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VARIOUS TOPOLOGICAL FORMS OF VON NEUMANN

REGULARITY IN BANACH ALGEBRAS

G. H. ESSLAMZADEH* AND M. SHADAB

Communicated by Fereidoun Ghahramani

Abstract. In this article we study topological von Neumann reg-
ularity and principal von Neumann regularity of Banach algebras.
Our main objective is comparing these two types of Banach alge-
bras with some other known Banach algebras and with each other.
In particular we show that the class of topologically von Neumann
regular Banach algebras contains all C∗-algebras, group algebras
of compact abelian groups and certain weakly amenable Banach
algebras while it excludes measure algebras of certain locally com-
pact Abelian groups. Moreover we show that in a unital amenable
Banach algebra principal regularity implies topological regularity.
Finally we use topological regularity to obtain some information
about hereditary C∗-subalgebras of a given C∗-algebra.

1. Intrduction

Finding conditions which force a Banach algebra to be finite-dimensional
has a fairly long history. See [3,5,8,14,21,24–27] for some results in this
direction. Kaplansky [14] showed that every von Neumann regular Ba-
nach algebra is finite dimensional. To the best of our knowledge, so
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far the only reference on the topological analogs of von Neumann reg-
ularity in the literature is the unpublished work of the first author [7].
The main motivation for introducing topological regularity was identi-
fying conditions which force a Banach algebra to be finite dimensional.
However existence of infinite dimensional topologically von Neumann
regular Banach algebras motivated us to do a comparative study of the
notions of topological von Neumann regularity and principal regular-
ity. For instance it is well known that von Neumann regularity implies
semisimplicity; While we show that topological von Neumann regular-
ity implies semiprimeness. Roughly speaking topological von Neumann
regularity is consistent with operator norm ( Theorem 2.5 below) and
inconsistent with the total variation norm in certain measure algebras
(Corollary 2.4). Also between the two concepts, we can say that at least
under certain conditions principal von Neumann regularity is stronger
than topological von Neumann regularity as the main theorem of Section
3 shows.

This paper is organized as follows. Section 2 is devoted to the study
of topological von Neumann regularity. In particular some basic facts
and hereditary properties of topologically von Neumann regular algebras
are discussed in this section. Then we find a criterion for topological
regularity and the relationship between topological regularity and weak
amenability. Moreover we prove that all C∗-algebras are topologically
regular, while measure algebras of certain locally compact groups are
not. In Section 3 we study another topological form of von Neumann
regularity which we call principal regularity. In this section we compare
the two concepts of topological von Neumann regularity and principal
regularity. In the last section we apply some results of previous sections
to identify hereditary C∗-subalgebras of an arbitrary C∗-algebra.

Before proceeding further, let us describe some notations which we
rely on throughout this article. For the terms which are not introduced
here the reader may refer to one of [2, 4, 13,20].

Throughout A and B are Banach algebras, A-module means Banach
A-bimodule and the term semisimple means Jacobson semisimple. If for
every A-bimodule X every bounded derivation from A into X ∗ is inner,
then A is called amenable. If every bounded derivation from A into A∗
is inner, then A is called weakly amenable. We say that a short exact
sequence

0 −→ X f−→ Y g−→ Z −→ 0.
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of A-modules is admissible [resp. splits] if g has a bounded linear right
inverse [resp. a bounded linear right inverse which is also an A-module
homomorphism]. This is equivalent to say that f(X ) has a Banach space
[resp. A-module] complement in Y. We say that a left A-module M is
flat if for every short exact sequence

0 −→ X f−→ Y g−→ Z −→ 0.

of A-modules, the following sequence remains exact, where ⊗̂A denotes
A-module projective tensor product.

0 −→ X⊗̂AM
f⊗1−→ Y⊗̂AM

g⊗1−→ Z⊗̂AM−→ 0.

The left annihilator [resp. right annihilator/ annihilator] of a subset
E of A which is denoted by `an(E) [resp. ran(E)/ann(E)] is the set
of all x ∈ A where xE = 0 [resp. Ex = 0/ Ex = xE = 0]. When
E = {a}, we denote `an(E) [resp. ran(E)/ann(E)] simply by `an(a)
[resp. ran(a)/ann(a)].

