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SEMISTAR DIMENSION OF POLYNOMIAL RINGS
AND PRUFER-LIKE DOMAINS

P. SAHANDI

Communicated by Fariborz Azarpanah

ABSTRACT. Let D be an integral domain and x a semistar operation
stable and of finite type on it. We define the semistar dimension
(inequality) formula and discover their relations with x-universally
catenarian domains and *-stably strong S-domains. As an applica-
tion, we give new characterizations of x-quasi-Priifer domains and
UMt domains in terms of dimension inequality formula (and the
notions of universally catenarian domain, stably strong S-domain,
strong S-domain, and Jaffard domain). We also extend Arnold’s
formula to the setting of semistar operations.

1. Introduction

All rings considered here are (commutative integral) domains (with
1). Throughout, D denotes a domain with quotient field K. In [22],
Okabe and Matsuda introduced the concept of a semistar operation.
Let D be an integral domain and * be a semistar operation on D.

In [24], we defined and studied the x-Jaffard domains and proved
that every *-Noetherian and PxMD of finite *-dimension is a %-Jaffard
domain. In [25], we defined and studied two subclasses of *-Jaffard
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domains, namely the *-stably strong S-domains and *-universally cate-
narian domains and showed how these notions permit studies of *-quasi-
Priifer domains in the spirit of earlier works on quasi-Priifer domains.
The next natural step is to seek a semistar analogue of dimension (in-
equality) formula [15]. In Section 2, we define the x-dimension (inequal-
ity) formula and show that each *-universally catenarian domain satisfies
the *-dimension formula and each x-stably strong S-domain satisfies the
*-dimension inequality formula. In Section 3, we give new character-
izations of %x-quasi-Priifer domains and UM¢{¢ domains in terms of the
classical notions of dimension inequality formula, universally catenarian
domain, stably strong S-domain, strong S-domain, and Jaffard domain.
In the last section, we extend Arnold’s formula to the setting of semistar
operations (see Theorem 4.6).

To facilitate the reading, we first review some basic facts on semistar
operations. Denote by F(D), the set of all nonzero D-submodules of K,
and by F(D), the set of all nonzero fractional ideals of D; i.e., E € F(D)
if E € F(D) and there exists a nonzero element r € D with rE C D.
Let f(D) be the set of all nonzero finitely generated fractional ideals of
D. Obviously, f(D) C F(D) C F(D). Asin [22], a semistar operation
on D is a map % : F(D) — F(D), E — E*, such that, for all x € K,
x # 0, and for all E,F € F(D), the following three properties hold:
*x1: (xE)* = xE*; xo: E C F implies E* C F*; x3: E C E* and
E** := (E*)* = E*. Let * be a semistar operation on the domain D.
For every E € F(D), put E*/ := |J F*, where the union is taken over
all finitely generated F' € f(D) with F' C E. It is easy to see that x¢ is a
semistar operation on D, and * is called the semistar operation of finite
type associated with x. Note that (x7)f = x. A semistar operation x is
said to be of finite type if x = %; in particular, s is of finite type. We
say that a nonzero ideal I of D is a quasi-x-ideal of D, if I*N D = I;
a quasi-x-prime (ideal of D), if I is a prime quasi-x-ideal of D; and a
quasi-+-mazimal (ideal of D), if I is maximal in the set of all proper
quasi-x-ideals of D. Each quasi-x-maximal ideal is a prime ideal. It was
shown in [14, Lemma 4.20] that if D* # K, then each proper quasi- -
ideal of D is contained in a quasi-xy-maximal ideal of D. We denote
by QMax*(D) (respectively QSpec* (D)), the set of all quasi-x-maximal
ideals (respectively quasi-x-prime ideals) of D.

If A is a set of prime ideals of a domain D, then there is an associated
semistar operation on D, denoted by xa, defined as follows:

E*» :=n{EDp|P € A}, for each E € F(D).
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If A = (), then let E*4 := K, for each E € F(D). When A :=
QMax*f (D), we set * := xa. It has become standard to say that a
semistar operation x is stable, if (ENF)* = E*NF*, for all E, F € F(D).
All spectral semistar operations are stable [14, Lemma 4.1(3)]. In par-
ticular, for any semistar operation %, we have that x is a stable semistar
operation of finite type [14, Corollary 3.9].

