∣∣∣∣1−
(
a

y

)1−p′A1

∣∣∣∣∣
q
p′

gq(y) dy

 1
q

(4.9)
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and ∫ b

a
y(A1−λ)q′

∣∣∣∣∣1−
(
a

y

)1−p′A1

∣∣∣∣∣
− q
′
p′

(Hf)q
′
(y) dy


1
q′

≤ |1− p′A1|
− 1
p′

[∫ b

a
xA1p

(
ln
b

x

) p
q′

fp(x) dx

] 1
p

(4.10)

hold for all non-negative measurable functions f and g on 〈a, b〉, and are
equivalent.

If A1 = 1
p′ and A2 6= 0, we obtain the following corollary

Corollary 4.3. Let −∞ < a < b < ∞, let real parameters p, q, and λ
be as in (1.1) and (1.2), let A2 be real parameter such that A2 6= 0, and
let H be the operator defined by (2.3). Then, the inequalities∫ b

a
y−λg(y)(Hf)(y) dy

≤ |q′A2|
− 1
q′

[∫ b

a
x(1−A2)p−1

∣∣∣∣1− (xb )q′A2

∣∣∣∣ pq′ fp(x) dx

] 1
p

·

[∫ b

a
y

(A2− 1
p′ )q

(
ln
y

a

) q
p′
gq(y) dy

] 1
q

(4.11)

and [∫ b

a
y−q

′A2−1
(

ln
y

a

)− q′
p′

(Hf)q
′
(y) dy

] 1
q′

≤ |q′A2|
− 1
q′

[∫ b

a
x(1−A2)p−1

∣∣∣∣1− (xb )q′A2

∣∣∣∣ pq′ fp(x) dx

] 1
p

(4.12)

hold for all non-negative measurable functions f and g on 〈a, b〉, and are
equivalent.

Finally, if A1 = 1
p′ and A2 = 0, then we have the following result.
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Corollary 4.4. Let −∞ < a < b < ∞, let real parameters p, q, and
λ be as in (1.1) and (1.2), and let H be the operator defined by (2.3).
Then, the inequalities

∫ b

a
y−λg(y)(Hf)(y) dy ≤

[∫ b

a
xp−1

(
ln
b

x

) p
q′

fp(x) dx

] 1
p

·

[∫ b

a
y
− q
p′
(

ln
y

a

) q
p′
gq(y) dy

] 1
q

(4.13)

and[∫ b

a
y−1

(
ln
y

a

)− q′
p′

(Hf)q
′
(y) dy

] 1
q′

≤

[∫ b

a
xp−1

(
ln
b

x

) p
q′

fp(x) dx

] 1
p

(4.14)

hold for all non-negative measurable functions f and g on 〈a, b〉, and are
equivalent.

Now, we consider the second case, (4.2), where, a = 0. Then, F is
defined by (4.5), and

(4.15) G(y) = (1− p′A1)
− 1
p′ y−A1 , y ∈ 〈0, b〉,

where, 1 − p′A1 > 0. In this setting, we obtain two results, depending
on value of the parameter A2 (A2 6= 0 or A2 = 0).

Corollary 4.5. Let real parameters p, q, and λ be as in (1.1) and (1.2),
let 0 < b <∞, let A1, A2 be real parameters such that p′A1 < 1, A2 6= 0,
and let H be the operator defined by (2.3). Then, the inequalities∫ b

0
y−λg(y)(Hf)(y) dy

≤ (1− p′A1)
− 1
p′

|q′A2|
1
q′

[∫ b

0
x(A1−A2)p

∣∣∣∣1− (xb )q′A2

∣∣∣∣ pq′ fp(x) dx

] 1
p

[∫ b

0
y(A2−A1)qgq(y) dy

] 1
q

(4.16)
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and [∫ b

0
y(A1−A2−λ)q′(Hf)q

′
(y) dy

] 1
q′

≤ (1− p′A1)
− 1
p′

|q′A2|
1
q′

[∫ b

0
x(A1−A2)p

∣∣∣∣1− (xb )q′A2

∣∣∣∣ pq′ fp(x) dx

] 1
p

(4.17)

hold for all non-negative measurable functions f and g on 〈0, b〉, and are
equivalent.