We say that A is reduced if for every a ∈ A the identity a2 = 0 implies
a = 0. We say A is semiprime if {0} is the only ideal I of A with
I2 = {0}; However an ideal I of A is semiprime if A/I is semiprime.
Note that being a semiprime ideal for an ideal I of A is different from
being a semiprime algebra in its own right.

Let X be a compact Hausdorff space, C(X) be the C∗-algebra of
continuous functions on X and f ∈ C(X). We denote the zero set of
f by Z(f). Let G be a locally compact group. The algebras L1(G),
M(G), L∞(G), UC(G), LUC(G), RUC(G) and Cb(G) have their usual
meanings.

2. Topological Regularity

In this section we study a natural topological analog of the concept
of von Neumann regularity. Recall that an element a ∈ A is called von
Neumann regular if there is an x ∈ A such that a = axa. A non-zero
element a ∈ A is called resp. weakly von Neumann regular if there is
a non-zero x ∈ A such that x = xax. If every non-zero a ∈ A is von
Neumann regular [resp. weakly von Neumann regular], then A is von
Neumann regular [resp. weakly von Neumann regular]. It is well known
that in a von Neumann regular Banach algebra every principal one sided
ideal is generated by an idempotent. Also weak regularity is equivalent
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to the following condition: Every non-zero one sided ideal contains a
non-zero idempotent [14].

Definition. An element a ∈ A is called topologically von Neumann

regular if a ∈ aAa‖.‖. If every element ofA is topologically von Neumann
regular, then A is called topologically von Neumann regular.

Convention. From now on by the suffix “regular” we mean “von Neu-
mann regular”.

Examples 2.1. (i)Let H be a Hilbert space. Every partial isometry and
every Fredholm operator on H is a regular element of B(H).

(ii) Every C∗-algebra A is topologically regular, as we will see in the
Theorem 2.6.

(iii) Assume La and Ra are left and right multiplication by an element
a of A, respectively. If a is topologically regular then La and Ra are
topologically regular elements of B(A).

(iv) In every ∗−Banach algebra A with continuous involution, a ∈ A
is topologically regular if and only if a∗ is topologically regular.

In the following proposition whose proof is not difficult and is left to
the reader, we have collected some basic facts about topological regularity.

Proposition 2.2. Suppose Bλ, λ ∈ Λ are Banach algebras and A is
topologically regular.
(i) If e 6= 0 is an idempotent in A , then eAe is topologically regular.
(ii) If φ : A −→ B is a continuous epimorphism, then B is topologically
regular.
(iii) If the `∞-direct sum ⊕∞Bλ is topologically regular, then every Bλ
is topologically regular.
(iv) If the `1-direct sum ⊕1Bλ is topologically regular, then every Bλ is
topologically regular. If Λ is countable, the converse is also true.
(v) The unitization B# of B is topologically regular if and only if B is.

In the following theorem we provide a criterion for topological regu-
larity. But first we need to recall the following concept from ring theory.
A ring R is called semiprime if for every ideal I of R the identity I2 = 0
implies I = 0. However an ideal I of R is called semiprime if R/I is
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a semiprime ring. It is well known that regularity implies semisimplic-
ity [11, page 443]. A topological analog of this fact is part (ii) of the
following theorem.

Theorem 2.3. Suppose A is topologically regular. Then the following
statements hold.

(i) For every right ideal I and every left ideal J in A we have IJ =
I ∩ J . If A has an approximate identity, then the converse is also true.

(ii) A is semiprime.
(iii) If I is a closed ideal of A, then I and AI are topologically regular.

Proof. (i) Suppose A is topologically regular and I and J are right and
left ideals in A respectively. It suffices to show that I ∩ J ⊆ IJ , since
the inclusion IJ ⊆ I ∩ J holds trivially. Let a ∈ I ∩ J and {xn} be a

sequence in A such that axna→ a. Then a ∈ I J ⊆ IJ .
Conversely, assume thatA has an approximate identity and IJ = I∩J

for any right ideal I and any left ideal J . Then for any a ∈ A, we have

a ∈ (aA) ∩ (Aa) = (aA)(Aa) = aAa.

