CONVERGENCE OF PRODUCT INTEGRATION METHOD APPLIED FOR NUMERICAL SOLUTION OF LINEAR WEAKLY SINGULAR VOLTERRA SYSTEMS

B. BABAYAR-RAZLIGHI ${ }^{1,2}$, K. IVAZ ${ }^{1,2, *}$, AND M. R. MOKHTARZADEH ${ }^{3}$

Communicated by Mohammad Asadzadeh

Abstract

We develop and apply the product integration method to a large class of linear weakly singular Volterra systems. We show that under certain sufficient conditions this method converges. Numerical implementation of the method is illustrated by a benchmark problem originated from heat conduction.

1. Introduction

Transformation of a differential system (such as heat conduction problem) to an equivalent system of integral equations is a powerful technique for deducing the existence and uniqueness of the solution [2]. We begin our study and the development of the product integration method from an equivalent system of Volterra integral equations. To start, suppose that a system of Volterra integral equations is given by

$$
\begin{equation*}
U(t)=F(t)+\int_{0}^{t} K(t, \tau, U(\tau)) d \tau, \quad t \in[0, b], \tag{1.1}
\end{equation*}
$$

[^0]where, $b>0$ and
\[

$$
\begin{align*}
& U(t)=\left(u_{1}(t), \ldots, u_{d}(t)\right)^{T}, F(t)=\left(f_{1}(t), \ldots, f_{d}(t)\right)^{T} \tag{1.2}\\
& K(t, \tau, U(\tau)):=\left(k_{1}(t, \tau, U(\tau)), \ldots, k_{d}(t, \tau, U(\tau))\right)^{T} \tag{1.3}
\end{align*}
$$
\]

$$
\begin{equation*}
\int_{0}^{t} K(t, \tau, U(\tau)) d \tau:=\left(\int_{0}^{t} k_{1}(t, \tau, U(\tau)) d \tau, \ldots, \int_{0}^{t} k_{d}(t, \tau, U(\tau)) d \tau\right)^{T} \tag{1.4}
\end{equation*}
$$

$u_{i}(t), f_{i}(t), k_{i}(t, \tau, U(\tau))$, for $i=1,2, \ldots, d$, are real valued functions, and each k_{i} can be written as:

$$
\begin{equation*}
k_{i}(t, \tau, U(\tau))=p_{i}(t, \tau) \widetilde{k}_{i}(t, \tau, U(\tau)) \tag{1.5}
\end{equation*}
$$

where, every \widetilde{k}_{i} is continuous and every p_{i} has one of the following form:

$$
\begin{equation*}
p(t, \tau)=|t-\tau|^{-\alpha}, \quad 0<\alpha<1 \tag{1.6}
\end{equation*}
$$

or

$$
\begin{equation*}
p(t, \tau)=\log |t-\tau| . \tag{1.7}
\end{equation*}
$$

A special case is $p \equiv 1$, whence there is no singularity.

2. Product Integration Technique

For simplicity suppose that all the p_{i}, for $i=1, \ldots, d$, are the same, and consider the following form:

$$
\begin{equation*}
U(t)=F(t)+\int_{0}^{t} p(t, \tau) K(t, \tau, U(\tau)) d \tau, \quad t \in[0, b] \tag{2.1}
\end{equation*}
$$

Further, suppose that all components of K are continuous. We introduce $N+1$ grid points $0 \leq t_{0}<t_{1}<\ldots<t_{N} \leq b$ in t. Our goal is to compute $U(t)$ at the grid points and the numerical approximation to $U\left(t_{n}\right)$ is written as U_{N}^{n}. The basic point in the product integration technique are:
(i) Sample the system of Volterra integral equations at points t_{n} in the grid:

$$
\begin{equation*}
U\left(t_{n}\right)=F\left(t_{n}\right)+\int_{0}^{t_{n}} p\left(t_{n}, \tau\right) K\left(t_{n}, \tau, U(\tau)\right) d \tau \tag{2.2}
\end{equation*}
$$

(ii) Use the Lagrange interpolation polynomial

$$
\begin{equation*}
L_{N}\left(K, t_{n} ; \tau\right)=\sum_{j=0}^{N} l_{N, j}(\tau) K\left(t_{n}, t_{j}, U\left(t_{j}\right)\right) \tag{2.3}
\end{equation*}
$$

to approximate $K\left(t_{n}, \tau, U(\tau)\right)$ and obtain the following algorithm:

$$
\begin{equation*}
U_{N}^{(n)}=F\left(t_{n}\right)+\sum_{j=0}^{N} \omega_{j}\left(t_{n}\right) K\left(t_{n}, t_{j}, U_{N}^{(j)}\right) \tag{2.4}
\end{equation*}
$$

where,

$$
\begin{equation*}
\omega_{j}(t)=\int_{0}^{t} p(t, \tau) l_{N, j}(\tau) d \tau \tag{2.5}
\end{equation*}
$$

