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PERMANENCE AND GLOBAL ASYMPTOTIC

STABILITY OF A DELAYED PREDATOR-PREY

MODEL WITH HASSELL-VARLEY TYPE FUNCTIONAL

RESPONSE

K. WANG∗ AND Y. L. ZHU

Communicated by Nezam Mahdavi-Amiri

Abstract. Here, a predator-prey model with Hassell-Varley type
functional responses is studied. Some sufficient conditions are ob-
tained for the permanence and global asymptotic stability of the
system by using comparison theorem and constructing a suitable
Lyapunov functional. Moreover, an example is illustrated to verify
the results by simulation.

1. Introduction

The first differential equation of predator-prey model was introduced
by Lotka [1] and Volterra [2]. After that, many more complicated but
realistic predator-prey model have been formulated by ecologists and
mathematicians. The dynamic relationship between predators and their
preys has long been and will continue to be one of the dominant themes
in both ecology and mathematical ecology due to its universal existence
and importance. The most popular predator-prey model is the one with
Michaelis-Menten type functional response (Freedman, 1980)[3]:
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(1.1)


dx
dt = rx(1− x

K )− cxy
m+x ,

dy
dt = y(−d+ fx

m+x),

x(0) > 0, y(0) > 0,

where, x and y denote the population of prey and predator at time t,
respectively. The constants r,K, c,m, d and f are positive constants
that stand for prey intrinsic growth rate (or the prey growth in absence
of predators), carrying capacity, capturing rate (or the prey is fed upon
by predators), half-saturation constant, predator death rate, maximal
predator growth rate, respectively. In this system, the per capita rate of
predator depends on the prey numbers only, which is not realistic in the
real situation. There are growing explicit biological and physiological
evidence (see [4-7], for more details) and in many situations, specially
while predators have to search and share or compete for food, a more
suitable and general predator-prey model should be based on the “ratio-
dependent” theory. A more general but realistic predator-prey model
with ratio-dependent type functional response was proposed by Arditi
and Ainzburg [6] in the form:

(1.2)


dx
dt = rx(1− x

K )− cxy
my+x ,

dy
dt = y(−d+ fx

my+x),

x(0) > 0, y(0) > 0.

The dynamics of system (1.2) is richer and more plausible than that
of system (1.1). Many scholars have studied system (1.2), such as Arditi
and Saiah [7], Berreta and Kuang [8], Jost et al.[9], Hsu et al.[10], Xiao
and Ruan [11], Berezovskaya et al.[12] and Maiti et al.[13].

It was known that the functional response can dependent on the
predator density in other ways. One of the more widely known one is due
to Hassell and Varley (1969)[14]. A general predator-prey model with
Hassell-Varley type functional response may take the following form:

(1.3)


dx
dt = rx(1− x

K )− cxy
myγ+x ,

dy
dt = y(−d+ fx

myγ+x), γ ∈ (0, 1),

x(0) > 0, y(0) > 0,

where, γ is called Hassell-Varley constant. In a typical predator-prey
interaction, where predators do not form groups, one can assume that
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γ = 1, producing the so-called ratio-dependent predator-prey dynamics.
For terrestrial predators that form a fixed number of tight groups, it
is often reasonable to assume that γ = 1/2. For aquatic predator that
form a fixed number of tights groups, γ = 1/3 maybe more appropriate.

Mathematically, system (1.1) or (1.2) can be viewed as an special case
of system (1.3) with γ = 0 or γ = 1. A unified mechanistic approach was
provided by Cosner et al.[15], where the functional response in system
(1.3) was derived. Hsu et al.[16] studied system (1.3) and presented a
systematic global qualitative analysis for it.

As was pointed by Kuang [17], any model of species dynamics without
delays is an approximation at best. More detailed arguments on the
importance and usefulness of time-delays in realistic models may also
be found in the classical books of Macdonald [18], and Gopalsamy [19].
Many scholars studied the delay predator-prey system (Fan et al.[20], Xu
et al.[21], Egami et al.[22]). Recently, Lu [23] investigated the influence
of delays on the existence of positive periodic solution to a Lotka Volterra
cooperative system.

