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CONVERGENCE OF PRODUCT INTEGRATION

METHOD APPLIED FOR NUMERICAL SOLUTION OF

LINEAR WEAKLY SINGULAR VOLTERRA SYSTEMS

B. BABAYAR-RAZLIGHI1,2, K. IVAZ1,2,∗, AND M. R. MOKHTARZADEH3

Communicated by Mohammad Asadzadeh

Abstract. We develop and apply the product integration method
to a large class of linear weakly singular Volterra systems. We show
that under certain sufficient conditions this method converges. Nu-
merical implementation of the method is illustrated by a benchmark
problem originated from heat conduction.

1. Introduction

Transformation of a differential system (such as heat conduction prob-
lem) to an equivalent system of integral equations is a powerful technique
for deducing the existence and uniqueness of the solution [2]. We begin
our study and the development of the product integration method from
an equivalent system of Volterra integral equations. To start, suppose
that a system of Volterra integral equations is given by

(1.1) U(t) = F (t) +

∫ t

0
K(t, τ, U(τ))dτ, t ∈ [0, b],
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where, b > 0 and

(1.2) U(t) = (u1(t), ..., ud(t))
T , F (t) = (f1(t), ..., fd(t))

T ,

(1.3) K(t, τ, U(τ)) := (k1(t, τ, U(τ)), ..., kd(t, τ, U(τ)))T ,

(1.4)∫ t

0
K(t, τ, U(τ))dτ :=

(∫ t

0
k1(t, τ, U(τ))dτ, ...,

∫ t

0
kd(t, τ, U(τ))dτ

)T
,

ui(t), fi(t), ki(t, τ, U(τ)), for i = 1, 2, ..., d, are real valued functions, and
each ki can be written as:

(1.5) ki(t, τ, U(τ)) = pi(t, τ)k̃i(t, τ, U(τ)),

where, every k̃i is continuous and every pi has one of the following form:

(1.6) p(t, τ) = |t− τ |−α, 0 < α < 1,

or

(1.7) p(t, τ) = log |t− τ |.

A special case is p ≡ 1, whence there is no singularity.

2. Product Integration Technique

For simplicity suppose that all the pi, for i = 1, ..., d, are the same,
and consider the following form:

(2.1) U(t) = F (t) +

∫ t

0
p(t, τ)K(t, τ, U(τ))dτ, t ∈ [0, b].

Further, suppose that all components of K are continuous. We introduce
N+1 grid points 0 ≤ t0 < t1 < ... < tN ≤ b in t. Our goal is to compute
U(t) at the grid points and the numerical approximation to U(tn) is
written as UnN . The basic point in the product integration technique
are:
(i) Sample the system of Volterra integral equations at points tn in the
grid:

(2.2) U(tn) = F (tn) +

∫ tn

0
p(tn, τ)K(tn, τ, U(τ))dτ.
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(ii) Use the Lagrange interpolation polynomial

(2.3) LN (K, tn; τ) =

N∑
j=0

lN,j(τ)K(tn, tj , U(tj)),

to approximate K(tn, τ, U(τ)) and obtain the following algorithm:

(2.4) U
(n)
N = F (tn) +

N∑
j=0

ωj(tn)K(tn, tj , U
(j)
N ),

where,

(2.5) ωj(t) =

∫ t

0
p(t, τ)lN,j(τ)dτ.

Solving the system (2.4), we obtain UN (t) as a Nystrom approximation
for U(t):

(2.6) UN (t) = F (t) +

N∑
j=0

ωj(t)K(t, tj , U
(j)
N ).

Note that U
(n)
N = UN (tn), for n = 1, 2, ..., d.

3. Convergence of Product Integration Technique

For convergence analysis, we examine the following linear test prob-
lem:

(3.1) U(t) = F (t) +

∫ t

0
p(t, τ)K(t, τ)U(τ)dτ,

where, K is a d × d matrix with continuous components ki,j , i, j ∈
{1, ..., d}, and U(t) is the unknown vector, all components of vector
F (t) are continuous and p(t, τ) is defined as in (1.6).
For an arbitrary t ∈ [0, b], we can write

U(t)− UN (t) =

∫ t

0
p(t, τ)

K(t, τ)U(τ)−
N∑
j=0

K(t, tj)lN,j(τ)U
(j)
N

 dτ
=

∫ t

0
p(t, τ)

 N∑
j=0

(K(t, τ)U(τ)−K(t, tj)U(tj)) lN,j(τ)

 dτ
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+

∫ t

0
p(t, τ)

