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SECOND SYMMETRIC POWERS OF CHAIN

COMPLEXES

A. J. FRANKILD, S. SATHER-WAGSTAFF∗ AND A. TAYLOR

Communicated by Jürgen Herzog

Abstract. We investigate Buchbaum and Eisenbud’s construction
of the second symmetric power S2

R(X) of a chain complex X of
modules over a commutative ring R. We state and prove a num-
ber of results from the folklore of the subject for which we know
of no good direct references. We also provide several explicit com-
putations and examples. We use this construction to prove the
following version of a result of Avramov, Buchweitz, and Şega: let
R→ S be a module-finite ring homomorphism such that R is noe-
therian and local, and such that 2 is a unit in R. Let X be a
complex of finite rank free S-modules such that Xn = 0 for each
n < 0. If ∪n AssR(Hn(X ⊗S X)) ⊆ Ass(R) and if Xp ' Sp for each
p ∈ Ass(R), then X ' S.

1. Introduction

Multilinear constructions like tensor products and symmetric powers
are important tools for studying modules over commutative rings. In
recent years, these notions have been extended to the realm of chain
complexes of R-modules. (Consult Section 2 for background information
on complexes.) For instance, Buchsbaum and Eisenbud’s description [5]
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of the minimal free resolutions of Gorenstein ideals of grade 3 uses the
second symmetric power of a certain free resolution.

Here, we investigate Buchsbaum and Eisenbud’s second symmetric
power functor: for a chain complex X of modules over a commutative
ring R, we set S2

R(X) = (X ⊗R X)/(Y + Z), where Y is the graded

submodule generated by all elements of the form x⊗x′− (−1)|x||x
′|x′⊗x

and Z is the graded submodule generated by all elements of the form
x⊗ x with x having an odd degree.1

Our main result is the following version of a result of Avramov, et al.
[2, (2.2)] for complexes. It is motivated by our work in [10] extending
the results of [2]. Note that S2

R(X) does not appear in the statement of
Theorem below; however, it is the key tool for the proof given in 4.7.

Theorem A. Let R → S be a module-finite ring homomorphism such
that R is noetherian and local, and such that 2 is a unit in R. Let X
be a complex of finite rank free S-modules such that Xn = 0 for each
n < 0. If ∪n AssR(Hn(X ⊗S X)) ⊆ Ass(R) and if Xp ' Sp for each
p ∈ Ass(R), then X ' S.

Most of our work is devoted to statements and proofs of results from
the folklore in this subject. Section 3 contains basic properties of S2

R(X),
most of which are motivated by the behavior of tensor products of com-
plexes and the properties of symmetric powers of modules. This section
ends with an explicit description of the modules occuring in S2

R(X); see
Theorem 3.9. Section 4 examines the homological properties of S2

R(X),
and includes the proof of Thoerem A. We conclude with Section 5, which
is devoted to explicit computations.

This work was completed after the untimely passing of Anders J.
Frankild on 10 June 2007.

2. Complexes

Throughout this paper, R and S are commutative rings with identity.
The term “module” is short for “unital module”.

1Note that the definition of S2
R(X) given in [5] does not yield the complex described

in [5, p. 452], unless 2 is a unit in R. The corrected definition can be found, for
instance, in [4, (3.4.3)].
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This section consists of definitions, notation and background informa-
tion for use in the remainder of the paper.

Definition 2.1. An R-complex is a sequence of R-module homomor-
phisms

X = · · ·
∂Xn+1−−−→ Xn

∂Xn−−→ Xn−1

∂Xn−1−−−→ · · ·

such that ∂Xn−1∂
X
n = 0 for each integer n. A complex X is degreewise-

finite if each Xn is finitely generated; it is bounded-below if Xn = 0 for
n� 0.

The nth homology module of X is Hn(X) := Ker(∂Xn )/ Im(∂Xn+1). The
infimum of X is inf(X) := inf{i ∈ Z | Hn(X) 6= 0}, and the large support
of X is

SuppR(X) = {p ∈ Spec(R) | Xp 6' 0} = ∪n SuppR(Hn(X)).

For each x ∈ Xn, we set |x| := n. An R-complex X is homologically
degreewise-finite if Hn(X) is finitely generated for each n; it is homolog-
ically finite if the R-module ⊕n∈Z Hn(X) is finitely generated.

For each integer i, the ith suspension (or shift) of X, denoted by

ΣiX, is the complex with (ΣiX)n = Xn−i and ∂Σ
iX

n = (−1)i∂Xn−i. The

notation ΣX is short for Σ1X.

Definition 2.2. Let X and Y be R-complexes. A morphism from X to
Y is a sequence of R-module homomorphisms {fn : Xn → Yn} such that
fn−1∂

X
n = ∂Yn fn, for each n. A morphism of complexes α : X → Y in-

duces homomorphisms on homology modules Hn(α) : Hn(X)→ Hn(Y ),
and α is a quasiisomorphism when each Hn(α) is bijective. Quasiiso-
morphisms are designated by the symbol “'”.

Definition 2.3. Let X,Y be R-complexes. Two morphisms f, g : X →
Y are homotopic if there exists a sequence of homomorphisms s =
{sn : Xn → Yn+1} such that fn = gn + ∂Yn+1sn + sn−1∂

X
n , for each n;

here, we say that s is a homotopy from f to g. The morphism f is
a homotopy equivalence if there is a morphism h : Y → X such that
the compositions fh and hf are homotopic to the respective identity
morphisms idY and idX , and then f and h are homotopy inverses.



42 Frankild, Sather-Wagstaff and Taylor

Definition 2.4. Given two bounded-below complexes P and Q of pro-
jective R-modules, we write P ' Q, when there is a quasiisomorphism

P
'−→ Q.

Fact 2.5. The relation ' from Definition 2.4 is an equivalence relation;
see [3, (2.8.8.2.2’)] or [8, (6.6.ii)] or [9, (6.21)].

Let P and Q be bounded-below complexes of projective R-modules.

Then, any quasiisomorphism P
'−→ Q is a homotopy equivalence; see [3,

(1.8.5.3)] or [8, (6.4.iii)]. Conversely, it is straightforward to show that
any homotopy equivalence between R-complexes is a quasiisomorphism.

Definition 2.6. Let X be a homologically bounded-below R-complex.

A projective (or free) resolution of X is a quasiisomorphism P
'−→ X

such that each Pn is projective (or free) and P is bounded-below; the

resolution P
'−→ X is degreewise-finite if P is degreewise-finite. We

say that X has finite projective dimension when it admits a projective

resolution P
'−→ X such that Pn = 0 for n� 0.

Fact 2.7. Let X be a homologically bounded-below R-complex. Then,

X has a free resolution P
'−→ X such that Pn = 0, for all n < inf(X);

see [3, (2.11.3.4)] or [8, (6.6.i)] or [9, (2.6.P)]. It follows that Pinf(X) 6= 0.

If P
'−→ X and Q

'−→ X are projective resolutions of X, then there is

a homotopy equivalence P
'−→ Q; see [8, (6.6.ii)] or [9, (6.21)]. If R

is noetherian and X is homologically degreewise-finite, then P may be
chosen degreewise-finite; see [3, (2.11.3.3)] or [9, (2.6.L)].

Definition 2.8. Let X be an R-complex that is homologically both
bounded-below and degreewise-finite. Assume that R is noetherian and

local with maximal ideal m. A projective resolution P
'−→ X is minimal

if the complex P is minimal, that is, if Im(∂Pn ) ⊆ mPn−1, for each n.

Fact 2.9. Let X be an R-complex that is homologically both bounded-
below and degreewise-finite. Assume that R is noetherian and local with

maximal ideal m. Then, X has a minimal free resolution P
'−→ X such

that Pn = 0, for all n < inf(X); see [1, Prop. 2] or [3, (2.12.5.2.1)]. Let

P
'−→ X and Q

'−→ X be projective resolutions of X. If P is minimal,
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then there is a bounded-below exact complex P ′ of projective R-modules
such that Q ∼= P ⊕ P ′; see [3, (2.12.5.2.3)]. It follows that X has finite
projective dimension if and only if every minimal projective resolution
of X is bounded. It also follows that if P and Q are both minimal, then
P ∼= Q; see [3, (2.12.5.2.2)].

Definition 2.10. LetX and Y be R-complexes. The R-complexX⊗RY
is given by

(X ⊗R Y )n =
⊕

pXp ⊗R Yn−p
with nth differential ∂X⊗RY

n given on generators by

x⊗ y 7→ ∂X|x|(x)⊗ y + (−1)|x|x⊗ ∂Y|y|(y).

Fix two more R-complexes X ′, Y ′ and morphisms f : X → X ′ and
g : Y → Y ′. Define the tensor product f ⊗R g : X ⊗R Y → X ′ ⊗R Y ′ on
generators as

x⊗ y 7→ f|x|(x)⊗ g|y|(y).

One checks readily that f ⊗R g is a morphism.

Fact 2.11. Let P and Q be bounded-below complexes of projective R-

modules. If f : X
'−→ Y is a quasiisomorphism, then so are the induced

morphisms f⊗RQ : X⊗RQ→ Y ⊗RQ and P ⊗R f : P ⊗RX → P ⊗RY ;

see [3, (1.10.4.2.2’)] or [8, (6.10)] or [9, (7.8)]. In particular, if g : P
'−→ Q

is a quasiisomorphism, then so is g⊗g : P⊗RP → Q⊗RQ; see [8, (6.10)].
This can be used to show the following facts from [9, (7.28)]:

inf(P ⊗R Q) > inf(P ) + inf(Q)

HR
inf(P )+inf(Q)(P ⊗R Q) ∼= Hinf(P )(P )⊗R Hinf(Q)(Q).