Solving the system (2.4), we obtain $U_{N}(t)$ as a Nystrom approximation for $U(t)$:

$$
\begin{equation*}
U_{N}(t)=F(t)+\sum_{j=0}^{N} \omega_{j}(t) K\left(t, t_{j}, U_{N}^{(j)}\right) \tag{2.6}
\end{equation*}
$$

Note that $U_{N}^{(n)}=U_{N}\left(t_{n}\right)$, for $n=1,2, \ldots, d$.

3. Convergence of Product Integration Technique

For convergence analysis, we examine the following linear test problem:

$$
\begin{equation*}
U(t)=F(t)+\int_{0}^{t} p(t, \tau) K(t, \tau) U(\tau) d \tau \tag{3.1}
\end{equation*}
$$

where, K is a $d \times d$ matrix with continuous components $k_{i, j}, i, j \in$ $\{1, \ldots, d\}$, and $U(t)$ is the unknown vector, all components of vector $F(t)$ are continuous and $p(t, \tau)$ is defined as in (1.6).
For an arbitrary $t \in[0, b]$, we can write

$$
\begin{aligned}
U(t)-U_{N}(t) & =\int_{0}^{t} p(t, \tau)\left[K(t, \tau) U(\tau)-\sum_{j=0}^{N} K\left(t, t_{j}\right) l_{N, j}(\tau) U_{N}^{(j)}\right] d \tau \\
& =\int_{0}^{t} p(t, \tau)\left[\sum_{j=0}^{N}\left(K(t, \tau) U(\tau)-K\left(t, t_{j}\right) U\left(t_{j}\right)\right) l_{N, j}(\tau)\right] d \tau
\end{aligned}
$$

$$
\begin{align*}
& +\int_{0}^{t} p(t, \tau)\left[\sum_{j=0}^{N} K\left(t, t_{j}\right) l_{N, j}(\tau)\left(U\left(t_{j}\right)-U_{N}^{(j)}\right)\right] d \tau \\
& =t_{N}(K, U, t)+A_{N}\left(U-U_{N}\right)(t) \tag{3.2}
\end{align*}
$$

Such that

$$
\begin{equation*}
t_{N}(K, U, t):=\int_{0}^{t} p(t, \tau)\left[\sum_{j=0}^{N}\left(K(t, \tau) U(\tau)-K\left(t, t_{j}\right) U\left(t_{j}\right)\right) l_{N, j}(\tau)\right] d \tau \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
A_{N}\left(U-U_{N}\right)(t):=\int_{0}^{t} p(t, \tau)\left[\sum_{j=0}^{N} K\left(t, t_{j}\right) l_{N, j}(\tau)\left(U\left(t_{j}\right)-U_{N}^{(j)}\right)\right] d \tau \tag{3.4}
\end{equation*}
$$

We shall show $\left(I-A_{N}\right)^{-1}$ exists and so (3.2) is equivalent to:

$$
\begin{equation*}
\left(U-U_{N}\right)(t)=\left(I-A_{N}\right)^{-1} t_{N}(K, U, t) \tag{3.5}
\end{equation*}
$$

Hence, if we show

$$
\begin{gather*}
\exists c>0 \quad \forall N \in \mathbb{N} \quad\left\|\left(I-A_{N}\right)^{-1}\right\|_{\infty} \leq c \tag{3.6}\\
\left\|t_{N}\right\|_{\infty} \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty \tag{3.7}
\end{gather*}
$$

then the following uniform convergence holds:

$$
\begin{equation*}
\left\|U-U_{N}\right\|_{\infty} \leq\left\|\left(I-A_{N}\right)^{-1}\right\|_{\infty}\left\|t_{N}\right\|_{\infty} \leq c\left\|t_{N}\right\|_{\infty} \rightarrow 0, \quad \text { as } \quad N \rightarrow \infty \tag{3.8}
\end{equation*}
$$

