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MONOMIAL IRREDUCIBLE sln(C)-MODULES

M. SHAHRYARI

Communicated by Freydoon Shahidi

Abstract. In this article, we introduce monomial irreducible rep-
resentations of the special linear Lie algebra sln(C). We will show
that this kind of representations have bases for which the action of
the Chevalley generators of the Lie algebra on the basis elements
can be given by a simple formula.

1. Introduction

Let L be a finite dimensional complex simple Lie algebra with a Car-
tan subalgebra H and the Cartan decomposition

L = H ⊕
.∑

r∈Φ

Lr,

where Φ is the corresponding root system and Lr =< xr > is the one
dimensional root space associated with r. We fix a basis

h1, h2, . . . , hl

for H. For any functional λ ∈ H∗, we define a left ideal Kλ in the
universal enveloping algebra U(L). In fact, Kλ is generated by all xr,
r ∈ Φ+ and elements hi−λ(hi), for 1 ≤ i ≤ l. Now, define the associated
Verma module of λ to be the quotient U(L)/Kλ. We denote this Verma

MSC(2000): Primary: 15A69; Secondary: 20C15.

Keywords: Symmetric group, character theory, representations of Lie algebras, symmetry

classes of tensors.

Received: 22 December 2009, Accepted: 19 July 2010.

c© 2011 Iranian Mathematical Society.

183



184 Shahryari

module by M(λ). Although M(λ) is not irreducible in general, it has a
unique maximal submodule Z(λ). So, the quotient L(λ) = M(λ)/Z(λ)
is irreducible. It is well-known that L(λ) is finite dimensional if and
only if λ is an integral dominant weight of L, i.e., λ(hi) is a non-negative
integer for all 1 ≤ i ≤ l. Also, every finite dimensional irreducible L-
module can be produced by this way. However, it is very hard to extract
useful information concerning L(λ) as it is a quotient of a quotient of
the universal enveloping algebra of L.

One of the most important problems concerning representations of
simple Lie algebras, is considered in this article: to find an ordered basis
for L(λ), such that one can obtain the matrix representations of elements
of L with respect to this ordered basis. It is trivial that handling with
matrix representations are more flexible than working with L-modules,
especially in practise.

It is the aim of this article to introduce such a suitable basis for L(λ).
In the present work we do this for monomial weights of the Lie algebra
sln(C). Note that every dominant integral weight λ is associated with
a partition π. We say that λ is monomial, iff χπ, the corresponding
character of π, is monomial character. In this case, by a paper of the
author and A. Madadi, (see [7]), there is a subgroup G ≤ Sm and a
linear character χ of G, such that

L(λ) ∼= Vχ(G),

where Vχ(G) is the symmetry class of tensors associated with G and χ
over V = Cn, (see [7]).

The symmetry class of tensors Vχ(G) has an orthonormal basis, con-
sisting of decomposable symmetrized tensors. To describe this basis, we
need to introduce some notations. Let Γmn be the set of all m-tuples of
integers α = (α1, . . . , αm) with 1 ≤ αi ≤ n. The permutation group G
acts on Γmn and so we can perform a set of representatives of orbits of
this action, say ∆. Let

∆̄ = {α ∈ ∆ : Gα ⊆ kerχ},
where Gα is the stablizer subgroup of α. Now, it is well-known that
Vχ(G) has an orthonormal basis, say

E = {|α〉 : α ∈ ∆̄}
such that |ασ〉 = χ(σ−1)|α〉, for all σ ∈ G. This is just the basis we
need, because for Chevalley generators of sln(C), we will prove that

Hi.|α〉 = µα|α〉,
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Xi.|α〉 =

m∑
r=1

δi+1,αrχ(σ−1
r )|(α− εr)σr〉.

For details and notations, see Section 3.
In this article, we first give a brief review of the theory of symmetry

classes of tensors. Then, we will show any irreducible representations
of sln(C) can be constructed as a symmetry class of tensors over the
standard sln(C)-module. Finally, we define monomial weights and we
give a basis for the corresponding monomial modules, as well as a com-
pact formula concerning the action of Chevalley generators on the basis
elements. The last section of this paper consists of some interesting
examples.

The reader interested in the subject of symmetry classes of tensors
will find a detailed introduction in [8] and [9]. For Lie algebras and their
representations, one can see [1], [3] or [4]. For character theory of finite
groups, see [5], and for representations of the symmetric group, see [2],
[6] or [10].

2. Symmetry classes of tensors

In this section, we are going to review the notion of a symmetry class
of tensors. The reader interested in the subject, can find a detailed
introduction in [8] or [9].

