A SHARP MAXIMAL FUNCTION ESTIMATE FOR VECTOR-VALUED MULTILINEAR SINGULAR INTEGRAL OPERATOR

Z. XIAOSHA AND L. Lanzhe∗

Communicated by Mohammad Sal Moslehian

ABSTRACT. We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the \((L^p, L^q)\)-norm inequality for vector-valued multilinear operators.

1. Introduction and Results

We study the following singular integral operators.

Fix \(\varepsilon > 0\) and \(0 \leq \delta < n\). Let \(T: S \rightarrow S'\) be a linear operator and let there exists a locally integrable function \(K(x, y)\) on \(\mathbb{R}^n \times \mathbb{R}^n \setminus \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : x = y\}\) such that

\[
Tf(x) = \int_{\mathbb{R}^n} K(x, y)f(y)dy,
\]

for every bounded and compactly supported function \(f\), where \(K\) satisfies the Calderón-Zygmund type estimates:

\[
|K(x, y)| \leq C|x - y|^{-n+\delta}
\]

Keywords: Vector-valued multilinear operator, singular integral operator, sharp maximal function estimate, BMO.

Received: 10 August 2009, Accepted: 6 March 2010.

∗Corresponding author

© 2011 Iranian Mathematical Society.
and

$$|K(y,z) - K(z,x)| + |K(x,y) - K(x,z)| \leq C|y - z|^\varepsilon|x - z|^{-n-\varepsilon+\delta},$$

if $2|y - z| \leq |x - z|$. Let m_j be the positive integers $(j = 1, \ldots, l)$, $m_1 + \cdots + m_l = m$ and A_j be the functions on R^n $(j = 1, \ldots, l)$. For $1 < r < \infty$, the operator associated with T is defined by

$$|T(f)(x)|_r = \left(\sum_{i=1}^{\infty} |T(f_i)(x)|^r \right)^{1/r},$$

where,

$$T_A(f_i)(x) = \int_{R^n} \prod_{j=1}^{l} \frac{R_{m_j+1}(A_j; x, y)}{|x - y|^m} K(x,y)f_i(y)dy,$$

$$R_{m_j+1}(A_j; x, y) = A_j(x) - \sum_{|\alpha| \leq m_j} \frac{1}{\alpha!} D^\alpha A_j(y)(x - y)^\alpha$$

is the the $(m+1)$-th Taylor remainder of A and $\alpha = (\alpha_1, \cdots, \alpha_n)$ denotes any n-tuple index, $x^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, $D^\alpha = \partial^{|\alpha|+\cdots+n}/\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}$. We also use the notation:

$$|T(f)(x)|_r = \left(\sum_{i=1}^{\infty} |T(f_i)(x)|^r \right)^{1/r} \text{ and } |f|_r = \left(\sum_{i=1}^{\infty} |f_i(x)|^r \right)^{1/r}.$$

Suppose that $|T|_r$ is bounded from $L^p(R^n)$ to $L^q(R^n)$, for $1 < p < n/\delta$ and $1/q = 1/p - \delta/n$.

Note that when $m = 0$, T_A is just the vector-valued multilinear commutator of T and A (see [13]), while when $m > 0$, T_A is non-trivial generalizations of the commutator.

It is well known that multilinear operators are of great interest in harmonic analysis and have been widely studied by many authors (see [2-6]). Hu and Yang (see [9]) proved a variant sharp estimate for the multilinear singular integral operators. In [12], P´erez and Trujillo-Gonzalez proved a sharp estimate for the multilinear commutator (see also [10, 11, 13]).

Our main purpose of this paper is to prove a sharp maximal function inequality for the vector-valued multilinear singular integral operators when $D^\alpha A_j \in BMO(R^n)$, for all α with $|\alpha| = m_j$. As an application, we obtain the (L^p, L^q)-norm inequality for the vector-valued multilinear operators in Section 2.
First, we introduce some notation. Throughout this paper, Q will denote a cube in R^n with sides parallel to the axes. For any locally integrable function f, the sharp function of f is defined by

$$f^\#(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y) - f_Q| dy,$$

where, and in what follows, $f_Q = |Q|^{-1} \int_Q f(x) dx$. It is well-known that (see [8, 14])

