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SECOND SYMMETRIC POWERS OF CHAIN
COMPLEXES

A. J. FRANKILD, S. SATHER-WAGSTAFF* AND A. TAYLOR

Communicated by Jiirgen Herzog

ABSTRACT. We investigate Buchbaum and Eisenbud’s construction
of the second symmetric power S%(X) of a chain complex X of
modules over a commutative ring R. We state and prove a num-
ber of results from the folklore of the subject for which we know
of no good direct references. We also provide several explicit com-
putations and examples. We use this construction to prove the
following version of a result of Avramov, Buchweitz, and Sega: let
R — S be a module-finite ring homomorphism such that R is noe-
therian and local, and such that 2 is a unit in R. Let X be a
complex of finite rank free S-modules such that X,, = 0 for each
n < 0. If U, Assr(Hn (X ®s X)) C Ass(R) and if X, ~ S, for each
p € Ass(R), then X ~ S.

1. Introduction

Multilinear constructions like tensor products and symmetric powers
are important tools for studying modules over commutative rings. In
recent years, these notions have been extended to the realm of chain
complexes of R-modules. (Consult Section 2 for background information
on complexes.) For instance, Buchsbaum and Eisenbud’s description [5]
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of the minimal free resolutions of Gorenstein ideals of grade 3 uses the
second symmetric power of a certain free resolution.

Here, we investigate Buchsbaum and Eisenbud’s second symmetric
power functor: for a chain complex X of modules over a commutative
ring R, we set S%(X) = (X ®g X)/(Y + Z), where Y is the graded
submodule generated by all elements of the form z® ' — (=111l @ z
and Z is the graded submodule generated by all elements of the form
r ® & with = having an odd degree.

Our main result is the following version of a result of Avramov, et al.
[2, (2.2)] for complexes. It is motivated by our work in [10] extending
the results of [2]. Note that S%(X) does not appear in the statement of
Theorem below; however, it is the key tool for the proof given in 4.7.

Theorem A. Let R — S be a module-finite ring homomorphism such
that R is noetherian and local, and such that 2 is a unit in R. Let X
be a complex of finite rank free S-modules such that X, = 0 for each
n < 0. If Uy Assp(Hp(X ®g X)) C Ass(R) and if X, ~ S, for each
p € Ass(R), then X ~ S.

Most of our work is devoted to statements and proofs of results from
the folklore in this subject. Section 3 contains basic properties of S%(X ),
most of which are motivated by the behavior of tensor products of com-
plexes and the properties of symmetric powers of modules. This section
ends with an explicit description of the modules occuring in S%(X); see
Theorem 3.9. Section 4 examines the homological properties of S%(X ),
and includes the proof of Thoerem A. We conclude with Section 5, which
is devoted to explicit computations.

This work was completed after the untimely passing of Anders J.
Frankild on 10 June 2007.

2. Complexes

Throughout this paper, R and S are commutative rings with identity.
The term “module” is short for “unital module”.

INote that the definition of $%(X) given in [5] does not yield the complex described
in [5, p. 452], unless 2 is a unit in R. The corrected definition can be found, for
instance, in [4, (3.4.3)].
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This section consists of definitions, notation and background informa-
tion for use in the remainder of the paper.

Definition 2.1. An R-complex is a sequence of R-module homomor-
phisms

X aX X
X = X, X, ...

such that 92X ;0:X = 0 for each integer n. A complex X is degreewise-
finite if each X, is finitely generated; it is bounded-below if X,, = 0 for
n < 0.

The nth homology module of X is Hy,(X) := Ker (9, )/ Im(9;,). The
infimum of X is inf(X) := inf{i € Z | H,,(X) # 0}, and the large support
of X is

Suppr(X) = {p € Spec(R) | X, # 0} = Upn Suppp(Hn(X)).

For each z € X,,, we set |z| := n. An R-complex X is homologically
degreewise-finite if H, (X) is finitely generated for each n; it is homolog-
ically finite if the R-module @,z H,(X) is finitely generated.

For each integer i, the ith suspension (or shift) of X, denoted by
Y!X, is the complex with (XX), = X,,_; and 9X'%X = (-1)'9.X .. The
notation XX is short for ' X.

Definition 2.2. Let X and Y be R-complexes. A morphism from X to
Y is a sequence of R-module homomorphisms {f,: X,, — Y, } such that
fn_10X = OY f,,, for each n. A morphism of complexes a: X — Y in-
duces homomorphisms on homology modules H,(«): Hy,(X) — H,(Y),
and « is a quasiisomorphism when each H,(«) is bijective. Quasiiso-
morphisms are designated by the symbol “~”.

Definition 2.3. Let X,Y be R-complexes. Two morphisms f,g: X —
Y are homotopic if there exists a sequence of homomorphisms s =
{sn: Xn, = Yyn41} such that f, = g, + 8}{“3” + 8,10, for each n;
here, we say that s is a homotopy from f to g. The morphism f is
a homotopy equivalence if there is a morphism h: Y — X such that
the compositions fh and hf are homotopic to the respective identity
morphisms idy and idx, and then f and h are homotopy inverses.
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Definition 2.4. Given two bounded-below complexes P and @ of pro-
jective R-modules, we write P ~ (), when there is a quasiisomorphism
P5Q.

Fact 2.5. The relation ~ from Definition 2.4 is an equivalence relation;
see [3, (2.8.8.2.2")] or [8, (6.6.i1)] or [9, (6.21)].
Let P and @ be bounded-below complexes of projective R-modules.

Then, any quasiisomorphism P = @ is a homotopy equivalence; see [3,
(1.8.5.3)] or [8, (6.4.iii)]. Conversely, it is straightforward to show that
any homotopy equivalence between R-complexes is a quasiisomorphism.

Definition 2.6. Let X be a homologically bounded-below R-complex.
A projective (or free) resolution of X is a quasiisomorphism P — X
such that each P, is projective (or free) and P is bounded-below; the
resolution P = X is degreewise-finite if P is degreewise-finite. We
say that X has finite projective dimension when it admits a projective
resolution P = X such that P, = 0 for n > 0.

Fact 2.7. Let X be a homologically bounded-below R-complex. Then,
X has a free resolution P = X such that P, = 0, for all n < inf(X);
see [3, (2.11.3.4)] or [%, (6.6.1)] or [9, (2.6.P)]. It follows that Py¢(x) # 0.
If P> X and Q = X are projective resolutions of X, then there is

a homotopy equivalence P = Q; see [3, (6.6.ii)] or [9, (6.21)]. If R
is noetherian and X is homologically degreewise-finite, then P may be
chosen degreewise-finite; see [3, (2.11.3.3)] or [9, (2.6.L)].

Definition 2.8. Let X be an R-complex that is homologically both
bounded-below and degreewise-finite. Assume that R is noetherian and
local with maximal ideal m. A projective resolution P = X is minimal
if the complex P is minimal, that is, if Im(d) C mP,_1, for each n.

Fact 2.9. Let X be an R-complex that is homologically both bounded-
below and degreewise-finite. Assume that R is noetherian and local with
maximal ideal m. Then, X has a minimal free resolution P = X such
that P, = 0, for all n < inf(X); see [I, Prop. 2] or [3, (2.12.5.2.1)]. Let

P = X and Q = X be projective resolutions of X. If P is minimal,
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then there is a bounded-below exact complex P’ of projective R-modules
such that Q = P @ P’; see [3, (2.12.5.2.3)]. It follows that X has finite
projective dimension if and only if every minimal projective resolution
of X is bounded. It also follows that if P and @) are both minimal, then
P Q; see [3, (2.12.5.2.2)].

Definition 2.10. Let X and Y be R-complexes. The R-complex X®grY
is given by
(X ®rY)n =D, Xp Or Yn—p
with nth differential 831( ®RrY given on generators by
vy~ o () @y + ()" edl (y).

Fix two more R-complexes X', Y’ and morphisms f: X — X’ and
g: Y — Y’. Define the tensor product f ®gg: X g Y — X' ®r Y’ on
generators as

T @Y flz)(T) @ gy ()
One checks readily that f ®pg ¢ is a morphism.