Therefore a is topologically regular.
(ii) Suppose I is an ideal of A such that I2 = 0. By the first part,

I = I2 = 0 and hence I = 0.
(iii) The statement regarding AI follows from Proposition 2.2(ii). Sup-

pose A is topologically regular and a ∈ I. Then there is a sequence {xn}
in A such that a = limn axna. By part (i) for every n we have

axna ∈ aI ∩ Ia ⊆ aI ∩ Ia = aIIa ⊆ aIa.

Therefore a ∈ aIa. �

Now let us consider concrete Banach algebras, in particular
C∗-algebras and the algebras associated with a locally compact group G.
Topological regularity of group algebras of compact abelian groups, C∗-
algebras, the algebras RUC(G), LUC(G), UC(G), L∞(G) and Cb(G)
follows from Theorems 2.5 and 2.6 below. However for M(G) the situa-
tion is totally different, even under restrictive assumptions, as we see in
the next corollary.

Corollary 2.4. The measure algebra M(G) of every non-discrete
metrizabe locally compact group G is not topologically regular.
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Proof. Suppose in contrary that M(G) is topologically regular. By The-

orem 2.3 for every ideal I in M(G) we have I2 = I. But by [4, Theorem
3.3.39] this is not the case for the ideal MC(G) of continuous measures
on G. Therefore M(G) is not topologically regular. �

Theorem 2.5. The group algebra L1(G) of every compact abelian group
G is topologically regular.

Proof. Let a ∈ L1(G). Then I = aL1(G) is a closed ideal of L1(G) and

hence has an approximate identity by [28, Proposition 1]. So I2 = I and

hence a ∈ I = I2 ⊆ aL1(G)a. �

Theorem 2.6. Every C∗-algebra is topologically regular.

Proof. Let A be an arbitrary C∗-algebra and a ∈ A . Since A has a
bounded approximate identity, then a ∈ aA ∩ Aa. By [13, Proposition
4.2.9] there is a c ∈ Aa ∩ A+ and a b ∈ A such that a = bc. Theorem
3.1.2 of [19] implies that aA has a bounded left approximate identity
{uλ}. So

a = lim
λ
uλa = lim

λ
(uλb)c ∈ aA Aa = aAAa = aAa.

Therefore a is topologically regular for all a ∈ A. �

Theorem 2.7. Suppose A is commutative and has a bounded approxi-
mate identity. Then A is topologically regular if and only if very closed
ideal of A is semiprime.

Proof. Suppose every closed ideal of A is semiprime and a ∈ A. By
assumption I = a2A is a semiprime ideal of A. So B = A

I is a semiprime
commutative Banach algebra. Let J be the principal ideal (a + I)B.

Since A has a bounded approximate identity, then a2 ∈ a2A = I and
hence J 2 = 0. Since B is semiprime, then J = 0 which implies that
a ∈ aAa. Therefore A is topologically regular. The converse statement
follows from Theorem 2.3. �
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Theorem 2.8. Let A be a commutative weakly amenable Banach algebra
with a bounded approximate identity. Then A is topologically regular if
and only if every closed ideal of A is weakly amenable.

Proof. Suppose A is topologically regular. By Theorem 2.3 (i) for every

closed ideal I in A we have I2 = I. So by [9, Proposition 2.2] I is weakly
amenable.

Conversely, suppose every closed ideal in A is weakly amenable. Then
aA is weakly amenable and hence (aA)2 = aA by [9, Proposition 2.2].
Since A has a bounded approximate identity, then a ∈ aA. Thus

a ∈ aA = (aA)2 = (aA)(aA) = (aA)(Aa) = aA2a = aAa.
Therefore a is topologically regular. �

3. Principal Regularity

If a ∈ A is regular, then the principal left [resp. right] ideal gen-
erated by a has an idempotent generator [11, page 443] and hence is
complemented. So another natural generalization of the notion of regu-
larity could be existence of a Banach space complement for the closure
of one sided principal ideals which we call principal regularity. In this
section we study this notion, specially in the category of unital amenable
Banach algebras. We begin with a precise definition of this concept.

Definition. An element a ∈ A is called principally left [resp. right]

von Neumann regular if Aa‖.‖ [resp. aA‖.‖] is complemented. If every
element of A is both principally left and right von Neumann regular,
then A is called principally von Neumann regular.

Notation. As in the previous section we use the term “...regular” in-
stead of “...von Neumann regular”.