$$f^\#(x) \approx \sup_{Q \ni x} \inf_{c \in C} \frac{1}{|Q|} \int_Q |f(y) - c| dy,$$

where, \approx means the equivalency up to multiplication by finite positive constants. We say that f belongs to $BMO(R^n)$, if $f^\#$ belongs to $L^\infty(R^n)$ and $|||f^\#|||_{BMO} = ||f^\#||_{L^\infty}$. Let M be the Hardy-Littlewood maximal operator defined by

$$M(f)(x) = \sup_{Q \ni x} |Q|^{-1} \int_Q |f(y)| dy.$$

We write $M_p(f) = (M(f^p))^{1/p}$, for $0 < p < \infty$. For $1 \leq p < \infty$ and $0 \leq \delta < n$, let

$$M_{\delta,p}(f)(x) = \sup_{Q \ni x} \left(\frac{1}{|Q|^{1-\rho\delta/n}} \int_Q |f(y)|^p dy \right)^{1/p}.$$

We shall prove the following results.

Theorem 1.1. Let $1 < r < \infty$, $D^\alpha A_j \in BMO(R^n)$, for all α with $|\alpha| = m_j$, $j = 1, \cdots, l$. Then, there exists a constant $C > 0$ such that for any $f = \{f_i\} \in C_0^\infty(R^n)$, $1 < s < n/\delta$ and $\tilde{x} \in R^n$, we have

$$(|T_A(f)|_r)^\#(\tilde{x}) \leq C \prod_{j=1}^l \left(\sum_{|\alpha_j| = m_j} |||D^\alpha_j A_j|||_{BMO} \right) M_{\delta,s}(|f|_r)(\tilde{x}).$$

Corollary 1.2. Let $1 < r < \infty$, $D^\alpha A_j \in BMO(R^n)$, for all α with $|\alpha| = m_j$, $j = 1, \cdots, l$. Then, $|T_A|_r$ is bounded from $L^p(R^n)$ to $L^q(R^n)$, for any $1 < p < n/\delta$ and $1/p - 1/q = \delta/n$, that is,

$|||T_A(f)|_r||_{L^q} \leq C \prod_{j=1}^l \left(\sum_{|\alpha_j| = m_j} |||D^\alpha_j A_j|||_{BMO} \right) |||f|_r||_{L^p},$
2. Proof of Theorem

To prove the theorem, we need the following lemmas.

Lemma 2.1. ([4]) Let \(A \) be a function on \(\mathbb{R}^n \) and \(D^\alpha A \in L^q(\mathbb{R}^n) \) for all \(\alpha \) with \(|\alpha| = m \) and some \(q > n \). Then

\[
|R_m(A; x, y)| \leq C|x - y|^m \sum_{|\alpha| = m} \left(\frac{1}{|\tilde{Q}(x, y)|} \int_{\tilde{Q}(x, y)} |D^\alpha A(z)|^q dz \right)^{1/q},
\]

where \(\tilde{Q} \) is the cube centered at \(x \) and having side length \(5\sqrt{n}|x - y| \).

Lemma 2.2. ([1, 7]) Suppose that \(1 < r < \infty \), \(1 \leq s < p < n/\delta \) and \(1/q = 1/p - \delta \). Then

\[
|||M_{\delta, s}(|f|_r)|||_{L^q} \leq C|||f|||_{L^p}.
\]

Proof of Theorem 1.1. It suffices to prove that for \(f = \{f_i\} \in C_0^\infty(\mathbb{R}^n) \) and some constant \(C_0 \), the following inequality holds:

\[
\frac{1}{|Q|} \int_Q ||T_A(f)(x)||_r - C_0|dx \leq C \prod_{j=1}^l \left(\sum_{|\alpha_j| = m_j} ||D^\alpha_j A_j||_{BMO} \right) M_{\delta, s}(|f|_r)(\tilde{x}).
\]