Motivated by the above excellent works, here we consider a non-
autonomous predator-prey model with the Hassell-Varley functional re-
sponse and a delay in the prey specific growth term in the form:

(1.4)
N ′1(t) = N1(t)

[
a(t)− b(t)N1(t− τ(t))− c(t)N2(t)

mNγ
2 (t) +N1(t)

]
,

N ′2(t) = N2(t)

[
−d(t) +

r(t)N1(t)

mNγ
2 (t) +N1(t)

]
γ ∈ (0, 1)

with the following initial conditions:

(1.5)

{
N1(θ) = ϕ(θ), θ ∈ [−τU , 0], ϕ(0) = ϕ0 > 0,
N2(θ) = ψ(θ), θ ∈ [−τU , 0], ψ(0) = ψ0 > 0,

where, τU := supt∈[0,+∞){τ(t)}, τ, a, b, c, d, r are all positive continuous

bounded functions defined on [0,+∞), and m is a positive constant.
Obviously, system (1.3) is a special case of system (1.4)-(1.5), if one let
τ(t) ≡ 0 in system (1.4)-(1.5). In [24], Wang have studied the existence
of positive periodic solutions of system (1.4), by using the coincidence
degree theorem.

The main objective of this paper is to obtain sufficient conditions for
the permanence and global asymptotic stability of system (1.4)-(1.5). It
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is interesting that the results obtained in this paper are based on the
delay (or delay-dependent) which is different from the previous results
that are delay-independent.

The organization of the paper is as follows: in the next section, we
introduce some useful Definitions and lemmas. In Section 3, some suffi-
cient condition, are established, by utilizing the comparison theorem, for
the uniform persistence of system (1.4)-(1.5). In Section 4, by construct-
ing a suitable Lyapunov functional for system (1.4)-(1.5), we investigate
the global asymptotic stability of the system. Lastly, an example is given
to show the feasibility of our results by simulation.

2. Definitions and Lemmas

Definition 2.1. System (1.4) is said to be uniformly persistent if there
exists a compact region D ⊆ IntR2

+ such that every solution (x(t), y(t))>

of system (1.4) with the initial condition, (1.5) eventually enters and
remains in region D, i.e., there exist positive constants mi, Mi, i = 1, 2,
and T > 0 such that m1 ≤ x(t) ≤M1; m2 ≤ y(t) ≤M2 for t ≥ T,, for
any positive solution (x(t), y(t)) of system (1.4).

Definition 2.2. For any two positive solutions (x(t), y(t)), (x(t), y(t))
of system (1.4), if they satisfy limt→+∞(|x(t)−x(t)|+ | y(t)−y(t)| ) = 0,
then we call system (1.4) is globally asymptotic stable.

Lemma 2.3. (See [25, 26][26]) If a > 0, b > 0, τ(t) ≥ 0 for t ∈ R, and
y′(t) ≤ y(t) [b − a y(t − τ(t))], then there exists a constant T > 0 such
that y(t) ≤ b a−1 exp{b τU}, for t ≥ T.

Lemma 2.4. (See [25, 26]) If a > 0, b > 0, τ(t) ≥ 0 for t ∈ R, and
y′(t) ≥ y(t) [b − a y(t − τ(t))], and there exist constants T > 0, M > 0
such that y(t) < M, for t ≥ T , then there exists a constant T ∗ > T
such that y(t) ≥ min

{
b a−1 exp{(b− aM)τU}, b a−1

}
, for t ≥ T ∗.