Assume that R is noetherian and that P and Q are homologically
degreewise-finite. One can use degreewise-finite projective resolutions
of P and Q in order to show that each R-module Hn(P ⊗RQ) is finitely
generated; see [9, (7.31)]. In particular, if R is local, then Nakayama’s
Lemma conspires with the previous display to imply that inf(P ⊗RQ) =
inf(P ) + inf(Q); see [9, (7.28)].

The following technical lemma about power series is used in the proofs
of Theorem 4.8 and Corollary 4.10.
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Lemma 2.12. Let Q(t) =
∑∞

i=0 rit
i be a power series with nonnegative

integer coefficients, and assume r0 > 0. If either Q(t)2 + Q(−t2) or
Q(t)2 − Q(−t2) is a non-negative integer, then ri = 0, for all i > 0.
Furthermore,

(a) Q(t)2 +Q(−t2) 6= 0;
(b) if Q(t)2 −Q(−t2) = 0, then Q(t) = 1;
(c) if Q(t)2 +Q(−t2) = 2, then Q(t) = 1; and
(d) if Q(t)2 −Q(−t2) = 2, then Q(t) = 2.

Proof. We begin by showing that rn = 0, for each n > 1, by induction
on n. The coefficients of Q(−t2) in odd degree are all 0. Hence, the
degree 1 coefficient of Q(t)2 ±Q(−t2) is

0 = r1r0 + r0r1 = 2r1r0.

It follows that r1 = 0, since r0 > 0. Inductively, assume that n > 1 and
that ri = 0, for each i = 1, . . . , n. Since the degree n + 1 coefficient of
QRX(−t2) is either ±rn+1

2
(when n+ 1 is even) or 0 (when n+ 1 is odd),

the induction hypothesis implies that this coefficient is 0. The degree
n+ 1 coefficient of Q(t)2 ±Q(−t2) is

0 = rn+1r0 + rnr1 + · · ·+ r1rn︸ ︷︷ ︸
=0

+r0rn+1 = 2rn+1r0

and so rn+1 = 0.
The previous paragraph shows that Q(t) = r0, so Q(t)2 ± Q(−t2) =

r2
0 ∓ r0. The conclusions (a)–(d) follow readily, using the assumption
r0 > 0. �

3. Definition and Basic Properties of S2
R(X)

We begin this section with the definition of the second symmetric
power of a complex. It is constructed based on the definition for modules.

Definition 3.1. Let X be an R-complex and let αX : X⊗RX → X⊗RX
be the morphism described on generators by the formula

x⊗ x′ 7→ x⊗ x′ − (−1)|x||x
′|x′ ⊗ x.

The weak second symmetric power of X is s2
R(X) := Coker(αX). The

second symmetric power of X is S2
R(X) := s2

R(X)/ 〈x⊗ x | |x| is odd〉.
For each i ∈ Z, let ωXi : s2

R(X)i → S2
R(X)i be the natural surjection.
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Remark 3.2. Let X be an R-complex. Since s2
R(X) is defined as a

cokernel of a morphism, it is an R-complex. Also, for each n ∈ Z and
x ∈ X2n+1, one has

∂X⊗RX
4n+2 (x⊗ x) = αX4n+1(∂X2n+1(x)⊗ x).

It follows that S2
R(X) is an R-complex, and that the sequence {ωXi }

describes a morphism ωX : s2
R(X)→ S2

R(X).

Here are computations for later use. Section 5 contains more involved
examples.

Example 3.3. If M is an R-module, then computing S2
R(M) and s2

R(M)
as complexes (considering M as a complex concentrated in degree 0) and
computing S2

R(M) as a module give the same result. In particular, we
have S2

R(0) = 0 = s2
R(0) and S2

R(R) ∼= R ∼= s2
R(R).

Example 3.4. For 0 6= x, y ∈ ΣR, we have αΣR(x⊗ y) = x⊗ y+ y⊗x.

Hence, the natural tensor-cancellation isomorphism R⊗RR
∼=−→ R yields

the vertical isomorphisms in the following commutative diagram:

(ΣR)⊗R (ΣR)
αΣR

//

∼= β
��

(ΣR)⊗R (ΣR)

∼= β
��

pΣR

// s2
R(ΣR)

∼= β
��

Σ2R
(2) // Σ2R // Σ2R/(2)

It follows that s2
R(ΣR) ∼= Σ2R/(2).

By definition, the kernel of the natural map ωX : s2
R(X) → S2

R(X) is

generated by 1⊗ 1 ∈ s2
R(ΣR)2. Since we have β2

(
1⊗ 1

)
= 1, it follows

that S2
R(ΣR) = 0.

More generally, for each integer n we have s2
R(Σ2n+1R) ∼= Σ4n+2R/(2)

and S2
R(Σ2n+1R) = 0. In particular, if 2R 6= 0, then

s2
R(Σ2n+1R) ∼= Σ4n+2R/(2) 6' Σ4n+2R ∼= Σ4n+2s2

R(R).

Contrast this with the behavior of s2
R(Σ2nX) and S2

R(Σ2nX) documented
in (3.5.2).

The following properties are straightforward to verify and will be used
frequently in the sequel.
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Properties 3.5. Let X be an R-complex.

3.5.1. If 2 is a unit in R, then the natural morphism ωX : s2
R(X) →

S2
R(X) is an isomorphism, and the morphism 1

2α
X is idempotent.

3.5.2. For each integer n, there is a commutative diagram

(Σ2nX)⊗R (Σ2nX)
αΣ2nX

//

∼= β
��

(Σ2nX)⊗R (Σ2nX)

∼= β
��

Σ4n(X ⊗R X)
Σ4nαX

// Σ4n(X ⊗R X)

with β(x⊗ y) = x⊗ y. The resulting isomorphism of cokernels yields an
isomorphism

β : s2
R(Σ2nX)

∼=−→ Σ4ns2
R(X)

given by β (x⊗ y) = x⊗ y. In particular, the equality β (x⊗ x) = x⊗ x
implies that β induces an isomorphism

S2
R(Σ2nX) ∼= Σ4nS2

R(X).

3.5.3. There is an exact sequence

0→ Ker(αX)
jX−−→ X ⊗R X

αX

−−→ X ⊗R X
pX−−→ s2

R(X)→ 0,

where, jX and pX are the natural injection and surjection, respectively.

3.5.4. A morphism of complexes f : X → Y yields a commutative dia-
gram of morphisms

X ⊗R X
αX
//

f⊗Rf
��

X ⊗R X

f⊗Rf
��

Y ⊗R Y
αY
// Y ⊗R Y.

Hence, the morphism f ⊗R f induces a well-defined morphism on coker-
nels s2

R(f) : s2
R(X)→ s2

R(Y ), given by s2
R(f) (x⊗ y) = f(x)⊗ f(y). The

equality s2
R(f) (x⊗ x) = f(x)⊗ f(x) shows that s2

R(f) induces a well-
defined morphism S2

R(f) : S2
R(X) → S2

R(Y ), given by S2
R(f) (x⊗ y) =

f(x)⊗ f(y). From the definition, one sees that the operators s2
R(−) and
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S2
R(−) are functorial, but Example 5.7 shows that they are not additive,

as one might expect.

The next two results show that the functors s2
R(−) and S2

R(−) interact
well with basic constructions.

Proposition 3.6. Let X be an R-complex.

(a) Given a ring homomorphism ϕ : R → S, there are isomorphisms
of S-complexes s2

S(S ⊗R X) ∼= S ⊗R s2
R(X) and S2

S(S ⊗R X) ∼=
S ⊗R S2

R(X).
(b) If p ⊂ R is a prime ideal, then there are isomorphisms of Rp-

complexes s2
Rp

(Xp) ∼= s2
R(X)p and S2

Rp
(Xp) ∼= S2

R(X)p.

Proof. (a) The vertical isomorphisms in the following commutative dia-
gram are given by β((s⊗ x)⊗ (t⊗ y)) = (st)⊗ (x⊗ y):

(S ⊗R X)⊗S (S ⊗R X)
αS⊗RX

//

∼= β

��

(S ⊗R X)⊗S (S ⊗R X)

∼= β

��
S ⊗R (X ⊗R X)

S⊗Rα
X

// S ⊗R (X ⊗R X).

This diagram yields the first isomorphism in the next sequence. The
second isomorphism is due to the right-exactness of S ⊗R −, and the
equalities are by definition,

s2
S(S ⊗R X) = Coker(αS⊗RX) ∼= Coker(S ⊗R αX)

∼= S ⊗R Coker(αX) = S ⊗R s2
R(X).

By definition, the induced isomorphism β : s2
S(S ⊗R X)

∼=−→ S ⊗R s2
R(X)

is given by β
(

(s⊗ x)⊗ (t⊗ y)
)

= (st)⊗ (x⊗ y).

Let Y ⊆ s2
S(S ⊗R X) be the S-submodule generated by elements of

the form u⊗ u such that u ∈ S ⊗R X has an odd degree. That is,
Y = Ker(ωS⊗X) where ωS⊗X : s2

S(S⊗RX)→ S2
S(S⊗RX) is the natural

surjection. It is straightforward to show that Y is generated over S by
all elements of the form (1⊗ x)⊗ (1⊗ x).

Let Z ⊂ s2
R(X) be the R-submodule generated by elements of the form

x⊗ x with x ∈ X of odd degree. That is, we have an exact sequence of
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R-morphisms

0→ Z → s2
R(X)

ωX

−−→ S2
R(X)→ 0.