Lemma 3.1. Let I be a closed left ideal in A with a bounded left ap-
proximate identity {eα}. If A is principally left regular, then so is I.
The right analog of this result is also true.

Proof. Let a ∈ I. By assumption there is a closed subspaceM of A such
that A = Aa⊕M. Let x ∈ A. Then xa = x(limα eαa) = limα(xeα)a ∈
Ia. So Aa ⊆ Ia and hence Aa = Ia. Now let x ∈ I and x1 and x2 be
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the unique elements of Ia and M respectively such that x = x1 + x2.
Then x2 ∈M∩I and hence I = Ia+(M∩I). Since Ia∩(M∩I) = {0},
then I = Ia⊕ (M∩ I). Therefore a is principally regular as an element
of I. �

Now we prove the main result of this section in which we compare the
two notions of topological regularity and principal regularity.

Theorem 3.2. Let A be a unital amenable Banach algebra. If a ∈ A
is principally right or left regular, then a is topologically regular.

Proof. We use an algebraic argument. Suppose a is principally right
regular. The sequence

0 −→ aA i−→ A π−→ A/aA −→ 0.

is admissible as aA is complemented. Moreover since A is amenable,
then every left or right A module is flat [22, page 136]. So the following
sequence is exact, since Aa is flat.

0 −→ aA ⊗̂A Aa
i⊗1−→ A ⊗̂A Aa

π⊗1−→ A/aA ⊗̂A Aa −→ 0.

We show that the following diagram is commutative with exact rows:

0 −→ aA ⊗̂A Aa
i⊗1
−−→ A ⊗̂A Aa

π⊗1
−−→ A/aA ⊗̂A Aa −→ 0yπ1 yπ2 yπ3

0 −→ aA ∩Aa
i
−−−→ Aa

γ
−−−→ A/aA −→ 0

where i is the inclusion map, πj , j = 1, 2, 3 are canonical projections and

γ is defined by γ(x) = aA+x. The first row is exact, as we showed. For
the second row, we need only to show that ker(γ) = image(i) = aA∩Aa.
Let x ∈ Aa. Then γ(x) = 0 if and only if x ∈ aA if and only if
x ∈ aA ∩Aa. Therefore the second row is exact.

Now suppose
∑∞

i=1 x̄i⊗yia ∈ A/aA ⊗̂A Aa is such that π3

(∑∞
i=1 x̄i⊗

yia
)

= 0. Then we have

0 =

∞∑
i=1

xiyia =
∞∑
i=1

xiyia =

( ∞∑
i=1

xiyi

)
a.
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So

0 =

( ∞∑
i=1

xiyi

)
a⊗ 1 =

( ∞∑
i=1

xiyi

)
⊗ a =

∞∑
i=1

(xiyi)⊗ a =

∞∑
i=1

xi ⊗ yia.

Therefore π3 is one to one. Clearly π2 is onto. Now by the five Lemma
[11, page 180] since π2 is onto and π3 is one to one, then π1 is onto. But
π1
(
aA⊗̂AAa

)
= aAa. So aAa = aA ∩Aa and hence a ∈ aAa. �

The following result is a partial converse of the the preceding theorem.
Recall that a linear map T on A is called a multiplier if for every a, b ∈ A
the identity aT (b) = T (a)b holds.

Proposition 3.3. Suppose A is commutative and topologically regular.
If a ∈ A is such that aA is closed, then a is principally regular.

Proof. First we show that for a multiplier T on A with closed range, we
have T (A) = T 2(A) if and only if A = T (A)⊕Ker(T ).

To see this fact, suppose T (A) = T 2(A) and y ∈ T (A)∩Ker(T ). Let
x ∈ A be such that y = T (x). Then y2 = yT (x) = T (y)x = 0 which
together with Theorem 2.3(ii) implies that y = 0. Thus T (A)∩Ker(T ) =
{0}. On the other hand if x ∈ A, then T (x) = T 2(w) for some w ∈ A
and hence x− T (w) ∈ Ker(T ). Thus A = T (A)⊕Ker(T ). Conversely,
suppose A = T (A) ⊕Ker(T ) and y ∈ T (A). Let x ∈ A, x1 ∈ Ker(T )
and x2 ∈ T (A)be such that y = T (x) and x = x1 + x2. Then y = T (x2)
and hence y ∈ T 2(A). Therefore T (A) = T 2(A).