Without loss of generality, we assume \(l = 2 \). Fix a cube \(Q = Q(x_0, d) \) and \(\tilde{x} \in Q \). Let \(\tilde{Q} = 5\sqrt{n}Q \) and \(\tilde{A}_j(x) = A_j(x) - \sum_{|\alpha| = m_j} \frac{1}{\alpha!} (D^\alpha A_j) \hat{Q} x^\alpha \), where \(f_Q = |Q|^{-1} \int_Q f(x) dx \), then \(R_{m_j+1}(A_j; x, y) = R_{m_j+1}(\tilde{A}_j; x, y) \) and \(D^\alpha \tilde{A}_j = D^\alpha A_j - (D^\alpha A_j) \hat{Q} \) for \(|\alpha| = m_j \) (see [4]). We split \(f =
A sharp maximal function estimate for multilinear singular integral operator

\[g + h = \{ g_i \} + \{ h_i \} \] for \(g_i = f_i \chi_{\tilde{Q}} \) and \(h_i = f_i \chi_{\mathbb{R}^n \setminus \tilde{Q}} \). Write

\[
T_A(f_i)(x) = \int_{\mathbb{R}^n} \prod_{j=1}^2 R_{m_j}^{m_j+1}(\tilde{A}_j; x, y) K(x, y) f_i(y) dy
\]

\[
= \int_{\mathbb{R}^n} \prod_{j=1}^2 R_{m_j}^{m_j+1}(\tilde{A}_j; x, y) K(x, y) h_i(y) dy
\]

\[
+ \int_{\mathbb{R}^n} \prod_{j=1}^2 R_{m_j}^{m_j}(\tilde{A}_j; x, y) K(x, y) g_i(y) dy
\]

\[
- \sum_{|\alpha_1| = m_1} \frac{1}{\alpha_1!} \int_{\mathbb{R}^n} R_{m_2}^{m_2}(\tilde{A}_2; x, y) (x - y)^{\alpha_1} D^{\alpha_1} \tilde{A}_1(y) K(x, y) g_i(y) dy
\]

\[
- \sum_{|\alpha_2| = m_2} \frac{1}{\alpha_2!} \int_{\mathbb{R}^n} R_{m_1}^{m_1}(\tilde{A}_1; x, y) (x - y)^{\alpha_2} D^{\alpha_2} \tilde{A}_2(y) K(x, y) g_i(y) dy
\]

\[
+ \sum_{|\alpha_1| = m_1, |\alpha_2| = m_2} \frac{1}{\alpha_1! \alpha_2!} \int_{\mathbb{R}^n} (x - y)^{\alpha_1 + \alpha_2} D^{\alpha_1} \tilde{A}_1(y) D^{\alpha_2} \tilde{A}_2(y) K(x, y) g_i(y) dy,
\]

then, by Minkowski’s inequality, we have

\[
\frac{1}{|Q|} \int_Q \left| |T_A(f)(x)|_r - |T_A(h)(x_0)|_r \right| dx
\]

\[
\leq \frac{1}{|Q|} \int_Q \left(\sum_{i=1}^\infty \left| T_A(f_i)(x) - T_A(h_i)(x_0) \right|^r \right)^{1/r} dx
\]

\[
\leq \frac{1}{|Q|} \int_Q \left(\sum_{i=1}^\infty \left| \int_{\mathbb{R}^n} \prod_{j=1}^2 R_{m_j}^{m_j+1}(\tilde{A}_j; x, y) K(x, y) g_i(y) dy \right|^r \right)^{1/r} dx
\]

\[
+ \frac{C}{|Q|} \int_Q \left(\sum_{i=1}^\infty \sum_{|\alpha_1| = m_1} \int_{\mathbb{R}^n} \frac{R_{m_2}^{m_2}(\tilde{A}_2; x, y)(x - y)^{\alpha_1}}{|x - y|^m} \right)^{1/r} dx
\]

\[
\times D^{\alpha_1} \tilde{A}_1(y) K(x, y) g_i(y) dy \right)^{1/r} dx
\]
\[
+ \frac{C}{|Q|} \int_Q \left(\sum_{i=1}^{\infty} \left| \sum_{|\alpha_2|=m_2} \int_{\mathbb{R}^n} \frac{R_{m_2}(\tilde{A}_1; x, y)(x-y)^{\alpha_2}}{|x-y|^m} \right| \right)^{1/r} dx
\]
\[
\times D^{\alpha_2} \tilde{A}_2(y) K(x, y) g_i(y) dy \right)^{1/r} dx
\]
\[
+ \frac{C}{|Q|} \int_Q \left(\sum_{i=1}^{\infty} \left| \sum_{|\alpha_1|=m_1, |\alpha_2|=m_2} \int_{\mathbb{R}^n} \frac{(x-y)^{\alpha_1+\alpha_2} D^{\alpha_1} \tilde{A}_1(y) D^{\alpha_2} \tilde{A}_2(y)}{|x-y|^m} \right| \right)^{1/r} dx
\]
\[
\times K(x, y) g_i(y) dy \right)^{1/r} dx
\]
\[
+ \frac{1}{|Q|} \int_Q \left(\sum_{i=1}^{\infty} \left| T_{\tilde{A}}(h_i)(x) - T_{\tilde{A}}(h_i)(x_0) \right| \right)^{1/r} dx
\]
\[
:= I_1 + I_2 + I_3 + I_4 + I_5.
\]