Tensoring with S yields the next exact sequence of S-morphisms:

S ⊗R Z → S ⊗R s2
R(X)

S⊗Rω
X

−−−−−→ S ⊗R S2
R(X)→ 0

and it follows that Ker(S ⊗R ωX) is generated over S by all elements

of the form 1⊗ (x⊗ x) with x ∈ X of odd degree. Thus, the equal-

ity β
(

(1⊗ x)⊗ (1⊗ x)
)

= 1⊗ (x⊗ x) shows that β induces an S-

isomorphism S2
S(S ⊗R X) ∼= S ⊗R S2

R(X).
(b) This follows from part (a) using the natural map R→ Rp. �

Proposition 3.7. If X and Y are R-complexes, then there are isomor-
phisms

(3.7.1) s2
R(X ⊕ Y ) ∼= s2

R(X)⊕ (X ⊗R Y )⊕ s2
R(Y )

(3.7.2) S2
R(X ⊕ Y ) ∼= S2

R(X)⊕ (X ⊗R Y )⊕ S2
R(Y ).

Proof. (3.7.1) Tensor-distribution yields the horizontal isomorphisms in
the following commutative diagram:

(X ⊕ Y )⊗ (X ⊕ Y )

αX⊕Y

��

∼= // (X ⊗X)⊕ (X ⊗ Y )⊕ (Y ⊗X)⊕ (Y ⊗ Y )

αX 0 0 0
0 idX⊗Y −θY X 0
0 −θXY idY⊗X 0

0 0 0 αY


��

(X ⊕ Y )⊗ (X ⊕ Y )
∼= // (X ⊗X)⊕ (X ⊗ Y )⊕ (Y ⊗X)⊕ (Y ⊗ Y ),

where, θUV : U ⊗R V → V ⊗R U is the tensor-commutativity isomor-
phism given by u ⊗ v 7→ (−1)|u||v|v ⊗ u. This diagram yields the first
isomorphism in the following sequence, while the first equality is by
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definition,

s2
R(X ⊕ Y ) = Coker(αX⊕Y )

∼= Coker

 αX 0 0 0
0 idX⊗RY −θY X 0

0 −θXY idY⊗RX 0

0 0 0 αY


∼= Coker(αX)⊕ Coker

(
idX⊗RY −θY X

−θXY idY⊗RX

)
⊕ Coker(αY )

∼= s2
R(X)⊕ (X ⊗R Y )⊕ s2

R(Y ).

The second isomorphism is by elementary linear algebra. For the third
isomorphism, using the definition of s2

R(−), we need to prove Coker(β) ∼=
X ⊗R Y , where,

β =
(

idX⊗RY −θY X

−θXY idY⊗RX

)
: (X⊗R Y )⊕ (Y ⊗RX)→ (X⊗R Y )⊕ (Y ⊗RX).

We set

γ = (idX⊗RY θY X , ) : (X ⊗R Y )⊕ (Y ⊗R X)→ X ⊗R Y,

which is a surjective morphism such that Im(β) ⊆ Ker(γ). Thus, there
is a well-defined surjective morphism γ : Coker(β)→ X ⊗R Y , given by(

x⊗y
y′⊗x′

)
7→ x⊗ y + (−1)|x

′||y′|x′ ⊗ y′.

It remains to show that γ is injective. To this end, define δ : X ⊗R Y →
Coker(β) by the formula x ⊗ y 7→

(
x⊗y

0

)
. It is straightforward to show

that δ is a well-defined morphism and that δγ = idCoker(β). It follows
that γ is injective, hence an isomorphism, as desired.

(3.7.2) The isomorphism β : s2
R(X⊕Y )

∼=−→ s2
R(X)⊕ (X⊗RY )⊕ s2

R(Y )
from part (3.7.1) is given by the formula

β
(

(x, y)⊗ (x′, y′)
)

=
(
x⊗ x′, x⊗ y′ + (−1)|x

′||y|x′ ⊗ y, y ⊗ y′
)
.

Thus, for an element (x, y) ∈ X ⊕ Y of odd order |x| = |(x, y)| = |y|, we
have

β
(

(x, y)⊗ (x, y)
)

=
(
x⊗ x, x⊗ y + (−1)|x||y|x⊗ y, y ⊗ y

)
= (x⊗ x, x⊗ y − x⊗ y, y ⊗ y)

= (x⊗ x, 0, y ⊗ y) .
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It follows that

S2
R(X ⊕ Y ) ∼=

s2
R(X)⊕ (X ⊗R Y )⊕ s2

R(Y )

〈(x⊗ x, 0, y ⊗ y)|x ∈ X and y ∈ Y have odd degree〉

∼=
s2
R(X)

〈x⊗ x|x ∈ X odd degree〉
⊕ (X ⊗R Y )

0

⊕
s2
R(Y )

〈y ⊗ y| y ∈ Y odd degree〉
∼= S2

R(X)⊕ (X ⊗R Y )⊕ S2
R(Y ),

as desired. �

Example 3.4 shows why we need to assume that 2 is a unit in R in
the next result.

Proposition 3.8. Assume that 2 is a unit in R, and let X be an R-
complex.

(a) The following exact sequences are split exact:

0→ Ker(αX)
jX−−→ X ⊗R X

qX−−→ Im(αX)→ 0

0→ Im(αX)
iX−→ X ⊗R X

pX−−→ S2
R(X)→ 0,

where, iX and jX are the natural inclusions, pX is the natural
surjection, and qX is induced by αX . The splitting on the right
of the first sequence is given by 1

2 i
X , and the splitting on the left

of the second sequence is given by 1
2q
X . In particular, there are

isomorphisms

Im(αX)⊕Ker(αX) ∼= X ⊗R X ∼= Im(αX)⊕ S2
R(X).

(b) If X is a bounded-below complex of projective R-modules, then so
are the complexes Im(αX), Ker(αX) and S2

R(X).

Proof. (a) The given exact sequences come from Properties (3.5.1) and
(3.5.3). The fact that 1

2α
X is idempotent tells us that iX is a split

injection with splitting given by 1
2q
X and qX is a split surjection with

splitting given by 1
2 i
X . The desired isomorphisms follow immediately

from the splitting of the sequences.
(b) With the isomorphisms from part (a), the fact that X ⊗R X is a

bounded-below complex of projective R-modules implies that Im(αX),
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Ker(αX) and S2
R(X) are also bounded-below complexes of projective

R-modules. �

The next two results explicitly describe the modules in s2
R(X) and

S2
R(X). Note that the difference between parts (a)–(b) and part (c)

shows that the behavior documented in Example 3.4 is, in a sense, the
norm, not the exception.

Theorem 3.9. Let X be a complex of R-modules. Fix an integer n and
set h = n/2 and V =

⊕
m<h(Xm ⊗Xn−m).

(a) If n is odd, then s2
R(X)n ∼= V .

(b) If n ≡ 0 (mod 4), then s2
R(X)n ∼= V

⊕
S2
R(Xh).

(c) Assume that n ≡ 2 (mod 4).
(c1) There is an isomorphism

s2
R(X)n ∼= V

⊕ Xh ⊗R Xh

〈x⊗ x′ + x′ ⊗ x | x, x′ ∈ Xh〉
and there is a surjection τ : s2

R(X)n → V ⊕ ∧2(Xh) with
Ker(τ) generated by {x⊗ x ∈ s2

R(X)n | x ∈ Xh}.
(c2) If Xh is projective, then s2

R(X)n ∼= V
⊕
∧2(Xh)

⊕
K, for

some R-module K that is a homomorphic image of Xh/2Xh.
(c3) If Xh is projective and 2 is a unit in R, then s2

R(X)n ∼=
V
⊕
∧2(Xh).

Proof. (a) Assume that n is odd. Let γ : (X ⊗X)n → V ⊕ V be given
on generators by the formula

γ(x⊗ x′) =

{
(x⊗ x′, 0), if |x| < h

(0, x′ ⊗ x), if |x| > h.

Since n is odd, this is a well-defined isomorphism. Let g : V ⊕V → V ⊕V
be given by g(v, v′) = (v−v′, v′−v). This yields a commutative diagram

(3.9.1) (X ⊗R X)n
αX
n //

∼= γ

��

(X ⊗R X)n

∼= γ

��
V ⊕ V

g // V ⊕ V.
Note that the commutativity depends on the fact that n is odd, because
it implies that |x||x′| is even for each x⊗ x′ ∈ (X ⊗R X)n.
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The map f : V ⊕ V → V given by f(v, v′) = v + v′ is a surjective
homomorphism with Ker(f) = 〈(v, 0) − (0, v) | v ∈ V 〉 = Im(g). This
explains the last isomorphism in the next sequence:

s2
R(X)n = Coker(αXn ) ∼= Coker(g) ∼= V.

The other isomorphism follows from diagram (3.9.1).
(b)–(c) When n is even, we have a similar commutative diagram:

(3.9.2) (X ⊗R X)n
αX
n //

∼= γ′

��

(X ⊗R X)n

∼= γ′

��
V ⊕ V ⊕ (Xh ⊗Xh)

g′ // V ⊕ V ⊕ (Xh ⊗Xh),

where, γ′ and g′ are given by

γ′(x⊗ x′) =


(x⊗ x′, 0, 0) if |x| < h

(0, x′ ⊗ x, 0) if |x| > h

(0, 0, x⊗ x′) if |x| = h.

g′(v, v′, x⊗ x′) = (v − v′, v′ − v, x⊗ x′ − (−1)h
2
x′ ⊗ x)

= (v − v′, v′ − v, x⊗ x′ − (−1)hx′ ⊗ x).