Lemma 3.1. Let $\left\{p_{i}\right\}_{i=1}^{N}$ be a sequence of orthogonal polynomials on $[-1,1]$ with weight the function $\omega(x)$. Then, there is a sequence $\left\{q_{i}\right\}_{i=1}^{N}$ of orthogonal polynomials on $[\mathrm{a}, \mathrm{b}]$ with weight function $\widetilde{\omega}(t)$, where,

$$
\begin{array}{ll}
q_{i}(t)=p_{i}\left(\frac{2}{b-a}\left[t-\frac{b+a}{2}\right]\right), \quad t \in[a, b], \\
\widetilde{\omega}(t)=\omega\left(\frac{2}{b-a}\left[t-\frac{b+a}{2}\right]\right), \quad t \in[a, b] . \tag{3.10}
\end{array}
$$

Proof. Put $x=\frac{2}{b-a}\left[t-\frac{b+a}{2}\right]$. Then, for $i, j \in\{1, \ldots, N\}$ and $i \neq j$,

$$
\int_{a}^{b} q_{i}(t) q_{j}(t) \widetilde{\omega}(t) d t=\frac{b-a}{2} \int_{-1}^{1} p_{i}(x) p_{j}(x) \omega(x) d x=0 .
$$

Theorem 3.2. Let $\left\{t_{j}\right\}_{j=0}^{N}$ be the zeros of the $(N+1)$ st degree member of a set of polynomials that are orthogonal on $[0, b]$ with the weight function $\omega(t)$,

$$
\begin{equation*}
\omega(t)=u\left(\frac{2 t}{b}-1\right)\left(2-\frac{2 t}{b}\right)^{\alpha}\left(\frac{2 t}{b}\right)^{\beta}, \quad-1<\alpha \leq \frac{3}{2}, \beta>-\frac{1}{2} \tag{3.11}
\end{equation*}
$$

where, $u(t)$ is positive and continuous in $[0, b]$ and the modulus of continuity φ of u satisfies $\int_{0}^{1} \varphi(u, \delta) \frac{d \delta}{\delta}<\infty$.
Let $L_{N}(f ; \tau)$ denote the interpolating polynomial of degree $\leq N$ that coincides with the function f at the nodes $\left\{t_{j}\right\}_{j=0}^{N}$. Then, for every function f containing only endpoint singularity of the type $\tau^{\sigma}, \sigma>-1$ (not an integer), and in particular for every function $f \in C[0, b]$, the following holds:

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\|\int_{0}^{t} p(t, \tau)\left[f(\tau)-L_{N}(f ; \tau)\right] d \tau\right\|_{\infty}=0 \tag{3.12}
\end{equation*}
$$

In particular, we have the bound

$$
\begin{equation*}
\left\|t_{N}\left(|t-\tau|^{-\bar{\alpha}}, f, t\right)\right\|_{\infty}=O\left\{(N+1)^{-2-2 \sigma+2 \bar{\alpha}} \log (N+1)\right\}, 0<\bar{\alpha}<1 \tag{3.13}
\end{equation*}
$$

Proof. See Theorem 1 of [6], Theorem 5 of [3] and Lemma 3.1.

Indeed, from (3.12) we show that the maximum norm of every component of t_{N} tends to zero, and hence (3.7) is valid. Using the following theorem, we prove (3.6) is valid.

Theorem 3.3. Let $A: Y \rightarrow Y$ be a compact linear operator over a Banach space Y such that $I-A$ is injective, and assume that the sequence $A_{N}: Y \rightarrow Y$ of linear operators is collectively compact and pointwise convergent, i.e., $A_{N} U \rightarrow A U$, as $N \rightarrow \infty$, for all $U \in Y$. Then, for sufficiently large N, the inverse operator $\left(I-A_{N}\right)^{-1}: Y \rightarrow Y$ exists and is uniformly bounded. This means that (3.6) is satisfied.

Proof. See theorem 12.10 in [5].
By definition, $A: X^{d} \rightarrow X^{d}, X:=C[0, b]$, and

$$
\begin{equation*}
A U(t)=\int_{0}^{t} p(t, \tau) K(t, \tau) U(\tau) d \tau \tag{3.14}
\end{equation*}
$$