Fact 2.11. Let P and @) be bounded-below complexes of projective R-
modules. If f: X =, Y is a quasiisomorphism, then so are the induced
morphisms fRrRQ: X®rQ — Y®rQ and PRrf: PRrX — PRRrY;
see [3, (1.10.4.2.2)] or [3, (6.10)] or [9, (7.8)]. In particular, if g: P = Q
is a quasiisomorphism, then so is g®g: PRrP — Q®rQ; see [3, (6.10)].
This can be used to show the following facts from [9, (7.28)]:

inf(P ®g Q) > inf(P) + inf(Q)
His Py rini(@) (P ©r Q) = Hing(p)(P) @ Hing(g) (Q)-

Assume that R is noetherian and that P and () are homologically
degreewise-finite. One can use degreewise-finite projective resolutions
of P and @ in order to show that each R-module H,,(P ®pg @) is finitely
generated; see [9, (7.31)]. In particular, if R is local, then Nakayama’s
Lemma conspires with the previous display to imply that inf(P®r Q) =
inf(P) + inf(Q); see [9, (7.28)].

The following technical lemma about power series is used in the proofs
of Theorem 4.8 and Corollary 4.10.
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Lemma 2.12. Let Q(t) = Y 2 rit" be a power series with nonnegative
integer coefficients, and assume ro > 0. If either Q(t)* + Q(—t?) or
Q(t)? — Q(—t?) is a non-negative integer, then r; = 0, for all i > 0.
Furthermore,
(a) Q(t)* +Q(—1?) #
(b) if Q(1)* - Q(~ 752) — 0, then Q(t) =
(c) if Q(t)? + Q(—t%) = 2, then Q(t) = 1, and
(d) i Q(t)? — Q(—t%) =2, then Q(t) = 2.

Proof. We begin by showing that r, = 0, for each n > 1, by induction
on n. The coefficients of Q(—t2) in odd degree are all 0. Hence, the
degree 1 coefficient of Q(t)? £ Q(—t?) is

0 =rirg + 1071 = 27170
It follows that 1 = 0, since r¢ > 0. Inductively, assume that n > 1 and

that r; = 0, for each ¢ = 1,...,n. Since the degree n 4+ 1 coefficient of
QR (—t?) is either irn+1 (when n+1 is even) or 0 (when n+ 1 is odd),

the induction hypothems implies that this coefficient is 0. The degree
n + 1 coefficient of Q(t)? + Q(—t?) is
0=rpp1r0 + 701+ -+ 7170 +10"n+1 = 2rn4170
=0

and so r,4+1 = 0.

The previous paragraph shows that Q(t) = ro, so Q(t)? £ Q(—t?) =
72 F ro. The conclusions (a)—(d) follow readily, using the assumption
ro > 0. O

3. Definition and Basic Properties of 5%(X)

We begin this section with the definition of the second symmetric
power of a complex. It is constructed based on the definition for modules.

Definition 3.1. Let X be an R-complex and let aX: XorX —» X@pX
be the morphism described on generators by the formula

@ o — (- @ .
The weak second symmetric power of X is s%(X) := Coker(aX). The
second symmetric power of X is S%(X) := sh(X)/(x @z | |z is odd).
For each i € Z, let w;X: s%(X); — S%(X); be the natural surjection.
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Remark 3.2. Let X be an R-complex. Since s%(X) is defined as a
cokernel of a morphism, it is an R-complex. Also, for each n € Z and
x € Xopt1, one has

X@rX
8471%12{ (r@z)= afnﬂ(aﬁﬂ(l’) ® ).

It follows that S%(X) is an R-complex, and that the sequence {w;*}
describes a morphism w¥ : s%(X) — S%(X).

Here are computations for later use. Section 5 contains more involved
examples.

Example 3.3. If M is an R-module, then computing S%(M) and s%(M)
as complezes (considering M as a complex concentrated in degree 0) and
computing S%(M) as a module give the same result. In particular, we
have S%(0) = 0 = s%(0) and S%(R) = R = s%(R).

Example 3.4. For 0 # z,y € ¥R, we have o™ (2 @y) = 2@y +y@ .

Hence, the natural tensor-cancellation isomorphism RRpr R SR yields
the vertical isomorphisms in the following commutative diagram:

TR IR

(ZR) ®r (LR) “— (LR) ®g (LR) — s}(IR)

R

2R ® 2R Y2R/(2)

It follows that s%(ER) = ¥2R/(2).

By definition, the kernel of the natural map w” : s%(X) — Sk(X) is
generated by 1® 1 € sL(ER)2. Since we have By (@) =1, it follows
that S%(ZR) = 0.

More generally, for each integer n we have s%,(E*" 1 R) = £ 2R /(2)
and S%(E*" L R) = 0. In particular, if 2R # 0, then

S%{(Zgn—HR) ~ z4n+2R/(2) ¢ z4n+2R o~ Z4n+25%{(R).

Contrast this with the behavior of s%(X?"X) and S%(X?"X) documented
in (3.5.2).

The following properties are straightforward to verify and will be used
frequently in the sequel.
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Properties 3.5. Let X be an R-complex.
3.5.1. If 2 is a unit in R, then the natural morphism w*: s%(X) —

S%,(X) is an isomorphism, and the morphism 1a¥ is idempotent.
R 2

3.5.2. For each integer n, there is a commutative diagram

2n
Q= "X

(X2 X) ®p (LX) = (2*'X) ®p (X" X)

s |

TIN(X @ X) 0 (X g X)

with f(z ® y) = 2 ® y. The resulting isomorphism of cokernels yields an
isomorphism

B: sH(ZX) S £3,(X)
given by B (z @ y) = 7 ®@ y. In particular, the equality B (z7®z) =7 ® =

implies that 3 induces an isomorphism

SH(X*X) = ¥4s%(X).

3.5.3. There is an exact sequence

X jX aX pX
0— Ker(a®) 7= X ®9r X 2= X 9r X T s%(X) — 0,

where, jX and p¥X are the natural injection and surjection, respectively.

3.5.4. A morphism of complexes f: X — Y yields a commutative dia-
gram of morphisms

XX - X@pX
f®Rfl J/f@Rf
YopY -~ =Y @Y.

Hence, the morphism f ®p f induces a well-defined morphism on coker-
nels s%(f): s%(X) — s%(Y), given by s%4(f) (z ®y) = f(z) @ f(y). The
equality s%(f) (z®x) = f(x) ® f(x) shows that s%(f) induces a well-
defined morphism S%(f): S%(X) — S%(Y), given by S%(f) (z®y) =
f(z) @ f(y). From the definition, one sees that the operators s%(—) and
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S%(—) are functorial, but Example 5.7 shows that they are not additive,
as one might expect.

The next two results show that the functors s%(—) and S%(—) interact
well with basic constructions.

Proposition 3.6. Let X be an R-complex.

(a) Given a ring homomorphism ¢: R — S, there are isomorphisms
of S-complezes s%(S ®r X) = S ®p sh(X) and S%(S ®r X) =
S ®r S%(X).

(b) If p C R is a prime ideal, then there are isomorphisms of Ry-
complexes S%zp (Xp) &2 s%(X)p and S%p (Xp) & SH(X),.

Proof. (a) The vertical isomorphisms in the following commutative dia-
gram are given by S((s @ 2) ® (t®@y)) = (st) @ (x ® y):

RRpX

(S ®r X) s (S ©r X) —2 (S @r X) ®s5 (S @ X)

glg glﬁ

S aX
S &g (X @ X) or S &g (X @p X).

This diagram yields the first isomorphism in the next sequence. The
second isomorphism is due to the right-exactness of S ®pr —, and the
equalities are by definition,

s2(S @r X) = Coker(a”®rX) 2 Coker(S @ a™)
>~ S @p Coker(a™) = S ®p sh(X).

By definition, the induced isomorphism 3: s%(S ®g X) = Son s%(X)
is given by 3 ((s ®Rx)® (t® y)) = (st) @ (z®y).