 N∑
j=0

K(t, tj)lN,j(τ)
(
U(tj)− U (j)

N

) dτ
= tN (K,U, t) +AN (U − UN )(t)(3.2)

Such that
(3.3)

tN (K,U, t) :=

∫ t

0
p(t, τ)

 N∑
j=0

(K(t, τ)U(τ)−K(t, tj)U(tj)) lN,j(τ)

 dτ,
(3.4)

AN (U − UN )(t) :=

∫ t

0
p(t, τ)

 N∑
j=0

K(t, tj)lN,j(τ)
(
U(tj)− U (j)

N

) dτ.
We shall show (I −AN )−1 exists and so (3.2) is equivalent to:

(3.5) (U − UN )(t) = (I −AN )−1tN (K,U, t).

Hence, if we show

(3.6) ∃c > 0 ∀N ∈ N ‖(I −AN )−1‖∞ ≤ c,

(3.7) ‖tN‖∞ → 0 as N →∞,
then the following uniform convergence holds:
(3.8)
‖U − UN‖∞ ≤ ‖(I −AN )−1‖∞‖tN‖∞ ≤ c‖tN‖∞ → 0, as N →∞.

Lemma 3.1. Let {pi}Ni=1 be a sequence of orthogonal polynomials on
[-1,1] with weight the function ω(x). Then, there is a sequence {qi}Ni=1
of orthogonal polynomials on [a,b] with weight function ω̃(t), where,

(3.9) qi(t) = pi(
2

b− a
[t− b+ a

2
]), t ∈ [a, b],

(3.10) ω̃(t) = ω(
2

b− a
[t− b+ a

2
]), t ∈ [a, b].

Proof. Put x = 2
b−a [t− b+a

2 ]. Then, for i, j ∈ {1, ..., N} and i 6= j,∫ b

a
qi(t)qj(t)ω̃(t)dt =

b− a
2

∫ 1

−1
pi(x)pj(x)ω(x)dx = 0.

�
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Theorem 3.2. Let {tj}Nj=0 be the zeros of the (N+1)st degree member of

a set of polynomials that are orthogonal on [0, b] with the weight function
ω(t),

(3.11) ω(t) = u(
2t

b
− 1)(2− 2t

b
)α(

2t

b
)β, −1 < α ≤ 3

2
, β > −1

2
,

where, u(t) is positive and continuous in [0, b] and the modulus of con-

tinuity ϕ of u satisfies
∫ 1
0 ϕ(u, δ)dδδ <∞.

Let LN (f ; τ) denote the interpolating polynomial of degree ≤ N that
coincides with the function f at the nodes {tj}Nj=0. Then, for every
function f containing only endpoint singularity of the type τσ, σ > −1
(not an integer), and in particular for every function f ∈ C[0, b], the
following holds:

(3.12) lim
N→∞

∥∥∥∥∫ t

0
p(t, τ)[f(τ)− LN (f ; τ)]dτ

∥∥∥∥
∞

= 0.

In particular, we have the bound
(3.13)∥∥tN (|t− τ |−α, f, t)

∥∥
∞ = O{(N + 1)−2−2σ+2α log(N + 1)}, 0 < α < 1.

Proof. See Theorem 1 of [6], Theorem 5 of [3] and Lemma 3.1. �

Indeed, from (3.12) we show that the maximum norm of every com-
ponent of tN tends to zero, and hence (3.7) is valid. Using the following
theorem, we prove (3.6) is valid.

Theorem 3.3. Let A : Y → Y be a compact linear operator over a
Banach space Y such that I−A is injective, and assume that the sequence
AN : Y → Y of linear operators is collectively compact and pointwise
convergent, i.e., ANU → AU , as N → ∞, for all U ∈ Y . Then, for
sufficiently large N , the inverse operator (I−AN )−1 : Y → Y exists and
is uniformly bounded. This means that (3.6) is satisfied.

Proof. See theorem 12.10 in [5].

By definition, A : Xd → Xd, X := C[0, b],and

(3.14) AU(t) =

∫ t

0
p(t, τ)K(t, τ)U(τ)dτ.
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We establish that A is a compact linear operator over a Banach space
Xd such that I−A is injective, and the sequence AN , by definition (3.4),
is collectively compact and pointwise convergent. �

3.1. The operator A is compact. Consider the sequence of operators

(3.15)

{
Aij : X → X X := C[0, b], i, j ∈ {1, 2, ..., d}
Aiju(t) =

∫ t
0 p(t, τ)kij(t, τ)u(τ)dτ, u ∈ X.

where, every Aij is compact (see [1], page 75). We show that A is a

compact operator on a Banach space Y := Xd, with the following norm:

(3.16) ‖U‖∞ = max{‖u1‖∞, ..., ‖ud‖∞}, U = (u1, ..., ud)
T .

