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INSERTION OF A y—CONTINUOUS FUNCTION

M. MIRMIRAN

Communicated by Fariborz Azarpanah

ABSTRACT. A necessary and sufficient condition in terms of lower
cut sets are given for the insertion of a y—continuous function be-
tween two comparable real-valued functions.

1. Introduction

The concept of a preopen set in a topological space was introduced by
Corson and Michael in 1964 [1]. A subset A of a topological space (X, T)
is called preopen or locally dense or nearly open if A C Int(CIl(A)). A
set A is called preclosed if its complement is preopen or equivalently if
Cl(Int(A)) C A. The term, preopen, was used for the first time by
Mashhour, et. al. [12], while the concept of a locally dense set was
introduced by Corson and Michael [1].

The concept of a semi-open set in a topological space was introduced
by Levine in 1963 [?]. A subset A of a topological space (X, 7) is called
semi-open [11] if A C Cl(Int(A)). A set A is called semi-closed if its
complement is semi-open, or equivalently if Int(CIl(A)) C A.

Recall that a subset A of a topological space (X, 7) is called y—open, if
ANS is preopen, whenever S is preopen [1]. A set A is called y—closed if
its complement is y—open, or equivalently if AU.S is preclosed, whenever
S is preclosed.
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We have that if a set is y—open, then it is semi-open and preopen.

Recall that a real-valued function f, defined on a topological space
X, is called A—continuous [14] if the preimage of every open subset of
R belongs to A, where A is a collection of subset of X. Most of the
definitions of function used throughout this paper are consequences of
the definition of A—continuity. However, for unknown concepts, the
reader may refer to [5, 0].

Hence, a real-valued function f defined on a topological space X is
called precontinuous (respectively semi-continuous or y—continuous) if
the preimage of every open subset of R is preopen (respectively semi-
open or y—open) subset of X.

Precontinuity was called by Ptak nearly continuity [15]. Nearly conti-
nuity or precontinuity is known also as almost continuity by Husain [7].
Precontinuity was studied for real-valued functions on Euclidean space
by Blumberg back in 1922 [2].

Results of Katétov [8, 9] concerning binary relations and the concept
of an indefinite lower cut set for a real-valued function, which is due to
Brooks [3], are used in order to give a sufficient condition for the in-
sertion of a y—continuous function between two comparable real-valued
functions.

If g and f are real-valued functions defined on a space X, then we
write g < f (respectively g < f) in case g(z) < f(z) (respectively
g(x) < f(x)), for all x in X.

The following definitions are modifications of conditions considered in
[10].

A property P defined relative to a real-valued function on a topo-
logical space is a y—property provided that any constant function has
property P and provided that the sum of a function with property P
and any y—continuous function also has property P. If P, and P, are
~v—property, then the following terminology is used: (i) A space X has
the weak y—insertion property for (Py, P») if and only if for any functions
g and f on X such that g < f, g has property P, and f has property Ps,
then there exists a y—continuous function h such that ¢ < h < f, (ii)
A space X has the y—insertion property for (Py, P;) if and only if for
any functions g and f on X such that g < f, g has property P, and f
has property P», then there exists a y—continuous function h such that
g < h < f, and (iii) A space X has the weakly y—insertion property for
(P1, P) if and only if for any functions g and f on X such that g < f,g
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has property Pi, f has property P» and f — g has property P», then
there exists a y—continuous function A such that g < h < f.

Here, we give a sufficient condition for the weak v—insertion property.
Also, for a space with the weak y—insertion property, we give a necessary
and sufficient condition for the space to have the y—insertion property.
Several insertion theorems are obtained as corollaries of these results.

2. The Main Result

Before giving a sufficient condition for insertability of a y—continuous
function, the necessary definitions and terminology are stated.

Let (X, 7) be a topological space. The family of all y—open, y—closed,
semi-open, semi-closed, preopen and preclosed will be denoted by
70(X77)7 70(X7 T)a SO(Xa T)a SC(XvT)a pO(Xa 7-) and pC(Xa 7_)’ re-
spectively.