Corollary 4.6. Let real parameters p, q, and λ be as in (1.1) and (1.2),
let 0 < b < ∞, let A1 be real parameter such that p′A1 < 1, and let H
be the operator defined by (2.3). Then, the inequalities∫ b

0
y−λg(y)(Hf)(y) dy ≤ (1− p′A1)

− 1
p′

[∫ b

0
xA1p

(
ln
b

x

) p
q′

fp(x) dx

] 1
p

·

[∫ b

0
y−A1qgq(y) dy

] 1
q

(4.18)

and [∫ b

0
y(A1−λ)q′(Hf)q

′
(y) dy

] 1
q′

≤ (1− p′A1)
− 1
p′

[∫ b

0
xA1p

(
ln
b

x

) p
q′

fp(x) dx

] 1
p

(4.19)

hold for all non-negative measurable functions f and g on 〈0, b〉, and are
equivalent.

The next case (4.3) includes b =∞. Then, G is defined by (4.6), and

(4.20) F (x) = (q′A2)
− 1
q′ x−A2 , x ∈ 〈a,∞〉,

where, q′A2 > 0. In this setting, we get two results, depending on value
of the parameter A1 (A1 6= 1

p′ or A1 = 1
p′ ).

Corollary 4.7. Let 0 < a <∞, let real parameters p, q, and λ be as in
(1.1) and (1.2), let A1, A2 be real parameters such that A1 6= 1

p′ , q
′A2 >
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0, and let H be the operator defined by (2.3). Then, the inequalities∫ ∞
a

y−λg(y)(Hf)(y) dy

≤ |1− p
′A1|

− 1
p′

(q′A2)
1
q′

[∫ ∞
a

x(A1−A2)pfp(x) dx

] 1
p

·

∫ ∞
a

y(A2−A1)q

∣∣∣∣∣1−
(
a

y

)1−p′A1

∣∣∣∣∣
q
p′

gq(y) dy

 1
q

(4.21)

and ∫ ∞
a

y(A1−A2−λ)q′

∣∣∣∣∣1−
(
a

y

)1−p′A1

∣∣∣∣∣
− q
′
p′

(Hf)q
′
(y) dy


1
q′

≤ |1− p
′A1|

− 1
p′

(q′A2)
1
q′

[∫ ∞
a

x(A1−A2)pfp(x) dx

] 1
p

(4.22)

hold for all non-negative measurable functions f and g on 〈a,∞〉, and
are equivalent.

Corollary 4.8. Let real parameters p, q, and λ be as in (1.1) and (1.2),
let 0 < a < ∞, let A2 be real parameter such that q′A2 > 0, and let H
be the operator defined by (2.3). Then, the inequalities∫ ∞

a
y−λg(y)(Hf)(y) dy ≤ (q′A2)

− 1
q′

[∫ ∞
a

x(1−A2)p−1fp(x) dx

] 1
p

·[∫ ∞
a

y
q(A2− 1

p′ )
(

ln
y

a

) q
p′
gq(y) dy

] 1
q

(4.23)

and [∫ ∞
a

y−q
′A2−1

(
ln
y

a

)− q′
p′

(Hf)q
′
(y) dy

] 1
q′

≤ (q′A2)
− 1
q′

[∫ ∞
a

x(1−A2)p−1fp(x) dx

] 1
p

(4.24)

hold for all non-negative measurable functions f and g on 〈a,∞〉, and
are equivalent.
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Finally, we consider the case (4.4), that is, with a = 0 and b = ∞.
In that case, the functions F and G are respectively defined by (4.20)
and (4.15), where, 1− p′A1 > 0 and q′A2 > 0. Hence, we have only one
possibility, given in the following corollary.