The most widely studied (semi)star operations on D have been the
identity dp, and vp, tp := (vp)f, and wp := vp operations, where
Ep .= (E~1)~! with E~':=(D: E):={x € K|zE C D}.

For each quasi-x-prime P of D, the x-height of P (for short, x-ht(P)) is
defined to be the supremum of the lengths of the chains of quasi-x-prime
ideals of D, between prime ideal (0) (included) and P. Obviously, if
* = dp is the identity (semi)star operation on D, then x-ht(P) = ht(P),
for each prime ideal P of D. If the set of quasi-x-prime of D is not
empty, the x-dimension of D is defined as follows:

*-dim(D) := sup{*- ht(P)|P is a quasi- x -prime of D}.

If the set of quasi-*x-primes of D is empty, then pose x-dim(D) := 0.
Thus, if ¥ = dp, then x-dim(D) = dim(D), the usual (Krull) dimension
of D. It is known (see [12, Lemma 2.11]) that

*-dim(D) = sup{ht(P) | P is a quasi-x-prime ideal of D}.

Let x be a semistar operation on a domain D. Recall from [12, Section
3] that D is said to be a x-Noetherian domain, if D satisfies the ascending
chain condition on quasi-x-ideals. Also, recall from [10] that D is called
a Prifer x-multiplication domain (for short, a PxMD), if each finitely
generated ideal of D is x-invertible; i.e., if (II7Y)*r = D* for all I €
f(D). When x = v, we recover the classical notion of PvMD; when
* = dp, the identity (semi)star operation, we recover the notion of
Priifer domain. Finally, recall from [7] that D is said to be a %-quasi-
Priifer domain, in case, if @ is a prime ideal in D[X], and Q C P[X],
for some P € QSpec*(D), then @ = (Q N D)[X]. This notion is the
semistar analogue of the classical notion of the quasi-Priifer domains.
By [7, Corollary 2.4], D is a % ¢-quasi-Priifer domain if and only if D is
a *-quasi-Priifer domain.

2. The *-dimension (Inequality) Formula

We begin with the following definition. Recall that if D C T are
domains, then tr.deg.(7) is defined as the transcendence degree of the
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quotient field of T" over the quotient field of D. If P is a prime ideal of D,
then K(P) is denoted to be the residue field of D in P;i.e., Dp/PDp,
which is canonically isomorphic to the field of quotients of the integral
domain D/P.

Definition 2.1. Let D C T be an extension of domain and x and %
be semistar operation on D and T, respectively. We say that D C T
satisfies the (x,*")-dimension formula (respectively (%, *')-dimension in-
equality formula), if for all Q € QSpec* (T) such that (Q N D)* C D*,
*-ht(Q) + tr. deg.x(onp) (K(Q)) = x-ht(Q N D) + tr.deg.p(T) (respec-
tively

*-ht(Q) + tr. deg.x (onp)(K(Q)) < *-ht(Q N D) + tr.deg.p(T)). The
domain D is said to satisfy the *-dimension formula (respectively *-
dimension inequality formula), if for all finitely generated domain T over
D, D C T satisfies the (x,dr)-dimension formula (respectively (x,dr)-
dimension inequality formula).

If x = dp and « = dr, then these definitions coincide with the clas-
sical ones (see [15, 20]).

Proposition 2.2. Let D be a domain and x a semistar operation on D.
Then, the following conditions are equivalent:

(1) D satisfies the *-dimension formula (respectively *-dimension
inequality formula).

(2) Dp satisfies the dimension formula, for each P € QSpec;(D)
(respectively dimension inequality formula).

(3) Dy satisfies the dimension formula, for each M € QMax*(D)
(respectively dimension inequality formula).

Proof. We only prove the case of dimension formula and the other case
is the same. B

(1) = (2) Let P € QSpec*(D). Let T be a finitely generated domain
over Dp so that there exist finitely many elements 01, -+ ,0, € T such
that T = Dpl#y,---,0,]. Set T = D[61,--- ,6,]. Then, T = Tl’)\P and
T’ is a finitely generated domain over D. Let Q be a prime ideal of T
and set ¢Dp := QN Dp, where ¢(C P) is a prime ideal of D. Thus, there
exists a prime ideal Q" of 7" such that Q"N (D\P) = 0 and Q = QT p-
Thus, Q' N D = q. Since ¢ C P, we have that ¢ is a quasi-x-prime ideal
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of D. Since x-ht(q) = ht(q), then by the hypothesis we have:
ht(Q') + tr. deg.g () (K(Q')) = ht(q) + tr. deg. p(T").
Since ht(Q') = ht(Q), we see that

ht(Q) + tr. deg.g () (K(Q)) = ht(g) + tr. deg.p, (T).