Now let La be the left translation operator by a and {xn} be a se-
quence in A such that a = limn axna. Then for every x ∈ A we have

ax = lim
n
axnax = lim

n
a2xnx ∈ a2A ⊆ aA = aA.

Thus a2A = aA and hence a2A = a(aA) = a2A = aA, that is, La(A) =
L2
a(A) and by the fact that we just proved A = La(A) ⊕ Ker(La).

Therefore a is principally regular. �

4. Applications to Hereditary C∗-Subalgebras

In this section we obtain some information about hereditary C∗-
subalgebras of a C∗-algebra. Recall that a closed self-adjoint subalgebra
B of a C∗-algebra A is called a hereditary C∗-subalgebra if for a ∈ A+
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and b ∈ B+ the inequality a ≤ b implies that a ∈ B. The following result
was known only for positive elements of a C∗-algebra [19, page 85]. Here
we extend it to self-adjoint elements, with a different argument, based
on Theorem 2.6.

Theorem 4.1. Suppose A is an arbitrary C∗-algebra and a ∈ A is
self-adjoint. Then aAa is the hereditary C∗-subalgebra of A generated
by a.

Proof. By Theorem 2.6 A is topologically regular. So a ∈ aAa. More-
over if I = aA and L = I, then by Theorem 2.3(i) we have aAa =
II∗ = I ∩ I∗ = L∩L∗ where the later is a hereditary C∗-subalgebra of
A by [19, Theorem 3.2.1]. Thus aAa is a hereditary C∗-subalgebra of
A, containing a. To show that it is the smallest such algebra, suppose B
is a hereditary C∗-subalgebra of A containing a. Then by [19, Theorem
3.2.2] for every x ∈ A, axa ∈ B and hence aAa ⊆ B. �

Theorem 4.2. Let A be a principally left [resp. right] regular C∗

algebra. Then every hereditary C∗-subalgebra B of A is principally left
[resp. right] regular.

Proof. By [19, Theorem 3.2.1] there is a closed left ideal L in A such
that B = L∩L∗. Let b ∈ B and x ∈ A. By assumption there is a closed
subspaceM of A such that A = Ab⊕M. Then with the same argument
as in the proof of Lemma 3.1, we getAb = Lb and L = Lb⊕(M∩L). Now
L∩L∗ is a closed right ideal in L. Again using the argument of Lemma
3.1 we see that (L ∩ L∗)b = Lb and L∩L∗ = (L ∩ L∗)b⊕ (M∩L∩L∗).
Therefore B is principally left regular. The statement for principal right
regularity can be proved first by constructing a right version of [19,
Theorem 3.2.1] and then using the above argument. �

We close our discussion with the following proposition which sharpens
the conclusion of [23, Proposition 1.3.1], as C(X)f is not an AW ∗-
algebra in general. Moreover the approximation can be done by using a
special class of projections.

Proposition 4.3. Let X be a compact Stonean space and f ∈ C(X).

Then every element of C(X)f can be uniformly approximated by finite
linear combinations of projections in C(X)f .
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Proof. Let g ∈ C(X)f and ε > 0 be given. There is a h ∈ C(X)f such

that ‖h− g‖ < ε
2 . Let E = Z(f)C and k ∈ N be such that ‖h‖k < ε

2 . If

Ej = {x : |h(x)| > j
‖h‖
k
}, j = 0, ..., k

then
Φ = Ek ⊆ Ek−1 ⊆ ... ⊆ E1 ⊆ E0 = Z(h)C ⊆ E.

Let ej = χ(Ej\Ej+1)
, j = 1, ...k − 1. Define the function u on X by

u =
∑k−1

j=1 j
‖h‖
k ej . Since Ejs are clopen, then so are Ej \ Ej+1. Thus

e2j = ej ∈ C(X). Moreover if for j = 1, ..., k − 1 we define the function

fj to be fj(x) = 1
f(x) on Ej \Ej+1 and zero elsewhere, then fj ∈ C(X).

So ej = ffj ∈ C(X)f and hence u is a linear combination of projections
in C(X)f . Finally observe that ‖h−u‖ ≤ ε

2 and hence ‖g−u‖ < ε. �
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