Corollary 4.9. Suppose p, q, and λ are as in (1.1) and (1.2), A1 and
A2 are real parameters such that p′A1 < 1, q′A2 > 0, and H is the
operator defined by (2.3). Then, the inequalities

∫ ∞
0

y−λg(y)(Hf)(y) dy ≤ (1− p′A1)
− 1
p′

(q′A2)
1
q′

[∫ ∞
0

x(A1−A2)pfp(x) dx

] 1
p

·

[∫ ∞
0

y(A2−A1)qgq(y) dy

] 1
q

(4.25)

and

[∫ ∞
0

y(A1−A2−λ)q′(Hf)q
′
(y) dy

] 1
q′

≤ (1− p′A1)
− 1
p′

(q′A2)
1
q′

[∫ ∞
0

x(A1−A2)pfp(x) dx

] 1
p

(4.26)

hold for all non-negative measurable functions f and g on R+ and are
equivalent.

Remark 4.10. Some results from this section, specialized to the case of
conjugate exponents, can be found in [7] (see Corollaries 1–3). Hence,
our results generalize the mentioned results in [7]. Note that the in-
equalities in this section hold with the reversed signs of inequality if the
exponents p and q satisfy conditions (2.13) or (2.14). �

Remark 4.11. As already mentioned, we can easily obtain related re-
sults which correspond to the dual Hardy-type kernel. Here, they are
omitted. Also, in [8] (see Section 4), one can find the results that are
similar to the ones in this section. �
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5. Further Analysis of Parameters

We proceed with estimates of some factors included in integrals in
the inequalities of the previous section, depending on non-conjugate ex-
ponents and the real parameters A1 and A2. Applying these estimates,
we shall get closer to the classical Hardy inequality. More precisely, by
using the same notation as in the previous section, the estimates

(5.1)

∣∣∣∣∣1−
(
a

y

)1−p′A1

∣∣∣∣∣ ≤
∣∣∣∣1− (ab)1−p′A1

∣∣∣∣ , y ∈ 〈a, b〉, A1 6=
1

p′
,

and

(5.2)

∣∣∣∣1− (xb )q′A2

∣∣∣∣ ≤ ∣∣∣∣1− (ab)q′A2

∣∣∣∣ , x ∈ 〈a, b〉, A2 6= 0,

hold, where 0 < a < b <∞. Further, estimates

(5.3) ln
b

x
≤ ln

b

a
, x ∈ 〈a, b〉,

and

(5.4) ln
y

a
≤ ln

b

a
, y ∈ 〈a, b〉,

are obviously valid for the natural logarithm function, where, 0 < a <
b <∞.

Our aim is an application of these estimates to the results obtained
in Section 4. In such a way, we shall simplify these inequalities and
obtain new constant factors included in the right-hand sides of appro-
priate inequalities as well. Constant factors will be expressed in terms
of function k : R→ R, defined by the formula

(5.5) k(α) =

{
1−(ab )

α

α , α 6= 0,

ln b
a , α = 0,

with 0 < a < b < ∞. Obviously, k is a continuous function, since
limα→0 k(α) = k(0).

By combining Corollary 4.1 and estimates (5.1) and (5.2), we obtain
the following result.

Corollary 5.1. Suppose p, q, and λ are as in (1.1) and (1.2), −∞ <
a < b < ∞, A1 and A2 are real parameters such that A1 6= 1

p′ , A2 6= 0,
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and H is the operator defined by (2.3). Then, the inequalities

∫ b

a
y−λg(y)(Hf)(y) dy ≤ k

1
p′ (1− p′A1)k

1
q′ (q′A2) ·[∫ b

a
x(A1−A2)pfp(x) dx

] 1
p
[∫ b

a
y(A2−A1)qgq(y) dy

] 1
q

(5.6)

and

[∫ b

a
y(A1−A2−λ)q′(Hf)q

′
(y) dy

] 1
q′

≤ k
1
p′ (1− p′A1)k

1
q′ (q′A2)

[∫ b

a
x(A1−A2)pfp(x) dx

] 1
p

(5.7)

hold for all non-negative measurable functions f and g on 〈a, b〉, and are
equivalent.

Note that inequality (5.7) has a form of the classical Hardy inequality
(1.3). Now, let us compare inequalities (4.8) and (5.7). The left-hand
side of inequality (4.8) is not less than the corresponding side of (5.7),
while the right-hand side of (4.8) is not greater than the corresponding
side of (5.7). Thus, we can regard (4.8) as both a generalization and a
refinement of the classical Hardy inequality. The same argument will be
valid for the remaining results of the Hardy-type in Section 4.