Definition 2.1. Let A be a subset of a topological space (X,T). Re-
spectively, we define the y—closure, y—interior, s-closure, s-interior, p-
closure and p-interior of a set A, denoted by yCI(A),vInt(A), sCI(A),
sInt(A),pCI(A) and pInt(A) as follows:

YCI(A)=n{F:F DA Fe~rC(X,1)},

yInt(A) =U{O:0 C A, 0 € yO(X, 1)},

sCl(A)=n{F:F DA F esC(X,1)},

sInt(A) =U{0: 0 C A,0 € sO(X,7)},

pCl(A) ={F:F2AFepC(X,7)} and

pInt(A) =U{O: 0 C A,0 € pO(X,1)}.

Respectively, we have vCI(A),sCIl(A),pCIl(A) are y—closed, semi-
closed, preclosed and yInt(A), sInt(A),pInt(A) are y—open, semi-open,
preopen.

The following first two definitions are modifications of conditions con-
sidered in [9, 10].

Definition 2.2. If p is a binary relation in a set S, then p is defined
as follows: = p y if and only if y p v implies x p v and u p = implies
u py, for any u and v in S.

Definition 2.3. A binary relation p in the power set P(X) of a topolog-
ical space X is called a strong binary relation in P(X) in case p satisfies
each of the following conditions:
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1) If A; p By, for anyi € {1,...,m} and for any j € {1,...,n}, then
there exists a set C in P(X) such that A; p C and C p Bj, for any
ie{l,...,m} and any j € {1,...,n}.

2)If AC B, then A p B.

3) If A p B, then vCIl(A) C B and A C vInt(B).

The concept of a lower indefinite cut set for a real-valued function
was defined by Brooks [3] as follows.

Definition 2.4. If f is a real-valued function defined on a space X and
if{r € X : f(z) <€} CA(fl) C{zx e X : f(x) <L}, for a real number
L, then A(f,¢) is called a lower indefinite cut set in the domain of f at
the level £.

We now give the following main result.

Theorem 2.5. Let g and f be real-valued functions on a topological
space X with g < f. If there exists a strong binary relation p on the
power set of X and if there exist lower indefinite cut sets A(f,t) and
A(g,t) in the domain of f and g at the level t for each rational num-
ber t such that if t1 < ta, then A(f,t1) p A(g,t2), then there exists a
~v—continuous function h defined on X such that g < h < f.

Proof. Let g and f be real-valued functions defined on X such that
g < f. By hypothesis, there exists a strong binary relation p on the
power set of X and there exist lower indefinite cut sets A(f,t) and
A(g,t) in the domain of f and g at the level ¢ for each rational number
t such that if ¢; < to, then A(f,t1) p A(g,t2).

Define functions F' and G mapping the rational numbers Q into the
power set of X by F(t) = A(f,t) and G(t) = A(g,t). If t; and ty are
any elements of Q with t; < o, then F(t1) p F(t2),G(t1) p G(t2), and
F(t1) p G(t2). By lemmas 1 and 2 of [9], it follows that there exists a
function H mapping Q into the power set of X such that if ¢; and ¢, are
any rational numbers with ¢ < to, then F(t1) p H(t2), H(t1) p H(t2)
and H(tl) P G(tg).

For any x in X, let h(z) =inf{t € Q: 2z € H(¢)}.

We first verify that g < h < f: if z is in H(t), then z is in G(¢'), for
any t' > t; since z is in G(t') = A(g,t’) implies that g(x) < ¢, it follows
that g(x) < t. Hence, g < h. If x is not in H(t), then z is not in F(t'),
for any ¢’ < t; since x is not in F(t') = A(f,¢') implies that f(x) > t/, it
follows that f(x) > t¢. Hence, h < f.
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Also, for any rational numbers ¢; and ¢ with ¢; < %2, we have
h=Y(t1,to) = vInt(H(t2)) \ YCI(H(t1)). Hence, h™'(t1,t3) is a y—open
subset of X, i.e., h is a y—continuous function on X. O

The above proof used the technique of the proof of Theorem 1 in [3].

Theorem 2.6. Let P, and P> be y—property and X be a space that
satisfies the weak ~y—insertion property for (P, Py). Also, assume that
g and f are functions on X such that g < f,g has property P and f
has property Py. The space X has the y—insertion property for (Py, Ps)
if and only if there exist lower cut sets A(f — g,37 ") and there exists
a decreasing sequence { Dy} of subsets of X with empty intersection and
such that for each n, X\ Dy, and A(f—g,3~ "1 are completely separated
by vy— continuous functions.