(2) = (3) is trivial.

(3) <= (1) Suppose that 7' is a finitely generated domain over D.
Let Q € Spec(T) and set P := Q N D such that P* C D*. Thus,
P € QSpec*(D)U{0}. Let M be a quasi-*-maximal ideal of D containing
P. Note that Ty is a finitely generated domain over Dy and that
Q N (D\M) ?é (Z) 'ThllS7 QTD\M S Spec(TD\M) and P.DM = QTD\M N
Dyy. Therefore, by the (3), we have

ht(QTp\nr) + tr.deg.g(pp,, ) (K(QTp\ar))

=ht(PDyy) + tr.deg.p,, (Tp\ar)-
Now, since x-ht(Q) = ht(Q) = ht(QTp\ar), ht(P) = ht(PDyy), and

tr. deg.g(py(K(Q)) = tr.deg.g(pp,,) (K(QTp\rr)) and that tr.deg.,(T)
= tr.deg.p,, (Tp\ar) and the proof is complete. O

Let D be an integral domain with quotient field K, let X and Y be
two indeterminates over D and let x be a semistar operation on D. Set
D, := D[X], K; := K(X) and take the following subset of Spec(D1):

1:={Q1 € Spec(D1)| Q1N D = (0) or (Q1 N D)* ¢ D*}.
Set &7 := S(07) := D1 [Y\(U{@1[Y]|Q1 € ©7}) and
E"St = E[Y]e: N Ky, for all E € F(Dy).

It is proved in [24, Theorem 2.1] that the mapping *[X] :=Oe;:
F(Dy) — F(Dy), E — E*Xlis a stable semistar operation of finite type
on D[X]; i.e., *T)v(] = x[X]. It is also proved that x[X| = [ X] = x[X],
dp[X] = dp(x] and QSpec*™(D[X]) = ©1\{0}. If X1, -, X, are in-
determinates over D, for r > 2, we let

*[Xl,‘-- ,XT] = (*[Xl,"‘ 7Xr—1])[X7‘]7

where, x[X7,---, X,_1] is a stable semistar operation of finite type on
D[Xy, -+, X,_1]. For an integer r, put *[r| to denote x[X7,--- , X,] and
Dir] to denote D[X7y, -+, X,].
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Following [25], the domain D is called *-catenary, if for each pair
P C @ of quasi-x-prime ideals of D, any two saturated chain of quasi-
*-prime ideals between P and ) have the same finite length. If for
each n > 1, the polynomial ring D[n| is *[n]-catenary, then D is said
to be x-universally catenarian. Every PxMD, which is *-LFD (that is,
ht(P) < oo, for all P € QSpec*(D)), is *-universally catenarian, by [25,
Theorem 3.4].

Corollary 2.3. Let D be an x-universally catenarian domain. Then, D
satisfies the %-dimension formula.

Proof. Let P € QSpec;(D). Hence, Dp is a universally catenarian do-
main, by [25, Lemma 3.3]. Thus, by [5, Corollary 4.8, Dp satisfies the
dimension formula. Now, Proposition 2.2 completes the proof. O

The domain D is called a *-strong S-domain, if each pair of adja-
cent quasi-x-prime ideals P; C P» of D extends to a pair of adjacent
quasi-*[X|-prime ideals P;[X] C P5[X], of D[X]. If for each n > 1,
the polynomial ring D[n] is a x[n]-strong S-domain, then D is said to
be an %-stably strong S-domain. Every *-Noetherian, x-quasi-Priifer or
*-universally catenarian domain is *-stably strong S-domain, by [25,
corollaries 2.6 and 3.6].

Corollary 2.4. Let D be an %-stably strong S-domain. Then, D satisfies
the x-dimension inequality formula.

Proof. Use [25, Proposition 2.5] and [20, Theorem 1.6] and the same
argument as in the proof of Corollary 2.3. O

A valuation overring V of D is called a x-valuation overring of D if
F* C FV, for each F € f(D). Following [24], the x-valuative dimension
of D is defined as:

*- dim, (D) := sup{dim(V')|V is «-valuation overring of D}.