Of course, in a similar way, we obtain the results that correspond to
Corollaries 4.2, 4.3 and 4.4.

Corollary 5.2. Let −∞ < a < b < ∞, let p, q, and λ be as in (1.1)
and (1.2), let A1 be real parameter such that A1 6= 1

p′ , and let H be the

operator defined by (2.3). Then, the inequalities

∫ b

a
y−λg(y)(Hf)(y) dy ≤ k

1
p′ (1− p′A1)k

1
q′ (0)

[∫ b

a
xA1pfp(x) dx

] 1
p

·

[∫ b

a
y−A1qgq(y) dy

] 1
q

(5.8)
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and [∫ b

a
y(A1−λ)q′(Hf)q

′
(y) dy

] 1
q′

≤ k
1
p′ (1− p′A1)k

1
q′ (0)

[∫ b

a
xA1pfp(x) dx

] 1
p

(5.9)

hold for all non-negative measurable functions f and g on 〈a, b〉, and are
equivalent.

Corollary 5.3. Suppose p, q, and λ are as in (1.1) and (1.2), 0 < a <
b < ∞, A2 is real parameter such that A2 6= 0, and H is the operator
defined by (2.3). Then, the inequalities∫ b

a
y−λg(y)(Hf)(y) dy ≤ k

1
p′ (0)k

1
q′ (q′A2)

[∫ b

a
x(1−A2)p−1fp(x) dx

] 1
p

·

[∫ b

a
y

(A2− 1
p′ )qgq(y) dy

] 1
q

(5.10)

and [∫ b

a
y−q

′A2−1(Hf)q
′
(y) dy

] 1
q′

≤ k
1
p′ (0)k

1
q′ (q′A2)

[∫ b

a
x(1−A2)p−1fp(x) dx

] 1
p

(5.11)

hold for all non-negative measurable functions f and g on 〈a, b〉, and are
equivalent.

Corollary 5.4. Let 0 < a < b < ∞. Further, suppose p, q, and λ are
as in (1.1) and (1.2) and H is the operator defined by (2.3). Then, the
inequalities∫ b

a
y−λg(y)(Hf)(y) dy

≤ kλ(0)

[∫ b

a
xp−1fp(x) dx

] 1
p
[∫ b

a
y
− q
p′ gq(y) dy

] 1
q

(5.12)
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and

(5.13)

[∫ b

a
y−1(Hf)q

′
(y) dy

] 1
q′

≤ kλ(0)

[∫ b

a
xp−1fp(x) dx

] 1
p

hold for all non-negative measurable functions f and g on 〈a, b〉, and are
equivalent.

Remark 5.5. It is easy to see that inequalities with the reversed in-
equality sign do not hold in Corollaries 5.1–5.4, since inequalities with
opposite inequality signs are combined. �

Finally, by using the established estimates, we can also obtain results
that correspond to Corollaries 4.5 and 4.7. Since a = 0 or b =∞, we do
not need to express the constant factors in terms of the function k.

Corollary 5.6. Let 0 < b <∞, let p, q, and λ be as in (1.1) and (1.2),
let A1, A2 be real parameters such that p′A1 < 1, q′A2 > 0, and let H
be the operator defined by (2.3). Then, the inequalities∫ b

0
y−λg(y)(Hf)(y) dy ≤ (1− p′A1)

− 1
p′

(q′A2)
1
q′

[∫ b

0
x(A1−A2)pfp(x) dx

] 1
p

·

[∫ b

0
y(A2−A1)qgq(y) dy

] 1
q

(5.14)

and [∫ b

0
y(A1−A2−λ)q′(Hf)q

′
(y) dy

] 1
q′

≤ (1− p′A1)
− 1
p′

(q′A2)
1
q′

[∫ b

0
x(A1−A2)pfp(x) dx

] 1
p

(5.15)

hold for all non-negative measurable functions f and g on 〈0, b〉, and are
equivalent.