Now, let us estimate \(I_1, I_2, I_3, I_4\) and \(I_5\), respectively. First, for \(x \in Q\) and \(y \in \tilde{Q}\), by Lemma 1, we get

\[
R_m(\tilde{A}; x, y) \leq C|x-y|^m \sum_{|\alpha_j|=m_j} \|D^{\alpha_j} A_j\|_{BMO},
\]

thus, by the \((L^s, L^q)\)-boundedness of \(|T|_r\) with \(1 < s < n/\delta\) and \(1/q = 1/s - \delta/n\), we obtain

\[
I_1 \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha_j|=m_j} \|D^{\alpha_j} A_j\|_{BMO} \right) \frac{1}{|Q|} \int_Q |T(g)(x)|_r dx
\]
\[
\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha_j|=m_j} \|D^{\alpha_j} A_j\|_{BMO} \right) \left(\frac{1}{|Q|} \int_Q |T(g)(x)|_q^q dx \right)^{1/q}
\]
\[
\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha_j|=m_j} \|D^{\alpha_j} A_j\|_{BMO} \right) |Q|^{-1/q} \left(\int_Q |f(x)|_s^s dx \right)^{1/s}
\]
\[
\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha_j|=m_j} \|D^{\alpha_j} A_j\|_{BMO} \right) M_{\delta,s}(|f|_r)(\tilde{x}).
\]
For I_2, set $s = pq$ for $1 < p < n/\delta$, $q > 1$, $1/q + 1/q' = 1$ and $1/t = 1/p - \delta/n$, we get, by Hölder’s inequality

$$I_2 \leq C \sum_{|\alpha_2| = m_2} ||D^{\alpha_2} A_2||_{BMO} \sum_{|\alpha_1| = m_1} \frac{1}{|Q|} \int_Q |T(D^{\alpha_1} \tilde{A}_1 g)(x)|_r \, dx$$

$$\leq C \sum_{|\alpha_2| = m_2} ||D^{\alpha_2} A_2||_{BMO} \sum_{|\alpha_1| = m_1} \left(\frac{1}{|Q|} \int_{R^n} |T(D^{\alpha_1} \tilde{A}_1 g)(x)|_r^t \, dx \right)^{1/t}$$

$$\leq C \sum_{|\alpha_2| = m_2} ||D^{\alpha_2} A_2||_{BMO} \sum_{|\alpha_1| = m_1} \frac{1}{|Q|^{1/t}} \left(\int_{R^n} (|D^{\alpha_1} \tilde{A}_1(x)||g(x)|_r)^p \, dx \right)^{1/p}$$

$$\leq C \sum_{|\alpha_2| = m_2} ||D^{\alpha_2} A_2||_{BMO} \sum_{|\alpha_1| = m_1} \left(\frac{1}{|Q|} \int_{\tilde{Q}} |D^{\alpha_1} \tilde{A}_1(x)|_{pq'}^r \, dx \right)^{1/pq'}$$

$$\times \left(\frac{1}{|Q|^{1-s\delta/n}} \int_{\tilde{Q}} |f(x)|_{pq} \, dx \right)^{1/pq}$$

$$\leq C \prod_{j=1}^2 \sum_{|\alpha_j| = m_j} ||D^{\alpha_j} A_j||_{BMO} M_{\delta,s}(|f|_r)(\tilde{x}).$$

For I_3, similar to the proof of I_2, we get

$$I_3 \leq C \prod_{j=1}^2 \left(\sum_{|\alpha_j| = m_j} ||D^{\alpha_j} A_j||_{BMO} \right) M_{\delta,s}(|f|_r)(\tilde{x}).$$