Let Y C s%(S ®r X) be the S-submodule generated by elements of
the form v ® u such that © € S ®r X has an odd degree. That is,
Y = Ker(w”®X) where w®X : s3(S®gr X) — S%(S®pg X) is the natural
surjection. It is straightforward to show that Y is generated over S by
all elements of the form (1 ® z) ® (1 ® z).

Let Z C s%(X) be the R-submodule generated by elements of the form
x ® x with z € X of odd degree. That is, we have an exact sequence of
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R-morphisms
2 w¥, @2
0—Z — sp(X) — SR(X) —0.
Tensoring with S yields the next exact sequence of S-morphisms:

UJX
S@rZ - S@psh(X) 228 S @R SE(X) — 0

and it follows that Ker(S ®r w®) is generated over S by all elements
of the form 1® (x ® x) with x € X of odd degree. Thus, the equal-

ity B ((1 ) (1® :L“)) = 1® (x ®x) shows that 3 induces an S-

isomorphism S%(S ®p X) = S @r SH(X).
(b) This follows from part (a) using the natural map R — R,. O

Proposition 3.7. If X and Y are R-complexes, then there are isomor-
phisms

(3.7.1) sH(X@Y)=L(X)® (X QrY)®sa(Y)

72) SH(X@Y)=ZSH(X) (X ®rY)®S%(Y).

Proof. (3.7.1) Tensor-distribution yields the horizontal isomorphisms in
the following commutative diagram:

1R

(XeY)(XaY)— (X X)eXeY)eYX)e (Y®Y)

a(f 'dO 90 8

dxgy —0fyx

XaY

aX® 0 —Oxy idygx O
0 0 0 af

o

XaY)e(XaY)— XeX)o(XeY)a(YeoX) e (YY),

where, Oyy: U ®r V — V ®g U is the tensor-commutativity isomor-
phism given by u ® v — (—=1)I“I!ly @ w. This diagram yields the first
isomorphism in the following sequence, while the first equality is by
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definition,
s%(X @Y) = Coker(a™®Y)
%0 idxopy —trx 0
~ idxgry —fvx
= Coker 0 —fxy idyg,x 0
0 0 0 oY

=~ Coker(a™) & Coker (idX®RY orx ) @ Coker(a¥)

—Oxy idyggpx
>3 (X)® (X rY) ®sh(Y).

The second isomorphism is by elementary linear algebra. For the third

~

isomorphism, using the definition of s%(—), we need to prove Coker(3) =
X ®r Y, where,

8= (idX®RY —Oyx ) . (X@RY)@(Y@)RX) — (X@RY)@(Y@)RX)

—Oxy idygpx

We set
v=(dxgry Ovx,): (X QrY)® (Y rX) > X®RrY,

which is a surjective morphism such that Im(8) C Ker(). Thus, there
is a well-defined surjective morphism 7: Coker(5) — X ®p Y, given by

® / !
(jau) maey+ (D Ma 0y,

It remains to show that 7 is injective. To this end, define 6: X rY —
Coker(3) by the formula z ® y — (z%y). It is straightforward to show
that 4 is a well-defined morphism and that 65 = idgeker(g)- It follows
that % is injective, hence an isomorphism, as desired.

(3.7.2) The isomorphism B: s%(X @Y) = sH(X)B(X@rY)@sh(Y)
from part (3.7.1) is given by the formula

B ((%y) ® (30'721/)) = (x@x’,x @y + (1)1l ®y,m) )

Thus, for an element (z,y) € X @Y of odd order |z| = |(z,y)| = |y|, we
have

5 ((w,y)®(w,y)) = ($®x,:ﬂ®y+(—1)'$"y':ﬂ®y,y®y)
=TRrrzRYy—z0yY,ydyY)
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It follows that
sH(X) @ (X @rY) @ sh(Y)

2 ~
XpY)
SrX @ Y) ((z®2,0,yRy)|z € X and y € Y have odd degree)
~ S%%(X) (X QR Y)
- {(r®7z|z € X odd degree) 0
sp(Y)

(y®y|ly € Y odd degree)
= SH(X) @ (X @rY) @ SE(Y),

as desired. O

Example 3.4 shows why we need to assume that 2 is a unit in R in
the next result.

Proposition 3.8. Assume that 2 is a unit in R, and let X be an R-
complex.

(a) The following exact sequences are split exact:
- X X
0 — Ker(a™) 25 X @ X L5 Im(e™) = 0

xy X 2
0—Im(a®) — X ®@p X — SH(X) — 0,

where, i* and X are the natural inclusions, p~ is the natural
surjection, and ¢ is induced by aX. The splitting on the right
of the first sequence is given by %iX, and the splitting on the left
of the second sequence is given by %qX. In particular, there are
isomorphisms

Im(a™) @ Ker(a™) 2 X @p X = Im(a™) @ S%(X).

(b) If X is a bounded-below complex of projective R-modules, then so
are the complezes Im(a”), Ker(a™) and S%(X).

Proof. (a) The given exact sequences come from Properties (3.5.1) and
(3.5.3). The fact that %aX is idempotent tells us that i* is a split
injection with splitting given by %qX and ¢~ is a split surjection with
splitting given by %iX . The desired isomorphisms follow immediately
from the splitting of the sequences.

(b) With the isomorphisms from part (a), the fact that X ®p X is a
bounded-below complex of projective R-modules implies that Im(aX )

)
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Ker(a) and S%(X) are also bounded-below complexes of projective
R-modules. O

The next two results explicitly describe the modules in s%(X) and
S%(X). Note that the difference between parts (a)-(b) and part (c)
shows that the behavior documented in Example 3.4 is, in a sense, the
norm, not the exception.

Theorem 3.9. Let X be a complex of R-modules. Fiz an integer n and
seth=n/2 andV =@, 1,(Xin @ Xn_m).
(a) If n is odd, then sh(X), = V.
(b) If n =0 (mod 4), then s%(X)n =V P S%(X3).
(c) Assume that n =2 (mod 4).
(cl) There is an isomorphism
Xn ®r Xp

2
X)n=2V
Sh(Xn ®(x®x’+x’®x\x,x’€Xh>

and there is a surjection T: s%(X), — V & A2(Xp) with
Ker(t) generated by {x @ x € sH(X), | v € Xp}.
(c2) If X, is projective, then s%(X), = VA (X)) DK, for
some R-module K that is a homomorphic image of Xp,/2X},.
(¢3) If Xy, is projective and 2 is a unit in R, then s%(X), =
VP A2(Xp).

Proof. (a) Assume that n is odd. Let v: (X ® X),, — V & V be given
on generators by the formula

(x@a',0), if |z] <h
®') =
Wrew) {(O,x’ ® ), if |z > h.
Since n is odd, this is a well-defined isomorphism. Let g: V@V — VoV
be given by g(v,v") = (v—v',v'—v). This yields a commutative diagram

X

(3.9.1) (X ®g X)p —= (X @p X)n
gly gly
g

VeVv VeV

Note that the commutativity depends on the fact that n is odd, because
it implies that |z||2’| is even for each z ® 2’ € (X Qr X)p.
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The map f: V&V — V given by f(v,v') = v+ v is a surjective
homomorphism with Ker(f) = ((v,0) — (0,v) | v € V) = Im(g). This
explains the last isomorphism in the next sequence:

s%(X ), = Coker(a;y) = Coker(g) = V.
The other isomorphism follows from diagram (3.9.1).
(b)—(c) When n is even, we have a similar commutative diagram:

an

(3.9.2) (X ®r X)n (X @R X)n

| |
VaVe(X,oX,) —2=VaVae (X, X)),
where, 7/ and ¢’ are given by
(z®a,0,0) if [z] <h
Y(x@a') =14 (0,2 ®x,0) if |[z| > h
0,0,z @) if |x| = h.
g v zer)=@w-1v-vror - (—1)h2x’ ® x)
=@w—v, v —vzezr - (-1 @ ).
In other words, we have ¢ = g ® &, where, a: X;, @r X — X) @r X),
is given by
drer) =z02 — (-1’ .
The following sequence of isomorphisms follows directly:
s%(X),, = Coker(a;X) = Coker(g')
=~ Coker(g) @ Coker(a) = V @ Coker(a).
If n =0 (mod 4), then h is even, and so we have
XnL Qr Xp
(x@2 —2r'@x|x,2" € Xp)

1

Coker(a) = S%(Xp).