Although Example 4.4 of [24] shows that x-dim(D) is not always less
than or equal to *-dim, (D), but it is observed in [24] that *-dim(D) <
*dim, (D). We say that D is a x-Jaffard domain, if x-dim(D) =
*-dim, (D) < co. When x = d, the identity operation, then d-Jaffard
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domain coincides with the classical Jaffard domain (cf. [1]). It is proved
in [24] that D is a *-Jaffard domain if and only if

*[Xlu e 7Xn]‘ dlm(D[Xl) e 7Xn]) = ;;_ dlm(‘D) + n,
for each positive integer n.

Lemma 2.5. For each domain D, we have

%-dim, (D) = sup{dim,(Dp)|P € QSpec*(D)}.

Proof. We can assume that %-dim, (D) is a finite number. Suppose
that n = x-dim, (D). Then, there exists a *-valuation overring V', with
maximal ideal N, of D such that dim(V') =n. Set P := N N D so that
V is a valuation overring of Dp. Hence, n = dim(V) < dim,(Dp) <
*-dim, (D) = n, where the second inequality is true, since each valuation
overring of Dp is a *-valuation overring of D [17, Theorem 3.9]. O

In [I, Page 174], it is proved that a finite-dimensional domain sat-
isfying the dimension inequality formula is a Jaffard domain. In the
following result, we give the semistar analogue of the mentioned result.

Theorem 2.6. Let D be a domain of finite x-dimension. If D satisfies

the *-dimension inequality formula, then D is a x-Jaffard domain.

Proof. Let P € QSpeC;(D). Then Dp is a finite dimensional domain
and satisfies the dimension inequality formula by Proposition 2.2. Con-
sequently, Dp is a Jaffard domain, by [1]. Thus, using Lemma 2.5, we
have

% dim(D) = sup{dim(Dp)|P € QSpec* (D)}
= sup{dim,(Dp)|P € QSpec*(D)}
=%-dim, (D).

Thus, D is a %-Jaffard domain. O
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Therefore, we have the following implications for finite x-dimensional
domains:

*-Noetherian or x-quasi-Priifer PxMD
) y ) J
*-stably strong S-domain < x-universally catenary
4 \
*-dimension inequality formula <  *-dimension formula
o
*-Jaffard

Let D be a domain with quotient field K, let X be an indeterminate
over D, let x be a semistar operation on D, and let P be a quasi-x-prime
ideal of D (or P = 0). Set

Sp:=(D/P)[X \U{ Q/P)[X] | Q € QSpec*/ (D) and P C Q}.

Clearly, Sy is a multiplicatively closed subset of (D/P)[X].
For all E € F(D/P), set

E°S := E(D/P)[X]s; N (Dp/PDp).

It is proved in [ Theorem 3.2] that the mapping /P :=0ss: F(D/P)
— ]:(D/P) E > E”SF is a stable semistar operation of finite type on
D/P; ie., x/P = /P, QMax*/?(D/P) = {Q/P € Spec(D/P) | Q €
QMax*f(D) and P C Q}, x/P = x;/P =x/P and dp/P = dp/p.

Lemma 2.7. A domain D is x-universally catenarian if and only if
D/P is (x/P)-universally catenarian, for each P € QSpec*(D).

Proof. (=) Let P € QSpec*(D). By [10, Theorem 3.2 (a)], /P =
*=/P. Hence, by [25, Proposition 3.2 and Lemma 3.3], D/P is (x/P)-
universally catenarian if and only if (D/P) 4 is a universally catenarian
domain, for each M € QMax*/*’(D/P), that is, by [10, Theorem 3.2 (b)],
if and only if Dy;/PDjy is a universally catenarian domain, whenever P
is a subset of M € QMax*(D). But, by [25, Proposition 3.2 and Lemma
3.3], Dy is a universally catenarian domain, for all M € QMax*(D).
This, in turn, is immediate since any factor domain of a universally
catenarian domain must be a universally catenarian domain.

(<) It is enough to consider P = 0, since we have x/0 = *. O
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In [21, Corollary 14.D], it is proved that a Noetherian domain D is
an universally catenarian domain if and only if D is catenary and D/P
satisfies the dimension formula for each P € Spec(D). In the following
result, we give the semistar analogue of this result.