Proof. See Theorem 2.1 in [13]. O
3. Applications

The abbreviations pc and sc are used for precontinuous and semicon-
tinuous, respectively.

Corollary 3.1. If for each pair of disjoint preclosed (respectively semi-
closed) sets Fy, Fy of X, there exist y—open sets G1 and G2 of X such
that F1 C G1, F» C Go and G1 NGy = 0, then X has the weak
~y—insertion property for (pc,pc) (resoectively (sc, sc)).

proof. Let g and f be real-valued functions defined on X such that
f and g are pc (respectively sc), and g < f. If a binary relation p is
defined by A p B in case pCl(A) C pInt(B) (resp. sCl(A) C sInt(B)),
then by hypothesis p is a strong binary relation in the power set of X.
If t; and to are any elements of Q with £; < to, then

A(fit1) C{r e Xt f(z) <t1} C{z € X : g(z) <t2} C A(g, t2);

since {x € X : f(x) < t1} is a preclosed (respectively semi-closed)
set and since {z € X : g(x) < to} is a preopen (respectively semi-
open) set, it follows that pCl(A(f,t1)) C pInt(A(g,t2)) (respectively
sCU(A(f,t1)) C sInt(A(g,t2))). Hence, t; < to implies that

A(f,t1) p A(g,t2). The proof follows from Theorem 2.5. O

Corollary 3.2. If for each pair of disjoint preclosed (respectively semi-
closed) sets Fy, Fy, there exist y—open sets G1 and Ga such that F; C
G1, F» C G and G1 NGy = 0, then every precontinuous (respectively
semi-continuous) function is y— continuous.
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Proof. Let f be areal-valued precontinuous (respectively semi-continuous)
function defined on X. Set g = f. Then, by Corollary 3.1, there exists
a y—continuous function h such that g = h = f. O

Corollary 3.3. If for each pair of disjoint preclosed (respectively semi-
closed) sets Fy, Fy of X, there exist y—open sets G1 and Go of X such
that Fy C G1, F» C Go and G1 NGy = 0, then X has the y—insertion
property for (pc,pc) (respectively (sc, sc)).

Proof. Let g and f be real-valued functions defined on X such that f
and g are pc (respectively sc), and g < f. Set h = (f + g)/2. Thus,
g < h < f, and by Corollary 3.2, since g and f are y—continuous
functions, hence h is a y—continuous function. O

Corollary 3.4. If for each pair of disjoint subsets Fy and Fy of X such
that Fy is preclosed and Fy is semi-closed, there exist y—open subsets
G1 and Gy of X such that Fy C Gy, F» C Go and G1 NGy =0, then X
has the weak y—insertion property for (pc, sc) and (sc, pc).

Proof. Let g and f be real-valued functions defined on X such that g is
pe (respectively sc) and f is sc (respectively pc), with g < f. If a binary
relation p is defined by A p B in case sCIl(A) C pInt(B) (respectively
pCl(A) C sInt(B)), then by hypothesis p is a strong binary relation in
the power set of X. If £; and ¢35 are any elements of Q with ¢ < to, then

A(fit1) C{z e Xt f(z) <t1} C{z € X : g(x) < t2} C A(g,t2);

since {x € X : f(z) < t1} is a semi-closed (respectively preclosed)
set and since {x € X : g(z) < t2} is a preopen (respectively semi-
open) set, it follows that sCl(A(f,t1)) C pInt(A(g,t2)) (respectively
pCU(A(f,t1)) C sInt(A(g,t2))). Hence, t; < to implies that

A(f,t1) p A(g,t2). The proof follows from Theorem 2.5. O

Before stating the consequences of Theorem 2.6, we state and prove
some necessary lemmas.

Lemma 3.5. The following conditions on the space X are equivalent.
(i) For each pair of disjoint subsets Fy and Fy of X such that Fy is
preclosed and Fy is semi-closed, there exist y—open subsets G1,Ga of X
such that 1 C Gy, Fy C Go and G1 NGy = 0.
(i) If F' is a semi-closed (respectively preclosed) subset of X which
is contained in a preopen (respectively semi-open) subset G of X, then
there exists a y—open subset H of X such that F C H C~CI(H) C G.
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Proof. (i) = (ii) Suppose that F' C G, where F' and G are semi-closed
(respectively preclosed) and preopen (respectively semi-open) subsets of
X, respectively. Hence, G is a preclosed (respectively semi-closed) and
FNGe=19.