Let V be an n-dimensional complex inner product space and G be a
subgroup of the full symmetric group Sm. Let V ⊗m denote the tensor
product of m copies of V and for any σ ∈ G, define the permutation
operator

Pσ : V ⊗m → V ⊗m

by

Pσ(v1 ⊗ v2 ⊗ · · · ⊗ vm) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(m).

Suppose χ is a complex irreducible character of G and define the sym-
metrizer

Sχ =
χ(1)

|G|
∑
σ∈G

χ(σ)Pσ.

The symmetry class of tensors associated with G and χ is the image of
Sχ and it is denoted by Vχ(G). So,

Vχ(G) = Sχ(V ⊗m).
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For example, if we let G = Sm and χ = ε, the alternating character,
then we get ∧mV , the m-th Grassman space over V and if G = Sm and
χ = 1, the principal character, then we obtain V (m), the m-th symmetric
power of V , as symmetry classes of tensors.

Several monographs and articles have been published on symmetry
classes of tensors during last decade, see for example [8] and [9].

Let v1, . . . , vm be arbitrary vectors in V and define the decomposable
symmetrized tensor

v1 ∗ v2 ∗ · · · ∗ vm = Sχ(v1 ⊗ v2 ⊗ · · · ⊗ vm).

Let {e1, . . . , en} be a basis of V and suppose Γmn is the set of all
m-tuples of integers α = (α1, . . . , αm) with 1 ≤ αi ≤ n. For α =
(α1, . . . , αm) ∈ Γmn , we use the notation e∗α for decomposable sym-
metrized tensor eα1 ∗ · · · ∗ eαm . It is clear that Vχ(G) is generated by all
e∗α; α ∈ Γmn . We define an action of G on Γmn by

ασ = (ασ−1(1), . . . , ασ−1(m)),

for any σ ∈ G and α ∈ Γmn . Given two elements α, β ∈ Γmn , we say that
α ∼ β if and only if α and β lie in the same orbit. Suppose ∆ is a set of
representatives of orbits of this action and let Gα denote the stablizer
subgroup of α. Define

Ω = {α ∈ Γmn : [χ, 1Gα ] 6= 0},

where [ , ] denotes the inner product of characters (see [5]). It is well
known that e∗α 6= 0, if and only if α ∈ Ω, see for example [9]. Suppose
∆̄ = ∆ ∩ Ω. For any α ∈ ∆̄, we have the cyclic subspace

V ∗α = 〈 e∗ασ : σ ∈ G 〉.

It is proved that we have the direct sum decomposition

Vχ(G) =

·∑
α∈∆̄

V ∗α ,

see [9] for a proof. It is also proved that

sα := dimV ∗α = χ(1)[χ, 1Gα ],

and in particular, if χ is linear (a character with degree one), then sα = 1
and so the set

{e∗α : α ∈ ∆̄}
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is an orthogonal basis of Vχ(G). Also, in the case of linear character χ,
we have e∗ασ = χ(σ−1)e∗α. In the general case, let α ∈ ∆̄ and suppose

e∗ασ1 , e
∗
ασ2 , . . . , e

∗
ασt

is a basis of V ∗α , with σ1 = 1. Let

Aα = {ασ1 , ασ2 , . . . , ασt}.

Then, we define ∆̂ =
⋃
α∈∆̄Aα. It is clear that

∆̄ ⊆ ∆̂ ⊆ Ω,

and the set

{e∗α : α ∈ ∆̂}
is a basis of Vχ(G). Finally, we remind a formula for the dimension of
symmetry classes. We have

dimVχ(G) =
χ(1)

|G|
∑
σ∈G

χ(σ)nc(σ),

where c(σ) denotes the number of disjoint cycles (including cycles of
length one) in cycle decomposition of σ.

Remark 2.1. Sometimes using the simple notation |α〉 instead of e∗α
makes it more flexible to work with decomposable symmetrized tensors.
In the forthcoming sections, we will use this kind of notation.

3. Symmetry classes as sln(C)-modules

In this section, we define a Lie module structure on Vχ(G), so let L
be a complex Lie algebra and suppose V is an L-module. For any x ∈ L,
define

D(x) : V ⊗m → V ⊗m

by

D(x)(v1 ⊗ v2 ⊗ · · · ⊗ vm) =
m∑
i=1

v1 ⊗ · · · ⊗ xvi ⊗ · · · ⊗ vm.

