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CONVERGENCE OF PRODUCT INTEGRATION
METHOD APPLIED FOR NUMERICAL SOLUTION OF
LINEAR WEAKLY SINGULAR VOLTERRA SYSTEMS

B. BABAYAR-RAZLIGHI' 2, K. IVAZY2* AND M. R. MOKHTARZADEH?

Communicated by Mohammad Asadzadeh

ABSTRACT. We develop and apply the product integration method
to a large class of linear weakly singular Volterra systems. We show
that under certain sufficient conditions this method converges. Nu-
merical implementation of the method is illustrated by a benchmark
problem originated from heat conduction.

1. Introduction

Transformation of a differential system (such as heat conduction prob-
lem) to an equivalent system of integral equations is a powerful technique
for deducing the existence and uniqueness of the solution [2]. We begin
our study and the development of the product integration method from
an equivalent system of Volterra integral equations. To start, suppose
that a system of Volterra integral equations is given by

(1.1) U(t) = F(t) + /OtK(t, 7 U(r)dr, tel0,b],
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where, b > 0 and

(12)  U®) = (ut), - ua®)), F(t) = (fit), ... fa(t)",

(1.3) K(t,7,U(1)) == (k1(t, 7, U(7)), ..., ka(t, 7, U (T)))7,
(1.4)

/Ot K(t, 7 U(r))dr := (/t ki (t, 7. U(7))dr, ..., /t ka(t, 7, U(T))dT>T,

0 0

ui(t), fi(t), ki(t, 7,U(7)), for i = 1,2, ...,d, are real valued functions, and
each k; can be written as:

(1.5) ki(t, 7,U(T)) = pi(t, ) ki(t, 7, U(T)),

where, every /’;:VZ is continuous and every p; has one of the following form:

(1.6) p(t,T)=t—77% 0<a<l,
or
(1.7) p(t,7) =log|t — 7.

A special case is p = 1, whence there is no singularity.
2. Product Integration Technique

For simplicity suppose that all the p;, for ¢ = 1,...,d, are the same,
and consider the following form:

(2.1) U(t) = F(t) —I—/O p(t, 7)K(t, 7,U(T))dr, te€][0,b].

Further, suppose that all components of K are continuous. We introduce
N+1 grid points 0 < tg < t; < ... <ty < bin t. Our goal is to compute
U(t) at the grid points and the numerical approximation to U(t,) is
written as Uy. The basic point in the product integration technique
are:

(i) Sample the system of Volterra integral equations at points ¢,, in the
grid:

in
(2.2) U(ty) = F(tn) + /0 P(tn, 7)K (tn, 7, U(T))drT.
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(ii) Use the Lagrange interpolation polynomial

(2.3) Ln(K, tn;7) ZZNJ K (tn, tj, U(t)),

to approximate K (t,,7,U(7)) and obtain the following algorithm:
(2.4) U = F(ta) + > wjltn)K (ta, 1, UY),

where,

(2.5) wj(t) = /0 p(t, 7Yl 5 (7)dr

Solving the system (2.4), we obtain Uy (t) as a Nystrom approximation
for U(t):
N

(2.6) Un(t) = F(t) + Y wi(t)K(t, t;,UJ).
j=0

Note that U](\?) =Un(ty), for n =1,2,....d.

3. Convergence of Product Integration Technique

For convergence analysis, we examine the following linear test prob-
lem:

(3.1) U(t) = F(t) —i—/o p(t, 7)K(t, 7)U(T)dT,

where, K is a d x d matrix with continuous components k; ;,i,j €
{1,...,d}, and U(t) is the unknown vector, all components of vector
F(t) are continuous and p(¢,7) is defined as in (1.6).

For an arbitrary ¢ € [0, b], we can write

t N A
U(t)—UN(t):/p(t,T) )= S Kt t)in(r)UY | dr
0
Jj=0

= /Otp(tﬁ) -

N
Y (Kt mU(T) = K(t,t)U(t) Ing(7) | dr

Jj=0
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+/0p(t,7') 2 dr
(3.2) = tn(K,U,t) + Any(U — Un)(1)
Such that
(3.3)

t
tn(K,U,t) ::/0 p(t,7)

(3.4)

AMU—Um@y:/t

N
Y (E()U(T) = K(t.4;)U(t;)) lN,j(T)] dr,

i K(t,t))In (7 (U(g)Uﬁ,”)] dr.