In other words, we have g′ = g ⊕ α̃, where, α̃ : Xh ⊗R Xh → Xh ⊗R Xh

is given by

α̃(x⊗ x′) := x⊗ x′ − (−1)hx′ ⊗ x.
The following sequence of isomorphisms follows directly:

s2
R(X)n = Coker(αXn ) ∼= Coker(g′)

∼= Coker(g)⊕ Coker(α̃) ∼= V ⊕ Coker(α̃).

If n ≡ 0 (mod 4), then h is even, and so we have

Coker(α̃) ∼=
Xh ⊗R Xh

〈x⊗ x′ − x′ ⊗ x | x, x′ ∈ Xh〉
∼= S2

R(Xh).

For the remainder of the proof, we assume that n ≡ 2 (mod 4), that is,
that h is odd. In this case, we have

(3.9.3) Coker(α̃) ∼=
Xh ⊗R Xh

〈x⊗ x′ + x′ ⊗ x | x, x′ ∈ Xh〉
.

It is straightforward to show that

〈x⊗ x′ + x′ ⊗ x | x, x′ ∈ Xh〉 ⊆ 〈x⊗ x | x ∈ Xh〉.
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Hence, there is an epimorphism

τ1 : Coker(α̃)→ Xh ⊗R Xh

〈x⊗ x | x ∈ Xh〉
∼= ∧2(Xh)

such that

(3.9.4) Ker(τ1) = 〈x⊗ x ∈ Coker(α̃) | x ∈ Xh〉
∼= 〈x⊗ x ∈ s2

R(X)n | x ∈ Xh〉.

The conclusions of part (c1) follow from setting τ = idV ⊕τ1.
For the rest of the proof, we assume that Xh is projective. It follows

that ∧2(Xh) is also projective, and hence the surjection τ1 splits. Setting
K = Ker(τ1), we have s2

R(X)n ∼= V
⊕
∧2(Xh)⊕K. Using (3.9.3) and (3),

we see that the map π : Xh → Ker(τ1), given by x 7→ x⊗ x, is surjective
with 2Xh ⊆ Ker(π). It follows that K is a homomorphic image of
Xh/2Xh, which establishes part (c2). Finally, part (c3) follows directly
from (c2): if 2 is a unit in R, then Xh/2Xh = 0. �

Theorem 3.10. Let X be a complex of R-modules. Fix an integer n
and set h = n/2 and V =

⊕
m<h(Xm ⊗Xn−m).

(a) If n is odd, then S2
R(X)n ∼= V .

(b) If n ≡ 0 (mod 4), then S2
R(X)n ∼= V

⊕
S2
R(Xh).

(c) If n ≡ 2 (mod 4), then S2
R(X)n ∼= V

⊕
∧2(Xh).

Proof. Set Y =
〈
x⊗ x ∈ s2

R(X)
∣∣x ∈ X odd degree

〉
⊆ s2

R(X).

(a)–(b) If n is odd or n ≡ 0 (mod 4), then Yn = 0; hence, S2
R(X)n ∼=

s2
R(X)n, and the desired conclusions follow from Theorem 3.9(a)–(b).

(c) Assume that n ≡ 2 (mod 4). The epimorphism τ : s2
R(X)n → V ⊕

∧2(Xh) from Theorem 3.9(c1) has Ker(τ) = 〈x⊗ x ∈ s2
R(X)n | x ∈ Xh〉;

that is, Ker(τ) = Yn, and so we have

V
⊕
∧2(Xh) ∼= s2

R(X)n/Yn ∼= S2
R(X)n,

as desired. �

We state the next result for S2
R(X) only, because Theorem 3.9 shows

that it is only reasonable to consider such formulas for s2
R(X), when 2 is a

unit; in this case, the formulas are the same because of the isomorphism
s2
R(X) ∼= S2

R(X).
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Corollary 3.11. Let X be a bounded-below complex of finite rank free R-
modules. For each integer l, set rl = rankR(Xl). Then, each R-module
S2
R(X)n is free and

rankR((S2
R(X)n) =



∑
m<h

rmrn−m, if n is odd(
rh+1

2

)
+
∑
m<h

rmrn−m, if n ≡ 0 (mod 4)(
rh
2

)
+
∑
m<h

rmrn−m, if n ≡ 2 (mod 4).

Proof. Using the notation of Theorem 3.10, we have

V =
⊕
m<h

(Xm ⊗Xn−m) ∼=
⊕
m<h

(Rrm ⊗Rrn−m) ∼=
⊕
m<h

Rrmrn−m

and, when n is even,

S2
R(Xh) ∼= S2

R(Rrh) ∼= R(rh+1
2 ) ∧2(Xh) ∼= ∧2(Rrh) ∼= R(rh2 ).

The desired formula now follows from Theorem 3.10. �

Remark 3.12. There are several ways to present the formula in Corol-
lary 3.11. One other way to write it is the following:

rankR((S2
R(X)n) =


1
2 rankR((X ⊗R X)n), if n is odd
1
2 rankR((X ⊗R X)n) + 1

2rh, if n ≡ 0 (mod 4)
1
2 rankR((X ⊗R X)n)− 1

2rh, if n ≡ 2 (mod 4).

Another way is in terms of generating functions: for a complex Y of free
R-modules, set PRY (t) =

∑
n rankR(Yn)tn. Note that this is not usually

the same as the Poincaré series of Y . It is the same if and only if R is
local and Y is minimal. Using the previous display, we can then write:

(3.12.1)PRS2
R(X)(t) = 1

2

[
PRX⊗RX

(t) + PRX (−t2)
]

= 1
2

[
PRX (t)2 + PRX (−t2)

]
.

We make use of this expression several times in what follows.

4. Homological Properties of S2
R(X)

This section documents the homological and homotopical aspects of
the functor S2

R(−). It also contains our proof of Theorem A from the
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introduction. We assume throughout this section that 2 is a unit in R,
and it follows that S2

R(X) ∼= s2
R(X) via the natural map for all X.

We begin with the following result showing that S2
R(X) exhibits prop-

erties similar to those for X ⊗R X, noted as in Fact 2.11. Exam-
ple 3.4 shows what goes wrong in part (b) when inf(X) is odd: we
have S2

R(ΣR) = 0, so inf(S2
R(ΣR)) =∞ > 2 = 2 inf(ΣR). Note that we

do not need R to be local in either part of this result.

Proposition 4.1. Assume that 2 is a unit in R and let X be a bounded-
below complex of projective R-modules with i = inf(X).

(a) There is an inequality inf(S2
R(X)) > 2i, and there is an isomor-

phism

H2i(S
2
R(X)) ∼=

S2
R(Hi(X)), if i is even,

Hi(X)⊗Hi(X)

〈x⊗ y + y ⊗ x | x, y ∈ Hi(X)〉
, if i is odd.

(b) Assume that R is noetherian and that Hi(X) is finitely generated.
If i is even, then inf(S2

R(X)) = 2i.

Proof. (a) Proposition 3.8(b) yields an isomorphism:

Im(αX)⊕ S2
R(X) ∼= X ⊗R X.

This isomorphism yields the first inequality in the next sequence

inf(S2
R(X)) > inf(X ⊗R X) > 2i,

while the second inequality is from Fact 2.11.
The split exact sequences from Proposition 3.8(a) fit together in the

following commutative diagram:

0 // Ker(αX)
jX // X ⊗R X

qX //

qX

��

αX

%%

Im(αX) //

iX

��

0

(4.1.1) 0 // Im(αX)
iX // X ⊗R X

pX // S2
R(X) // 0.

Define α̃ : Hi(X)⊗R Hi(X)→ Hi(X)⊗R Hi(X) by the formula

x⊗ x′ 7→ x⊗ x′ − (−1)i
2
x′ ⊗ x = x⊗ x′ − (−1)ix′ ⊗ x.
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It is straightforward to show that the following diagram commutes:

(4.1.2) H2i(X ⊗R X)
H2i(α

X) //

∼= γ

��

H2i(X ⊗R X)

∼=γ

��
Hi(X)⊗R Hi(X)

α̃ // Hi(X)⊗R Hi(X),

where, the isomorphism γ is from Fact 2.11. Together, diagrams (??)
and (4.1.2) yield the next commutative diagram:

Hi(X)⊗Hi(X)
H2i(q

X)γ−1

//

H2i(q
X)γ−1

��

α̃

**

H2i(Im(αX)) //

γH2i(i
X)

��

0

H2i(Im(αX))
γH2i(i

X) // Hi(X)⊗Hi(X)
H2i(p

X)γ−1

// H2i(S
2
R(X)) // 0,

whose rows are exact because the rows of diagram (??) are split exact.
A straightforward diagram-chase yields the equality
Ker(H2i(p

X)γ−1) = Im(α̃), and so

H2i(S
2
R(X)) ∼=

Hi(X)⊗R Hi(X)

Im(α̃)

∼=

S2
R(Hi(X)), if i is even

Hi(X)⊗Hi(X)

〈x⊗ y + y ⊗ x | x, y ∈ Hi(X)〉
, if i is odd.

(b) Using part (a), it suffices to to show that S2
R(Hi(X)) 6= 0, where

i = inf(X). Fix a maximal ideal m ∈ SuppR(Hi(X)), and set k = R/m.
Using the isomorphisms

k⊗R Hi(X) ∼= (k⊗Rm Rm)⊗R Hi(X) ∼= k⊗Rm Hi(X)m ∼= k⊗Rm Hi(Xm),

Nakayama’s Lemma implies that k⊗RHi(X) is a nonzero k-vector space
of finite rank, say k ⊗R Hi(X) ∼= kr. In the following sequence, the
first and third isomorphisms are well-known; see, e.g., [7, (A2.2.b) and
(A2.3.c)]:

k ⊗R S2
R(Hi(X)) ∼= S2

k(k ⊗R Hi(X)) ∼= S2
k(k

r) ∼= k(r+1
r−1) 6= 0.