Lemma 2.5. (See [27]) If a > 0, b > 0, β > 0 and
y′(t) ≥ (≤) y(t) [b− a yβ(t)], then

lim inf
t→+∞

y(t) ≥
(
b a−1

)1/β (
lim sup
t→+∞

y(t) ≤
(
b a−1

)1/β)
.
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Lemma 2.6. If a > 0, b > 0, β > 0 and y′(t) ≥ (≤) y(t)1−β [b−a yβ(t)],
then

lim inf
t→+∞

y(t) ≥
(
b a−1

)1/β (
lim sup
t→+∞

y(t) ≤
(
b a−1

)1/β)
.

Proof. It follows from y′(t) ≤ y(t)1−β [b− a yβ(t)] that

d(yβ(t))

dt
≤ β(b− ayβ(t)),

which gives

lim sup
t→+∞

y(t) ≤
(
b a−1

)1/β
.

Similarly, y′(t) ≥ y(t)1−β [b−a yβ(t)] yields lim inf
t→+∞

y(t) ≥
(
b a−1

)1/β
. �

Before giving the main results, we give some useful notations for any
continuous bounded function f defined on [0,+∞) as follows:

fL := inf
t∈[0,+∞)

{f(t)}, fU := sup
t∈[0,+∞)

{f(t), }

and

K1 : =
aU

bL
exp{aUτU}, K2 :=

(
K1r

U

mdL

)1/γ

,

D1 : =
(
a−m−1K1−γ

2 c
)L

, D2 := (r − d)L ,

K3 : = min

{
D1

bU
exp{(D1 − bUK1)τ

U}, D1

bU

}
,

K4 : =

(
(r − d)LK3

mrU

)1/γ

, P0 := (mKγ
4 +K3)

2,

P00 : = (mKγ
2 +K1)

2, P1 := (mKγ
2 +K1)K1.

3. Permanence

Theorem 3.1. If D1 > 0 and D2 > 0, then system (1.4) is uniformly
persistent.
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Proof. The first equation in system (1.4) leads to:

N ′1(t) ≤ N1(t)
[
aU − bLN1(t− τ(t))

]
,

which together with Lemma 2.3 yields that there is a constant T1 ∈ R+

such that

(3.1) N1(t) ≤
aU

bL
exp{aUτU} := K1, for t > T1

On the other hand, the second equation in system (1.4), and (3.1)
imply:

N ′2(t) ≤ N2(t)
(
−d(t) + K1

m r(t)N−γ2 (t)
)

≤ N1−γ
2 (t)

(
K1
m rU − dLNγ

2 (t)
)

It follows from Lemma 2.6 that, for any given ε > 0, there is a T2 ∈ R+

such that

(3.2) N2(t) ≤
(
K1r

U

mdL

)1/γ

+ ε := K2, for t > T2.

Furthermore, from (3.2) and the first equation in system (1.4), we get

N ′1(t) ≥ N1(t)

[
a(t)− K1−γ

2

m
c(t)− b(t)N1(t− τ(t))

]
≥ N1(t)

[
D1 − bU N1(t− τ(t))

]
.

It follows from Lemma 2.4 that there exists a T3 ∈ R+ such that

(3.3) N1(t) ≥ min

{
D1

bU
exp{(D1 − bUK1)τU}, D1

bU

}
:= K3, for t ≥ T3.

Similarly, the second equation in system (1.4) yields:

N ′2(t) ≥ N2(t)

[
(r − d)L − mrU

K3
Nγ

2 (t)

]
.

It follows from the assumption and Lemma 2.5 that, for the above ε,
there must be a constant T4 ∈ R+ such that

(3.4) N2(t) ≥
(

(r − d)LK3

mrU

)1/γ

+ ε := K4 for t ≥ T4.
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Combination of (3.1)-(3.4), gives:

K3 ≤ N1(t) ≤ K1 and K4,≤ N2(t) ≤ K2, for t > T,

where, T = max{Ti, i = 1, 2, 3, 4}.
Now, we complete the proof of Theorem 3.1 is complete. �

4. Global Attractivity

Theorem 4.1. In addition to assumptions in Theorem 3.1, assume fur-
ther that γ ∈ (0, 1) is a rational number and there is a positive constant
α such that the following condition holds:

[A1] lim
t→+∞

inf{g1(t), g2(t), K2
γ−1g2(t)− g3(t)} > 0, where,

g1(t) =αb(t)− αK2

P0
c(t)− mKγ

2

P0
r(t)

−K1

(
b(δ−1(t))φ(δ−1(t))

1− τ ′(δ−1(t))
+
K2

P0
c(t)φ(t)

)
− α

(
a(t) +K1b(t) +

1

m
K1−γ

2 c(t)

)∫ δ−1(t)

t

b(l)dl,

g2(t) =
mK3

P00
r(t)− α(mKγ

2 +K1)

P0
c(t)− P1

P0
c(t)φ(t) and

g3(t) =
mK2

P0
(α+K1φ(t))c(t), φ(t) = δ−1(t)− t and δ(t) = t− τ(t).

Then, system (1.4) is globally asymptotic stable.

Proof. For any two arbitrary positive solutions (N1(t), N2(t))
> and

(N1(t), N2(t))
>of system (1.4), we get from Theorem 3.1, that

K3 ≤ N1(t), N1(t) ≤ K1 and K4 ≤ N2(t), N2(t) ≤ K2, for t > T.

Let

V1(t) = α ln |N1(t)−N1(t)|+ ln |N2(t)−N2(t)|.

By directly calculating along the solution of system (1.4), we obtain:
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(4.1)
D+V1(t)

= α sgn(N1(t)−N1(t))

{
−b(t)

[
N1(δ(t))−N1(δ(t))

]
−
[

c(t)N2(t)

mN
γ
2(t) +N1(t)

− c(t)N2(t)

mNγ
2 (t) +N1(t)

]}

+r(t) sgn(N2(t)−N2(t))

{
N1(t)

mN
γ
2(t) +N1(t)

− N1(t)

mNγ
2 (t) +N1(t)

}
= α sgn(N1(t)−N1(t))

×
{
−b(t)(N1(t)−N1(t)) + b(t)

∫ t
δ(t)(N

′
1(s)−N ′1(s)) ds

}
−α c(t)sgn(N1(t)−N1(t))

[
N2(t)

mN
γ
2(t) +N1(t)

− N2(t)

mNγ
2 (t) +N1(t)

]

+r(t) sgn(N2(t)−N2(t))

{
N1(t)

mN
γ
2(t) +N1(t)

− N1(t)

mNγ
2 (t) +N1(t)

}
.

It is clear that
(4.2a)

sgn(N2(t)−N2(t))

{
N1(t)

mN
γ
2(t) +N1(t)

− N1(t)

mNγ
2 (t) +N1(t)

}

= m sgn(N2(t)−N2(t))
Nγ

2 (t)(N1(t)−N1(t)) +N1(t)(N
γ
2 (t)−Nγ

2(t))

(mN
γ
2(t) +N1(t))(mNγ

2 (t) +N1(t))

≤ mNγ
2 (t)|N1(t)−N1(t)|

(mN
γ
2(t) +N1(t))(mNγ

2 (t) +N1(t))

− mN1(t)|Nγ
2 (t)−N

γ
2 (t)|

(mN
γ
2 (t)+N1(t))(mNγ

2 (t)+N1(t))

≤ mKγ
2

P0
|N1(t)−N1(t)| − mK3

P00
|Nγ

2(t)−Nγ
2 (t)|
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and

(4.2b)

−sgn(N1(t)−N1(t))
{

N2(t)

mN
γ
2 (t)+N1(t)

− N2(t)
mNγ

2 (t)+N1(t)

}

= −sgn(N1(t)−N1(t))

×
{
m[N2(t)N

γ
2 (t)−N2(t)N

γ
2 (t)+N2(t)N

γ
2 (t)−N2(t)N

γ
2 (t)]