=0

We shall show (I — Ay)~! exists and so (3.2) is equivalent to:

(3.5) (U—-Un)(t) =T - An) " Mn(K, U, t).
Hence, if we show

(3.6) Je>0 YNeN ||(I-An) e <e,
(3.7) ltnlloo =0 as N — oo,

then the following uniform convergence holds:
(3.8)
IU = Unlloo < 11 = An) " lslltnlloo < clltnlloc =0, as N — oo

Lemma 3.1. Let {pi}f\il be a sequence of orthogonal polynomials on

[-1,1] with weight the function w(x). Then, there is a sequence {q;}Y
of orthogonal polynomials on [a,b] with weight function W(t), where,

2 b+a

3.9) a0 = p( ==Y, e
(3.10) Mﬂ:w%%;[—b;%L t e la,b].

Proof. Put x = 32-[t — 554]. Then, for i,5 € {1,..., N} and i # j,

b —a 1
/a ¢i(t)g;(t)w(t)dt = b 5 /1pi(m)pj(x)w(x)dx =0.
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Theorem 3.2. Let {t; };-V:O be the zeros of the (N+1)st degree member of
a set of polynomials that are orthogonal on [0, b] with the weight function

w(t),
(3.11) w(t)=u(=-1)2-)*=)P, —-1<a< ;5 -

57

where, u(t) is positive and continuous in [0,b] and the modulus of con-
o . 1

tinuity ¢ of u satisfies [, go(u,5)%§ < 00.

Let Ly(f;7) denote the interpolating polynomial of degree < N that
coincides with the function f at the nodes {tj}é-vzo. Then, for every
function f containing only endpoint singularity of the type 7,0 > —1
(not an integer), and in particular for every function f € C|0,b], the
following holds:

=0.

o0

N—o0

(3.12) lim ‘ /0 p(t V() — L (f: 7)dr

In particular, we have the bound
(3.13) B B
ltn(t =717% £.0)|| = O{(N +1)7>7 27T og(N + 1)},0 <@ < 1.

Proof. See Theorem 1 of [6], Theorem 5 of [3] and Lemma 3.1. O

Indeed, from (3.12) we show that the maximum norm of every com-
ponent of ¢y tends to zero, and hence (3.7) is valid. Using the following
theorem, we prove (3.6) is valid.

Theorem 3.3. Let A : Y — Y be a compact linear operator over a
Banach space Y such that I— A is injective, and assume that the sequence
Any Y = Y of linear operators is collectively compact and pointwise
convergent, i.e., ANU — AU, as N — oo, for all U € Y. Then, for
sufficiently large N, the inverse operator (I —Ayn)~':Y — Y exists and
is uniformly bounded. This means that (3.6) is satisfied.

Proof. See theorem 12.10 in [5].
By definition, A : X? — X% X := €0, b],and

t
(3.14) AU(t) = /0 p(t, T)K(t, 7)U(T)dr.
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We establish that A is a compact linear operator over a Banach space
X% such that I — A is injective, and the sequence Ay, by definition (3.4),
is collectively compact and pointwise convergent. O

3.1. The operator A is compact. Consider the sequence of operators

AU X—>X X clo,b), i,j€{1,2,....d}
(3.15)
Ajju(t fo kij(t, T)u(r)dr, ue X.

where, every A;; is compact (see [ |, page 75). We show that A is a
compact operator on a Banach space Y := X¢, with the following norm:

(3.16) 1Ulloo = max{[Juilloc, s lualloc}, U = (u1,...;uq)"

Suppose {U (n) }>° , is a bounded sequence in Y. It is sufficient to show
that {AU" }°° has a subsequence converging to a point of Y. Bound-
edness of {U(™}2, implies that

(3.17) 3C >0 sup UM < C.
neN

Then, with U™ = (ugn), ...,ufin))T we have

(3.18) sup [l oo < C i =1,..d.

neN

This means that {u )}n 1, ¢ =1,...,d, is a bounded sequence in X =
C10,b]. The ith component of AU ™ (t) is:

[AU(")(t)]A = /t Zd:k” t,T)uy(T)dT
j=1

1

(3.19) = Z Al (2),
j=1

(n

where, A;ju; ) has a convergence subsequence (A;; is compact). Without

(n)

loss of generality, again we denote this subsequence by Aijuj
there is a function u; € X = C[0, b] such that

. Hence,

(3.20) lim Az]u( " _ Ajju;.

n—o0
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And from (3.14) and (3.15), we have

d d d
lim AU™ = (ZAz‘juj,ZAz‘jij---7ZAijuj)T
j=1 j=1 7=1

n—o0
(3.21) = AU, U := (uy,...,uq)’.
This means that A is compact, as required.