Theorem 2.8. Let D be a %-Noetherian domain. Then, D is an *-
universally catenarian domain if and only if D is ;—catenafy and D/P
satisfies the (x/P)-dimension formula, for each P € QSpec*(D).

Proof. (=) Let P € QSpec*(D). Then, D/P is (x/P)-universally cate-
narian by Lemma 2.7. Hence D/ P satisfies the (x/P)-dimension formula
by Corollary 2.3. -

(<) Let M € QMax*(D). It is enough to show that Dy, is a univer-
sally catenarian domain. To this end, let PDj; be a prime ideal of D;.
Thus, P is a quasi-*-prime ideal of D. Since D/P satisfies the (x/P)-
dimension formula, then (D/P)yp = Dy /PDyy satisfies the dimen-
sion formula, by Theorem 2.2. On the other hand, Dj; is a Noetherian
domain by [12, Proposition 3.8], and catenary, by [25, Proposition 3.2].
Consequently, Dy is a universally catenarian domain, by [21, Corollary
14.D). O

Recall that the celebrated theorem of Ratliff [23, Theorem 2.6] says
that a Noetherian ring R is universally catenarian if and only if R[X]
is catenarian. On the other hand, it is proved in [6, Theorem 1] that
the Noetherian assumption in Ratliff’s theorem can be replaced with
the going-down condition by proving that for a going-down domain D,
we have D is universally catenarian if and only if D[X] is catenarian
if and only if D is an LFD strong S-domain. As a semistar analogue,
in [25, Theorem 3.7] we proved that if D is x-Noetherian, then D[X] is
x[X]-catenary if and only if D is %-universally catenarian. In the last
theorem of this section we treat the second case.

Let D C T be an extension of domains. Let x and %' be semistar
operations on D and T, respectively. Following [9], we say that D C T
satisfies (x,*')-GD, if Py C P are quasi-x-prime ideals of D and @ is
a quasi-+’-prime ideal of T' such that @ N D = P, then there exists a
quasi-¥"-prime ideal Qg of T such that Qg C Q and Qo N D = Py. The
integral domain D is said to be a x-going-down domain (for short, a *-
GD domain), if for every overring T' of D the extension D C T satisfies
(%,dr)-GD. These concepts are the semistar versions of the “classical”
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concepts of going-down property and the going-down domains (cf. [3]).
It is known by [9, Propositions 3.5 and 3.2(e)] that every PxMD and
every integral domain D with *-dim(D) = 1 are a *-GD domain.

Theorem 2.9. Let D be a *-GD domain. The following statements are
equivalent:

(1) D is a x-LFD *x-strong S-domain.

(2) D is *-universally catenarian.

(3) D[X] is *[X]-catenarian.

Proof. (1) = (2) holds by [25, Theorem 4.1] and (2) = (3) is trivial.
For (3) = (1), let P € QSpec*(D). Then, Dp is a going-down domain
by [10, Proposition 2.5], and Dp[X] is catenarian, by [25, Lemma 3.3].
Thus, Dp is a LFD strong S-domain, by [6, Theorem 1]. Hence, D is a
*LFD *-strong S-domain, by [25, Proposition 2.4]. O

3. Characterizations of x-quasi-Priifer Domains

In this section, we give some characterization of x-quasi-Priifer do-
mains. We need to recall the definition of (x,*')-linked overrings. Let
D be a domain and T an overring of D. Let x and +' be semistar oper-
ations on D and T, respectively. One says that T is (x,*')-linked to D
(or that T is a (%, +)-linked overring of D), if F* = D* = (FT)* =T*,
when F' is a nonzero finitely generated ideal of D (cf. [11]). In particu-
lar, we are interested in the case ¥ = dp. We first recall the following
characterization of *-quasi-Priifer domains.

Theorem 3.1. ([25, Theorem 4.3]) Let D be an integral domain. Sup-
pose that x-dim(D) is finite. Consider the following statements:

(1) Each (x,+)-linked overring T of D is an ' -universally catenar-
tan domain. _

(1) Each (x,%")-linked overring T of D is an *'-stably strong S-
domain. _

(2) Each (x,%")-linked overring T of D is an *'-strong S-domain.

(3) Each (x,+')-linked overring T of D is an +'-Jaffard domain.

(4) Each (x,%")-linked overring T of D is an *'-quasi-Prifer domain.