We establish that A is a compact linear operator over a Banach space X^{d} such that $I-A$ is injective, and the sequence A_{N}, by definition (3.4), is collectively compact and pointwise convergent.
3.1. The operator A is compact. Consider the sequence of operators

$$
\left\{\begin{array}{l}
A_{i j}: X \rightarrow X \quad X:=C[0, b], \quad i, j \in\{1,2, \ldots, d\} \tag{3.15}\\
A_{i j} u(t)=\int_{0}^{t} p(t, \tau) k_{i j}(t, \tau) u(\tau) d \tau, \quad u \in X .
\end{array}\right.
$$

where, every $A_{i j}$ is compact (see [1], page 75). We show that A is a compact operator on a Banach space $Y:=X^{d}$, with the following norm:

$$
\begin{equation*}
\|U\|_{\infty}=\max \left\{\left\|u_{1}\right\|_{\infty}, \ldots,\left\|u_{d}\right\|_{\infty}\right\}, \quad U=\left(u_{1}, \ldots, u_{d}\right)^{T} \tag{3.16}
\end{equation*}
$$

Suppose $\left\{U^{(n)}\right\}_{n=1}^{\infty}$ is a bounded sequence in Y. It is sufficient to show that $\left\{A U^{(n)}\right\}_{n=1}^{\infty}$ has a subsequence converging to a point of Y. Boundedness of $\left\{U^{(n)}\right\}_{n=1}^{\infty}$ implies that

$$
\begin{equation*}
\exists C>0 \quad \sup _{n \in \mathbb{N}}\left\|U^{(n)}\right\|_{\infty} \leq C . \tag{3.17}
\end{equation*}
$$

Then, with $U^{(n)}=\left(u_{1}^{(n)}, \ldots, u_{d}^{(n)}\right)^{T}$ we have

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\|u_{i}^{(n)}\right\|_{\infty} \leq C \quad i=1, \ldots d \tag{3.18}
\end{equation*}
$$

This means that $\left\{u_{i}^{(n)}\right\}_{n=1}^{\infty}, i=1, \ldots, d$, is a bounded sequence in $X=$ $C[0, b]$. The i th component of $A U^{(n)}(t)$ is:

$$
\begin{align*}
{\left[A U^{(n)}(t)\right]_{i} } & =\int_{0}^{t} p(t, \tau) \sum_{j=1}^{d} k_{i j}(t, \tau) u_{j}^{(n)}(\tau) d \tau \\
& =\sum_{j=1}^{d} A_{i j} u_{j}^{(n)}(t) \tag{3.19}
\end{align*}
$$

where, $A_{i j} u_{j}^{(n)}$ has a convergence subsequence ($A_{i j}$ is compact). Without loss of generality, again we denote this subsequence by $A_{i j} u_{j}^{(n)}$. Hence, there is a function $u_{j} \in X=C[0, b]$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} A_{i j} u_{j}^{(n)}=A_{i j} u_{j} \tag{3.20}
\end{equation*}
$$

And from (3.14) and (3.15), we have

$$
\begin{align*}
\lim _{n \rightarrow \infty} A U^{(n)} & =\left(\sum_{j=1}^{d} A_{i j} u_{j}, \sum_{j=1}^{d} A_{i j} u_{j}, \ldots, \sum_{j=1}^{d} A_{i j} u_{j}\right)^{T} \\
& =A U, \quad U:=\left(u_{1}, \ldots, u_{d}\right)^{T} . \tag{3.21}
\end{align*}
$$

This means that A is compact, as required.
3.2. The operator $I-A$ is one-to-one. The operator A is compact. Then, from the Fredholm alternative theorem, it is sufficient to show that $(I-A) U=0$ has only a trivial solution. It is equivalent to show that $A U=U$ has only a trivial solution $U=0$. But, $U=0$ is a fixed point of A. To show that A has one and only one fixed point, it is sufficient to show

$$
\begin{equation*}
\exists m \in \mathbb{N} \quad\left\|A^{m}(U)-A^{m}(W)\right\|_{\infty} \leq \theta\|U-W\|_{\infty}, \quad U, W \in X^{d} \tag{3.22}
\end{equation*}
$$

where, $0 \leq \theta<1$ is called contraction factor and $X=C[0, b]$. Now, we define some notation. For $a=\left(a_{1}, \ldots, a_{d}\right)^{T} \in \mathbb{R}^{d}$, define

$$
\begin{gather*}
|a|:=\left(\left|a_{1}\right|, \ldots,\left|a_{d}\right|\right)^{T} \tag{3.23}\\
|a|_{i}:=\text { the } \quad \text { ith } \quad \text { component } \quad \text { of } \quad|a|=\left|a_{i}\right|, \quad i=1,2, \ldots, d, \tag{3.24}
\end{gather*}
$$

and write $\left(a_{1}, \ldots, a_{d}\right)^{T} \leq\left(b_{1}, \ldots, b_{d}\right)$, if and only if $a_{1} \leq b_{1}, \ldots, a_{d} \leq b_{d}$. Every $k_{i j}(t, \tau), t \in[0, b], 0 \leq \tau \leq t$, is continuous, and hence

$$
\begin{equation*}
M:=\max \left\{\left|k_{i j}(t, \tau)\right|: t \in[0, b], 0 \leq \tau \leq t, i, j \in\{1,2, \ldots, d\}\right\}<\infty \tag{3.25}
\end{equation*}
$$