Similarly, for I_4, set $s = pq_3$ for $1 < p < n/\delta$, $q_1, q_2, q_3 > 1$, $1/q_1 + 1/q_2 + 1/q_3 = 1$ and $1/t = 1/p - \delta/n$, we obtain

$$I_4 \leq C \sum_{|\alpha_1| = m_1, |\alpha_2| = m_2} \frac{1}{|Q|} \int_Q |T(D^{\alpha_1} \tilde{A}_1 D^{\alpha_2} \tilde{A}_2 g)(x)|_r \, dx$$

$$\leq C \sum_{|\alpha_1| = m_1, |\alpha_2| = m_2} \left(\frac{1}{|Q|} \int_{R^n} |T(D^{\alpha_1} \tilde{A}_1 D^{\alpha_2} \tilde{A}_2 g)(x)|_r^t \, dx \right)^{1/t}$$

$$\leq C \sum_{|\alpha_1| = m_1, |\alpha_2| = m_2} \left|Q\right|^{-1/t} \left(\int_{R^n} (|D^{\alpha_1} \tilde{A}_1(x) D^{\alpha_2} \tilde{A}_2(x)||g(x)|_r)^p \, dx \right)^{1/p}$$

$$\leq C \sum_{|\alpha_1| = m_1, |\alpha_2| = m_2} \left(\frac{1}{|Q|} \int_{\tilde{Q}} \left|D^{\alpha_1} \tilde{A}_1(x)\right|_{pq_1} \, dx \right)^{1/pq_1}.$$
\begin{align*}
&\times \left(\frac{1}{|Q|} \int_Q |D^{\alpha_2} \tilde{A}_2(x)|^{p q_2} \, dx \right)^{1/p q_2} \left(\frac{1}{|Q|^{1-\delta/n}} \int_Q |f(x)|^{p q_3} \, dx \right)^{1/p q_3} \\
&\leq C \prod_{j=1}^2 \left(\sum_{|\alpha|=m_j} \|D^\alpha A_j\|_{BMO} \right) M_{\delta,s}(|f|)(\tilde{x}).
\end{align*}

For I_5, we write
\begin{align*}
&T_\delta(h_i)(x) - T_\delta(h_i)(x_0) \\
&= \int_{R^n} \left(K(x,y) - \frac{K(x_0,y)}{|x_0-y|^m} \right) \prod_{j=1}^2 R_{m_j}(\tilde{A}_j;x,y)h_i(y) \, dy \\
&+ \int_{R^n} \left(R_{m_1}(\tilde{A}_1;x,y) - R_{m_1}(\tilde{A}_1;x_0,y) \right) \frac{R_{m_2}(\tilde{A}_2;x,y)}{|x_0-y|^m} K(x_0,y)h_i(y) \, dy \\
&+ \int_{R^n} \left(R_{m_2}(\tilde{A}_2;x,y) - R_{m_2}(\tilde{A}_2;x_0,y) \right) \frac{R_{m_1}(\tilde{A}_1;x_0,y)}{|x_0-y|^m} K(x_0,y)h_i(y) \, dy \\
&- \sum_{|\alpha|=m_1} \frac{1}{\alpha_1!} \int_{R^n} \left[\frac{R_{m_2}(\tilde{A}_2;x,y)(x-y)^{\alpha_1}}{|x-y|^m} K(x,y) \\
&- \frac{R_{m_2}(\tilde{A}_2;x_0,y)(x_0-y)^{\alpha_1}}{|x_0-y|^m} K(x_0,y) \right] D^\alpha_1 \tilde{A}_1(y)h_i(y) \, dy \\
&- \sum_{|\alpha|=m_2} \frac{1}{\alpha_2!} \int_{R^n} \left[\frac{R_{m_1}(\tilde{A}_1;x,y)(x-y)^{\alpha_2}}{|x-y|^m} K(x,y) \\
&- \frac{R_{m_1}(\tilde{A}_1;x_0,y)(x_0-y)^{\alpha_2}}{|x_0-y|^m} K(x_0,y) \right] D^\alpha_2 \tilde{A}_2(y)h_i(y) \, dy \\
&+ \sum_{|\alpha|=m_1, |\beta|=m_2} \frac{1}{\alpha_1! \beta_2!} \int_{R^n} \left[\frac{(x-y)^{\alpha_1+\alpha_2}}{|x-y|^m} K(x,y) \\
&- \frac{(x_0-y)^{\alpha_1+\alpha_2}}{|x_0-y|^m} K(x_0,y) \right] D^\alpha_1 \tilde{A}_1(y)D^\beta_2 \tilde{A}_2(y)h_i(y) \, dy \\
&= I_5^{(1)} + I_5^{(2)} + I_5^{(3)} + I_5^{(4)} + I_5^{(5)} + I_5^{(6)}.
\end{align*}