(mN
γ
2 (t)+N1(t))(mN

γ
2 (t)+N1(t))

+N2(t)N1(t)−N2(t)N1(t)+N2(t)N1(t)−N2(t)N1(t)

(mN
γ
2 (t)+N1(t))(mN

γ
2 (t)+N1(t))

}

= −sgn(N1(t)−N1(t))

×
{
m[Nγ

2 (t)(N2(t)−N2(t))+N2(t)(N
γ
2 (t)−N

γ
2 (t))]

(mN
γ
2 (t)+N1(t))(mN

γ
2 (t)+N1(t))

+N1(t)(N2(t)−N2(t))+N2(t)(N1(t)−N1(t))

(mN
γ
2 (t)+N1(t))(mN

γ
2 (t)+N1(t))

}

≤ mKγ
2+K1

P0
|N2(t)−N2(t)|+ mK2

P0
|Nγ

2 (t)−Nγ
2(t)|

−K2
P0
|N1(t)−N1(t)|

and
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δ(t)(N

′
1(s)−N ′1(s)) ds

=
∫ t
δ(t)

{
N1(s)

[
a(s)− b(s)N1(δ1(s))−

c(s)N2(s)

mN
γ
2(s) +N1(s)

]

−N1(s)

[
a(s)− b(s)N1(δ1(s))−

c(s)N2(s)

mNγ
2 (s) +N1(s)

]}
ds

=
∫ t
δ(t)(N1(s)−N1(s))

[
a(s)− b(s)N1(δ(s))−

c(s)N2(s)

mNγ
2 (s) +N1(s)

]
ds

+
∫ t
δ(t)N1(s)

{
b(s)

[
N1(δ(s))−N1(δ(s))

]
+

[
c(s)N2(s)

mNγ
2 (s) +N1(s)

− c(s)N2(s)

mN
γ
2(s) +N1(s)

]}
ds

(4.2c)

≤
∫ t
δ(t) |N1(s)−N1(s)|

[
a(s) + b(s)N1(δ(s)) +

c(s)N2(s)

mNγ
2 (s) +N1(s)

]
ds

+K1

∫ t
δ(t) b(s)

∣∣N1(δ(s))−N1(δ(s))
∣∣ ds

+P1
P0

∫ t
δ(t) c(s)|N2(s)−N2(s)|ds+ K1K2

P0

∫ t
δ(t) c(s)|N1(s)−N1(s)|ds

+mK1K2
P0

∫ t
δ(t) c(s)|N

γ
2 (s)−Nγ

2(s)|ds

≤
∫ t
δ(t) |N1(s)−N1(s)|

[
a(s) +K1b(s) +

1

m
K1−γ

2 c(s)

]
ds

+K1

∫ t
δ(t) b(s)

∣∣N1(δ(s))−N1(δ(s))
∣∣ ds

+P1
P0

∫ t
δ(t) c(s)|N2(s)−N2(s)|ds+ K1K2

P0

∫ t
δ(t) c(s)|N1(s)−N1(s)|ds

+mK1K2
P0

∫ t
δ(t) c(s)|N

γ
2 (s)−Nγ

2(s)|ds.
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Substitution of (4.2) into (4.1), gives:

D+V1(t)

≤ −α b(t)|N1(t)−N1(t)|+ mK1K2
P0

∫ t
δ(t) c(s)|N

γ
2 (t)−Nγ

2(t)|ds

+α b(t)

{∫ t
δ(t) |N1(s)−N1(s)|

[
a(s) +K1b(s) +

1

m
K1−γ

2 c(s)

]
ds

+K1

∫ t
δ(t) b(s)

∣∣N1(δ(s))−N1(δ(s))
∣∣ ds+ αK2c(t)

P0
|N1(t)−N1(t)|

+P1
P0

∫ t
δ(t) c(s)|N2(t)−N2(t)|ds+

mKγ
2 r(t)
P0

|N1(t)−N1(t)|

+K1K2
P0

∫ t
δ(t) c(s)|N1(t)−N1(t)|ds

}
− mK3r(t)