(5) D is an *-quasi-Prifer domain.

Then, (1) = (1)< (2) & (3) < (4) & (5).
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Proof. The implication (1) = (1) holds, by [25, Corollary 3.6], and
(1) = (2) is trivial. For (2) = (5), see proof of [25, Theorem 4.3 part
(3) = (6)]. The implication (5) = (1) holds, by [25, Corollary 2.6]. For
(4) & (5) & (6), see [24, Theorem 4.14]. O

Now, we have the following theorem, a result reminiscent of the well-
known result of Ayache, et al. [1] (see also [15, Theorem 6.7.8]) for
quasi-Priifer domains.

Theorem 3.2. Let D be an integral domain. Suppose that x-dim(D) is
finite. Then, the following statements are equivalent.

(1) Each (x,dr)-linked overring T of D is a stably strong S-domain.
(2) Each (%,dr)-linked overring T of D is a strong S-domain.

(3) Each (%,dr)-linked overring T of D is a Jaffard domain.

(4) Each (*,dr)-linked overring T of D is a quasi-Prifer domain.
(5) D is an *-quasi-Prifer domain.

Proof. We only prove the equivalence of (1) < (5) and the proofs of
(2) & (5) (3) & (), and (4) < (5) are sammilar. The implication
(5) = (1) holds, by Theorem 3.1. For (1) = (5), let P € QSpec*(D).
It is enough for us to show that Dp is a quasi-Priifer domain, by [7,
Theorem 2.16]. To this end, let 7' be an overring of Dp. Then, Tp\p =T
and therefore T is (%,dr)-linked overring of D, by [l1, Example 3.4
(1)]. Thus, by the hypothesis we have T is a stably strong S-domain.
Therefore, Dp is a quasi-Priifer domain, by [15, Theorem 6.7.8]. O

Theorem 3.3. Let D be an integral domain. Suppose that x-dim(D) is
finite. Then, the following statements are equivalent.
(1) D is an *-quasi-Prifer domain.
(2) For each (x,*")-linked overring T of D, every extension of do-
mains T C S, satisfies the (;’,Q’)—dimension inequality formula,
where ¥ and ¥ are semistar operations on T and S, respectively.

Proof. (1) = (2) If D is an *-quasi-Priifer domain and 7' is (x, ¥')-linked
to D, then T is a #/-Jaffard domain, by [24, Theorem 4.14]. Let Q €
QSpec*” (S) such that (QNT)* C T* and set ¢ := QNT. Then, we have

q € QSpec* (T)U{0}. Set P := gN D. Thus, we have P € QSpec;(D) U
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{0}. Therefore, Dp, and hence T}, are quasi-Priifer domains, by [7,
Theorem 1.1]. In particular, T}, is a Jaffard domain. Thus, we have

dim(Sq) + tr. deg.g (o) (K(Q)) <dim,(Sg) + tr. deg.g(4) (K(Q))
< dim, (Ty) + tr. deg.1(5),

where the first inequality holds, since dim(Sg) < dim,(Sg) and the
second one due to [15, Lemma 6.7.3]. The conclusion follows easily from
the fact that dim(7},) = dim, (7).

(2) = (1) Let T be an overring of D and ' be a semistar operation
on T such that T is (x,+)-linked to D. Let (V, N) be any -valuation
overring of 7. Then, V is (¥, dy)-linked to T, by [12, Lemma 2.7]. Set
Q := NNT. Then, by assumption we have

dim(V) < dim(7g) — tr. deg.g ) (K(V)).

In particular, dim (V) < dim(Tg) < #'-dim(T), and hence #- dim,(T) =
*/-dim(7T'), that is, T is a «/-Jaffard domain. Thus, D is an *-quasi-
Priifer domain, by [24, Theorem 4.14]. O

Corollary 3.4. Let D be an integral domain. Suppose that *-dim(D)
is finite. Then, the following statements are equivalent.
(1) D is an *-quasi-Prifer domain.
(2) For each (x,dr)-linked overring T of D, every extension of do-
mains T C S, satisfies the dimension inequality formula.