For arbitrary $i \in\{1, \ldots, d\}, U, W \in X^{d}$ we, have

$$
\begin{aligned}
|A U(t)|_{i}: & =\left|\sum_{j=1}^{d} \int_{0}^{t} p(t, \tau) k_{i j}(t, \tau) u_{j}(\tau) d \tau\right| \\
& \leq M d \int_{0}^{t} p(t, \tau) \max _{1 \leq j \leq d}\left|u_{j}(\tau)\right| d \tau
\end{aligned}
$$

Hence, we can write

$$
\begin{equation*}
\max _{1 \leq i \leq d}|A U(t)|_{i} \leq M d \int_{0}^{t} p(t, \tau) \max _{1 \leq j \leq d}\left|u_{j}(\tau)\right| d \tau \tag{3.26}
\end{equation*}
$$

In our analysis, we let $p(t, \tau)=\frac{1}{|t-\tau|^{\alpha}}$. Then, (3.20) implies:

$$
\begin{align*}
\max _{1 \leq i \leq d}|(A U-A W)(t)|_{i} & =\max _{1 \leq i \leq d}|A(U-W)(t)|_{i}(A \quad \text { is linear }) \\
& \leq M d \int_{0}^{t} \frac{1}{|t-\tau|^{\alpha}} \max _{1 \leq i \leq d}|A(U-W)(\tau)|_{i} d \tau \\
& =\frac{M d}{1-\alpha} t^{1-\alpha}\|U-W\|_{\infty} \tag{3.27}
\end{align*}
$$

Application of (3.26) and (3.27) yield:

$$
\begin{aligned}
\max _{1 \leq i \leq d}\left|\left(A^{2} U-A^{2} W\right)(t)\right|_{i} & =\max _{1 \leq i \leq d}|A(A(U-W))(t)|_{i}\left(A^{2} \quad \text { is linear }\right) \\
& \leq M d \int_{0}^{t} \frac{1}{|t-\tau|^{\alpha}} \max _{1 \leq i \leq d}|A(U-W)(\tau)|_{i} d \tau \\
& \leq \frac{(M d)^{2}}{1-\alpha} \cdot \frac{\Gamma(1-\alpha) \Gamma(2-\alpha)}{\Gamma(3-2 \alpha)} t^{2-2 \alpha}\|U-W\|_{\infty}
\end{aligned}
$$

It is easy to show by induction that

$$
\begin{align*}
\max _{1 \leq i \leq d}\left|\left(A^{n} U-A^{n} W\right)(t)\right|_{i}= & \max _{1 \leq i \leq d}\left|A\left(A^{n-1}(U-W)\right)(t)\right|_{i}\left(A^{n} \text { is linear }\right) \\
(3.29) & \leq \frac{\Gamma(2-\alpha)}{(1-\alpha) \Gamma(1-\alpha)} \cdot \frac{\left(M d b^{1-\alpha} \Gamma(1-\alpha)\right)^{n}}{\Gamma(n(1-\alpha)+1)} \tag{3.29}\\
& \|U-W\|_{\infty} .
\end{align*}
$$

We know that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\Gamma(2-\alpha)}{(1-\alpha) \Gamma(1-\alpha)} \cdot \frac{\left(M d b^{1-\alpha} \Gamma(1-\alpha)\right)^{n}}{\Gamma(n(1-\alpha)+1)}=0 \tag{3.30}
\end{equation*}
$$

Then, for sufficiently large $m \in \mathbb{N}$, there exists $\theta \in[0,1)$ such that $\left\|A^{m} U-A^{m} W\right\|_{\infty} \leq \theta\|U-W\|_{\infty}$. This means that A has one and only one fixed point(see, [1] exercise 4.1.2)
3.3. The sequence $A_{n}: Y \rightarrow Y$ defined by (3.4) is collectively compact and pointwise convergent. This is a special case of the Arzela-Ascoli theorem [4].