By Lemma 1 and the following inequality (see [14]):
\begin{align*}
|b_{Q_2} - b_{Q_2}| &\leq C \log(|Q_2|/|Q_1|)\|b\|_{BMO} \text{ for } Q_1 \subset Q_2,
\end{align*}
we know, for $x \in Q$ and $y \in 2^{k+1}\tilde{Q} \setminus 2^k\tilde{Q}$,

$$|R_m(\tilde{A}; x, y)| \leq C|x - y|^m \sum_{|\alpha| = m} (||D^\alpha A||_{BMO} + |(D^\alpha A)\tilde{Q}(x,y) - (D^\alpha A)\tilde{Q}|)$$

$$\leq Ck|x - y|^m \sum_{|\alpha| = m} ||D^\alpha A||_{BMO}.$$

Note that $|x - y| \sim |x_0 - y|$ for $x \in Q$ and $y \in R^n \setminus \tilde{Q}$, we obtain, by the conditions on K,

$$|I_5^{(1)}| \leq C \int_{R^n} \left(\frac{|x - x_0|}{|x_0 - y|^{m + n + 1 - \delta}} + \frac{|x - x_0|^\epsilon}{|x_0 - y|^{m + n + \epsilon - \delta}} \right)$$

$$\times \prod_{j=1}^2 R_{m_j} (\tilde{A}_j; x, y) |h_i(y)| dy$$

$$\leq C \prod_{j=1}^2 \left(\sum_{|\alpha| = m_j} ||D^\alpha A_j||_{BMO} \right)$$

$$\times \sum_{k=0}^\infty \int_{2^{k+1}\tilde{Q} \setminus 2^k\tilde{Q}} k^2 \left(\frac{|x - x_0|}{|x_0 - y|^{n + 1 - \delta}} + \frac{|x - x_0|^\epsilon}{|x_0 - y|^{n + \epsilon - \delta}} \right) |f_i(y)| dy$$

$$\leq C \prod_{j=1}^2 \left(\sum_{|\alpha| = m_j} ||D^\alpha A_j||_{BMO} \right) \sum_{k=1}^{\infty} k^2 (2^{-k} + 2^{-\epsilon k}) \frac{1}{|2^k\tilde{Q}|^{1 - \delta/n}}$$

$$\int_{2^k\tilde{Q}} |f_i(y)| dy,$$

thus, by Minkowski’s inequality, we have

$$\left(\sum_{i=1}^\infty |I_5^{(1)}|^r \right)^{1/r}$$

$$\leq C \prod_{j=1}^2 \left(\sum_{|\alpha| = m_j} ||D^\alpha A_j||_{BMO} \right) \sum_{k=1}^{\infty} k^2 (2^{-k} + 2^{-\epsilon k}) \frac{1}{|2^k\tilde{Q}|^{1 - \delta/n}}$$

$$\int_{2^k\tilde{Q}} |f(y)|_r dy$$

$$\leq C \prod_{j=1}^2 \left(\sum_{|\alpha| = m_j} ||D^\alpha A_j||_{BMO} \right) M_{\delta,1}(|f|_r)(\bar{x}).$$
For $I_5^{(2)}$, by the formula (see [4]):

$$R_m(\hat{A}; x, y) - R_m(\hat{A}; x_0, y) = \sum_{|\beta| < m} \frac{1}{\beta!} R_{m-|\beta|}(D^\beta \hat{A}; x, x_0)(x - y)^\beta$$

and Lemma 1, we have

$$|R_m(\hat{A}; x, y) - R_m(\hat{A}; x_0, y)| \leq C \sum_{|\beta| < m} \sum_{|\alpha| = m-|\beta|} |x - x_0|^{m-|\beta|}|x - y|^{|\beta|}||D^\alpha A||_{BMO},$$