Proof. (1) = (2) holds by Theorem 3.3. For (2) = (1), let P €
QSpec;(D). It is enough to show that Dp is a quasi-Priifer domain,
by [7, Theorem 2.16]. To this end, let T" be an overring of Dp. Then,
Tp\p = T and therefore, T'is (x, dr)-linked overring of D, by [11, Exam-
ple 3.4 (1)]. If T'C S is any extension of domains, then 7' C S satisfies
the dimension inequality formula by the hypothesis. Therefore, Dp is a

quasi-Priifer domain, by [15, Theorem 6.7.4]. O

Recall that an integral domain, D is called a UMt-domain, if every
upper to zero in D[X] is a maximal ¢-ideal, which has been studied by
several authors (see [7, 13, 19]). It is observed in [7, Corollary 2.4 (b)]
that D is a w-quasi-Priifer domain if and only if D is a UMt-domain.
The following corollary is a new characterization of UMt domains.
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Corollary 3.5. Let D be an integral domain. Suppose that w-dim(D)
1s finite. Then, the following statements are equivalent.

(1) Each (tp,drp)-linked overring T of D is a stably strong S-domain.

(2) Each (tp,drp)-linked overring T of D is a strong S-domain.

(3) Each (tp,dr)-linked overring T of D is a Jaffard domain.

(4) Each (tp,dy)-linked overring T of D is a quasi-Prifer domain.

(5) For each (tp,dr)-linked overring T of D, every extension of do-
mains T C S, satisfies the dimension inequality formula.

(6) D is a UMt domain.

4. Arnold’s Formula

Here, we extend some results of Arnold of the dimension of polyno-
mial rings to the setting of the semistar operations. First, we give the
following lemma as a new property of semistar valuative dimension.

Lemma 4.1. (see [24, Theorem 4.2]) Let D be an integral domain and
n be an integer. Then, the following statements are equivalent.

(1) Each (%,dr)-linked overring T of D has dimension at most n.
(2) Each *-valuation overring of D has dimension at most n.

Proof. The implication (1) = (2) is trivial. For (2) = (1), let T be a
(%, dr)-linked overring of D and V be a valuation overring of 7'. Then,
it is easy to see that V is (x,dy)-linked overring of D. Thus, by [12,
Lemma 2.7], V is an *-valuation overring of D. Hence, dim(V) < n.
Consequently, dim(7") < dim,(T") < n, as desired. O

When x = dp, the equivalence of (1) and (3) of the following theorem
is due to J. Arnold [2, Theorem 6].

Theorem 4.2. Let D be an integral domain, and n be an integer. Then,
the following statements are equivalent.
(1) *-dim, (D) = n.
(2) *[n]-dim(D[n]) = 2n.
(3) x[r]-dim(D[r]) =7 +n, for allr >n —1.
(4) Each (x,dr)-linked overring T of D has dimension at most n,
and n is minimal.
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Proof. The equivalence (1) < (2) follows from [24, Theorem 4.5], and
(3) = (2) is trivial. For (1) = (3), suppose that *-dim,(D) = n.
Then, For all r > n, we have x[r]-dim(D[r]) = *[r]- dim,(D[r]) = r +
*-dim, (D) = r 4+ n, by [24, Corollary 4.7 and Theorem 4.8]. Now,
assume that r = n — 1. Since *-dim,(D) = n, there exists a quasi-*-
prime ideal M of D such that n = dim,(Djs), by Lemma 2.5. Thus, by
[2, Theorem 6], we have dim(Dy[r]) = r + n. Let P € QSpec*"(D[r])
be such that x[r]-dim(D[r]) = ht(P). Set P := P N D. Then by [24,
Remark 2.3], we have P € QSpec*(D) U {(0)}. Thus,

ht(P)

r+n <x[r]-dim(D[r]) =
dim(Dp[rlpp, )
di

—dim(Dlrlp) =
<dim(Dp[r]) < dim(Dp[r]) = +n,
where the first inequality holds, by [24, Theorem 3.1]. Hence, *[r]-
dim(D[r]) =r+nforalr>n—1.
The equivalence (1) < (4) follows from Lemma 4.1. O

As an immediate consequence, we have the following results.

Corollary 4.3. For each domain D, we have

*-dimy, (D) = sup{dim(T")|T is (x, dr)-linked overring of D}.

One of the famous formulas in the dimension theory of commutative
rings is the Arnold’s formula [2, Theorem 5], which states as:

dim(D[n]) = n + sup{dim(D]01,--- , 6,])|{0:}} C K}.
Now, we prove the semistar analogue of Arnold’s formula.
Lemma 4.4. Let D be an integral domain and n be an integer. Then,

*[n]-dim(D[n]) = sup{dim(Dy;[n])|M € QMax*(D)}.