For the remainder of the proof, we assume that n =2 (mod 4), that is,
that h is odd. In this case, we have

Xp ®@r Xp,
(@2 +2 Qx| x,2 € Xp)

(3.9.3) Coker(ar) =

It is straightforward to show that
(rer'+2r@x|z,2 € Xp) Cz@z|ze Xy).



Second symmetric powers of chain complexes 53

Hence, there is an epimorphism

: Cok — = AY(X
71 Coker(a) (r@x|xeXp) (Xn)
such that
(3.9.4) Ker(r1) = (zx®x € Coker(a) | z € Xp,)

~a®zCsh(X)n |z Xp).

The conclusions of part (c1) follow from setting 7 = idy @7y.

For the rest of the proof, we assume that X}, is projective. It follows
that A%(X},) is also projective, and hence the surjection 7 splits. Setting
K = Ker(71), we have s%(X), = V @ A?(X;,)@K. Using (3.9.3) and (3),
we see that the map 7: X;, — Ker(m), given by  — x ® z, is surjective
with 2X;, C Ker(r). It follows that K is a homomorphic image of
Xn/2X}, which establishes part (c2). Finally, part (c3) follows directly
from (c2): if 2 is a unit in R, then X} /2X} = 0. O

Theorem 3.10. Let X be a complexr of R-modules. Fix an integer n
and set h =n/2 and V = @, .,(Xm @ Xnm).

(a) If n is odd, then S%H(X), = V.

(b) If n =0 (mod 4), then S%(X), 2V @ S%(Xp).

(c) If n=2 (mod 4), then S%(X), =V P A*(Xp).

Proof. Set Y = (z®x € s%(X)’ z € X odd degree) C s%(X).
(a)-(b) If n is odd or n =0 (mod 4), then Y;, = 0; hence, S%(X), &
$%(X)n, and the desired conclusions follow from Theorem 3.9(a)—(b).
(c) Assume that n =2 (mod 4). The epimorphism 7: s%(X),, — V &
A?(X},) from Theorem 3.9(c1) has Ker(7) = (z @z € s%(X), | € Xp);
that is, Ker(7) =Y, and so we have

V@ /\Q(Xh) = S%%(X)n/yn = S%%(X)m

as desired. O

We state the next result for S%(X) only, because Theorem 3.9 shows
that it is only reasonable to consider such formulas for s%(X), when 2 is a
unit; in this case, the formulas are the same because of the isomorphism
sH(X) = S%(X).
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Corollary 3.11. Let X be a bounded-below complex of finite rank free R-
modules. For each integer l, set r; = rankg(X;). Then, each R-module
S%(X)y, is free and

Z 'mTn—m, if n is odd
m<h
rank((SL(X)n) = 4 (") + D rmfa—m, ifn=0 (mod4)
m<h
(3) + Z T'mTn—m; ifn=2 (mod 4).
m<h

Proof. Using the notation of Theorem 3.10, we have

o ) @1 )

m<h m<h m<h

and, when n is even,

S%(Xh) o SQR(RT’L) o R(Thzﬂ) /\Q(Xh) o /\Q(R?“h) o~ R(rgh).
The desired formula now follows from Theorem 3.10. O

Remark 3.12. There are several ways to present the formula in Corol-
lary 3.11. One other way to write it is the following:
srankp (X ®g X)), if n is odd
rankz ((S%(X)n) = srankp((X ®g X),) + 47, ifn=0 (mod 4)
srankr((X ®g X)p) — 375, ifn=2 (mod 4).
Another way is in terms of generating functions: for a complex Y of free
R-modules, set Pf(t) =3 rankg(Y;)t". Note that this is not usually

the same as the Poincaré series of Y. It is the same if and only if R is
local and Y is minimal. Using the previous display, we can then write:

(3121)P (1) = § [PE, x(t) + P}}(—ﬂ)} = L [PE(t)2 + PE(—1?)] .

We make use of this expression several times in what follows.
4. Homological Properties of S%(X)

This section documents the homological and homotopical aspects of
the functor S%(—). It also contains our proof of Theorem A from the
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introduction. We assume throughout this section that 2 is a unit in R,
and it follows that S%(X) = s%(X) via the natural map for all X.

We begin with the following result showing that S%(X) exhibits prop-
erties similar to those for X ®gr X, noted as in Fact 2.11. Exam-
ple 3.4 shows what goes wrong in part (b) when inf(X) is odd: we
have S%(XR) = 0, so inf(S%(XR)) = co > 2 = 2inf(XR). Note that we
do not need R to be local in either part of this result.

Proposition 4.1. Assume that 2 is a unit in R and let X be a bounded-
below complex of projective R-modules with i = inf(X).

(a) There is an inequality inf(S%(X)) > 2i, and there is an isomor-
phism
H (S3(X)) = S%(HZ();'I)),X . if i is even,
AR i(X) ® Hi(X) , if i is odd.
(roy+yor|ryeHi(X))

(b) Assume that R is noetherian and that H;(X) is finitely generated.
If i is even, then inf(S%(X)) = 2i.
Proof. (a) Proposition 3.8(b) yields an isomorphism:
Im(aX) @ S%(X) = X @p X.
This isomorphism yields the first inequality in the next sequence
inf(S%(X)) > inf(X ®r X) > 2i,

while the second inequality is from Fact 2.11.
The split exact sequences from Proposition 3.8(a) fit together in the
following commutative diagram:

xy 4% a~ X
0 Ker(a®) — X ®r X ——=Im(a”) ——0
qxl \ iix
. X
(4.1.1) 0 Im(eX) —== X ®p X 2= S2(X) —= 0.

Define &: H;(X) ®g H;(X) — H;(X) ®g H;(X) by the formula

TRr TR - (-1) 7eT=207 — (-1)7 9.
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It is straightforward to show that the following diagram commutes:

Ha; ()

uiv ) vlu

H;(X) ©p Hi(X) —= H;(X) ®r Hi(X),

where, the isomorphism 7 is from Fact 2.11. Together, diagrams (77?)
and (4.1.2) yield the next commutative diagram:

(X —1
H;(X) ® Hy(X) Hai(q™ )y

Ha; (Im(a™X)) 0
lVHzi(ix)

H;(X) ® H;(X)

lei(qX)v‘l <

(X i X\,—1
Fo; (Tm(a)) ¥ Hai (i) Hai(p™ )y

Hai (S%(X)) =0,

whose rows are exact because the rows of diagram (?7?) are split exact.
A straightforward diagram-chase yields the equality
Ker(Ha; (p*X)y~!) = Im(a), and so
H;(X) ®@r Hi(X)
Im(a)
S%(Hi(X)), if 7 is even
(X) ® Hi(X) , if 7 is odd.

(r@y+y®z|zyeHi(X))

(b) Using part (a), it suffices to to show that S%(H;(X)) # 0, where
i = inf(X). Fix a maximal ideal m € Suppg(H;(X)), and set k = R/m.
Using the isomorphisms

E@rH;i(X) = (k®g, Rm) @rHi(X) 2 k®p, Hi(X)n = kg, Hi(Xn),

Nakayama’s Lemma implies that k@ H;(X) is a nonzero k-vector space
of finite rank, say k ®r H;(X) = k". In the following sequence, the
first and third isomorphisms are well-known; see, e.g., [7, (A2.2.b) and
(A2.3.0)]:

12

Hy;(SH(X))

1

r+1
k@ SHH(X)) = SF(k o Hi(X)) = SP(E") = k=1 20,
It follows that S%(H;(X)) # 0, as desired. O

The next result establishes the homotopy-theoretic properties of the
functor S%(—). Example 5.6 shows that conclusion fails when 2 is not
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a unit in R. Note that we cannot reduce part (a) to the case g = 0 by
replacing f by f — g, as Example 5.7 shows that S%(f — g) might not

equal S%(f) — S%(9)-

Theorem 4.2. Assume that 2 is a unit in R, and let X and Y be
R-complexes. Fix morphisms f,g: X - Y andh: Y — X.
(a) If f and g are homotopic, then S%(f) and S%(g) are homotopic.
(b) If f is a homotopy equivalence with homotopy inverse h, then
S%(f) is a homotopy equivalence with homotopy inverse S%(h).