It follows that S2
R(Hi(X)) 6= 0, as desired. �

The next result establishes the homotopy-theoretic properties of the
functor S2

R(−). Example 5.6 shows that conclusion fails when 2 is not
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a unit in R. Note that we cannot reduce part (a) to the case g = 0 by
replacing f by f − g, as Example 5.7 shows that S2

R(f − g) might not
equal S2

R(f)− S2
R(g).

Theorem 4.2. Assume that 2 is a unit in R, and let X and Y be
R-complexes. Fix morphisms f, g : X → Y and h : Y → X.

(a) If f and g are homotopic, then S2
R(f) and S2

R(g) are homotopic.
(b) If f is a homotopy equivalence with homotopy inverse h, then

S2
R(f) is a homotopy equivalence with homotopy inverse S2

R(h).

Proof. (a) Fix a homotopy s from f to g as in Definition 2.3. Define

f ⊗R s+ s⊗R g = {(f ⊗R s+ s⊗R g)n : (X ⊗R X)n → (Y ⊗R Y )n+1}
g ⊗R s+ s⊗R f = {(g ⊗R s+ s⊗R f)n : (X ⊗R X)n → (Y ⊗R Y )n+1}

on each generator x⊗ x′ ∈ (X ⊗R X)n by the formulas

(f ⊗R s+ s⊗R g)n(x⊗ x′) := (−1)pfp(x)⊗ sq(x′) + sp(x)⊗ gq(x′)
(g ⊗R s+ s⊗R f)n(x⊗ x′) := (−1)pgp(x)⊗ sq(x′) + sp(x)⊗ fq(x′),

where, p = |x| and q = |x′|. One checks readily that the sequences
f ⊗R s + s ⊗R g and g ⊗R s + s ⊗R f are homotopies from f ⊗R f to
g ⊗R g. As 2 is a unit in R, it follows that the sequence

σ = 1
2(f ⊗R s+ s⊗R g + g ⊗R s+ s⊗R f)

is also a homotopy from f ⊗R f to g⊗R g. It is straightforward to show
that σnα

X
n = αYn+1σn, for all n. Using the fact that σ is a homotopy from

f ⊗R f to g⊗R g, it is thus straightforward to show that σ induces a ho-
motopy σ from S2

R(f) to S2
R(g) by the formula σn

(
x⊗ x′

)
= σn(x⊗ x′).

(b) By hypothesis, the composition hf is homotopic to idX . Part (a)
implies that S2

R(hf) = S2
R(h)S2

R(f) is homotopic to S2
R(idX) = idS2

R(X).

The same logic implies that S2
R(f)S2

R(h) is homotopic to idS2
R(Y ), and

hence the desired conclusions are reached. �

For the next results, Examples 5.5 and 5.6 show why we need to
assume that X and Y are bounded-below complexes of projective R-
modules and 2 is a unit in R.

Corollary 4.3. Assume that 2 is a unit in R, and let X and Y be
bounded-below complexes of projective R-modules.



58 Frankild, Sather-Wagstaff and Taylor

(a) If f : X → Y is a quasiisomorphism, then so is S2
R(f) : S2

R(X)→
S2
R(Y ).

(b) If X ' Y , then S2
R(X) ' S2

R(Y ).

Proof. (a) Our assumptions imply that f is a homotopy equivalence by
Fact 2.5, so the desired conclusion follows from Theorem 4.2(b).

(b) Assume X ' Y . Because X and Y are bounded-below complexes

of projective R-modules, there is a quasiisomorphism f : X
'−→ Y . Now,

apply part (a). �

Corollary 4.4. If 2 is a unit in R and X is a bounded-below complex
of projective R-modules, then there is a containment SuppR(S2

R(X)) ⊆
SuppR(X).

Proof. Fix a prime ideal p 6∈ SuppR(X). It suffices to show that p 6∈
SuppR(S2

R(X)). The first isomorphism in the following sequence is from
Proposition 3.6(b):

S2
R(X)p ∼= S2

Rp
(Xp) ' S2

Rp
(0) = 0.

The quasiisomorphism is from Corollary 4.3(b), because Xp ' 0. �

The following result is a key for our proof of Theorem A.

Theorem 4.5. Assume that R is noetherian and local and that 2 is
a unit in R. Let X be a bounded-below complex of finite-rank free R-
modules. The following conditions are equivalent:

(i) the surjection pX : X ⊗R X → S2
R(X) is a quasiisomorphism;

(ii) Im(αX) ' 0;
(iii) the injection jX : Ker(αX)→ X ⊗R X is a quasiisomorphism;
(iv) either X ' 0 or X ' Σ2nR, for some integer n.

Proof. (i) The biimplications (i) ⇐⇒ (ii) ⇐⇒ (iii) follow easily from
the long exact sequences associated with the exact sequences in Propo-
sition 3.8(a).

(iv) =⇒ (i). If X ' 0, then X ⊗R X ' 0 ' S2
R(X) and so pX is

trivially a quasiisomorphism; see Fact 2.11 and Example 3.3.
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Assuming that X ' Σ2nR, there is a quasiisomorphism γ : R
'−→

Σ−2nX. The commutative diagrams from (3.5.2) and (3.5.4) can be
combined and augmented to form the following commutative diagram:

R⊗R αR
//

' γ⊗γ
��

R⊗R
pR

∼=
//

' γ⊗γ
��

S2
R(R) //

' S2(γ)
��

0

(Σ−2nX)⊗ (Σ−2nX)
αΣ−2nX

//

∼=
��

(Σ−2nX)⊗ (Σ−2nX)

∼=
��

pΣ
−2nX

// S2
R(Σ−2nX) //

∼=
��

0

Σ−4n(X ⊗X)
Σ−4nαX

// Σ−4n(X ⊗X)
Σ−4npX // Σ−4nS2

R(X) // 0.

The morphism γ ⊗ γ is a quasiisomorphism by Fact 2.11, and S2(γ) is a
quasiisomorphism by Corollary 4.3(a). One checks readily that αR = 0,

and so pR is an isomorphism. The diagram shows that pΣ
−2nX is a

quasiisomorphism, and hence so is Σ−4npX . It follows that pX is a
quasiisomorphism, as desired.

(i) =⇒ (iv). Assume that the surjection pX : X ⊗R X → S2
R(X) is a

quasiisomorphism and X 6' 0.
Case 1: X is minimal. This implies that X ⊗R X is minimal. Also,

since S2
R(X) is a direct summand of X ⊗R X, it follows that S2

R(X) is
also minimal. The fact that pX is a quasiisomorphism implies that it is
an isomorphism; see Fact 2.9. This explains the second equality in the
next sequence:

PRX (t)2 = PRX⊗RX
(t) = PRS2

R(X)(t) = 1
2

[
PRX (t)2 + PRX (−t2)

]
.

The third equality is from equation (3.12). It follows that

(4.5.1) PRX (t)2 = PRX (−t2).

Let i = inf(X) and note that ri > 1. Set rn = rankR(Xn−i), for each n,
and Q(t) =

∑∞
n=0 rn+it

n, so that we have PRX (t) = tiQ(t). Equation (4)
then reads as t2iQ(t)2 = (−1)it2iQ(−t2), that is, we have

(4.5.2) Q(t)2 − (−1)iQ(−t2) = 0.

If i were odd, then this would say Q(t)2 + Q(−t2) = 0, contradicting
Lemma 2.12(a). It follows that i = 2n, for some n. Equation (4) then
says Q(t)2 −Q(−t2) = 0, and so Lemma 2.12(b) implies that Q(t) = 1.
This says that PRX (t) = ti = t2n, and so X ∼= Σ2nR, as desired.
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Case 2: the general case. Let δ : P
'−→ X be a minimal free resolution.

We again augment the commutative diagram from (3.5.4):

P ⊗R P
αP
//

' δ⊗δ
��

P ⊗R P
pP //

' δ⊗δ
��

S2
R(P ) //

' S2(δ)
��

0

X ⊗R X
αX
// X ⊗R X

pX

'
// S2
R(X) // 0.

This implies that pP is a quasiisomorphism. Since P is minimal, Case
1 implies that either P ' 0 or P ' Σ2nR, for some integer n. Since we
have X ' P , the desired conclusion follows. �

Remark 4.6. One can remove the local assumption and change the
word “free” to “projective” in Theorem 4.5, if one replaces condition (iv)
with the following condition: (iv’) for every maximal ideal m ⊂ R, one
has either Xm ' 0 or Xm ' Σ2nRm, for some integer n. (Here, the
integer n depends on the choice of m.) While this gives the illusion
of greater generality, this version is equivalent to Theorem 4.5 because
each of the conditions (i)–(iii) and (iv’) is local. Hence, we state only the
local versions of our results, with the knowledge that nonlocal versions
are direct consequences. On the other hand, Example 5.8 shows that
one needs to take care when removing the local hypotheses from our
results.

We next show how Theorem A is a consequence of Theorem 4.5.

4.7. Proof of Theorem A. The assumption Xp ' Sp 6= 0, for each p ∈
Ass(R), implies X 6' 0 and inf(X) 6 inf(Xp) = 0. On the other hand,
since Xn = 0, for all n < 0, we know inf(X) > 0, and so inf(X) = 0.

Consider the split exact sequence from Proposition 3.8(a):

(4.7.1) 0→ Im(αX)
iX−→ X ⊗S X

pX−−→ S2
S(X)→ 0.