P00
|N2(t)−N2(t)|

+αc(t)
P0

[
(mKγ

2 +K1)|N2(t)−N2(t)|+mK2|Nγ
2 (t)−Nγ

2(t)|
]

=− f1(t)|N1(t)−N1(t)| − f2(t)|N2(t)−N2(t)|+ f3(t)|Nγ
2 (t)−Nγ

2(t)|

+ α b(t)

{∫ t

δ(t)
|N1(s)−N1(s)|

[
a(s) +K1b(s) +

1

m
K1−γ

2 c(s)

]
ds

+K1

∫ t

δ(t)
b(s)

∣∣N1(δ(s))−N1(δ(s))
∣∣ ds

+
P1

P0

∫ t

δ(t)
c(s)|N2(t)−N2(t)|ds

+
mK1K2

P0

∫ t

δ(t)
c(s)|Nγ

2 (t)−Nγ
2(t)|ds

+
K1K2

P0

∫ t

δ(t)
c(s)|N1(t)−N1(t)|ds

}
,

where,

f1(t) = αb(t)− αK2

P0
c(t)− mKγ

2

P0
r(t),

f2(t) =
mK3

P00
r(t)− α(mKγ

2 +K1)

P0
c(t),

f3(t) =
mαK2

P0
c(t).
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Define further that

V2(t) =α

∫ δ−1(t)

t

∫ t

δ(l)

b(l)[a(s) +K1b(s)

+
1

m
K1−γ

2 c(s)]|N1(s)−N1(s)|dsdl

+K1

∫ δ−1(t)

t

∫ t

δ(l)

b(s)|N1(δ(s))−N1(δ(s))|dsdl

+
P1

P0

∫ δ−1(t)

t

∫ t

δ(l)

c(s)|N2(s)−N2(s)|dsdl

+
mK1K2

P0

∫ δ−1(t)

t

∫ t

δ(l)

c(s)|Nγ
2 (s)−Nγ

2(s)|dsdl

+
K1K2

P0

∫ δ−1(t)

t

∫ t

δ(l)

c(s)|N1(s)−N1(s)|dsdl.

Then, we have

V ′2(t)

=α

[
a(t) +K1b(t) +

1

m
K1−γ

2 c(t)

]
|N1(t)−N1(t)|

∫ δ−1(t)

t

b(l)dl

− α
∫ t

δ1(t)

b(t)

[
a(s) +K1b(s) +

1

m
K1−γ

2 c(s)

]
|N1(s)−N1(s)|ds

+K1b(t)φ(t)|N1(δ(t))−N1(δ(t))|

−K1

∫ t

δ1(t)

b(s)|N1(δ(s))−N1(δ(s))|ds

+
P1

P0
c(t)φ(t)|N2(t)−N2(t)|

− P1

P0

∫ t

δ(t)

c(s)|N2(s)−N2(s)|ds

+
mK1K2

P0
c(t)φ(t)|Nγ

2 (t)−Nγ

2(t)|

− mK1K2

P0

∫ t

δ(t)

c(s)|Nγ
2 (s)−Nγ

2(s)|ds

+
K1K2

P0
c(t)φ(t)|N1(t)−N1(t)|

− K1K2

P0

∫ t

δ(t)

c(s)|N1(s)−N1(s)|ds.
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Define

V3(t) = K1

∫ t

δ(t)

b(δ−1(s))φ(δ−1(s))

1− τ ′(δ−1(s))
|N1(s)−N1(s)|ds.

Then,

V ′3(t) =K1
b(δ−1(t))φ(δ−1(t))

1− τ ′(δ−1(t))
|N1(t)−N1(t)|

−K1b(t)φ(t)|N1(δ(t))−N1(δ(t))|.
We choose the Lyapunov functional for the system (1.4) in the follow-

ing form:

V (t) = V1(t) + V2(t) + V3(t).