Proof. (a) Fix a homotopy s from f to g as in Definition 2.3. Define
f@rs+s®rg={(f®rs+5QrGIn: (X O X)n = (Y @ Y)nt1}
9®rs+5Or f={(gOrs+5OR ln: (X Or X)n = (Y ®rY)n41}
on each generator z ® 2’ € (X ®pr X), by the formulas
(f ®rs+s@r gn(z @ 12') == (=1)F f(z) @ 54(2") + 8p(2) ® gy(2')
(9®r s+ 5@k fln(z @) = (=1)Pgy(2) ® s¢(2’) + sp(x) @ fo(2'),

where, p = |z| and ¢ = |2/|. One checks readily that the sequences
fRrs+s®rg and g ®r s + s ®r [ are homotopies from f Qg f to
g ®prg. As 2 is a unit in R, it follows that the sequence

c=3(fR®rs+s@rg+g®rs+s®r [)

is also a homotopy from f ®g f to g ®gr g. It is straightforward to show
that o, = ) 4100, for all n. Using the fact that o is a homotopy from
f®Rr f to g®ryg, it is thus straightforward to show that ¢ induces a ho-
motopy & from S%(f) to S%(g) by the formula 7, (z ® 2) = oy (z ® ).

(b) By hypothesis, the composition Af is homotopic to idx. Part (a)
implies that S%(hf) = S%(h)S%(f) is homotopic to S%(idx) = idg2 (x)-
The same logic implies that S%(f)S%(h) is homotopic to idsi (v, and
hence the desired conclusions are reached. O

For the next results, Examples 5.5 and 5.6 show why we need to
assume that X and Y are bounded-below complexes of projective R-
modules and 2 is a unit in R.

Corollary 4.3. Assume that 2 is a unit in R, and let X and Y be
bounded-below complexes of projective R-modules.
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(a) If f: X =Y is a quasiisomorphism, then so is S%(f): S%(X) —
ShR(Y).
(b) If X =Y, then S%(X) ~ S%4(Y).

Proof. (a) Our assumptions imply that f is a homotopy equivalence by
Fact 2.5, so the desired conclusion follows from Theorem 4.2(b).

(b) Assume X ~ Y. Because X and Y are bounded-below complexes
of projective R-modules, there is a quasiisomorphism f: X = Y. Now,
apply part (a). O

Corollary 4.4. If 2 is a unit in R and X is a bounded-below complex
of projective R-modules, then there is a containment Suppg(S%(X)) C

Suppg (X ) .

Proof. Fix a prime ideal p ¢ Suppp(X). It suffices to show that p ¢
Suppr(S%(X)). The first isomorphism in the following sequence is from
Proposition 3.6(b):

SR(X)p 2 Sk, (Xp) ~ 8,(0) =0.

The quasiisomorphism is from Corollary 4.3(b), because X, ~ 0. g

The following result is a key for our proof of Theorem A.

Theorem 4.5. Assume that R is noetherian and local and that 2 is
a unit in R. Let X be a bounded-below complex of finite-rank free R-
modules. The following conditions are equivalent:

(i) the surjection pX: X @r X — S%(X) is a quasiisomorphism;
(ii) Tm(a™) =~ 0;

(iii) the injection ;% : Ker(aX) — X ®r X is a quasiisomorphism;
(iv) either X ~0 or X ~ Y2"R, for some integer n.

Proof. (i) The biimplications (i) <= (ii) <= (iii) follow easily from
the long exact sequences associated with the exact sequences in Propo-
sition 3.8(a).

(iv) = (i). If X ~ 0, then X ®g X ~ 0 ~ S%(X) and so p*
trivially a quasiisomorphism; see Fact 2.11 and Example 3.3.
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Assuming that X ~ Y2"R, there is a quasiisomorphism ~: R =
Y 2mX. The commutative diagrams from (3.5.2) and (3.5.4) can be
combined and augmented to form the following commutative diagram:

aft ph 2
R®R R®R S%(R) —= 0

[~23

:lw@’y ;Vl’\/@ﬁ :lSQ(ry)
y—2nx s—2n x

(Z72X) @ (Z72X ) (Z72"X) ® (E72"X) —= S{(Z2"X) -0

| |

_in TongX D A
Y N(X ®X) YN X ® X) YInS%(X) = 0.

The morphism v ® v is a quasiisomorphism by Fact 2.11, and S?(v) is a
quasiisomorphism by Corollary 4.3(a). One checks readily that off = 0,
and so p® is an isomorphism. The diagram shows that pz_an is a
quasiisomorphism, and hence so is £~ 4"pX. It follows that p¥ is a
quasiisomorphism, as desired.

(i) = (iv). Assume that the surjection p¥: X @ X — S%(X) is a
quasiisomorphism and X 2 0.

Case 1: X is minimal. This implies that X ®z X is minimal. Also,
since S%(X) is a direct summand of X ®g X, it follows that S%(X) is
also minimal. The fact that p¥X is a quasiisomorphism implies that it is
an isomorphism; see Fact 2.9. This explains the second equality in the
next sequence:

PR( = Py, x (1) = PI (1) = § [PR()? + PE(-12)].
The third equality is from equation (3.12). It follows that
(4.5.1) PR(t)? = PE(—t%).

Let ¢ = inf(X) and note that r; > 1. Set r, = rankR(Xn_i), for each n,
and Q(t) = >°°0 ; rp44t™, so that we have PE(t) = t'Q(t). Equation (4)
then reads as t2Q(t)? = (—1)t*Q(—t?), that is, we have

(4.5.2) Q(t)* — (=1)'Q(—t*) = 0.

If i were odd, then this would say Q(t)? + Q(—t%) = 0, contradicting
Lemma 2.12(a). It follows that i = 2n, for some n. Equation (4) then
says Q(t)? — Q(—t?) = 0, and so Lemma 2.12(b) implies that Q(¢) = 1.
This says that PE(t) = ¢! = 2", and so X = ¥?"R, as desired.
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Case 2: the general case. Let §: P = X be a minimal free resolution.
We again augment the commutative diagram from (3.5.4):

of pF 2
PorP—>PopP-—L>8%(P)—=0

:la&s :lé@é :J{SQ(é)
aX X 2
XOrX *>X®rX ——=SH(X) —=0.

This implies that p is a quasiisomorphism. Since P is minimal, Case
1 implies that either P ~ 0 or P ~ ¥2"R, for some integer n. Since we
have X ~ P, the desired conclusion follows. O

Remark 4.6. One can remove the local assumption and change the
word “free” to “projective” in Theorem 4.5, if one replaces condition (iv)
with the following condition: (iv’) for every maximal ideal m C R, one
has either Xy ~ 0 or Xy ~ Y2"Ry,, for some integer n. (Here, the
integer n depends on the choice of m.) While this gives the illusion
of greater generality, this version is equivalent to Theorem 4.5 because
each of the conditions (i)—(iii) and (iv’) is local. Hence, we state only the
local versions of our results, with the knowledge that nonlocal versions
are direct consequences. On the other hand, Example 5.8 shows that
one needs to take care when removing the local hypotheses from our
results.

We next show how Theorem A is a consequence of Theorem 4.5.

4.7. Proof of Theorem A. The assumption X, ~ S, # 0, for each p €

Ass(R), implies X 2 0 and inf(X) < inf(X,) = 0. On the other hand,

since X;, = 0, for all n < 0, we know inf(X) > 0, and so inf(X) = 0.
Consider the split exact sequence from Proposition 3.8(a):

. X
(4.7.1) 0= Im(a¥) 5 X @5 X 255 S3(X) = 0.