Suppose {U (n)}∞n=1 is a bounded sequence in Y . It is sufficient to show

that {AU (n)}∞n=1 has a subsequence converging to a point of Y . Bound-

edness of {U (n)}∞n=1 implies that

(3.17) ∃C > 0 sup
n∈N
‖U (n)‖∞ ≤ C.

Then, with U (n) = (u
(n)
1 , ..., u

(n)
d )T we have

(3.18) sup
n∈N
‖u(n)i ‖∞ ≤ C i = 1, ...d.

This means that {u(n)i }∞n=1, i = 1, ..., d, is a bounded sequence in X =

C[0, b]. The ith component of AU (n)(t) is:[
AU (n)(t)

]
i

=

∫ t

0
p(t, τ)

d∑
j=1

kij(t, τ)u
(n)
j (τ)dτ

=

d∑
j=1

Aiju
(n)
j (t),(3.19)

where, Aiju
(n)
j has a convergence subsequence (Aij is compact). Without

loss of generality, again we denote this subsequence by Aiju
(n)
j . Hence,

there is a function uj ∈ X = C[0, b] such that

(3.20) lim
n→∞

Aiju
(n)
j = Aijuj .
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And from (3.14) and (3.15), we have

lim
n→∞

AU (n) = (
d∑
j=1

Aijuj ,
d∑
j=1

Aijuj , ...,
d∑
j=1

Aijuj)
T

= AU, U := (u1, ..., ud)
T .(3.21)

This means that A is compact, as required.

3.2. The operator I −A is one-to-one. The operator A is compact.
Then, from the Fredholm alternative theorem, it is sufficient to show
that (I − A)U = 0 has only a trivial solution. It is equivalent to show
that AU = U has only a trivial solution U = 0. But, U = 0 is a fixed
point of A. To show that A has one and only one fixed point, it is
sufficient to show

(3.22) ∃m ∈ N ‖Am(U)−Am(W )‖∞ ≤ θ‖U −W‖∞, U,W ∈ Xd.

where, 0 ≤ θ < 1 is called contraction factor and X = C[0, b]. Now, we
define some notation. For a = (a1, ..., ad)

T ∈ Rd, define

(3.23) |a| := (|a1|, ..., |ad|)T ,

(3.24) |a|i := the ith component of |a| = |ai|, i = 1, 2, ..., d,

and write (a1, ..., ad)
T ≤ (b1, ..., bd), if and only if a1 ≤ b1, ..., ad ≤ bd.

Every kij(t, τ), t ∈ [0, b], 0 ≤ τ ≤ t, is continuous, and hence
(3.25)

M := max{|kij(t, τ)| : t ∈ [0, b], 0 ≤ τ ≤ t, i, j ∈ {1, 2, ..., d}} <∞.

For arbitrary i ∈ {1, ..., d}, U,W ∈ Xd we, have

|AU(t)|i : =

∣∣∣∣∣∣
d∑
j=1

∫ t

0
p(t, τ)kij(t, τ)uj(τ)dτ

∣∣∣∣∣∣
≤ Md

∫ t

0
p(t, τ) max

1≤j≤d
|uj(τ)|dτ.

Hence, we can write

(3.26) max
1≤i≤d

|AU(t)|i ≤Md

∫ t

0
p(t, τ) max

1≤j≤d
|uj(τ)|dτ.
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In our analysis, we let p(t, τ) = 1
|t−τ |α . Then, (3.20) implies:

max
1≤i≤d

|(AU −AW )(t)|i = max
1≤i≤d

|A(U −W )(t)|i(A is linear)

≤ Md

∫ t

0

1

|t− τ |α
max
1≤i≤d

|A(U −W )(τ)|idτ

=
Md

1− α
t1−α‖U −W‖∞.(3.27)

Application of (3.26) and (3.27) yield:

max
1≤i≤d

|(A2U −A2W )(t)|i = max
1≤i≤d

|A(A(U −W ))(t)|i(A2 is linear)

≤ Md

∫ t

0

1

|t− τ |α
max
1≤i≤d

|A(U −W )(τ)|idτ

≤ (Md)2

1− α
.
Γ(1− α)Γ(2− α)

Γ(3− 2α)
t2−2α‖U −W‖∞.(3.28)

It is easy to show by induction that

max
1≤i≤d

|(AnU −AnW )(t)|i = max
1≤i≤d

|A(An−1(U −W ))(t)|i(An is linear)

≤ Γ(2− α)

(1− α)Γ(1− α)
.
(Mdb1−αΓ(1− α))n

Γ(n(1− α) + 1)
(3.29)

‖U −W‖∞.