By simple calculations we get the Dini derivative along the system
(1.4) as follows:

(4.2)
D+V (t) = V +

1 (t) + V ′2(t) + V ′3(t)

≤ −f1(t)|N1(t)−N1(t)| − f2(t)|N2(t)−N2(t)|

+f3(t)|Nγ
2 (t)−Nγ

2(t)|

+α

(
a(t) +K1b(t) +

1

m
K1−γ

2 c(t)

)∫ δ−1(t)
t b(l)dl|N1(t)−N1(t)|

+K1
b(δ−1(t))φ(δ−1(t))

1−τ ′(δ−1(t))
|N1(t)−N1(t)|

+K1K2
P0

c(t)φ(t)|N1(t)−N1(t)|

+P1
P0
c(t)φ(t)|N2(t)−N2(t)|

+mK1K2
P0

c(t)φ(t)|Nγ
2 (t)−Nγ

2(t)|

≤ −g1(t)|N1(t)−N1(t)| − g2(t)|N2(t)−N2(t)|

+g3(t)|Nγ
2 (t)−Nγ

2(t)|.
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Note that γ is a rational number, which yields that there exist two
mutually prime numbers p and q with p > q and γ = q

p , such that

(4.3) N2
γ
(t)−N2

γ(t) =

[
N2

1
p (t)−N

1
p

2 (t)

] q∑
i=1

N2

q−i
p (t)N

i−1
p

2 (t)

and

(4.4) N2(t)−N2(t) =

[
N2

1
p (t)−N

1
p

2 (t)

] p∑
i=1

N2

p−i
p (t)N

i−1
p

2 (t).

Substitution of (4.4) into (4.3), yields:

D+V (t)

≤− g1(t)|N1(t)−N1(t)| − g2(t)|N2(t)−N2(t)|+ g3(t)|Nγ
2 (t)−Nγ

2(t)|

=− g1(t)|N1(t)−N1(t)| −

{
g2(t)

p∑
i=1

N2

p−i
p (t)N

i−1
p

2 (t)

− g3(t)

q∑
i=1

N2

q−i
p (t)N

i−1
p

2 (t)

}∣∣∣∣N2

1
p (t)−N

1
p

2 (t)

∣∣∣∣
=− g1(t)|N1(t)−N1(t)| − g2(t)

p∑
i=q

N2

p−i
p (t)N

i−1
p

2 (t)

∣∣∣∣N2

1
p (t)−N

1
p

2 (t)

∣∣∣∣
−

{
g2(t)

q∑
i=1

N2

p−i
p (t)N

i−1
p

2 (t)

− g3(t)

q∑
i=1

N2

q−i
p (t)N

i−1
p

2 (t)

}∣∣∣∣N2

1
p (t)−N

1
p

2 (t)

∣∣∣∣
=− g1(t)|N1(t)−N1(t)| − g2(t)

p∑
i=q

N2

p−i
p (t)N

i−1
p

2 (t)

∣∣∣∣N2

1
p (t)−N

1
p

2 (t)

∣∣∣∣
−
(
g2(t)N2

γ−1
(t)− g3(t)

) q∑
i=1

N2

q−i
p (t)N

i−1
p

2 (t)

∣∣∣∣N2

1
p (t)−N

1
p

2 (t)

∣∣∣∣
≤− g1(t)|N1(t)−N1(t)| − g2(t)

p∑
i=q

N2

p−i
p (t)N

i−1
p

2 (t)

∣∣∣∣N2

1
p (t)−N

1
p

2 (t)

∣∣∣∣
−
(
K2

γ−1g2(t)− g3(t)
) q∑
i=1

N2

q−i
p (t)N

i−1
p

2 (t)

∣∣∣∣N2

1
p (t)−N

1
p

2 (t)

∣∣∣∣ ,
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which implies that there exist two positive constants β1 and β2 such that

D+V (t) ≤ −β1|N1(t)−N1(t)| − β2|N
1
p

2 (t)−N
1
p

2 (t)| for t > T4.