Remark 5.7. If the parameters p and q satisfy conditions (2.13), then
the sign of inequality in (5.14) and (5.15) is reversed. �
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Corollary 5.8. Suppose p, q, and λ are as in (1.1) and (1.2), 0 < a <
∞, A1 and A2 are real parameters such that p′A1 < 1, q′A2 > 0, and H
is the operator defined by (2.3). Then, the inequalities

∫ ∞
a

y−λg(y)(Hf)(y) dy ≤ (1− p′A1)
− 1
p′

(q′A2)
1
q′

[∫ ∞
a

x(A1−A2)pfp(x) dx

] 1
p

·

[∫ ∞
a

y(A2−A1)qgq(y) dy

] 1
q

(5.16)

and

[∫ ∞
a

y(A1−A2−λ)q′(Hf)q
′
(y) dy

] 1
q′

≤ (1− p′A1)
− 1
p′

(q′A2)
1
q′

[∫ ∞
a

x(A1−A2)pfp(x) dx

] 1
p

(5.17)

hold for all non-negative measurable functions f and g on 〈a,∞〉, and
are equivalent.

Remark 5.9. If non-conjugate exponents p and q satisfy conditions
(2.14), then the sign of inequality in (5.16) and (5.17) is reversed. �

6. Uniform Bounds for Constant Factors

We investigate here some further estimates for the Hardy-type kernels.
First, recall that Corollary 5.1 was obtained from Corollary 4.1 by means
of the estimates (5.1) and (5.2). On the other hand, we may apply the
uniform upper bound 1 − tx ≤ 1, t ∈ 〈0, 1〉, x ≥ 0, to Corollary 4.1.
A corresponding result, under some stronger conditions, is contained in
the following corollary.

Corollary 6.1. Let 0 < a < b < ∞, let p, q, and λ be as in (1.1) and
(1.2), let A1, A2 be real parameters such that p′A1 < 1, q′A2 > 0, and
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let H be the operator defined by (2.3). Then, the inequalities∫ b

a
y−λg(y)(Hf)(y) dy ≤ (1− p′A1)

− 1
p′

(q′A2)
1
q′

[∫ b

a
x(A1−A2)pfp(x) dx

] 1
p

·

[∫ b

a
y(A2−A1)qgq(y) dy

] 1
q

(6.1)

and [∫ b

a
y(A1−A2−λ)q′(Hf)q

′
(y) dy

] 1
q′

≤ (1− p′A1)
− 1
p′

(q′A2)
1
q′

[∫ b

a
x(A1−A2)pfp(x) dx

] 1
p

(6.2)

hold for all non-negative measurable functions f and g on 〈a, b〉, and are
equivalent.

Remark 6.2. If we compare Corollaries 4.9, 5.6 and 5.8 with Corollary
6.1, we easily conclude that Corollary 6.1 holds also if a = 0 or b =∞.

�

The constant factor involved in the right-hand sides of the inequal-
ities (6.1) and (6.2) depends on the parameters A1 and A2, while the
integrals are dependent only on the parameter A = A1−A2. Hence, it is
interesting to consider that constant factor for a fixed value of A. Then,
A2 = A1 −A and the constant factor can be regarded as the function,

(6.3) C(A1) = (1− p′A1)
− 1
p′ (q′A1 − q′A)

− 1
q′ .

It is interesting to find an optimal value for the constant factor (6.3).
More precisely, depending on sign of inequality, we find maximal or
minimal values for that factor. Having Remark 2 in mind, we have to
consider three cases:

1. p, q > 1, λ ≥ 1.

In this case, we have A < 1
p′ and A1 ∈

〈
A, 1

p′

〉
, and so we have

to find

inf
A<x< 1

p′

C(x) = inf
A<x< 1

p′

(1− p′x)
− 1
p′ (q′x− q′A)

− 1
q′ .
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One easily obtains that C ′(x) = 0 if and only if

(6.4) x0 =
1 + q′A

p′ + q′
.

Further, since x0 ∈
〈
A, 1

p′

〉
and C ′′(x0) > 0, we conclude that

C(x) attains its minimal value on the interval
〈
A, 1

p′

〉
at the

point x0. Hence, a straightforward computation gives the form
of the minimal constant factor:

inf
A<x< 1

p′

C(x) = C(x0) =

(
p′λ

1− p′A

)λ
.