By (i), there exist two disjoint y—open subsets G; and G2 of X such
that, F - Gl and G° - G2. But

G°C Gy = G5 C G,

and
GiNGy; =0= Gy gGg
Hence,
FCG CGSCa,

and since G§ is a y—closed set containing GG, we conclude that
VCU(Gh) C G5, ie.,

F C Gy C~CI(Gy) C G.

By setting H = (1, condition (ii) holds.

(ii) = (i) Suppose that F and F; are two disjoint subsets of X such
that F} is preclosed and F5 is semi-closed.

This implies that F, C F} and FY is a preopen subset of X. Hence,
by (ii) there exists a y—open set H such that, F, C H C vCIl(H) C FY.
But

HCACI(H)=HnN(CIH))* =10
and
VCI(H) € Ff = Fy C (CUH))".

Furthermore, (vCI(H))¢ is a y—open set of X. Hence, F» C H,F; C
(vCl(H))¢ and H N (yCl(H))¢ = 0. This means that condition (i)
holds. O

Lemma 3.6. Suppose that X is a topological space. If each pair of dis-
joint subsets Fy and Fo of X, where F is preclosed and Fy is semi-closed,

can separate by y—open subsets of X, then there exists a y— continuous
function h : X — [0, 1] such that, h(Fy) = {0} and h(F3) = {1}.

Proof. Suppose F; and Fy are two disjoint subsets of X, where Fj is
preclosed and F» is semi-closed. Since Fy N Fy = (), hence F» C FY.
In particular, since FY is a preopen subset of X containing semi-closed
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subset F» of X, by Lemma 3.5, there exists a y—open subset Hy /5 of X
such that,
Fy C Hyjy CHCI(Hy ) C FY.

Note that Hj/, is also a preopen subset of X and contains Fy, and FY
is a preopen subset of X and contains a semi-closed subset yCI(H} ;)
of X. Hence, by Lemma 3.5, there exist y—open subsets Hy 4 and Hz/4
such that,

Fy C Hyyy CYCU(Hyyy) € Hyjp CyCIU(Hyyjp) C Hyyy € yCl(Hsyy) C FY.

By continuing this method for every ¢ € D, where D C [0, 1] is the set of
rational numbers with their denominators being powers of 2, we obtain
~v—open subsets H; of X with the property that if ¢1,to € D and t; < to,
then Hy, C Hy,. We define the function h on X by h(z) = inf{t : x €
H.}, for x ¢ Fy and h(x) =1, for x € F}.

Note that for every z € X,0 < h(z) < 1, i.e., h maps X into [0,1].
Also, we note that for any ¢t € D, F5 C Hy; hence, h(Fz) = {0}. Fur-
thermore, by definition, h(Fy) = {1}. It remains only to prove that h
is a y—continuous function on X. For every 8 € R, we have if § < 0,
then {z € X : h(z) < B} = 0 and if 0 < B, then {x € X : h(z) <
B} = U{H; : t < B}, hence, they are y—open subsets of X. Simi-
larly, if 5 < 0 then {# € X : h(z) > B} = X and if 0 < 3, then
{z € X : h(z) > B} = U{(7CI(H))¢ : t > B}; hence, every one of
them is a y—open subset of X. Consequently, h is a y—continuous
function. g

Lemma 3.7. Suppose that X is a topological space such that every
two disjoint semi-closed and preclosed subsets of X can be separated
by yv—open subsets of X. The following conditions are equivalent.

(i) Every countable convering of semi-open (respectively preopen) sub-
sets of X has a refinement consisting of preopen (respectively semi-open)
subsets of X such that for every x € X, there exists a y—open subset of
X containing x such that it intersects only finitely many members of the
refinement.

(ii) Corresponding to every decreasing sequence {Fy,} of semi-closed
(respectively preclosed) subsets of X with empty intersection there ezists
a decreasing sequence {Gp} of preopen (respectively semi-open) subsets
of X such that (,2; Gn =0 and for every n € N, F,, C Gy,
proof.(i) = (ii) Suppose that {F,} be a decreasing sequence of semi-
closed (respectively preclosed) subsets of X with empty intersection.
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Then, {FS : n € N} is a countable covering of semi-open (respectively
preopen) subsets of X. By hypothesis (i) and Lemma 3.5, this covering
has a refinement {V,, : n € N} such that, every V,, is a y—open subset
of X and vCI(V,,) C Ff. By setting G,, = (yCl(V,,))¢, we obtain a de-
creasing sequence of y—open subsets of X with the required properties.