Theorem 3.4. Suppose $S \subseteq X^{d}, X=C[a, b]$. Then, S is relatively sequentially compact if and only if it is bounded and equicontinuous; i.e., if there exists a constant C such that

$$
\begin{equation*}
\max _{i=1, \ldots d}\left|u_{i}(x)\right| \leq C \tag{3.31}
\end{equation*}
$$

for all $x \in C[a, b]$ and all $U=\left(u_{1}, \ldots, u_{d}\right) \in S$, and for every $\epsilon>0$ there exists $\delta>0$ such that

$$
\begin{equation*}
\max _{i=1, \ldots d}\left|u_{i}(x)-u_{i}(y)\right|<\epsilon, \tag{3.32}
\end{equation*}
$$

for all $x, y \in C[a, b]$ with $|x-y|<\delta$ and all $U=\left(u_{1}, \ldots, u_{d}\right) \in S$.
Proof. See [4].
For collectively compactness of A_{n}, it is sufficient to show that, for some $N \in \mathbb{N}$,

$$
\begin{equation*}
S:=\left\{A_{n} U: U \in X^{d},\|U\|_{\infty} \leq 1, n \geq N\right\} \tag{3.33}
\end{equation*}
$$

satisfies the hypothesis of Theorem 3.4. Let $U=\left(u_{1}, \ldots, u_{d}\right)^{T} \in X^{d},\|U\|_{\infty}$ $\leq 1, t \in[0, b], i \in\{1, \ldots, d\}$. In (3.12), for $f(\tau) \equiv i$ th component of $K(t, \tau) U(\tau)$, there exists $N \in \mathbb{N}$ such that, for all $n \geq N$,

$$
\begin{equation*}
\left|\int_{0}^{t} p(t, \tau)\left(L_{n}(K(t, .) U(.) ; \tau)-K(t, \tau) U(\tau)\right) d \tau\right|_{i}<1 \tag{3.34}
\end{equation*}
$$

Hence,

$$
\begin{align*}
\left|A_{n} U(t)\right|_{i} & =\left|\int_{0}^{t} p(t, \tau) L_{n}(K(t, .) U(.) ; \tau) d \tau\right|_{i} \\
& \leq\left|\int_{0}^{t} p(t, \tau) K(t, \tau) U(\tau) d \tau\right|_{i} \\
& +\left|\int_{0}^{t} p(t, \tau)\left(L_{n}(K(t, .) U(.) ; \tau)-K(t, \tau) U(\tau)\right) d \tau\right|_{i} \\
& \leq M d \int_{0}^{t} p(t, \tau) d \tau+1 \tag{3.35}
\end{align*}
$$

where, M is defined in (3.25). Thus,

$$
\begin{equation*}
\left\|A_{n}\right\|_{\infty} \leq M d \int_{0}^{b} p(b, \tau) d \tau+1<\infty \tag{3.36}
\end{equation*}
$$

This proves the first assertion of Theorem 3.4. For the second condition, let $\epsilon>0$. Similar to (3.34), there exist $N \in \mathbb{N}$ such that, for all $n \geq N$, and $\widehat{t} \in[0, b]$,

$$
\begin{equation*}
\left|\int_{0}^{\widehat{t}} p(\widehat{t}, \tau)\left(L_{n}(K(\widehat{t}, .) U(.) ; \tau)-K(\widehat{t}, \tau) U(\tau)\right) d \tau\right|_{i}<\frac{\epsilon}{4} . \tag{3.37}
\end{equation*}
$$

Note that $k_{i j}(t, \tau), i, j \in\{1, \ldots, d\}$, are uniformly continuous on $t \in$ $[0, b], 0 \leq \tau \leq t$. Then, there exists $\delta_{1}>0$ such that, for every $t, \widetilde{t} \in[0, b], 0 \leq \tau \leq \widetilde{t} \leq t,|t-\widetilde{t}|<\delta_{1}$, we have

$$
\begin{equation*}
\left|k_{i j}(t, \tau)-k_{i j}(\widetilde{t}, \tau)\right|<\frac{\epsilon}{8 d P(b)}, \tag{3.38}
\end{equation*}
$$

where, $P(t):=\int_{0}^{t} p(t, \tau) d \tau$. For all $t \in[0, b], \lim _{\tilde{t} \rightarrow t} \int_{0}^{\tilde{t}}|p(t, \tau)-p(\widetilde{t}, \tau)| d \tau=$ 0 . Then, there exists $\delta_{2}>0$ such that, for every $t, \widetilde{t} \in[0, b],|t-\widetilde{t}|<\delta_{2}$, we have

$$
\begin{equation*}
\int_{0}^{\tilde{t}}|p(t, \tau)-p(\widetilde{t}, \tau)| d \tau<\frac{\epsilon}{8 d M} \tag{3.39}
\end{equation*}
$$