Thus, integration of the above inequality from T4 to t gives, for t > T4,

V (t)+β1

∫ t

T4

|N1(t)−N1(t)|dt+β2
∫ t

T4

∣∣∣∣N 1
p

2 (t)−N
1
p

2 (t)

∣∣∣∣ d ≤ V (0) < +∞,

which together with Barbalat’s Lemma [28] leads to limt→+∞ |N1(t) −
N1(t)| = 0 and limt→+∞

∣∣N2(t)−N2(t)
∣∣ = 0. �

Theorem 4.2. If we replace the term K2
γ−1g2(t) − g3(t) in Theorem

4.1 by γ−1K4
(1−γ)/γg2(t) − g3(t), then the result still holds without the

need for the assumption that γ is a rational number.

Proof. The mean value theorem yields that there is a ξ ∈ (K4,K2)
such that

|N2(t)−N2(t)| =γ−1ξ(1−γ)/γ |N2γ(t)−Nγ
2 (t)|

≥γ−1K(1−γ)/γ
4 |Nγ

2(t)−Nγ
2 (t)|,

which together with (4.3), gives:

D+V (t) ≤− g1(t)|N1(t)−N1(t)|

−
(
γ−1K

(1−γ)/γ
4 g2(t)− g3(t)

)
|N2(t)−N2(t)|.

The remainder of the proof is similar to the previous proof of Theorem
4.1. �

If τ(t) ≡ τ is a positive constant, then Theorem 4.1 reduces to the
following result.

Corollary 4.3. In addition to the assumption in Theorem 3.1, assume
further that γ ∈ (0, 1) is a rational number and the following condition
holds:
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[A2] D3 := lim inf
t→+∞

{g1(t),K2
γ−1g2(t)− g3(t)} > 0, where,

g1(t) =αb(t)− αK2

P0
c(t)− mKγ

2

P0
r(t)−K1

(
b(t+ τ) +

τK2

P0
c(t)

)
− α

(
a(t) +K1b(t) +

1

m
K1−γ

2 c(t)

)∫ t+τ

t
(t)b(l)dl,

g2(t) =
mK3

P00
r(t)− α(mKγ

2 +K1)

P0
c(t)− τP1

P0
c(t) and

g3(t) =
mK2

P0
(α+ τK1)c(t).

Then, system (1.4) is globally asymptotic stable.

Corollary 4.4. If we replace the term K2
γ−1g2(t)− g3(t), in Corollary

4.3, by γ−1K4
(1−γ)/γg2(t)− g3(t), then the result still holds without the

assumption that γ is a rational number.

5. Simulation

Consider the following system:

(5.1)

 N ′1(t) = N1(t)
[
5− 0.1 sin t− 18N1(t− 0.02)− (1−0.1 sin t)N2(t)

5N0.5
2 (t)+N1(t)

]
,

N ′2(t) = N2(t)
[
−5− 0.11 sin t+ (6+0.12 sin t)N1(t)

5N0.5
2 (t)+N1(t)

]
Choose α = 2.08× 10−5. By simple calculations we get:

K1 ≈ 0.3137586504,K2 ≈ 5.223918756× 10−3,
K3 ≈ 0.2674010579,K4 ≈ 8.484344651× 10−5,
D1 ≈ 4.8953, D2 = 0.99, and D3 ≈ 2.532623574.

Thus, Theorem 3.1 yields that the system is uniformly persistent,
which together with Theorem 4.1 implies that it is also globally asymp-
totic stable. The following figure shows the dynamic behavior of the
positive solution (N1(t), N2(t)) of the system (5.1) with initial values
(N1(θ), N2(θ)), θ ∈ [−0.02, 0], verifying the above results.
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