This sequence splits, and so Hn(Im(αX)) ↪→ Hn(X ⊗S X), for each n;
hence,

(4.7.2) AssR(Hn(Im(αX))) ⊆ AssR(Hn(X ⊗S X)) ⊆ Ass(R).
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For each p ∈ Ass(R), localization of (4.7) yields the exactness of the
rows of the following commutative diagram; see also Proposition 3.6(b):

0 // Im(αX)p
(iX)p //

∼=
��

(X ⊗S X)p
(pX)p //

∼=
��

S2
S(X)p //

∼=
��

0

0 // Im(αXp)
iXp // Xp ⊗Sp Xp

pXp
// S2
Sp

(Xp) // 0

The quasiisomorphism Xp ' Sp implies that pXp is also a quasiisomor-
phism by Theorem 4.5, and so the previous sequence implies Im(αX)p ∼=
Im(αXp) ' 0, for each p ∈ Ass(R). For each n and p, this implies
Hn(Im(αX))p ∼= Hn(Im(αX)p) = 0; the containment in (4.7) implies
Hn(Im(αX)) = 0, for each n, that is, Im(αX) ' 0. Hence, Theorem 4.5
implies X ' S. �

The next result is a companion to Theorem 4.5.

Theorem 4.8. Assume that R is noetherian and local, and that 2 is
a unit in R. Let X be a bounded-below complex of finite rank free R-
modules. The following conditions are equivalent:

(i) the morphism αX : X ⊗R X → X ⊗R X is a quasiisomorphism;
(ii) the surjection qX : X ⊗R X → Im(αX) is a quasiisomorphism;

(iii) the injection iX : Im(αX)→ X ⊗R X is a quasiisomorphism;
(iv) S2

R(X) ' 0;
(v) Ker(αX) ' 0;

(vi) X ' 0 or X ' Σ2n+1R, for some integer n.

Proof. The biimplications (ii) ⇐⇒ (v) and (iii) ⇐⇒ (iv) follow easily
from the long exact sequences associated with the exact sequences in
Proposition 3.8(a).

For the remainder of the proof, we use the easily verified fact that
the exact sequences from Proposition 3.8(a) fit together in the following
commutative diagram:

0 // Ker(αX)
jX // X ⊗R X

qX //

qX

��

αX

%%

Im(αX) //

iX

��

0

(4.8.1) 0 // Im(αX)
iX // X ⊗R X

pX // S2
R(X) // 0
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and we recall that these exact sequences split.
(i) =⇒ (iv). Assume that αX is a quasiisomorphism.
Case 1: X is minimal. In this case, the complex X ⊗R X is minimal,

and so the fact that αX is a quasiisomorphism implies that αX is an
isomorphism; see Fact 2.9. Hence, we have S2

R(X) = Coker(αX) = 0.

Case 2: the general case. Let f : P
'−→ X be a minimal free resolution.

The commutative diagram from (3.5.4),

P ⊗R P
αP
//

f⊗Rf '
��

P ⊗R P

f⊗Rf '
��

X ⊗R X
αX

'
// X ⊗R X

shows that αP is a quasiisomorphism; see Fact 2.11. Using Corol-
lary 4.3(a), Case 1 implies that S2

R(X) ' S2
R(P ) = 0.

(iv) =⇒ (v) and (iv) =⇒ (i) and (iv) =⇒ (vi). Assume S2
R(X) ' 0.

Case 1: X is minimal. In this case, X ⊗R X is also minimal. The
bottom row of (4) is split exact, and so this implies that S2

R(X) is also
minimal. Hence, the condition S2

R(X) ' 0 implies that S2
R(X) = 0.

Hence, the following sequence is split exact:

0→ Ker(αX)
jX−−→ X ⊗R X

αX

−−→ X ⊗R X → 0.

Since each R-module Ker(αX)n is free of finite rank, the additivity of
rank implies that Ker(αX)n = 0, for all n, that is, Ker(αX) = 0. The
displayed sequence then shows that αX is an isomorphism.

Assume for the rest of this case that X 6' 0 and set i = inf(X). If i
is even, then Proposition 4.1 implies that ∞ = inf(S2

R(X)) = 2i <∞, a
contradiction. Thus, i is odd. As before, there is a formal power series
Q(t) =

∑∞
i=0 rit

i with nonnegative integer coefficients such that r0 6= 0
and PRX (t) = tiQ(t). Since S2

R(X) = 0, the following formal equalities
are from (3.12):

0 = PRS2
R(X)(t) = 1

2

[
PRX (t)2 + PRX (−t2)

]
= 1

2

[
t2iQ(t)2 − t2iQ(−t2)

]
.

It follows that Q(t)2 −Q(−t2) = 0, and so Lemma 2.12(b) implies that
Q(t) = 1. This implies that PRX (t) = ti, and so X ∼= ΣiR.

Case 2: the general case. Let f : P → X be a minimal free resolution.
Corollary 4.3 implies that S2

R(P ) ' S2
R(X) ' 0, and so Case 1 also

implies that either X ' P ' 0 or X ' P ' Σ2n+1R, for some integer n.
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Case 1 also implies that Ker(αP ) = 0 and αP is an isomorphism. The
commutative diagram from (3.5.4),

P ⊗R P
αP

∼=
//

f⊗Rf '
��

P ⊗R P

f⊗Rf '
��

X ⊗R X
αX
// X ⊗R X

shows that αX is a quasiisomorphism; see Fact 2.11. Since S2
R(X) ' 0,

the bottom row of (4) shows that iX is a quasiisomorphism. Since αX

is also a quasiisomorphism, the commutativity of (4) shows that qX

is a quasiisomorphism as well. Hence, the top row of (4) implies that
Ker(αX) ' 0.

(v) =⇒ (iv). Argue as in the proof of the implication (iv) =⇒ (v).
(vi) =⇒ (iv). If X ' 0, then S2

R(X) ' S2
R(0) = 0 by Example 3.3

and Corollary 4.3(b). If X ' Σ2n+1R, for some integer n, then Corol-
lary 4.3(b) explains the first quasiisomorphism in the next sequence:

S2
R(X) ' S2

R(Σ2n+1R) ' S2
R(Σ2n(ΣR)) ' Σ4nS2

R(ΣR) ' 0.

The second quasiisomorphism is because of the isomorphism Σ2n+1R ∼=
Σ2n(ΣR); the third quasiisomorphism is from (3.5.2); and the last quasi-
isomorphism follows from Example 3.4. �

Corollary 4.9. Assume that R is noetherian and local, and that 2 is
a unit in R. Let X be a bounded-below complex of finite rank free R-
modules. The complex S2

R(X) has finite projective dimension if and only
if X has finite projective dimension.

Proof. Assume first that pdR(X) is finite, and let P
'−→ X be a bounded

free resolution. It follows that P ⊗R P is a bounded complex of free
R-modules. Hence, the isomorphism P ⊗R P ∼= S2

R(P ) ⊕ Im(αP ) from
Proposition 3.8(b) implies that S2

R(P ) is a bounded complex of free R-
modules. The quasiisomorphism S2

R(X) ' S2
R(P ) from Corollary 4.3(b)

implies that S2
R(X) has finite projective dimension.

For the converse, assume thatX has infinite projective dimension. Let

P
'−→ X be a minimal free resolution, which is necessarily unbounded.

As noted previously, the fact that P is minimal implies that S2
R(P )

'−→
S2
R(X) is a minimal free resolution, and so it suffices to show that S2

R(P )
is unbounded; see Fact 2.9.
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Set rn = rankR(Pn), for each integer n. Since P is unbounded, we
know that, for each integer n, there exist integers p and q such that
q > p > n and such that the free R-modules Pp and Pq are nonzero,
that is, such that rprq 6= 0. The inequality q > p implies p < (p+ q)/2.
For each n > 0, we then have p+ q > 2n and

rankR(S2
R(P )p+q) >

∑
m<(p+q)/2

rmrp+q−m > rprq > 0.

The first inequality is from Corollary 3.11; the second inequality follows
from the inequality p < (p+ q)/2; and the third inequality follows from
the assumption rprq 6= 0. This shows that for each n > 0, there is an
integer m = p + q > n such that S2

R(P )m 6= 0. This means that S2
R(P )

is unbounded, as desired. �

The final result of this section is a refinement of the previous result.
It characterizes the complexes X such that S2

R(X) ',ΣjR, for some
integer j.

Corollary 4.10. Assume that R is noetherian and local, and that 2
is a unit in R. Let X be a bounded-below complex of finite rank free
R-modules. The folowing conditions are equivalent:

(i) X ' Σ2nR, for some n, or X ' (Σ2n+1R)⊕(Σ2m+1R), for some
n and m;

(ii) S2
R(X) ' ΣjR, for some even integer j;

(iii) S2
R(X) ' ΣjR, for some integer j.

Proof. (i) =⇒ (ii). If X ' Σ2nR, then we have

S2
R(X) ' S2

R(Σ2nR) ∼= Σ4nS2
R(R) ∼= Σ4nR

by (3.5.2), Example 3.3 and Corollary 4.3(b). In the case when X '
(Σ2n+1R)⊕ (Σ2m+1R), Proposition 3.7 implies:

S2
R(X) ' S2

R(Σ2n+1R)⊕
[
(Σ2n+1R)⊗R (Σ2m+1R)

]
⊕ S2

R(Σ2m+1R).

Example 3.4 implies that the first and last summands on the right side
are 0, and so

S2
R(X) ∼= Σ2n+1R⊗R Σ2m+1R ∼= Σ2n+2m+2R.