We know that

(3.30) lim
n→∞

Γ(2− α)

(1− α)Γ(1− α)
.
(Mdb1−αΓ(1− α))n

Γ(n(1− α) + 1)
= 0.

Then, for sufficiently large m ∈ N, there exists θ ∈ [0, 1) such that
‖AmU −AmW‖∞ ≤ θ‖U −W‖∞. This means that A has one and only
one fixed point(see, [1] exercise 4.1.2)

3.3. The sequence An : Y → Y defined by (3.4) is collectively
compact and pointwise convergent. This is a special case of the
Arzela-Ascoli theorem [4].

Theorem 3.4. Suppose S ⊆ Xd, X = C[a, b]. Then, S is relatively
sequentially compact if and only if it is bounded and equicontinuous;
i.e., if there exists a constant C such that

(3.31) max
i=1,...d

|ui(x)| ≤ C,
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for all x ∈ C[a, b] and all U = (u1, ..., ud) ∈ S, and for every ε > 0 there
exists δ > 0 such that

(3.32) max
i=1,...d

|ui(x)− ui(y)| < ε,

for all x, y ∈ C[a, b] with |x− y| < δ and all U = (u1, ..., ud) ∈ S.

Proof. See [4].

For collectively compactness of An, it is sufficient to show that, for
some N ∈ N,

(3.33) S := {AnU : U ∈ Xd, ‖U‖∞ ≤ 1, n ≥ N}

satisfies the hypothesis of Theorem 3.4. Let U = (u1, ..., ud)
T ∈ Xd, ‖U‖∞

≤ 1, t ∈ [0, b], i ∈ {1, ..., d}. In (3.12), for f(τ) ≡ ith component of
K(t, τ)U(τ), there exists N ∈ N such that, for all n ≥ N ,

(3.34)

∣∣∣∣∫ t

0
p(t, τ)(Ln(K(t, .)U(.); τ)−K(t, τ)U(τ))dτ

∣∣∣∣
i

< 1.

Hence,

|AnU(t)|i =

∣∣∣∣∫ t

0
p(t, τ)Ln(K(t, .)U(.); τ)dτ

∣∣∣∣
i

≤
∣∣∣∣∫ t

0
p(t, τ)K(t, τ)U(τ)dτ

∣∣∣∣
i

+

∣∣∣∣∫ t

0
p(t, τ)(Ln(K(t, .)U(.); τ)−K(t, τ)U(τ))dτ

∣∣∣∣
i

≤ Md

∫ t

0
p(t, τ)dτ + 1,(3.35)

where, M is defined in (3.25). Thus,

(3.36) ‖An‖∞ ≤Md

∫ b

0
p(b, τ)dτ + 1 <∞.

This proves the first assertion of Theorem 3.4. For the second condi-
tion, let ε > 0. Similar to (3.34), there exist N ∈ N such that, for all
n ≥ N , and t̂ ∈ [0, b],
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(3.37)

∣∣∣∣∣
∫ t̂

0
p(t̂, τ)(Ln(K(t̂, .)U(.); τ)−K(t̂, τ)U(τ))dτ

∣∣∣∣∣
i

<
ε

4
.

Note that kij(t, τ), i, j ∈ {1, ..., d}, are uniformly continuous on t ∈
[0, b], 0 ≤ τ ≤ t. Then, there exists δ1 > 0 such that, for every
t, t̃ ∈ [0, b], 0 ≤ τ ≤ t̃ ≤ t, |t− t̃| < δ1, we have

(3.38) |kij(t, τ)− kij(t̃, τ)| < ε

8dP (b)
,

where, P (t) :=
∫ t
0 p(t, τ)dτ . For all t ∈ [0, b], limt̃→t

∫ t̃
0 |p(t, τ)−p(t̃, τ)|dτ =

0. Then, there exists δ2 > 0 such that, for every t, t̃ ∈ [0, b], |t− t̃| < δ2,
we have

(3.39)

∫ t̃

0
|p(t, τ)− p(t̃, τ)|dτ < ε

8dM
.

For all t ∈ [0, b], limt̃→t
∫ t
t̃ p(t, τ)dτ = 0. then, there exists δ3 > 0 such

that for every t, t̃ ∈ [0, b], |t− t̃| < δ3, we have

(3.40)

∫ t

t̃
p(t, τ)dτ <

ε

4dM
.