3.2. The operator I — A is one-to-one. The operator A is compact.
Then, from the Fredholm alternative theorem, it is sufficient to show
that (I — A)U = 0 has only a trivial solution. It is equivalent to show
that AU = U has only a trivial solution U = 0. But, U = 0 is a fixed
point of A. To show that A has one and only one fixed point, it is
sufficient to show

(3.22) ImeN ||A™U) — A™(W)|loo < O|U = Woo, U W e X<

where, 0 < 0 < 1 is called contraction factor and X = C10,b]. Now, we
define some notation. For a = (ay, ...,aq)” € RY, define

(3.23) la| := (|a1], ..., |ag]) T,

(3.24) |al|; :==the ith component of |a|=lai|, i=1,2,..,d,
and write (a1, ...,aq)"T < (b1, ...,bq), if and only if a; < by, ...,aq < bg.
Every k;i;(t,7), t € [0,0],0 < 7 <, is continuous, and hence
(3.25)

M = max{|k;;(t,7)| : t € [0,0],0 <7 <t,i,j€{l,2,...,d}} < oc.

For arbitrary i € {1,...,d},U, W € X% we, have
d ot
v = S0 /0 p(t, 7)oy (£ 7)oy (7T
=1

t
< Md t i(T)|dr.
< M [ p(t.m) (7)o
Hence, we can write

t
. 0 < i .
(3.26) 1nglzaugdeU(t)]Z < Md/o p(t,T) lrgjagd|u](7')|d7'
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In our analysis, we let p(t,7) L —. Then, (3.20) implies:

~ =
1rg%xd|(AU —AW)(t);, = 112?§d|A(U —W)(@)]i(A is linear)
t
1
< Md/ —— max |A(U — W)(7)|:idr
o |t — 7| 1<i<d

Md
'2 = — 1_a —_— 00 -
(3.27) Tt U=Wi
Application of (3.26) and (3.27) yield:

277 42 L _ (A2 e s
1II§1?SXd|(AU A“W)() ] 112?§d|A(A(U W))(t)|i(A* is linear)

Md/t o AU — W () adr
0 |t—T|* 1<i<d

(Md)? T(1 - a)T'(2 - )
“1l-a T(B-2a)

It is easy to show by induction that

max |(A"U — A"W)(t)|; = max [A(A" YU — W))(t)|;(A"™ is linear)

1<i<d 1<i<d
r2—a)  (Mdb'T(1— o))"
T (1-a)l(1—a) T(nl-a)+1)
1T = Weo-

(3.28) 272U = W|| oo

(3.29)

We know that

) 2 -—a) (Mdb'—T'(1 — a))"
3.30 1 .
B830) e A =) T =)+ 1)
Then, for sufficiently large m € N, there exists § € [0,1) such that

|A"U — AW oo < 0]]U — W||oo. This means that A has one and only
one fixed point(see, [1] exercise 4.1.2)

=0.

3.3. The sequence A, : Y — Y defined by (3.4) is collectively
compact and pointwise convergent. This is a special case of the
Arzela-Ascoli theorem [1].

Theorem 3.4. Suppose S C X% X = C[a,b]. Then, S is relatively
sequentially compact if and only if it is bounded and equicontinuous;
i.e., if there exists a constant C' such that
(3.31) max |u;(z)| < C,

i=1,...d

)
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for all x € Cla,b] and all U = (uq, ...,uq) € S, and for every e > 0 there
exists & > 0 such that

(3.32) max lui(x) —wi(y)| <e,

i=1,...

for all z,y € Cla,b] with |x —y| <0 and all U = (uy,...,uq) € S.

Proof. See [1].

For collectively compactness of A,, it is sufficient to show that, for
some N € N,

(3.33) S:={AU:U € X% ||U|looc <1,n> N}

satisfies the hypothesis of Theorem 3.4. Let U = (uy, ..., uq)" € X% |U]|0o
< 1,t € [0,b],i € {1,...,d}. In (3.12), for f(7) = ith component of
K(t,7)U(T), there exists N € N such that, for all n > N,

(3.34) /0 p(t, 7)(Ln(K(t, )U(.);7) — K(t, 7)U(T))dT

< 1.