(ii) =⇒ (iii). This is trivial.
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(iii) =⇒ (i). Assume that S2
R(X) ' ΣjR, which implies that j =

inf(S2
R(X)). Use Corollary 4.3(b) to replace X with a minimal free

resolution in order to assume that X is minimal. As noted before, this
implies that S2

R(X) is minimal, and so the quasiisomorphism S2
R(X) '

ΣjR implies S2
R(X) ∼= ΣjR; see Fact 2.9.

For each integer n, set rn = rankR(Xn). Also, set i = inf(X), and note
that Proposition 4.1 implies that j > 2i. Write Q(t) =

∑∞
n=0 rn−it

n;
this is a formal power series with nonnegative integer coefficients and
constant term ri > 1 such that PRX (t) = tiQ(t). Since S2

R(X) ∼= ΣjR,
equation (3.12) can be written as:
(4.10.1)

tj = 1
2

[
(tiQ(t))2 + (−t2)iQ(−t2)

]
= 1

2 t
2i
[
Q(t)2 + (−1)iQ(−t2)

]
.

Case 1: j = 2i. In this case, equation (4.10.1) reads as:

t2i = 1
2 t

2i
[
Q(t)2 + (−1)iQ(−t2)

]
,

and so 2 = Q(t)2 + (−1)iQ(−t2). Lemma 2.12 implies that

Q(t) =

{
1, if i is even

2, if i is odd.

When i is even, this translates to PRX (t) = ti, and so X ∼= ΣiR = Σ2nR,
where, n = i/2. When i is odd, we have PRX (t) = 2, and so X ∼= ΣiR2 ∼=
Σ2n+1R⊕ Σ2n+1R, where, n = (i− 1)/2.

Case 2: j > 2i. In this case, Proposition 4.1 implies that i is odd,
and equation (4.10.1) translates to:

(4.10.2) 2tj−2i = Q(t)2 −Q(−t2)

2tj−2i = (r2
i − ri) + 2ri+1rit+ (2ri+2ri + r2

i+1 + ri+1)t2 + · · · .

Since j > 2i, we equate coefficients in degree 0 to find 0 = r2
i − ri, and

so ri = 1. Thus, equation (4.2.10) reads as:

(4.10.3) 2tj−2i = 2ri+1t+ (2ri+2 + r2
i+1 + ri+1)t2 + · · · .

We claim that j > 2i + 1. Indeed, supposing that j 6 2i + 1, our
assumption j > 2i implies j = 2i+ 1. Equating degree 1 coefficients in
equation (4) yields ri+1 = 1. The coefficients in degree 2 show that

0 = 2ri+2ri + r2
i+1 + ri+1 = 2ri+2 + 2.

Hence, ri+2 = −1, which is a contradiction.
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Since we have j > 2i + 1, the degree 1 coefficients in equation (4)
imply ri+1 = 0. It follows that
(4.10.4) X ∼= ΣiR⊕ Y,

where, Y is a bounded-below minimal complex of finitely generated
free R-modules such that Yn = 0, for all n < i + 2. With the isomor-
phism in (4), Proposition 3.7 gives the second isomorphism in the next
sequence:

ΣjR ∼= S2
R(X) ∼= S2

R(ΣiR)⊕
[
(ΣiR)⊗R Y

]
⊕ S2

R(Y ) ∼= ΣiY ⊕ S2
R(Y ).

The final isomorphism comes from Example 3.4, since i is odd. In par-
ticular, it follows that Y 6' 0. The complex ΣjR is indecomposable, be-
cause R is local, and so the displayed sequence implies that S2

R(Y ) = 0
and ΣiY ' ΣjR. Because of the conditions S2

R(Y ) = 0 and Y 6' 0,
Theorem 4.8 implies that Y ' Σ2m+1R, for some m. Hence, the isomor-
phism in (4) reads as X ∼= Σ2n+1R ⊕ Σ2m+1R, where, n = (i− 1)/2, as
desired. �

5. Examples

We begin this section with three explicit computations of the com-
plexes S2

R(X) and s2
R(X) and their homologies. As a consequence, we

show that Buchbaum and Eisenbud’s construction differs from those
in [6, 11]. We also provide examples showing the need for certain hy-
potheses in the results of the previous sections.

Example 5.1. Fix an element x ∈ R and let K denote the Koszul
complex KR(x) which has the following form, where the basis is listed in
each degree:

K = 0→ R︸︷︷︸
e1

(x)−−→ R︸︷︷︸
e0

→ 0.

The tensor product K ⊗R K has the form:

(5.1.1) K ⊗R K = 0→ R︸︷︷︸
e1⊗e1

( x
−x )
−−−−→ R2︸︷︷︸

e0⊗e1
e1⊗e0

(x x )−−−→ R︸︷︷︸
e0⊗e0

→ 0.
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Using this representation, the exact sequence in (3.5.3) has the form:

0 // Ker(αX) // K ⊗R K
αK
// K ⊗R K // s2

R(K) // 0

0

��

0

��

0

��

0

��
0 // AnnR(2) //

(x)

��

R
(2) //

( x
−x )

��

R //

( x
−x )

��

R/(2) //

(0)

��

0

0 // R
( 1

1 )
//

(2x)

��

R2

(
1 −1
−1 1

)
//

(x x )

��

R2
( 1 1 ) //

(x x )

��

R //

(x)

��

0

0 // R
(1) //

��

R
(0) //

��

R
(1) //

��

R //

��

0

0 0 0 0.

From the rightmost column of this diagram, we have

H2(s2
R(K)) ∼= R/(2) H1(s2

R(K)) ∼= AnnR(x) H0(s2
R(K)) ∼= R/(x),

and Hi(s
2
R(K)) = 0, when i /∈ {0, 1, 2}.

A similar computation shows that

S2
R(K) = 0→ R

(x)−−→ R→ 0,

and thus

H1(S2
R(K)) ∼= AnnR(x), H0(S2

R(K)) ∼= R/(x)

and Hi(S
2
R(K)) = 0, when i /∈ {0, 1}.

Example 5.2. Fix elements x, y ∈ R and let K denote the Koszul
complex KR(x, y) which has the following form, where the ordered basis
is listed in each degree:

(5.2.1) K = 0→ R︸︷︷︸
e2

(
y
−x
)

−−−−→ R2︸︷︷︸
e11
e12

(x y )−−−→ R︸︷︷︸
e0

→ 0.
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Using the same format, the complex K ⊗R K has the form:

K ⊗R K =

0→ R︸︷︷︸
e2⊗e2

∂
K⊗RK
4−−−−−→ R4︸︷︷︸

e2⊗e11
e2⊗e12
e11⊗e2
e12⊗e2

∂
K⊗RK
3−−−−−→ R6︸︷︷︸

e2⊗e0
e11⊗e11
e11⊗e12
e12⊗e11
e12⊗e12
e0⊗e2

∂
K⊗RK
2−−−−−→ R4︸︷︷︸

e11⊗e0
e12⊗e0
e0⊗e11
e0⊗e12

∂
K⊗RK
1−−−−−→ R︸︷︷︸

e0⊗e0

→ 0

with differentials given by the following matrices:

∂K⊗RK
4 =

( y
−x
y
−x

)
∂K⊗RK

3 =


x y 0 0
y 0 −y 0
0 y x 0
−x 0 0 −y
0 −x 0 x
0 0 x y


∂K⊗RK

2 =

(
y −x −y 0 0 0
−x 0 0 −x −y 0
0 x 0 y 0 y
0 0 x 0 y −x

)
∂K⊗RK

1 = (x y x y).

Under the same bases, the morphism αK : K⊗RK → K⊗RK is described
by the following matrices:

αK3 =

( 1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

)
αK2 =

 1 0 0 0 0 −1
0 2 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 2 0
−1 0 0 0 0 1


αK1 =

( 1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

)
αK4 = (0) = αK0 .

As in Example 5.1, it follows that S2
R(K) has the form:

S2
R(K) =

0→ R︸︷︷︸
f4

∂
S2R(K)

4−−−−→ R2︸︷︷︸
f31
f32

∂
S2R(K)

3−−−−→ R2︸︷︷︸
f21
f22

∂
S2R(K)

2−−−−→ R2︸︷︷︸
f11
f12

∂
S2R(K)

1−−−−→ R︸︷︷︸
f0

→ 0

where the basis vectors are described as:

f4 = e2 ⊗ e2 f31 = e2 ⊗ e11 = e11 ⊗ e2

f32 = e2 ⊗ e12 = e12 ⊗ e2 f21 = e2 ⊗ e0 = e0 ⊗ e2

f22 = e11 ⊗ e12 = −e12 ⊗ e11 f11 = e11 ⊗ e0 = e0 ⊗ e11

f12 = e12 ⊗ e0 = e0 ⊗ e12 f0 = e0 ⊗ e0.
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(Note also that e11 ⊗ e11 = 0 = e12 ⊗ e12.) Under these bases, the dif-

ferentials ∂
S2
R(K)
n are described by the following matrices:

(5.2.2)

∂
S2
R(K)

4 =

(
2y
−2x

)
∂

S2
R(K)

2 =

(
y −y
−x x

) ∂
S2
R(K)

3 =

(
x y
x y

)
∂

S2
R(K)

1 =
(
x y

)
.

Similar computations show that s2
R(K) ∼= S2

R(K)⊕ Σ2(R/(2))2.

Example 5.3. Let x, y ∈ R be an R-regular sequence and continue
with the notation of Example 5.2. We verify the following isomorphisms:

H0(S0
R(K)) ∼= H2(S2

R(K)) ∼= R/(x, y) H1(S2
R(K)) = 0

H3(S2
R(K)) ∼= R/(2) H4(S2

R(K)) ∼= AnnR(2).

