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SYMMETRIC CURVATURE TENSOR

A. HEYDARI*, N. BOROOJERDIAN AND E. PEYGHAN

Communicated by Jost-Hinrich Eschenburg

Abstract. Recently, we have used the symmetric bracket of vec-
tor fields, and developed the notion of the symmetric derivation.
Using this machinery, we have defined the concept of symmetric
curvature. This concept is natural and is related to the notions
divergence and Laplacian of vector fields. This concept is also re-
lated to the derivations on the algebra of symmetric forms which
has been discussed by the authors. We introduce a new class of
geometric vector fields and prove some basic facts about them. We
call these vector fields affinewise. By contraction of the symmetric
curvature, we define two new curvatures which have direct relations
to the notions of divergence, Laplacian, and the Ricci tensor.

1. Introduction

Symmetric and alternating tensors are in parallel, and have essential
roles in differential geometry. For instance, the symmetric bracket was
introduced and named symmetric product by Crouch [1]. It also arises
in the work of Lewis and Murray [5] on a class of mechanical control
systems. Alternating tensors have a well developed theory and most of
the theorems in geometry can be stated in the language of differential
forms. In [4], by definition of a whole string of new geometric concepts,
such as derivations of symmetric forms, the symmetric Lie derivative, the
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symmetric differential of symmetric forms and the Frölicher-Nijenhuis
bracket of symmetric forms, we have developed a convenient calculus
for symmetric tensors in parallel to the calculus of differential forms.

The curvature of a connection is a well developed notion and depends
on the calculus of differential forms. Now, using the calculus of symmet-
ric tensors, it is natural to define a similar concept of curvature which
we call “symmetric curvature”.

This concept is associated with the notions of “divergence” and “Lapla-
cian” of vector fields. These notions are also related to the derivations
on the algebra of symmetric forms which have been discussed in [4].

Furthermore, we define a new type of vector fields, the so-called
affinewise vector fields, and show that if the value of any affinewise
vector filed in a point and its covariant derivatives in any direction at
the point are given, then it is determined everywhere.

Next, by contraction of the symmetric curvature, we define the form
curvature and the vector curvature along a vector field which have direct
relations to the notions of divergence, Laplacian, and the Ricci tensor.

Using these new concepts, we give interesting characterizations of
the harmonic vector fields, Killing vector fields, affine vector fields and
geodesic vector fields.

2. Symmetric Forms and Associated Concepts

In this section, we define the k-symmetric forms, k-symmetric forms
with values in a vector bundle, the insertion operator and other related
concepts.

Let M be a C∞ manifold and TM be its tangent bundle. Let also∨k(TM)∗ be the vector bundle of symmetric covariant tensors of degree

k over M . The sections of
∨k(TM)∗ are called k-symmetric forms and

they span a space denoted by Sk(M). The set of all symmetric forms,
i.e., S(M) :=

⊕
k≥0 S

k(M), with the symmetric product ∨ given by

(ω ∨ η)(X1, . . . , Xk+l) =

1

k!l!

∑
σ∈Sk+l

ω(Xσ(1), . . . , Xσ(k))η(Xσ(k+1), . . . , Xσ(k+l)),

where, ω ∈ Sk(M), η ∈ Sl(M), is a graded algebra.
If E is a vector bundle on M , then the sections of the vector bundle∨k(TM)∗

⊗
E are called k-symmetric forms with values in E and are

denoted by Sk(M,E). The set of all symmetric forms with values in E,
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i.e., S(M,E) :=
⊕

k≥0 S
k(M,E), with the symmetric product ∨ defined

above, in which ω ∈ Sk(M) and η ∈ Sl(M,E), is a (graded) S(M)-
module.

Let U ∈ X(M), where X(M) is the space of vector fields on M . The
insertion operator iU : Sk(M) −→ Sk−1(M) is a linear map given by

iUω(X1, . . . , Xk−1) = ω(U,X1, . . . , Xk−1),

where, ω ∈ Sk(M) and X1, . . . , Xk−1 ∈ XX(M).

This operator can be defined on vector valued symmetric forms as
follows:

iUΦ(X1, . . . , Xk−1) = Φ(U,X1, . . . , Xk−1),

where, Φ ∈ Sk(M,E) and X1, . . . , Xk−1 ∈ X(M).

For any decomposable vector valued symmetric form ω⊗X ∈ Sk(M,E),
we have

iU (ω ⊗X) = (iUω)⊗X.
A linear map D : S(M) −→ S(M) is said to be of degree k, if

D(Sl(M)) ⊂ Sk+l(M), and D is said to be a derivation of degree k,
if furthermore,

D(ω ∨ η) = Dω ∨ η + ω ∨Dη,
for any ω, η ∈ S(M).

Let Derk(S(M)) be the linear space of all derivations of degree k
and let Der(S(M)) :=

⊕
k≥0Derk(S(M)). A derivation D is called

algebraic, if D|S0(M) = 0.
If D1 and D2 are derivations of degrees k and l, respectively, then

[D1, D2] := D1◦D2−D2◦D1 is a derivation of degree k+ l. A derivation
is completely determined by its effect on S0(M) = C∞(M) and S1(M).

Definition 2.1. For any Φ ∈ Sk+1(M,TM), the insertion operator is
the linear map i(Φ) : Sl(M)→ Sk+l(M), defined by

(i(Φ)ω)(X1, . . . , Xk+l) =

1

(l − 1)!(k + 1)!