2. p < 0, q ∈ 〈0, 1〉, λ ≥ 1

It is easy to see that A1 ∈
〈
−∞,min

{
1
p′ , A

}〉
, and so we dis-

tinguish two cases, depending on the relationship between the
parameters A and 1

p′ .

If A < 1
p′ , then we conclude, by a similar reasoning as in the pre-

vious case, that the function C(x) attains its maximal value on
the interval 〈−∞, A〉, at the point x0 defined by (6.4). Finally,
since C(A) = 0, we have

sup
x≤A

C(x) = C(x0) =

(
p′λ

1− p′A

)λ
.

If A ≥ 1
p′ , then the stationary point (6.4) does not belong to

the interval
〈
−∞, 1

p′

〉
and C(x) is strictly increasing on that

interval. Further, since limx→ 1
p′−

C(x) = ∞, there is no upper

bound for the constant factor C(x) in that setting.
3. p ∈ 〈0, 1〉, q < 0, λ ≥ 1.

Here, we have to find the optimal value on the interval〈
max

{
1
p′ , A

}
,∞
〉

. Similarly, as above, we have to consider two
cases.
For A < 1

p′ , we easily obtain that the function C(x) attains its

maximal value on the the interval
〈

1
p′ ,∞

〉
at the point defined
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by (6.4). Moreover, since C
(

1
p′

)
= 0, we have

sup
x≥ 1

p′

C(x) = C(x0) =

(
p′λ

1− p′A

)λ
.

If A ≥ 1
p′ , then the stationary point (6.4) is not contained in

the interval 〈A,∞〉 and C(x) is strictly decreasing on that inter-
val. Since limx→A+C(x) = ∞, there is no upper bound for the
constant factor C(x) in that case.

According to the previous analysis, we have just proved the following
result.

Theorem 6.3. Let 0 < a < b < ∞, let p, q, and λ be as in (1.1) and
(1.2), let A be real parameter such that A < 1

p′ , and let H be the operator

defined by (2.3). Then, the inequalities∫ b

a
y−λg(y)(Hf)(y) dy ≤

(
p′λ

1− p′A

)λ [∫ b

a
xpAfp(x) dx

] 1
p

·

[∫ b

a
y−qAgq(y) dy

] 1
q

(6.5)

and

(6.6)

[∫ b

a
y(A−λ)q′(Hf)q

′
(y) dy

] 1
q′

≤
(

p′λ

1− p′A

)λ [∫ b

a
xpAfp(x) dx

] 1
p

hold for all non-negative measurable functions f and g on 〈a, b〉, and
are equivalent. Moreover, if a = 0 and p, q, λ are as in (2.13), then the
signs of inequality in both relations are reversed. Further, if b =∞ and
p, q, λ are as in (2.14), the the signs of inequality are reversed as well.

7. Applications

Finally,we consider some interesting special cases involving the op-
timal constant factor in the Hardy-type inequality established in the
previous section. Namely, we shall synthesize the methods developed
in sections 4, 5 and 6 for such cases. By means of the established esti-
mates, we obtain the whole series of interpolating inequalities which will
provide both generalizations and refinements of recent results, known in
the literature.
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We can gather the previous discussion in the following two series of
inequalities:∫ b

a
y−λg(y)(Hf)(y) dy

≤
(

p′λ

1− p′A

)λ
∫ b

a
xpA

[
1−

(x
b

) 1−p′A
λp′

] p
q′

fp(x) dx


1
p

·


∫ b

a
y−qA

1−
(
a

y

) 1−p′A
λp′


q
p′

gq(y) dy


1
q

≤
(

p′λ

1− p′A

)λ [
1−

(a
b

) 1−p′A
λp′

]λ
·

[∫ b

a
xpAfp(x) dx

] 1
p
[∫ b

a
y−qAgq(y) dy

] 1
q

≤
(

p′λ

1− p′A

)λ [∫ b

a
xpAfp(x) dx

] 1
p
[∫ b

a
y−qAgq(y) dy

] 1
q

(7.1)