thus

$$\left(\sum_{i=1}^{\infty} |I_5^{(2)}|^r \right)^{1/r} \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha| = m_j} ||D^\alpha A_j||_{BMO} \right) \sum_{k=0}^{\infty} \int_{2^k+1\mathcal{Q}\setminus 2^k\mathcal{Q}} k \frac{|x - x_0|}{|x_0 - y|^{m+1-\delta}} |f(y)|_r dy$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha| = m_j} ||D^\alpha A_j||_{BMO} \right) M_{\delta, 1}(|f|_r)(\hat{x}).$$

Similarly,

$$\left(\sum_{i=1}^{\infty} |I_5^{(3)}|^r \right)^{1/r} \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha| = m_j} ||D^\alpha A_j||_{BMO} \right) M_{\delta, 1}(|f|_r)(\hat{x}).$$

For $I_5^{(4)}$, we get

$$\left(\sum_{i=1}^{\infty} |I_5^{(4)}|^r \right)^{1/r} \leq C \sum_{|\alpha_1| = m_1} \int_{R^n \setminus \mathcal{Q}} \left| \frac{(x - y)^{\alpha_1} K(x, y)}{|x - y|^m} - \frac{(x_0 - y)^{\alpha_1} K(x_0, y)}{|x_0 - y|^m} \right|$$

$$\times |R_{m_2}(\hat{A}_2; x, y)||D^{\alpha_1} \hat{A}_1(y)||h(y)|_r dy$$

$$+ C \sum_{|\alpha_1| = m_1} \int_{R^n \setminus \mathcal{Q}} |R_{m_2}(\hat{A}_2; x, y) - R_{m_2}(\hat{A}_2; x_0, y)|$$

$$\times \frac{|(x_0 - y)^{\alpha_1} K(x_0, y)|}{|x_0 - y|^m} |D^{\alpha_1} \hat{A}_1(y)||h(y)|_r dy.$$
A sharp maximal function estimate for multilinear singular integral operator

\[
\leq C \sum_{|\alpha|=m_2} \|D^\alpha A_2\|_{BMO} \sum_{|\alpha|=m_1} \sum_{k=1}^\infty k(2^{-k} + 2^{-\varepsilon k}) \\
\times \left(\frac{1}{|2^k \tilde{Q}|} \int_{2^k \tilde{Q}} |D^{\alpha_1} \tilde{A}_1(y)|^{s'} dy \right)^{1/s'} \left(\frac{1}{|2^k \tilde{Q}|^{1-s\delta/n}} \int_{2^k \tilde{Q}} |f(y)|^s dy \right)^{1/s} \\
\leq C \prod_{j=1}^2 \left(\sum_{|\alpha|=m_j} \|D^\alpha A_j\|_{BMO} \right) M_{\delta,s}(|f|_r)(\tilde{x}).
\]

Similarly,

\[
\left(\sum_{i=1}^\infty |I_5^{(5)}|^r \right)^{1/r} \leq C \prod_{j=1}^2 \left(\sum_{|\alpha|=m_j} \|D^\alpha A_j\|_{BMO} \right) M_{\delta,s}(|f|_r)(\tilde{x}).
\]

For \(I_5^{(6)}\), taking \(q_1, q_2 > 1\) such that \(1/s + 1/q_1 + 1/q_2 = 1\), then