This sequence splits, and so H, (Im(a¥)) — H,(X ®g X), for each n;
hence,

(4.7.2) Assp(H,(Im(a™))) C Assp(H,(X ®5 X)) C Ass(R).
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For each p € Ass(R), localization of (4.7) yields the exactness of the
rows of the following commutative diagram; see also Proposition 3.6(b):
- X X
0—=Tm(a¥), 2 (X @5 X)p L $2(X), —0

L

0 —— Im(a?) —= X; w5, X, - 5, (Xy) — 0
The quasiisomorphism X, ~ S, implies that pX» is also a quasiisomor-
phism by Theorem 4.5, and so the previous sequence implies Im(aX )p =
Im(aX?) ~ 0, for each p € Ass(R). For each n and p, this implies
H,,(Im(a*)), = H,(Im(a®),) = 0; the containment in (4.7) implies
H,,(Im(aX)) = 0, for each n, that is, Im(a”™) ~ 0. Hence, Theorem 4.5
implies X ~ S. O

The next result is a companion to Theorem 4.5.

Theorem 4.8. Assume that R is noetherian and local, and that 2 is
a unit in R. Let X be a bounded-below complex of finite rank free R-
modules. The followmg conditions are equivalent:

(i) the morphism o : X @p X — X ®R X is a quasiisomorphism;
(ii) the surjection qX X @r X — Im(a ) s a quasiisomorphism;
(iii) the injection i%: Im(aX) = X ®p X is a quasiisomorphism;
(iv) S3(Y) ~0;
V) Ker( XY ~0;
) X

(vi ~ 0 or X ~ X2"1R, for some integer n.

Proof. The biimplications (ii) <= (v) and (iii) <= (iv) follow easily
from the long exact sequences associated with the exact sequences in
Proposition 3.8(a).

For the remainder of the proof, we use the easily verified fact that
the exact sequences from Proposition 3.8(a) fit together in the following
commutative diagram:

xy ¥ a* b's
Ker(a®) — X @p X ——Im(a™*) ——0

Iy

(4.8.1) 0———Im(e®) > X 9p X -—S2(X) —=0

0
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and we recall that these exact sequences split.

(i) = (iv). Assume that o is a quasiisomorphism.

Case 1: X is minimal. In this case, the complex X ®p X is minimal,
and so the fact that o is a quasiisomorphism implies that oX is an
isomorphism; see Fact 2.9. Hence, we have S%(X) = Coker(a) = 0.

Case 2: the general case. Let f: P = X be a minimal free resolution.
The commutative diagram from (3.5.4),

p@RpLP)p(ng
f®Rfl’: f®Rfl’:
X®RXL§>X®RX

shows that o is a quasiisomorphism; see Fact 2.11. Using Corol-
lary 4.3(a), Case 1 implies that S%(X) ~ S%(P) = 0.
(iv) = (v) and (iv) = (i) and (iv) => (vi). Assume S%(X) =~ 0.
Case 1: X is minimal. In this case, X ®pr X is also minimal. The
bottom row of (4) is split exact, and so this implies that S%(X) is also
minimal. Hence, the condition S%(X) ~ 0 implies that S%(X) = 0.
Hence, the following sequence is split exact:

¥ x
0 — Ker(a™) I XopX £ X@p X — 0.
Since each R-module Ker(aX), is free of finite rank, the additivity of
rank implies that Ker(aX), = 0, for all n, that is, Ker(aX) = 0. The
displayed sequence then shows that o is an isomorphism.

Assume for the rest of this case that X % 0 and set ¢ = inf(X). If 4
is even, then Proposition 4.1 implies that co = inf(S%(X)) = 2i < oo, a
contradiction. Thus, 7 is odd. As before, there is a formal power series
Q(t) = >, rit’ with nonnegative integer coefficients such that o # 0
and PR(t) = t'Q(t). Since S%(X) = 0, the following formal equalities
are from (3.12):

0= P () = & [PR(? + PR-)] = 1[0 - #Q(~2)]

It follows that Q(t)? — Q(—t?) = 0, and so Lemma 2.12(b) implies that
Q(t) = 1. This implies that PE(t) = ¢!, and so X ¥ T'R.

Case 2: the general case. Let f: P — X be a minimal free resolution.
Corollary 4.3 implies that S%(P) ~ S%(X) ~ 0, and so Case 1 also
implies that either X ~ P ~ 0 or X ~ P ~ ¥?"*! R for some integer n.
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Case 1 also implies that Ker(a”) = 0 and o is an isomorphism. The
commutative diagram from (3.5.4),

POrP - =PogP
f®Rfi2 f®R,fl2
XX - XopX

shows that o is a quasiisomorphism; see Fact 2.11. Since S%(X ) ~ 0,
the bottom row of (4) shows that i~ is a quasiisomorphism. Since aX
is also a quasiisomorphism, the commutativity of (4) shows that ¢
is a quasiisomorphism as well. Hence, the top row of (4) implies that
Ker(aX) ~ 0.

(v) = (iv). Argue as in the proof of the implication (iv) = (v).

(vi) = (iv). If X ~ 0, then S%(X) ~ S%(0) = 0 by Example 3.3
and Corollary 4.3(b). If X ~ ¥2"*!R for some integer n, then Corol-
lary 4.3(b) explains the first quasiisomorphism in the next sequence:

S%(X) ~ S%(X?" M R) ~ S%(Z?"(XR)) ~ X'"S%(XR) ~ 0.

The second quasiisomorphism is because of the isomorphism ¥ 2"t R =
Y 2"(LR); the third quasiisomorphism is from (3.5.2); and the last quasi-
isomorphism follows from Example 3.4. U

Corollary 4.9. Assume that R is noetherian and local, and that 2 is
a unit in R. Let X be a bounded-below complex of finite rank free R-
modules. The complex S%%(X) has finite projective dimension if and only
if X has finite projective dimension.

Proof. Assume first that pd(X) is finite, and let P =y X be a bounded
free resolution. It follows that P ®g P is a bounded complex of free
R-modules. Hence, the isomorphism P ®g P & S%(P) @ Im(a”) from
Proposition 3.8(b) implies that S%(P) is a bounded complex of free R-
modules. The quasiisomorphism S%(X) ~ S%(P) from Corollary 4.3(b)
implies that S%(X) has finite projective dimension.

For the converse, assume that X has infinite projective dimension. Let
P = X be a minimal free resolution, which is necessarily unbounded.
As noted previously, the fact that P is minimal implies that S%(P) =
S%(X) is a minimal free resolution, and so it suffices to show that S%(P)
is unbounded; see Fact 2.9.
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Set r, = rankg(P,), for each integer n. Since P is unbounded, we
know that, for each integer n, there exist integers p and ¢ such that
g > p > n and such that the free R-modules P, and P, are nonzero,
that is, such that rpry # 0. The inequality ¢ > p implies p < (p + ¢)/2.
For each n > 0, we then have p + ¢ > 2n and

rank g (S%(P)piq) = Z TmTptq—m = TpTq > 0.
m<(p+q)/2

The first inequality is from Corollary 3.11; the second inequality follows
from the inequality p < (p + ¢)/2; and the third inequality follows from
the assumption r,r, # 0. This shows that for each n > 0, there is an
integer m = p 4+ ¢ > n such that S%(P),, # 0. This means that S%(P)
is unbounded, as desired. ]

The final result of this section is a refinement of the previous result.
It characterizes the complexes X such that S%(X ) ~, YR, for some
integer j.

Corollary 4.10. Assume that R is noetherian and local, and that 2
is a unit in R. Let X be a bounded-below complex of finite rank free
R-modules. The folowing conditions are equivalent:

(i) X ~ X2"R, for somen, or X ~ (X2""1R)® (2™ R), for some
n and m;
(ii) S%(X) ~ IR, for some even integer j;
(iii) S%(X) ~ ¥R, for some integer j.