We know that D(x)Sχ = SχD(x) and so Vχ(G) is invariant under
D(x). Suppose

D∗(x) = D(x) ↓Vχ(G),

where the down arrow denotes restriction.
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Definition 3.1. Define an action of Lie algebra L on Vχ(G) by

x(v1 ∗ · · · ∗ vm) = D∗(x)(v1 ∗ · · · ∗ vm)

=
m∑
i=1

v1 ∗ · · · ∗ xvi ∗ · · · ∗ vm.

Then, Vχ(G) becomes an L-module. In what follows, we will assume
that L = sln(C) and V = Cn, the standard module for L. In [7], we
studied irreducible constituents of Vχ(G) as well as their multiplicities.
To give a summery of our results, it is necessary to introduce some
notations.

A Cartan subalgebra for L is

H = {diag(a1, a2, . . . , an) : a1 + a2 + · · ·+ an = 0}
For any 1 ≤ i ≤ n, define a linear functional

µi : H → C
by

µi(h) = ai,

where h = diag(a1, a2, . . . , an), so we have

µ1 + µ2 + · · ·+ µn = 0

and hence µ1, µ2, . . . , µn−1 is a basis for H∗.
Now, let λ1, λ2, . . . , λn−1 be the fundamental weights corresponding

to H. It is easy to see that for any k ,

λk = µ1 + µ2 + · · ·+ µk.

Let α ∈ Γmn . We define a composition of m by m(α) = (m1,m2, . . . ,mn),
where mi is the multiplicity of i in α. Suppose

µα = µα1 + µα2 + · · ·+ µαm .

So, we have
µα = m1µ1 +m2µ2 + · · ·+mnµn.

Also, we can see that

µα = (m1 −m2)λ1 + (m2 −m3)λ2 + · · ·+ (ml −mn)λn−1.

In [7], we proved that µα = µβ, if and only if m(α) = m(β). So, for any
α ∈ Γmn , we introduce a partition π = λ(α) which is just the multiplicity
composition m(α) with a descending arrangement of entries. Hence, we
can define µπ = µα and this is well defined by the above observation. In
fact, for any partition π of m, with height at most n, we can find α ∈ ∆̄,
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such that π = λ(α), so we can perform µπ. Now, we are ready to restate
the main result of [7].

Theorem 3.2.

Vχ(G) =

.∑
π`m

L(µπ)χ(1)[χ,χπ ],

where χπ is the corresponding character of π and [ , ] denotes the inner
product of characters in G.

As an special case, we let G = Sm and χ = χπ. We denote the
corresponding symmetry class by Vπ(Sm). We have

Vπ(Sm) = L(µπ)χπ(1).

Note that this last equality, affords a new method of constructing all the
irreducible sln(C)-modules, namely, let λ = µπ be any integral dominant
weight of sln(C). As in [9], we have

Vπ(Sm) =

χπ(1)∑
i=1

V i
π(Sm),

where V i
π(Sm) is defined as follows. Let

F : Sm → GLχπ(1)(C)

be the corresponding representation of χπ, with F (σ) = [aij(σ)]. We
introduce the partial symmetrizer Siπ by,

Siχ =
χ(1)

m!

∑
σ∈Sm

aii(σ)Pσ.

Now, V i
π(Sm) is precisely the image of Siπ. So, we have

L(λ) = V i
π(Sm),

for all 1 ≤ i ≤ χπ(1). One of the most important consequences of this
construction is the following dimension formula, which is much simpler
than the one due to Weyl.

Corollary 3.3. Let L(λ) be an irreducible sln(C)-module with highest
weight λ = µπ, in which π is a partition of some integer m. Then,

dimL(λ) =
1

m!

∑
σ∈Sm

χπ(σ)nc(σ).
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4. Monomial weights

In this section, we fix the following notations. We denote by Eij , the
n × n matrix with (i, j)-entry equal to 1 and all other entries equal to
0. Then, we let Hi = Eii − Ei+1,i+1 and Xi = Ei,i+1, for 1 ≤ i ≤ n− 1.
Also, we let Yi = XT

i . These are clearly the Chevalley generators of
sln(C). As in Section 2, we assume that e1, e2, . . . , en is the standard
basis of V = Cn. A simple computation on decomposable symmetrized
tensors e∗α shows that for any i,we have

Hi.e
∗
α = µα(Hi)e

∗
α

Xi.e
∗
α =

m∑
r=1

δi+1,αre
∗
α−εr ,

where εr is the m-tuple whose entries are zero except the r-th entry
which is equal to 1. Note that a similar equation can be written for Yi.
From now on, we will denote e∗α by the simpler notation |α〉, so we have

Hi.|α〉 = µα(Hi)|α〉

Xi.|α〉 =
m∑
r=1

δi+1,αr |α− εr〉.