and [∫ b

a
y(A−λ)q′(Hf)q

′
(y) dy

] 1
q′

≤
(

p′λ

1− p′A

)λ [
1−

(a
b

) 1−p′A
λp′

] 1
p′

·


∫ b

a
xpA

[
1−

(x
b

) 1−p′A
λp′

] p
q′

fp(x) dx


1
p

≤
(

p′λ

1− p′A

)λ [
1−

(a
b

) 1−p′A
λp′

]λ [∫ b

a
xpAfp(x) dx

] 1
p

≤
(

p′λ

1− p′A

)λ [∫ b

a
xpAfp(x) dx

] 1
p

,(7.2)
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which hold under assumptions of Theorem 6.3. Of course, these set
of inequalities are equivalent and reversed signs of inequalities hold as
described in Theorem 6.3. For A = 0, the above set of inequalities (7.1)
and (7.2) reduce, respectively, to:∫ b

a
y−λg(y)(Hf)(y) dy

≤
(
p′λ
)λ{∫ b

a

[
1−

(x
b

) 1
λp′
] p
q′

fp(x) dx

} 1
p

·


∫ b

a

[
1−

(
a

y

) 1
λp′
] q
p′

gq(y) dy


1
q

≤
(
p′λ
)λ [

1−
(a
b

) 1
λp′
]λ
‖f‖Lp‖g‖Lq ≤

(
p′λ
)λ ‖f‖Lp‖g‖Lq(7.3)

and [∫ b

a
y−λq

′
(Hf)q

′
(y) dy

] 1
q′

≤
(
p′λ
)λ [

1−
(a
b

) 1
λp′
] 1
p′
{∫ b

a

[
1−

(x
b

) 1
λp′
] p
q′

fp(x) dx

} 1
p

≤
(
p′λ
)λ [

1−
(a
b

) 1
λp′
]λ
‖f‖Lp ≤

(
p′λ
)λ ‖f‖Lp .(7.4)

Remark 7.1. We can easily show that inequalities (7.3) and (7.4), with
A = 0, are equivalent to inequalities (7.1) and (7.2), with condition
A < 1

p′ . Namely, if we put

a1−p′A, b1−p
′A, x

1
1−p′A−1

f
(
x

1
1−p′A

)
, y

(1−λ) p′A
1−p′A g

(
y

1
1−p′A

)
in (7.3), respectively instead of a, b, f(x), g(y), and then apply the vari-
able substitution theorem, the set of inequalities (7.3) become (7.1). So,
the case with condition A < 1

p′ is equivalent to the case with condition

A = 0. Thus, it is enough to observe the cases with A = 0, since all
others follow by suitable substitutions. �
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Finally, to conclude our work, we compare the results obtained here
with some recent results in the literature and observe the corresponding
generalizations and refinements.

Remark 7.2. If we substitute a = 0 and b = ∞ in (7.4) and isolate
outer expressions, then we obtain the inequality[∫ ∞

0
y−λq

′
(Hf)q

′
(y) dy

] 1
q′

≤
(
p′λ
)λ ‖f‖Lp ,

which coincide with Opic’s estimate (see [10]). Clearly, for λ = 1, we
obtain the Hardy inequality (1.3) in the original form. That inequality
can also be found, however, in the conjugate case, in Kufner’s work [9].
So, our results may be regarded as both generalizations and refinements
of the mentioned results. �

Remark 7.3. Clearly, if A = λ− k
q′ , k > 1, then A < λ− 1

q′ = 1
p′ , and

so by setting A = λ − k
q′ in inequalities (7.1) and (7.2), the optimum

constant factor established in Theorem 6.3 takes the form:

(7.5) C =

(
λq′

k − 1

)λ
.

In this setting, we see that inequalities (7.1) and (7.2) provide an exten-
sion to non-conjugate case of the corresponding results in [7] (see [7],
Remark 3,4). Further, relation (7.2) can be seen as both a refinement
and an extension of the results from the [2] and [3]. Namely, in the
conjugate case, that is, when p = q′ and λ = 1, with C defined by (7.5),
from relation (7.2) we obtain related results from the mentioned works
(for example, see [2], Theorem 2, [3], relation (13) and also relation (1.5)
from the Introduction). �
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