For all $t \in[0, b], \lim _{\tilde{t} \rightarrow t} \int_{\tilde{t}}^{t} p(t, \tau) d \tau=0$. then, there exists $\delta_{3}>0$ such that for every $t, \tilde{t} \in[0, b],|t-\widetilde{t}|<\delta_{3}$, we have

$$
\begin{equation*}
\int_{\tilde{t}}^{t} p(t, \tau) d \tau<\frac{\epsilon}{4 d M} \tag{3.40}
\end{equation*}
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$. Then, for every $t, \tilde{t} \in[0, b], \tilde{t}<t<\tilde{t}+\delta$,

$$
\begin{align*}
& \left|A_{n} U(t)-A_{n} U(\widetilde{t})\right|_{i}=\mid \int_{0}^{t} p(t, \tau) L_{n}(K(t, .) U(.) ; \tau) d \tau \tag{3.41}\\
& -\left.\int_{0}^{\tilde{t}} p(\widetilde{t}, \tau) L_{n}(K(\widetilde{t}, .) U(.) ; \tau) d \tau\right|_{i} \\
\leq & \left|\int_{0}^{t} p(t, \tau)\left[L_{n}(K(t, .) U(.) ; \tau)-K(t, \tau) U(\tau)\right] d \tau\right|_{i} \\
+ & \left|\int_{0}^{\tilde{t}} p(\widetilde{t}, \tau)\left[L_{n}(K(\widetilde{t}, .) U(.) ; \tau)-K(\widetilde{t}, \tau) U(\tau)\right] d \tau\right|_{i} \\
+ & \left|\int_{0}^{t} p(t, \tau) K(t, \tau) U(\tau) d \tau-\int_{0}^{\tilde{t}} p(\widetilde{t}, \tau) K(\widetilde{t}, \tau) U(\tau) d \tau\right|_{i} \\
< & \frac{\epsilon}{4}+\frac{\epsilon}{4}+\left|\int_{0}^{t}[p(t, \tau) K(t, \tau)-p(\widetilde{t}, \tau) K(\widetilde{t}, \tau)] U(\tau) d \tau\right|_{i} \tag{3.42}\\
& +\left|\int_{\tilde{t}}^{t} p(t, \tau) K(t, \tau) U(\tau) d \tau\right|_{i} \\
\leq & \frac{\epsilon}{2}+M d \int_{0}|p(t, \tau)-p(\widetilde{t}, \tau)| d \tau \tag{3.43}\\
& +\left|\int_{0}^{\tilde{t}} p(\widetilde{t}, \tau)[K(t, \tau)-K(\widetilde{t}, \tau)] U(\tau) d \tau\right|_{i}+d M \int_{\tilde{t}}^{t} p(t, \tau) d \tau \\
< & \frac{\epsilon}{2}+M d \frac{\epsilon}{8 M d}+\int_{0} p(\widetilde{t}, \tau) \sum_{j=1}^{d} \frac{\epsilon}{8 d P(b)} d \tau+M d \frac{\epsilon}{4 d M} \leq \epsilon \tag{3.44}
\end{align*}
$$

This means that S is collectively compact. Similar arguments gives that $A_{n} U \rightarrow A U$; i.e., $A_{n} U$ is pointwise convergent.

4. Numerical Results

Consider the following theorem.
Theorem 4.1. For piecewise-continuous f, g and h, the solution u of

$$
\begin{gather*}
u_{t}=u_{x x}, \quad 0<x<1, \quad 0<t \tag{4.1}\\
u(x, 0)=f(x), \quad 0<x<1 \tag{4.2}
\end{gather*}
$$

$$
\begin{gather*}
u(0, t)=g(t), \tag{4.3}\\
u_{x}(1, t)=h(t), \tag{4.4}\\
0<t
\end{gather*}
$$

has the form
$u(x, t)=v(x, t)-2 \int_{0}^{t} \frac{\partial G}{\partial x}(x, t-\tau) \phi_{1}(\tau) d \tau+2 \int_{0}^{t} G(x-1, t-\tau) \phi_{2}(\tau) d \tau$,
where

$$
\begin{gather*}
v(x, t)=\int_{-\infty}^{\infty} G(x-\xi, t) f(\xi) d \xi \tag{4.6}\\
G(x, t)=\frac{1}{\sqrt{4 \pi t}} \exp \left\{-\frac{x^{2}}{4 t}\right\} \tag{4.7}
\end{gather*}
$$