(ii) = (i) Now, if {H, : n € N} is a countable covering of semi-
open (respectively preopen) subsets of X, and we set for n € N, F), =
(Ui, Hi)¢, then {F,} is a decreasing sequence of semi-closed (respec-
tively preclosed) subsets of X with empty intersection. By (ii), there
exists a decreasing sequence {G,} consisting of preopen (respectively
semi-open) subsets of X such that, ()72, G, = 0 and for every n €
N, F, € G,. Now, we define the subsets W, of X in the following
manner.

Wi is a y—open subset of X such that, G{ C W; and vCl(W1)NFy =
0.

Wy is a y—open subset of X such that, yCI(W;) U G§ C Wy and
~Cl(W3) N Fy = (), and so on. (By Lemma 3.5, W, exists.)

Then, since {G¢, : n € N} is a covering for X, hence {W,, : n € N} is
a covering for X consisting of y—open subsets of X. Moreover, we have

(1) ACUW,) € W,

(i) GS C W,

(i) W, € UL, H,

Now, suppose that S; = Wp and for n > 2, we set S, = Wi \
’yCl(Wn_l)

Then, since YyCl(Wy,—1) € W,, and S, D Wy11 \ Wy, it follows that
{Sy, : n € N} consists of y—open subsets of X and covers X. Further-
more, S;NS; # 0 if and only if |i —j| < 1. Finally, consider the following
sets:

S1NHy, S1NH,
SoNHy, SyNHs, SN H;g
SsNHy, S3sNHe, S3NHs, SsNHy

SiNHy, SiNHy, S;NHs, S;NHy ---, S;iNH;1
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These sets are y—open subsets of X, cover X and refine {H,, : n € N}.
In addition, S;NH; can intersect at most the sets in its row, immediately
above, or immediately below the row.

Hence, if z € X and x € S, N Hy,, then S, N H,, is a y—open
subset X containing x that intersects at most finitely many sets S; N H;.
Consequently, {S; N H; :i € N,j =1,...,i+ 1} refines {H, : n € N}
such that its elements are v—open subsets of X, and for every point in
X, we can find a y—open subset of X containing the point that intersects
only finitely many elements of that refinement.

Corollary 3.8. If every two disjoint semi-closed and preclosed subsets
of X can be separated by ~y—open subsets of X, and in addition, ev-
ery countable covering of semi-open (respectively preopen) subsets of X
has a refinement that consists of preopen (respectively semi-open) sub-
sets of X such that for every point of X we can find a y—open subset
containing that point such that, it intersects only a finite number of re-
fining members, then X has the weakly y—insertion property for (pc, sc)
(respectively (sc, pc)).

proof Since every two disjoint sets semi-closed and preclosed can be
separated by ~y—open subsets of X, therefore by Corollary 3.4, X has
the weak ~y—insertion property for (pc, sc) and (sc,pc). Now, suppose
that f and g are real-valued functions on X with g < f, such that, g is
pe (respectively sc), f is sc (respectively pc) and f — g is sc (respectively
pc). For every n € N, set

A(f =937 ) ={z e X : (f —g)(z) <37}

Since f — g is sc (respectively pc), hence A(f —g,37 ") is a semi-closed
(respectively preclosed) subset of X. Consequently, {A(f — g,37"*1)}
is a decreasing sequence of semi-closed (respectively preclosed) subsets
of X and furthermore, since 0 < f — g, it follows that (-, A(f —
g,37"") = 0. Now, by Lemma 3.7, there exists a decreasing se-
quence {D,} of preopen (respectively semi-open) subsets of X s. t.,
A(f — g,37"") C D, and (22, D,, = 0. But, by Lemma 3.6, A(f —
9,3 ") and X \ D,, of semi-closed (respectively preclosed) and pre-
closed (respectively semi-closed) subsets of X can be completely sepa-
rated by y—continuous functions. Hence, by Theorem 2.6, there exists a
~vy—continuous function h defined on X such that, g < h < f, i.e., X has
the weakly y—insertion property for (pc, sc) (respectively (se,pc)). O
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