The computation of H0(S2
R(K)) follows from the description of ∂

S2
R(K)

1
in (5.2).

For H1(S2
R(K)), the second equality in the following sequence comes

from the exactness of K in degree 1:

Ker
(
∂

S2
R(K)

1

)
= Ker

(
∂K1
)

= Im
(
∂K2
)

= SpanR

{(
y
−x

)}
= Im

(
∂

S2
R(K)

2

)
and the others come from the descriptions of K and S2

R(K) in (5.2)
and (5.2).

For H2(S2
R(K)), use the fact that x is R-regular to check the first

equality in the next display; the others follow from (5.2):

Ker
(
∂

S2
R(K)

2

)
= SpanR

{(
1
1

)}
Im
(
∂

S2
R(K)

3

)
= SpanR

{(
x
x

)
,

(
y
y

)}
= (x, y) SpanR

{(
1
1

)}
.

The isomorphism H2(S2
R(K)) ∼= R/(x, y) now follows.
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For H3(S2
R(K)), the second equality in the following sequence comes

from the exactness of K in degree 1:

Ker
(
∂

S2
R(K)

3

)
= Ker

(
∂K1
)

= Im
(
∂K2
)

= SpanR

{(
y
−x

)}
Im
(
∂

S2
R(K)

4

)
= (2) SpanR

{(
y
−x

)}
and the others come from the descriptions of K and S2

R(K) in (5.2)
and (5.2). The isomorphism H3(S2

R(K)) ∼= R/(2) now follows.
Similarly, for H4(S2

R(K)), we have

H4(S2
R(K)) = Ker

(
∂

S2
R(K)

4

)
= (Ker

(
∂K2
)

: 2) = (0 :R 2) = AnnR(2).

This completes the example.

As a first consequence of the previous computations, we next observe
that S2

R(X) is generally not isomorphic to Dold and Puppe’s [6] con-
struction DS2(X) and not isomorphic to Tchernev and Weyman’s [11]
construction CS2(X).

Example 5.4. Assume that 2 is a unit in R. Fix an element x ∈ R
and let K denote the Koszul complex KR(x). Example 5.1 yields the
following computation of S2

R(K):

S2
R(K) = 0 // R

x // R // 0

DS2(K) ∼= CS2(K) = 0 // R

(
1
−x
)
// R2

(x2 x)// R // 0.

The fact that DS2(K) and CS2(K) have the displayed form can be deduced
from [11, (11.2) and (14.4)]; the maps were computed for us by Tchernev.
In particular, in this case we have DS2(K) ∼= CS2(K) 6∼= S2

R(K).
More generally, if we have

X = 0→ Rm → Rn → 0,

then Corollary 3.11 and [11, (11.2) and (14.4)] yield:

S2
R(X) = 0 // R(m2 ) // Rmn // R(n+1

2 ) // 0

DS2(X) ∼= CS2(X) = 0 // Rm
2 // R(m+1

2 )+mn // R(n+1
2 ) // 0.
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Hence, we have CS2(X) ∼= S2
R(X) if and only if m = 0, i.e., if and only

if X ∼= Rn.

We next show why we need to assume that X and Y are bounded-
below complexes of projective R-modules in Corollary 4.3. It also shows
that S2

R(X) can have nontrivial homology, even when X is a minimal
free resolution of a module of finite projective dimension.

Example 5.5. Let x, y ∈ R be an R-regular sequence and continue with
the notation of Example 5.2. The computations in Example 5.3 show
that H2(S2

R(K)) ∼= R/(x, y) 6= 0 = H2(S2
R(R/(x, y))), and so S2

R(K) 6'
S2
R(R/(x, y)) even though K ' R/(x, y).

The next example shows why we need to assume that 2 is a unit in R
for Theorem 4.2 and Corollaries 4.3 and 4.4.

Example 5.6. Assume that 2 is not a unit in R and let K denote the
Koszul complex KR(1, 1). Then, K is split exact, and so the zero map
z : K → K is a homotopy equivalence, it is homotopic to idK , and it is
a quasiisomorphism. Example 5.2 shows that H3(S2

R(K)) = R/(2) 6= 0.
On the other hand, the morhpism S2

R(z) : S2
R(K) → S2

R(K) is the zero
morphism, and so the nonvanishing of H2(S2

R(K)) implies that S2
R(z)

is not a quasiisomorphism. It follows that S2
R(z) is neither a homotopy

equivalence nor homotopic to idS2
R(K). This shows why we need to as-

sume that 2 is a unit in R for Theorem 4.2 and Corollary 4.3(a). For
Corollary 4.3(b), simply note that K ' 0 and S2

R(K) 6' 0 ' S2
R(0).

For Corollary 4.4, note that this shows that SuppR(S2
R(K)) 6= ∅ =

SuppR(K).

Our next example shows that the functors s2
R(−) and S2

R(−) are not
additive, even when 2 is a unit inR and we restrict to bounded complexes
of finite rank free R-modules.

Example 5.7. Let X and Y be nonzero R-complexes. Consider the
natural surjections and injections:

X ⊕ Y τ1−→ X
ε1−→ X ⊕ Y, X ⊕ Y τ2−→ Y

ε2−→ X ⊕ Y,
and set fi = εiτi : X ⊕ Y → X ⊕ Y . The equality f1 + f2 = idX⊕Y is
immediate.
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We claim that s2
R(f1 + f2) 6= s2

R(f1) + s2
R(f2). To see this, first note

that the equalities s2
R(f1 + f2) = s2

R(idX⊕Y ) = ids2R(X⊕Y ) show that it

suffices to verify s2
R(f1) + s2

R(f2) 6= ids2R(X⊕Y ). One checks that there is

a commutative diagram:

(X ⊕ Y )⊗ (X ⊕ Y )
∼= //

f1⊗f1

��

(X ⊗X)⊕ (X ⊗ Y )⊕ (Y ⊗X)⊕ (Y ⊗ Y )

 idX⊗X 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


��

(X ⊕ Y )⊗ (X ⊕ Y )
∼= // (X ⊗X)⊕ (X ⊗ Y )⊕ (Y ⊗X)⊕ (Y ⊗ Y ),

wherein the horizontal maps are the natural distributivity isomorphisms.
The proof of Proposition 3.7 yields another commutative diagram:

s2
R(X ⊕ Y )

∼= //

s2R(f1)

��

s2
R(X)⊕ (X ⊗R Y )⊕ s2

R(Y )

(
id

s2
R

(X)
0 0

0 0 0
0 0 0

)

��
s2
R(X ⊕ Y )

∼= // s2
R(X)⊕ (X ⊗R Y )⊕ s2

R(Y ).

Similarly, there is another commutative diagram:

s2
R(X ⊕ Y )

∼= //

s2R(f2)

��

s2
R(X)⊕ (X ⊗R Y )⊕ s2

R(Y )

(
0 0 0
0 0 0
0 0 id

s2
R

(Y )

)

��
s2
R(X ⊕ Y )

∼= // s2
R(X)⊕ (X ⊗R Y )⊕ s2

R(Y ).

This implies that s2
R(f1) + s2

R(f2) is equivalent to the morphism

s2
R(X)⊕(X⊗RY )⊕s2

R(Y )

 id
s2
R

(X)
0 0

0 0 0
0 0 id

s2
R

(Y )


−−−−−−−−−−−−−−→ s2

R(X)⊕(X⊗RY )⊕s2
R(Y ),

and so cannot equal ids2R(X⊕Y ).

Similarly, we have S2
R(f1 +f2) = S2

R(idX⊕Y ) = idS2
R(X⊕Y ) 6= S2

R(f1) +

S2
R(f2).
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Our final example shows that one needs to be careful about removing
the local hypotheses from the results of Section 4. Specifically, it shows
that, without the local hypotheses, the implication (i) =⇒ (iv) fails in
Theorem 4.5.

Example 5.8. Let K and L be fields, and set R = K × L. The prime
ideals of R are all maximal, and they are precisely the ideals m = K × 0
and n = 0 × L. Furthermore, we have Rm

∼= L and Rn
∼= K. Assume

that char(K) 6= 2 and char(L) 6= 2, so that 2 is a unit in R.
First, consider the complex Y = (K × 0) ⊕ Σ2(0 × L). Then, Y

is a bounded-below complex of finitely generated projective R-modules
such that Ym ∼= Σ2L ∼= Σ2Rm and Yn ∼= K ∼= Rn. Hence, Remark 4.6
implies that the surjection pY : Y ⊗RY → S2

R(Y ) is a quasiisomorphism.
However, the fact that Y has nonzero homology in degrees 2 and 0 implies
that, Y 6' 0 and Y 6' Σ2tR, for each integer t.

Next, we provide an example of a bounded-below complex X of finitely
generated free R-modules with the same behavior. The following complex
describes a free resolution F of K × 0:

· · · (e)−−→ R
(f)−−→ R

(e)−−→ R
(f)−−→ · · · (f)−−→ R→ 0,

where, e = (1, 0) ∈ R and f = (0, 1) ∈ R. An R-free resolution G
for 0 × L is constructed similarly. The complex X = F ⊕ Σ2G yields

a degreewise-finite R-free resolution of g : X
'−→ Y . Corollary 4.3(a)

implies that S2
R(g) is a quasiisomorphism. Hence, the next commuta-

tive diagram shows that the surjection pX : X ⊗R X → S2
R(X) is also a

quasiisomorphism:

X ⊗R X
pX //

' g⊗g
��

S2
R(X)

' S2(g)
��

Y ⊗R Y
pY

'
// S2
R(Y ).

However, we have X ' Y , and so X 6' 0 and X 6' Σ2tR, for each
integer t.
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