G is called the fundamental solution of heat equation and f here is a smooth, bounded extension of the f above, if and only if ϕ_{1} and ϕ_{2} are piecewise continuous solutions of

$$
\begin{align*}
g(t) & =v(0, t)+\phi_{1}(t)+2 \int_{0}^{t} G(-1, t-\tau) \phi_{2}(\tau) d \tau \tag{4.8}\\
h(t) & =v_{x}(1, t)+\phi_{2}(t)-2 \int_{0}^{t} \frac{\partial^{2} G}{\partial^{2} x}(1, t-\tau) \phi_{1}(\tau) d \tau \tag{4.9}
\end{align*}
$$

Proof. see [2].
For $f(x)=1, g(t)=\operatorname{Erf}\left(\frac{1}{2 \sqrt{t}}\right)$, and $h(t)=\operatorname{Exp}\left(-\frac{1}{t}\right) / \sqrt{\pi t}$, the exact solution of $(4.1)-(4.4)$ is $u(x, t)=\operatorname{Erf}\left(\frac{x+1}{2 \sqrt{t}}\right)$, and the exact solutions of (4.8) - (4.9) are:

$$
\begin{equation*}
\phi_{1}(t)=-\operatorname{Erfc}\left(\frac{1}{2 \sqrt{t}}\right), \quad \phi_{2}(t)=0 . \tag{4.10}
\end{equation*}
$$

Table 1 shows relative errors of ϕ_{1} at $t=0.01 i, i=1, \ldots, 10$ with $b=0.1, \phi_{1}$ is exact solution and $\widetilde{\phi}_{1}$ is evaluated by the product integration technique. Absolute error of ϕ_{2} is negligible, and since $\phi_{2}=0$ then the relative error of ϕ_{2} is not computable.

Table 1.

i	$\left\|\frac{\phi_{1}-\widetilde{\phi_{1}}}{\phi_{1}}\right\|_{t=0.01 i}$
1	0.0000149272
2	3.54138×10^{-11}
3	4.63845×10^{-13}
4	1.47064×10^{-13}
5	8.07575×10^{-14}
6	8.13343×10^{-15}
7	3.99896×10^{-14}
8	6.6627×10^{-14}
9	1.85675×10^{-12}
10	6.51736×10^{-12}

Acknowledgments

The authors are thankful to the referees for their valuable suggestions to improve the presentation.

References

[1] K. Atkinson and W. Han, Theoritical Numerical Analysis: A Functional Analysis Framwork, Springer, New York, 2001.
[2] J. R. Cannon, The One-dimensional Heat Equation, Addison-Wesley Publishing Company, 1984.
[3] G. Criscuolo, G. Mastroianni and G.Monegato, Convergence properties of a class of product formulas for weakly singular integral equations, Math. Comp. 55 (1990) 213-230.
[4] R. F. Curtain and A. J. Pritchard, Functional Analysis in Modern Applied Mathematics, Mathematics in Science and Engineering, 132. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1977.
[5] R. Kress, Numerical Analysis, Springer-Verlag, New York, 1998.
[6] A. P. Orsi, Product integration for Volterra integral equations of the second kind with weakly singular kernels, Math. Comp. 65(215) (1996) 1201-1212.

B. Babayar-Razlighi

Department of Mathematics, University of Tabriz, Tabriz, Iran, and
Research Center for Industrial Mathematics of University of Tabriz, Tabriz, Iran
Email: Bbabayar@gmail.com

K. Ivaz

Department of Mathematics, University of Tabriz, Tabriz, Iran, and
Research Center for Industrial Mathematics of University of Tabriz, Tabriz, Iran
Email: Ivaz@tabrizu.ac.ir

M. R. Mokhtarzadeh

Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran
Email: MrMokhtarzadeh@gmail.com

[^0]: MSC(2000): Primary: 35R35.
 Keywords: Product integration technique, system of singular Volterra integral equations, heat equation.
 Received: 28 June 2009, Accepted: 2 February 2010.
 *Corresponding author
 (c) 2011 Iranian Mathematical Society.