Proof. (i) = (ii). If X ~ ¥2"R, then we have
S2(X) ~ S%(L?"R) = ¥4"S%(R) =~ ¥4 R

by (3.5.2), Example 3.3 and Corollary 4.3(b). In the case when X o~
(Z2"H1R) @ (X?™F1R), Proposition 3.7 implies:

S%(X) ~ S%(z2n+1R) D [(22n+1R) ®R (ZQerlR)] D S%(z2m+lR)

Example 3.4 implies that the first and last summands on the right side
are 0, and so

S2(X) = $2H R g, T2 R o y2nH2mi2p

(ii) = (iii). This is trivial.
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(iii) = (i). Assume that S%(X) ~ ¥R, which implies that j =
inf(S%(X)). Use Corollary 4.3(b) to replace X with a minimal free
resolution in order to assume that X is minimal. As noted before, this
implies that S%(X) is minimal, and so the quasiisomorphism S%(X) ~
Y7 R implies S%(X) = %7 R; see Fact 2.9.

For each integer n, set 7, = rankr (X, ). Also, set i = inf(X), and note
that Proposition 4.1 implies that j > 2i. Write Q(t) = > .2 rn—it™;
this is a formal power series with nonnegative integer coefficients and
constant term r; > 1 such that PE(t) = ¢!Q(t). Since S%(X) & T/R,
equation (3.12) can be written as:

(4.10.1)

v= 3LEQU + (—Q=R)] = 37 [QUP + (~1Q(—#)]

Case 1: j = 2i. In this case, equation (4.10.1) reads as:
1 = 32 [Q(1)* + (-1)'Q(—17)]
and so 2 = Q(t)? + (—1)!Q(—t?). Lemma 2.12 implies that

1, if71is even
t) = ’
Q) {2, if 4 is odd.

When ¢ is even, this translates to P)Ig(t) =t andso X 2 Y'R =Y?"R,
where, n = i/2. When i is odd, we have PZ(t) = 2, and so X = ¥'R?
YR @ ¥R where, n = (i — 1)/2.

Case 2: j > 2i. In this case, Proposition 4.1 implies that ¢ is odd,
and equation (4.10.1) translates to:

(4.10.2) 2772 = Q(t)? — Q(—t?)
26972 = (1} — i) + 2riparit + (2riqori + i i)t

Since j > 2i, we equate coefficients in degree 0 to find 0 = 7“12 — 1y, and
so r; = 1. Thus, equation (4.2.10) reads as:

(4.10.3) 2697 = 2y it + (2riga + 17 i)+
We claim that j > 2¢ + 1. Indeed, supposing that j < 2i 4+ 1, our
assumption j > 2¢ implies j = 2¢ + 1. Equating degree 1 coefficients in
equation (4) yields 7,11 = 1. The coefficients in degree 2 show that
0 = 2riyor; + 7741 + Tig1 = 2rigs + 2.

Hence, r;y5 = —1, which is a contradiction.
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Since we have j > 2i + 1, the degree 1 coefficients in equation (4)
imply 7;41 = 0. It follows that
(4.10.4) X2Y'RAY,

where, Y is a bounded-below minimal complex of finitely generated
free R-modules such that Y,, = 0, for all n < ¢+ 2. With the isomor-
phism in (4), Proposition 3.7 gives the second isomorphism in the next
sequence:

SIR 2~ S%(X) 2 SR(Z'R) @ [(T'R) ©r Y] ® SH(Y) = TV @ S3(Y).

The final isomorphism comes from Example 3.4, since 7 is odd. In par-
ticular, it follows that Y % 0. The complex ¥R is indecomposable, be-
cause R is local, and so the displayed sequence implies that S%%(Y) =0
and £'Y ~ YIR. Because of the conditions S%(Y) = 0 and Y # 0,
Theorem 4.8 implies that Y ~ Y2+ R for some m. Hence, the isomor-
phism in (4) reads as X &2 Y"1 R @ Y2 IR where, n = (i — 1)/2, as
desired. g

5. Examples

We begin this section with three explicit computations of the com-
plexes S%(X) and s%(X) and their homologies. As a consequence, we
show that Buchbaum and Eisenbud’s construction differs from those
in [6, 11]. We also provide examples showing the need for certain hy-
potheses in the results of the previous sections.

Example 5.1. Fiz an element x € R and let K denote the Koszul
complex KT(x) which has the following form, where the basis is listed in
each degree:

K= 0=RY R S0
AN

el €o

The tensor product K @ g K has the form:

(5.1.1) K®rK = 0— R R? R —0.
~~ ~~ ~~
e1®eq eo®eq ep®en
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Using this representation, the exact sequence in (3.5.3) has the form:

K
0 ——=Ker(a®) —= K@p K > K®p K —=s%(K) —=0

0 0 0 0
0 —— Anng(2) R ® R R/(2) ——0
=z ‘. 0
" (1)( ) (—11_11)( ) (11) v
0 R ! R? R? R 0
(2z) (z ) (z ) ()
0 R (1) R (0) R 1) R 0
0 0 0 0

From the rightmost column of this diagram, we have
Hy(sk(K)) = R/(2) Hi(sk(K)) = Anng(z) Ho(sp(K)) = R/(x),

and H;(s%(K)) = 0, when i ¢ {0,1,2}.
A similar computation shows that

S2(K)= 0= RS R0,
and thus
H (SR(K)) = Anng(z), Ho(Sh(K)) = R/(x)

and H;(S%(K)) =0, when i ¢ {0,1}.

Example 5.2. Fiz elements x,y € R and let K denote the Koszul
complex KT (x, %) which has the following form, where the ordered basis

1s listed in each degree:
(%) o oy
(5.2.1) K= 0= R R? R —0.
~~ ~~ ~~

(D) €11 eo
€12

)




68 Frankild, Sather-Wagstaff and Taylor

Using the same format, the complex K ®r K has the form:
K®r K=

oK®ORK E®RK S ORK oK®RK
0— R - R? =2 RS =2 R 1 R0
~— ~— ~— ~—
ea®e2 ea2®e11 e2®eq e11®eg eo®ep
e2®ei12 e11®e11 e12®eq
e11®e2 e11®eia eo®er1
e12®e2 e12®er1 eo®er2
e12®e12
eo®ez
with differentials given by the following matrices:
z y 0 O
y y 0 -y 0
6K®RK— —x 8K®RK— 0 y = O
4 - Y 3 - -z 0 0 —y
- 0 -z 0 =z
0 0 = y
y —x—y 0 0 O
KQrK _ —x 0 0 —x -y O KQrK _
82 - 0 =z 0 y 0 y 81 _($ y x y)
0 0 = 0 y —=z

Under the same bases, the morphism o : KQrK — KQrK is described
by the following matrices:

1 0000 -1
10 -10 0 2000 0
oK = (0 1 01 ok = 001100
3 =1l -10 1 0 2 =1 001100
0 -10 1 00002 0
~10000 1
1 0 -10
K_{o0 1 0 -1 _ _ K
0‘1-(-1010) ay = (0) = ag
0 -10 1
As in Example 5.1, it follows that S%(K) has the form:
2 _
Sk(K) =
2 2 2 2
5SRO oSRU) PG 1
0— R R R R » R — 0
~— ~— ~—~ ~—~ ~—~~
fa f31 fa1 f11 fo
f32 fa2 f12
where the basis vectors are described as:
fa=e2®@e2 far=e2®@er = e @ e
fr2z=e2®en =e12® ez fai=e2®ep=eg@ ez
fr2 =e11 ®e2 = —ep®en fii=e11®ey =eg@en

fia =er2®ey = ey X ern fo=e0® eo.
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(Note also that e11 ® e11 = 0 = e12 ® e12.) Under these bases, the dif-

ferentials &SL%(K) are described by the following matrices:
(5.2.2)
82%(& _ (_ng) a??%(K) _ (= y)
Ty
S(K) y oy S%(K
%" :(—m :r> 81R( ):(5” v)-

Similar computations show that s%(K) = S%(K) & £%(R/(2))%.
Example 5.3. Let x,y € R be an R-regular sequence and continue

with the notation of Fxample 5.2. We verify the following isomorphisms:

Ho(SR(K))
H3(S%(K))

12

Hy(Sh(K)) = R/(z,y)  Hi(SR(K)) =0
)

1(S
R/(2 H, (S3(K)) = Amnp(2).