Let δ = min{δ1, δ2, δ3}. Then, for every t, t̃ ∈ [0, b], t̃ < t < t̃+ δ,
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|AnU(t)−AnU(t̃)|i =
∣∣∣ ∫ t

0

p(t, τ)Ln(K(t, .)U(.); τ)dτ(3.41)

−
∫ t̃

0

p(t̃, τ)Ln(K(t̃, .)U(.); τ)dτ
∣∣∣
i

≤
∣∣∣∣∫ t

0

p(t, τ)[Ln(K(t, .)U(.); τ)−K(t, τ)U(τ)]dτ

∣∣∣∣
i

+

∣∣∣∣∣
∫ t̃

0

p(t̃, τ)[Ln(K(t̃, .)U(.); τ)−K(t̃, τ)U(τ)]dτ

∣∣∣∣∣
i

+

∣∣∣∣∣
∫ t

0

p(t, τ)K(t, τ)U(τ)dτ −
∫ t̃

0

p(t̃, τ)K(t̃, τ)U(τ)dτ

∣∣∣∣∣
i

<
ε

4
+
ε

4
+

∣∣∣∣∣
∫ t̃

0

[p(t, τ)K(t, τ)− p(t̃, τ)K(t̃, τ)]U(τ)dτ

∣∣∣∣∣
i

(3.42)

+

∣∣∣∣∫ t

t̃

p(t, τ)K(t, τ)U(τ)dτ

∣∣∣∣
i

≤ ε

2
+Md

∫ t̃

0

|p(t, τ)− p(t̃, τ)|dτ(3.43)

+

∣∣∣∣∣
∫ t̃

0

p(t̃, τ)[K(t, τ)−K(t̃, τ)]U(τ)dτ

∣∣∣∣∣
i

+ dM

∫ t

t̃

p(t, τ)dτ

<
ε

2
+Md

ε

8Md
+

∫ t̃

0

p(t̃, τ)

d∑
j=1

ε

8dP (b)
dτ +Md

ε

4dM
≤ ε.

(3.44)

This means that S is collectively compact. Similar arguments gives
that AnU → AU ; i.e., AnU is pointwise convergent. �

4. Numerical Results

Consider the following theorem.

Theorem 4.1. For piecewise-continuous f, g and h, the solution u of

(4.1) ut = uxx, 0 < x < 1, 0 < t,

(4.2) u(x, 0) = f(x), 0 < x < 1,
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(4.3) u(0, t) = g(t), 0 < t,

(4.4) ux(1, t) = h(t), 0 < t,

has the form
(4.5)

u(x, t) = v(x, t)−2

∫ t

0

∂G

∂x
(x, t−τ)φ1(τ)dτ+2

∫ t

0
G(x−1, t−τ)φ2(τ)dτ,

where

(4.6) v(x, t) =

∫ ∞
−∞

G(x− ξ, t)f(ξ)dξ,

(4.7) G(x, t) =
1√
4πt

exp {−x
2

4t
},

G is called the fundamental solution of heat equation and f here is a
smooth, bounded extension of the f above, if and only if φ1 and φ2 are
piecewise continuous solutions of

(4.8) g(t) = v(0, t) + φ1(t) + 2

∫ t

0
G(−1, t− τ)φ2(τ)dτ,

(4.9) h(t) = vx(1, t) + φ2(t)− 2

∫ t

0

∂2G

∂2x
(1, t− τ)φ1(τ)dτ.

Proof. see [2]. �

For f(x) = 1, g(t) = Erf( 1
2
√
t
), and h(t) = Exp(−1

t )/
√
πt, the exact

solution of (4.1) − (4.4) is u(x, t) = Erf(x+1
2
√
t
), and the exact solutions

of (4.8)− (4.9) are:

(4.10) φ1(t) = −Erfc( 1

2
√
t
), φ2(t) = 0.

Table 1 shows relative errors of φ1 at t = 0.01i, i = 1, ..., 10 with

b = 0.1, φ1 is exact solution and φ̃1 is evaluated by the product integra-
tion technique. Absolute error of φ2 is negligible, and since φ2 = 0 then
the relative error of φ2 is not computable.
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Table 1.

i |φ1−φ̃1

φ1
|t=0.01i

1 0.0000149272
2 3.54138× 10−11

3 4.63845× 10−13

4 1.47064× 10−13

5 8.07575× 10−14

6 8.13343× 10−15

7 3.99896× 10−14

8 6.6627× 10−14

9 1.85675× 10−12

10 6.51736× 10−12
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