These equations describe the action of generators of sln(C) on the basis

elements |α〉; α ∈ ∆̂.

But, in general α− εr does not belong to ∆̂, and so we must express
|α − εr〉 as a linear combination of basis elements. This is a very hard
problem at this time, except in the case of linear characters. In other
words, if χ is linear, then we can write |α−εr〉 in terms of basis elements.

To do this, we first note that we have ∆̂ = ∆̄ and there is a permutation
σr ∈ G such that

(α− εr)σr ∈ ∆̄,

except for the case |α− εr〉 = 0. Hence, we have

|α− εr〉 = χ(σr)|(α− εr)σr〉,

and the final result does not depend on the way we select σr. Hence, we
have

Xi.|α〉 =

m∑
r=1

δi+1,αrχ(σr)|(α− εr)σr〉.
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Note that, if the permutation σr does not exist, then automatically
|α− εr〉 = 0.

Now, the question is this: for which groups G ≤ Sm and linear charac-
ters χ, the symmetry class Vχ(G) is an irreducible sln(C)-module? The
answer comes from Theorem 3.2; the symmetry class is irreducible, if
and only if χSm (induced character) is irreducible. Let χSm = χπ, for
some partition π of m. Then, obviously χπ is a monomial character of
Sm. If we let λ = µπ, then we call λ, a monomial integral dominant
weight of sln(C). In the next section, we will give some interesting ex-
amples of this kind of weights. At this stage, we summarize the results
of the recent section in the following theorem.

Theorem 4.1. Let λ = µπ be a monomial integral dominant weight of
sln(C). Then, there is a subgroup G ≤ Sm and a linear character χ of
G, such that

L(λ) = Vχ(G).

Further, L(λ) has an orthonormal basis

E = {|α〉 : α ∈ ∆̄}

such that

Hi.|α〉 = µα(Hi)|α〉

Xi.|α〉 =

m∑
r=1

δi+1,αrχ(σr)|(α− εr)σr〉,

where σr is any element of G with the property

(α− εr)σr ∈ ∆̄.

5. Examples

In this final section, we give some examples of monomial sln(C)-
modules. The first two examples are well-known.

Example 5.1. Let π = [1m] be the alternating partition. We know that
χπ = ε is linear and so it is monomial. We have λ = λm and hence
L(λ) =

∧m V is the corresponding fundamental module. In this case
∆̄ = Qm,n, the set of all strictly increasing sequences. Let α ∈ Qm,n,
such that αr = i + 1. Suppose qi denotes the number of terms αj with
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1 ≤ j ≤ r − 1 and αj > i + 1. Now, it is clear that σr is equal to a
product of qi transpositions and so we have

Xi.|α〉 =
m∑
r=1

δi+1,αr(−1)qi |(α− εr)σr〉

= (−1)qiδ1,mi+1(α)|i+ 1→ i〉,
where |i + 1 → i〉 is precisely |α − εr〉 after increasing re-arrangement

of its entries.

Example 5.2. Now, let π = [m], the trivial partition. Then, χπ = 1

and so it is monomial. We have λ = mλ1 and L(λ) = V (m). In this
case ∆̄ = Gm,n, the set of all increasing sequences. If α ∈ Gm,n and
αr = i + 1, then after a re-arrangement of its entries, α − εr becomes
an element of Gm,n. We denote this new element by (α− εr)inc. So, we
have

Xi.|α〉 =
m∑
r=1

δi+1,αr |(α− εr)inc〉.

Example 5.3. Let m = 3 and π = [2, 1]. Then, We have λ = 2µ1+µ2 =
λ1 + λ2. Also, the character χπ has degree 3 and it is monomial. Let

G =< (1 2 3) >

and ω be a primitive third root of unity. The subgroup G has a character
χ with values 1, ω and ω2, such that

χS3 = χπ.

Suppose

∆1 = {(α1, α2, α3) : α1 < α2, α3},
∆2 = {(α1, α2, α3) : α1 = α2 ≤ α3}.