12

The computation of Ho(S%(K)) follows from the description ofBIS%‘(K)
in (5.2).

For Hi(S%(K)), the second equality in the following sequence comes
from the exactness of K in degree 1:

Ker (618%‘(1()) = Ker (0{() =Im (65)

— Spang { (_yw) } = 1m (95*)

and the others come from the descriptions of K and S%(K) in (5.2)
and (5.2).

For Hy(S%(K)), use the fact that x is R-regular to check the first
equality in the next display; the others follow from (5.2):

Ker (aSi%(K)) — Spang, { G) }
) (3 ) - ()

The isomorphism Ha(S%(K)) = R/(z,y) now follows.



70 Frankild, Sather-Wagstaff and Taylor

For H3(S%(K)), the second equality in the following sequence comes
from the exactness of K in degree 1:

Ker (agiz(m) = Ker (9{') = Im (95') = Spang, { <—yx> }

Im (ajf%(’()) — (2) Spany, { (_yx> }

and the others come from the descriptions of K and S%(K) in (5.2)
and (5.2). The isomorphism H3(S%(K)) = R/(2) now follows.
Similarly, for Hy(S%(K)), we have

H,(S%(K)) = Ker (af?%(m) = (Ker (0) : 2) = (0:5 2) = Anng(2).

This completes the example.

As a first consequence of the previous computations, we next observe
that S%(X) is generally not isomorphic to Dold and Puppe’s [6] con-
struction Dg2(X) and not isomorphic to Tchernev and Weyman’s [11]
construction Cg2(X).

Example 5.4. Assume that 2 is a unit in R. Fiz an element x € R
and let K denote the Koszul complexr KT(x). Ezample 5.1 yields the
following computation of SH(K):

S%(K) = 0 R—>R 0

D2 (K) = Cqe(K)= 0 R-—%R? R 0.

The fact that D2 (K) and Cs2(K') have the displayed form can be deduced
from 11, (11.2) and (14.4)]; the maps were computed for us by Tchernev.
In particular, in this case we have Dg2(K) = Cq2(K) % S%(K).
More generally, if we have
X= 0—=R"—=R"—0,
then Corollary 3.11 and [11, (11.2) and (14.4)] yield:

n+1

$2,(X)= 0—=R(%) Rmn r("D)

m—+1 n+1

D82(X) gCS2<X> = 04>Rm24>R( 2 )+mn4)R( 2 )HO
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Hence, we have Cg2(X) = S%(X) if and only if m = 0, i.e., if and only
if X = R,

We next show why we need to assume that X and Y are bounded-
below complexes of projective R-modules in Corollary 4.3. It also shows
that S%(X) can have nontrivial homology, even when X is a minimal
free resolution of a module of finite projective dimension.

Example 5.5. Let x,y € R be an R-reqular sequence and continue with
the notation of Example 5.2. The computations in FExample 5.3 show
that Hy(S%(K)) = R/(z,y) # 0 = Ha(S%(R/(x,y))), and so SH(K) #
S%(R/(z,y)) even though K ~ R/(z,y).

The next example shows why we need to assume that 2 is a unit in R
for Theorem 4.2 and Corollaries 4.3 and 4.4.

Example 5.6. Assume that 2 is not a unit in R and let K denote the
Koszul complex K%(1,1). Then, K is split exact, and so the zero map
z: K — K is a homotopy equivalence, it is homotopic to idg, and it is
a quasiisomorphism. Ezample 5.2 shows that H3(S%(K)) = R/(2) # 0.
On the other hand, the morhpism S%(z): S%(K) — S%(K) is the zero
morphism, and so the nonvanishing of Ha(S%(K)) implies that S%(z)
s not a quasiisomorphism. It follows that SQR(Z) 1s neither a homotopy
equivalence nor homotopic to idS%(K). This shows why we need to as-
sume that 2 is a unit in R for Theorem /.2 and Corollary 4.3(a). For
Corollary 4.3(b), simply note that K ~ 0 and S%(K) # 0 ~ S%(0).
For Corollary 4./, note that this shows that Suppp(SH(K)) # 0 =
Suppg(K).

Our next example shows that the functors s%(—) and S%(—) are not
additive, even when 2 is a unit in R and we restrict to bounded complexes
of finite rank free R-modules.

Example 5.7. Let X and Y be nonzero R-complexes. Consider the
natural surjections and injections:

XYy H XS Xay, XY BY 3 Xavy,

and set f; = ¢1: X @Y — X @Y. The equality fi + fo = idxgy is
immediate.
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We claim that s%(f1 + f2) # s%(f1) +s%(f2). To see this, first note
that the equalities s(f1 + f2) = sh(idxey) = ide (xey) show that it

suffices to verify sh(f1) + s%(f2) # idsi(x@y). One checks that there is
a commutative diagram:

IR

XoY)e(XaY) — (XeX)a(XeY)a(YeX)a (YY)
idxgx 000
f1®f1 ( 8 888)
000

(XaY)®(XaY) — (XoX)o(XeY)o (Y oX)a (YY),

wherein the horizontal maps are the natural distributivity isomorphisms.
The proof of Proposition 3.7 yields another commutative diagram:

(X BY) —=2(X) @ (X @rY) @ sL(Y)
ida ) 00
s?%(fl) ( Ié(X) 0 0)

S2(X @Y) — 3(X) @ (X @pY) @ s3(Y).
Similarly, there is another commutative diagram:

SHX DY) —=s3(X) & (X @p Y) @ sh(Y)

00 0
S%%(fé) <0 Oidw )

SHXPY) —=s5(X) D (X QpY)Bsi(Y).

This implies that s%(f1) + s%(f2) is equivalent to the morphism

idg (x) 0 0
0 Dy
1
sHOY) 9

SR(X)@(X@RY)Ssi(Y)  si(X) & (X@RY)Bsh(Y),
and so cannot equal idS%(X@y).

Similarly, we have S}(f1 + f2) = Sg(idxay) = idgs (xay) # S%(f1) +
Sh(f2).
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Our final example shows that one needs to be careful about removing
the local hypotheses from the results of Section 4. Specifically, it shows
that, without the local hypotheses, the implication (i) = (iv) fails in
Theorem 4.5.

Example 5.8. Let K and L be fields, and set R = K x L. The prime
ideals of R are all mazximal, and they are precisely the ideals m = K x 0
and n = 0 x L. Furthermore, we have Ry = L and R, = K. Assume
that char(K) # 2 and char(L) # 2, so that 2 is a unit in R.

First, consider the compler Y = (K x 0) @ £2(0 x L). Then, Y
1s a bounded-below complex of finitely generated projective R-modules
such that Yy = Y20 = Y2Ry and Yy =2 K =2 R,. Hence, Remark 4.6
implies that the surjection p¥ : Y QrY — S%(Y) is a quasiisomorphism.
Howewver, the fact thatY has nonzero homology in degrees 2 and 0 implies
that, Y %0 and Y % ¥R, for each integer t.

Next, we provide an example of a bounded-below complex X of finitely
generated free R-modules with the same behavior. The following complex
describes a free resolution F of K x 0:

SULCNY T IC AN G N AN C PN SN}

where, e = (1,0) € R and f = (0,1) € R. An R-free resolution G
for 0 x L is constructed similarly. The complex X = F ® Y2G yields
a degreewise-finite R-free resolution of g: X = Y. Corollary 4.3(a)
implies that S%(g) s a quasiisomorphism. Hence, the next commuta-
tive diagram shows that the surjection p~: X @p X — S%(X) is also a
quasiisomorphism:

X @r X e 82(X)
R

:lg@g :\LSQ(g)
py 2
Y®rY — SR(Y).

However, we have X ~ Y, and so X # 0 and X # Y*R, for each
integer t.
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