\[
\left(\sum_{i=1}^\infty |I_5^{(6)}|^r \right)^{1/r} \leq C \sum_{|\alpha_1|=m_1, |\alpha_2|=m_2} \int_{\mathbb{R}^n \setminus \tilde{Q}} \frac{|(x-y)^{\alpha_1+\alpha_2} K(x,y) - (x_0-y)^{\alpha_1+\alpha_2} K(x_0,y)|}{|x-y|^m} \frac{1}{|x_0-y|^m} \left| D^{\alpha_1} \tilde{A}_1(y) \right| \left| D^{\alpha_2} \tilde{A}_2(y) \right| |f(y)|_r dy \\
\leq C \sum_{|\alpha_1|=m_1, |\alpha_2|=m_2} \sum_{k=1}^\infty k(2^{-k} + 2^{-\varepsilon k}) \left(\frac{1}{|2^k \tilde{Q}|^{1-s\delta/n}} \int_{2^k \tilde{Q}} |f(y)|^s dy \right)^{1/s} \\
\times \left(\frac{1}{|2^k \tilde{Q}|} \int_{2^k \tilde{Q}} |D^{\alpha_1} \tilde{A}_1(y)|^{q_1} dy \right)^{1/q_1} \left(\frac{1}{|2^k \tilde{Q}|} \int_{2^k \tilde{Q}} |D^{\alpha_2} \tilde{A}_2(y)|^{q_2} dy \right)^{1/q_2} \\
\leq C \prod_{j=1}^2 \left(\sum_{|\alpha|=m_j} \|D^\alpha A_j\|_{BMO} \right) M_{\delta,s}(|f|_r)(\tilde{x}).
\]

Thus

\[
|I_5| \leq C \prod_{j=1}^2 \left(\sum_{|\alpha|=m_j} \|D^\alpha A_j\|_{BMO} \right) M_{\delta,s}(|f|_r)(\tilde{x}).
\]

This completes the proof of Theorem.
Proof of Corollary 1.2. We choose $1 < s < p$ in Theorem and by using Lemma 2, we get
\[
||T_A(f)||_{L^q} \leq C||\langle T_A(f) \rangle \rangle||_{L^q} \\
\leq C \prod_{j=1}^l \left(\sum_{|\alpha|=m_j} ||D^\alpha A_j||_{BMO} \right) ||M_{\delta,s}(|f|_r)||_{L^q} \\
\leq C \prod_{j=1}^l \left(\sum_{|\alpha|=m_j} ||D^\alpha A_j||_{BMO} \right) |||f||_{L^p}.
\]
This finishes the proof.

3. Applications

In this section we apply Theorem 1.1 and Corollary 1.2 to the Calderón-Zygmund singular integral operator and fractional integral operator.

Let T be the Calderón-Zygmund operator (see [8, 14]). The operator related to T is defined by
\[
|T_A(f)(x)|_r = \left(\sum_{i=1}^\infty |T_A(f_i)(x)|^r \right)^{1/r},
\]
where,
\[
T_A(f_i)(x) = \int_{R^n} \prod_{j=1}^l R_{m_j+1}(A_j; x, y) \frac{|y|^m}{|x-y|^m} K(x, y) f_i(y) dy.
\]
Then, the theorem and corollary in the paper hold for the operator.

Application 2. Fractional integral operator with rough kernel.
For $0 < \delta < n$, let T_{δ} be the fractional integral operator with rough kernel defined by (see [6, 9])
\[
T^\delta f(x) = \int_{R^n} \frac{\Omega(x-y)}{|x-y|^{n-\delta}} f(y) dy.
\]
A sharp maximal function estimate for multilinear singular integral operator

The operator related to T_δ is defined by

$$|T_A^\delta(f)(x)|_r = \left(\sum_{i=1}^{\infty} |T_A^\delta(f_i)(x)|^r \right)^{1/r},$$

where,

$$T_A^\delta(f_i)(x) = \int_{\mathbb{R}^n} \prod_{j=1}^{l} R_{m_j+1}(A_j; x, y) |x - y|^{m+n-\delta} \Omega(x - y) f_i(y) dy,$$

Ω is homogeneous of degree zero on \mathbb{R}^n, $\int_{S^{n-1}} \Omega(x')d\sigma(x') = 0$ and $\Omega \in \text{Lip}_\varepsilon(S^{n-1})$, for some $0 < \varepsilon \leq 1$, that is, there exists a constant $M > 0$ such that for any $x, y \in S^{n-1}$, $|\Omega(x) - \Omega(y)| \leq M |x - y|^\varepsilon$. Then, the theorem and corollary hold for the operator. When $\Omega \equiv 1$, T is the Riesz potentials.

Acknowledgments

The authors express their deep gratitude to the referee for his/her comments and suggestions. This research is Supported by Scientific Research Fund of Hunan Provincial Education Department 09C057.

References

Zhou Xiaoshia and Liu Lanzhe

Department of Mathematics Changsha University of Science and Technology, P.O. Box Changsha 410077, P. R. of China.
Email: zhouxiaosha57@126.com, lanzheliu@163.com