Proof. If P is a quasi-x-prime ideal of D, and if QDp[n] is a non-zero
prime ideal of Dp[n]|(= D[n]p\p), then @ N D C P, and hence ) €
QSpec™(D[n]), by [24, Remark 2.3]. Thus, the inequality > is true.
Now, let Q@ € QMax*"/(D[n]) be such that «[n]- dim(D[n]) = ht(Q), and
set P:= QN D. Then, by [24, Remark 2.3], we have P € QSpec;(D) U
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{0}. Thus,
#[n)- dim(D[n]) = ht(Q) = dim(Dln])
=dim(Dp[nlgppn)) < dim(Dp[n])
< % [n]- dim(D[n]).
Therefore, the proof is complete. O

Corollary 4.5. Let D be an integral domain and n be an integer. Then,
there exist a quasi-x-mazimal ideal M of D and a quasi-x[n]-mazimal
ideal Q of D[n] such that M = QN D and

*[n]-dim(D[n]) = ht(Q) = n + ht(M|[n]).
Proof. By Lemma 4.4, there exists a quasi-x-maximal ideal M of D such
that x[n]- dim(D[n]) = dim(Dj[n]). Thus, there exists a prime ideal @
of D[n] such that @ N (D\M) = 0, dim(Dys[n]) = ht(QDys[n]) and
that QDjps[n] is a maximal ideal of Dys[n|. Since Q N D C M, we
have @ is a quasi-x[n]-prime of D[n|, by [24, Remark 2.3|, and since
*[n]-dim(D[n]) = ht(Q), we have @ is a quasi-x[n]-maximal ideal of
Din]. Set PDys := QDypr[n] N Dy, for some P € QSpec*(D). Then,
by [3, Corollary 2.9], we have ht(QDys[n]) = n + ht(PDjs[n]) and that
PD); is a maximal ideal of Djy;. Thus, we have P = M and
*[n]-dim(Dn]) = ht(QDa[n]) = n + ht(M Dys[n]) = n + ht(M|[n]),

which completes the proof. O

We are now ready to prove the semistar analogue of Arnold’s formula.

Theorem 4.6. Let D be an integral domain and n be a positive integer.

Then,
x[n]-dim(DIn]) = n + sup{*,-dim(D[0y,--- ,0,])|{6:}} C K}.
where ¢ is the inclusion map of D in D[y, - ,0,],

Proof. Let M € QMax*(D) and {#;}? C K. Let Q be a maximal ideal
of Dys[61,- -+ ,0y,] such that dim(Dys[01,- - ,0,]) = ht(Q). Let Qo be
a prime ideal of DI#;,---,6,] such that Qo N (D\M) = 0 and Q =
QoDn[01,- -+ ,0,]. Thus, Qo is a quasi-x,-prime ideal of D[fy,--- ,0,],
since Qo N D C M [24, Remark 2.3]. Hence, we obtain that
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Lemma 4.4 and Arnold’s formula [2, Theorem 5], we have

*[n]-dim(DIn]) = n + sup{dim(Dps[01,- - ,0,])},

where the supremum is taken over M € QMax*(D) and {6;}? C K.
Thus, *[n]-dim(D[n]) < n + sup{*,-dim(D[01,--- ,6,])|{6:}} € K}.
Now, choose M € QMax*(D) and {6;}7 C K such that

x[n]-dim(D([n]) = n + dim(Dyps[01, - - - ,0,]). Let Q' be a quasi-x,-prime
ideal of DI#y,--- ,6,] such that x,-dim(DI[6y,--- ,6,]) = ht(Q’) and set
P’ := Q' N D. Thus,

*,-dim(D[6q, -+ ,0,]) =ht(Q") = dim(D[f1, - -, On)¢)
=dim(Dp[01, -+, 0l Dpi (61, 00))
< dim(Dp/ [01, ce 7971]) < dim(DM[Hl, tee ,Gn])
Hence, by the first part of the proof we have
dim(Dp[01,- -+ ,0]) = *,-dim(D[b1, -, 0,]).

Thus, we have %[n]-dim(DI[n]) = n + *,-dim(D]#1, - - - , 6,]) to complete
the proof. O
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