Then, we have ∆ = ∆1 ∪ ∆2. Also, we have α ∈ Ω if and only if
Gα = 1, because kerχ = 1. So, we have

Ω = {(α1, α2, α3) : α1 6= α2, α1 6= α3}.
Hence, ∆̄ = ∆1 ∪ ∆̄2, where

∆̄2 = {(α1, α2, α3) : α1 = α2 � α3}.
Now, it is easy to check that each of the following implications are true:

1) If α1 = i+ 1, then σ1 = 1.
2) If α2 = i+ 1 and α ∈ ∆1, then σ2 = 1.
3) If α2 = i+ 1 and α ∈ ∆̄2, then σ2 = (1 2 3).
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4) If α3 = i+ 1, α ∈ ∆1 and α3 = α1 + 1, then σ3 = (1 3 2).
5) If α3 = i+ 1, α ∈ ∆1 and α3 > α1 + 1, then σ3 = 1.
6) If α3 = i + 1, α ∈ ∆̄2 and α3 = α1 + 1, then the corresponding

term is zero.
7) If α3 = i+ 1, α ∈ ∆̄2 and α3 > α1 + 1, then σ3 = 1.

In what follows, we denote the tensor |α〉 by |α1, α2, α3〉. Summarizing
all the above facts, we have
1) If α ∈ ∆1 and α3 = α1 + 1, then

Xi.|α1, α2, α3〉 = δi+1,α1 |α1 − 1, α2, α3〉+ δi+1,α2 |α1, α2 − 1, α3〉
+ δi+1,α3ω

2|α1, α1, α2〉.

2) If α ∈ ∆1 and α3 > α1 + 1, then

Xi.|α1, α2, α3〉 = δi+1,α1 |α1 − 1, α2, α3〉+ δi+1,α2ω|α1, α2 − 1, α3〉
+ δi+1,α3 |α1, α2, α3 − 1〉.

3) If α ∈ ∆̄2 and α3 = α1 + 1, then

Xi.|α1, α2, α3〉 = δi+1,α1 |α1 − 1, α2, α3〉+ δi+1,α2ω|α1 − 1, α3, α1〉.

4) If α ∈ ∆̄2 and α3 > α1 + 1, then

Xi.|α1, α2, α3〉 = δi+1,α1 |α1 − 1, α2, α3〉+ δi+1,α2ω|α1 − 1, α3, α1〉
+ δi+1,α3 |α1, α2, α3 − 1〉.

Example 5.4. For m = 4, there are 3 non-linear monomial characters.
In this example, we study the partition π = [3, 1]. It is easy to see that

G = 〈(1 2), (1 3)(2 4)〉,

which is isomorphic to the dihedral group of order 8. Its conjugacy
classes are as follows,

K1 = 1

K2 = {(1 2), (3 4)}
K3 = {(1 2)(3 4)}
K4 = {(1 3)(2 4), (1 4)(2 3)}
K5 = {1 3 2 4), (1 4 2 3)}.

Suppose χ is the linear character of G with values 1, 1, 1,−1,−1, re-
spectively on K1, . . . ,K5. One can see that

χS4 = χπ.
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As in the previous example, we can determine ∆ and ∆̄; for ∆, we have

∆ = {α ∈ Γ4
n : α1 ≤ α2, α3 ≤ α4, α1 ≤ α3}.

Let

∆̄1 = {α : α1 < α2, α3 < α4, α1 ≤ α3, {α1, α2} 6= {α3, α4}},
∆̄2 = {α : α1 = α2 ≤ α3 < α4},
∆̄3 = {α : α1 < α2, α1 ≤ α3 = α4},
∆̄4 = {α : α1 = α2 < α3 = α4}.

Hence, we have

∆̄ = ∆̄1 ∪ ∆̄2 ∪ ∆̄3 ∪ ∆̄4.

Now, for all α ∈ ∆̄, we can compute Xi.|α〉 easily. For example,

X2.|2, 2, 3, 3〉 = |2, 2, 2, 3〉+ |2, 2, 3, 2〉
= |2, 2, 2, 3〉+ χ((3 4))|2, 2, 2, 3〉
= 2|2, 2, 2, 3〉.

Similarly,

X3.|1, 4, 4, 4〉 = |1, 3, 4, 4〉+ |1, 4, 3, 4〉+ |1, 4, 4, 3〉
= |1, 4, 3, 4〉+ 2|1, 4, 3, 4〉.

Example 5.5. Using GAP program, we see that in the case m = 5 and
π = [3, 1, 1], the character χπ is monomial. The corresponding weight
is λ = 2λ1 + λ3. The subgroup G is a non-abelian group of order 20,
generated by (1 2 3 4 5) and (2 3 5 4). The character χ, has values
1, i,−i,−1, 1. As in the previous examples, one can compute ∆̄ and
determine the required basis.
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