1

Hence,

AU (1)) = /O p(t ) Lo (K (2, YU (): 7)dr

i

< /O p(t, VK (¢, YU (r)dr

)

4 /O p(t,7) (L (K (£, YU ()3 7) — K (£, 7)U (7)) dr

t
(3.35) < Md / p(t, 7)dr + 1,
0

where, M is defined in (3.25). Thus,

b
(3.36) | AR |lo < Md/ p(b, T)dT + 1 < 0.
0

This proves the first assertion of Theorem 3.4. For the second condi-
tion, let € > 0. Similar to (3.34), there exist N € N such that, for all
n > N, and t € [0, b],
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0
a0 | [ pEDEEE V) - KENU@)T| < |

0 .
Note that k;;(t,7),4,5 € {1,...,d}, are uniformly continuous on ¢ €
[OLb],O < 7 < t. Then, tliere exists 07 > 0 such that, for every
t,t€[0,b],0 <7 <t<t,|t—t < b, we have

~ €

3.38 ki (6, 7) — ki (L, ,
where, P(t fo (t,7)dr. Forallt € [0,b], lim; ., fo lp(t, 7)—p(t, 7)|dT =

0. Then, there exists do > 0 such that, for every t,t € [0,b], |t — t] < o,
we have

(3.39) / Ip(t,7) — p(t, 7)|dr < 8d€]\/[

For all ¢ € [0,0], limg_,, ft (t,7)dT = 0. then, there exists d3 > 0 such
that for every t,t € [0,b], |t — ] < 03, we have

(3.40) /t p(t, 7)dr < ﬁ

Let § = min{4;, 02, 03}. Then, for every t,t € [0,b],t <t <t +0,
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(3.41) AU () — A U@ = ‘/0 Dt 7) Lo (K (8, VU () 7)dr

- / p(E, ) Lo (K (F, YU (); 7)dr

i

IN

/0 p(t, )L (K (8, YU():7) — K(t,7)U (r)]dr

(342) < —+-+

+/{p(t,7)K(t,7)U(7)dT

i

t
(343) < §+Md/ p(t,7) = p(t,7)|dr
0

+ /0 p(%v, K (t,7)— K(;fv7 U (T)dr +dM/? p(t, 7)dr

T d
€ € ~ € €
Sy Md—— et Md—— <.
< 3 TMig +/0 P7) 2 sy I T Mg <€

Jj=1

(3.44)

This means that S is collectively compact. Similar arguments gives
that A,U — AU; i.e., AU is pointwise convergent. O

4. Numerical Results
Consider the following theorem.
Theorem 4.1. For piecewise-continuous f,g and h, the solution u of

(4.1) U = Uz, O0<z <1, 0<t,

(4.2) u(z,0) = f(z), O0<z<1,
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(4.3) u(0,t) =g(t), 0<t,
(4.4) we(1,8) = h(t), 0<t,
has the form
(4.5)
taG t
(i, 1) —v(x,t)—Q/O ax(x,t—T)@(T)de/o Gla—1,t—7)éo(r)dr,
where
(4.6) vat) = [ Gla-enfe,

1 z?
G is called the fundamental solution of heat equation and f here is a
smooth, bounded extension of the f above, if and only if 1 and P are
piecewise continuous solutions of

(4.8) g(t) =v(0,t) + ¢1(t) + 2 /Ot G(—1,t — 1)p2(7)dT,

t 52
(4.9) h(t) = vg(1,t) + do(t) — 2 ; gij(l,t — T)p1(T)dT.

Proof. see [2]. O

For f(x) =1,¢9(t) = Erf(%\/z), and h(t) = Exp(—1%)/+/7t, the exact
solution of (4.1) — (4.4) is u(z,t) = Erf(%t}), and the exact solutions
of (4.8) — (4.9) are:

(4.10) or(t) = —Brfe(5 7). balt) =0,
Table 1 shows relative errors of ¢1 at t = 0.01¢,7 = 1, ..., 10 with
b= 0.1, ¢ is exact solution and 51 is evaluated by the product integra-

tion technique. Absolute error of ¢ is negligible, and since ¢ = 0 then
the relative error of ¢9 is not computable.
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TABLE 1.

|¢1¢_1¢1 lt=0.014
0.0000149272
3.54138 x 10~ 11
4.63845 x 1013
1.47064 x 10~ 13
8.07575 x 10~
8.13343 x 10~ 1%
3.99896 x 10~
6.6627 x 10~ 14
1.85675 x 1012
6.51736 x 10~ 12

O O | O T = | W DO | =,

—
o
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