∑
σ∈Sk+l

ω(Φ(Xσ(1), . . . , Xσ(k+1)), Xσ(k+2), . . . , Xσ(k+l)),

where, l ≥ 1, and i(Φ)f = 0, for any f ∈ C∞(M).
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We note that i(Φ)ω = ω ◦ Φ, for any ω ∈ S1(M). Hence, if i(Φ) = 0,
then Φ = 0. It is not difficult to show that for η ⊗ U ∈ Sk+1(M,TM)
and ω ∈ Sl(M), we have

i(η ⊗ U)ω = η ∨ iUω.
Hence, i(Φ) (for Φ ∈ Sk(M,TM)) is a derivation of degree k − 1 on
S(M). Moreover, every algebraic derivation of degree k on S(M) is an
insertion of a unique TM -valued (k + 1)-symmetric form [4].

Let ∇ be a torsion-free connection on M . Since 2∇XY is a bilinear
map with respect to vector fields X and Y , it can be written as the sum
of its symmetric and antisymmetric parts as follows:

2∇XY = (∇XY +∇YX) + (∇XY −∇YX) = ∇XY +∇YX + [X,Y ].

The symmetric bracket of the two vector fields X and Y on M is denoted
by [X,Y ]s and is defined as follows:

[X,Y ]s = ∇XY +∇YX.
Note that for X,Y ∈ X(M) and f ∈ C∞(M), we have

[fX, Y ]s = f [X,Y ]s + Y (f)X.

Definition 2.2. Let ∇ be a linear connection on M . A vector field X
is called a geodesic vector field if its integral curves are geodesics.

Locally, geodesic vector fields exist on any manifold. In fact, for every
point p ∈ M and v ∈ TpM , there exists a local geodesic vector field X
that is defined on a neighborhood of p in which Xp = v.

A vector field X is a geodesic field if and only if [X,X]s = 2∇XX = 0.
For example, geodesic vector fields on Rn are constant vector fields. On
a Lie group with the connection ∇XY = 1

2 [X,Y ] for left-invariant vector
fields X and Y , the left-invariant vector fields are geodesic vector fields.

The symmetric Lie derivative along a vector field X is the linear map
LsX : X(M) −→ X(M), defined by LsXY = [X,Y ]s. For f ∈ C∞(M),

ω ∈ Sk(M), and X1, . . . , Xk ∈ X(M), we set

(LsXω)(X1, . . . , Xk) = Xω(X1, . . . , Xk)−
k∑
i=1

ω(X1, . . . , L
s
XXi, . . . , Xk),

and LsXf = X(f). Then, it is obvious that LsX ∈ Der0(S(M)).

Proposition 2.3. [4] Let LX and LsX be respectively the Lie derivative
and the symmetric Lie derivative along the vector field X with respect
to a connection ∇ on M . Then, 2∇X = LX + LsX .



Symmetric curvature tensor 253

Let ∇ be a torsion free connection on M . The symmetric differential
is the derivation ds : S(M) −→ S(M) of degree 1, defined by

(dsω)(X1, . . . , Xk+1) =

k+1∑
i=1

Xiω(X1, . . . , X̂i, . . . , Xk+1)−∑
i<j

ω([Xi, Xj ]
s, X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1),

and dsf = df , where, f ∈ C∞(M), ω ∈ Sk(M) and X1, . . . , Xk+1 ∈
X(M).

From the above definition, we deduce the following results.

Lemma 2.4. [4] Let ds be the symmetric differential of a torsion free
connection ∇. Suppose that ω ∈ Sk(M) and X1, . . . , Xk+1 ∈ X(M). Let
{Ei}ni=1 be a local basis of vector fields and {ωi}ni=1 be its dual basis.
Then,

(i) (dsω)(X1, . . . , Xk+1) =
∑k+1

i=1 (∇Xiω)(X1, . . . , X̂i, . . . , Xk+1),
(ii) dsω =

∑n
i=1 ω

i ∨∇Eiω.

The following results were proved in [4].
1) If (M, g) is a Riemannian manifold with the Levi-Civita connection

∇, then 1-form ω is Killing if and only if dsω = 0 (ω is Killing if the
vector field ω] is Killing, where g(ω], X) = ω(X)).

2) If ∇ and ∇̄ are two torsion-free connections with symmetric dif-
ferentials ds and d̄s, respectively, and ∇̄ = ∇+ Φ, for Φ ∈ S2(M,TM),
then d̄s = ds − 2i(Φ).

3) If ∇ is a torsion-free connection on M with the symmetric differ-
ential ds and X is a vector field, then on the algebra of the symmetric
forms S(M), we have [iX , d

s] = LsX .
Now, we give the following theorem and corollaries for ds.

Theorem 2.5. Let ω be a 1-form on M . Then, dsω = 0 if and only if,
for all geodesic α, ω(α′(t)) is constant.

Proof. Let dsω = 0. If α is an integral curve of geodesic vector field U ,
then we obtain:

0 =dsω(α′, α′) = dsω(U,U) = 2U.ω(U)− ω([U,U ]s)

=2U.ω(U) = 2α′.ω(α′) = 2
d

dt
ω(α′).
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Conversely, let p ∈ M , v ∈ TpM and α be a geodesic on M such that
α(0) = p, α′(0) = v. Then, we have

(dsω)p(v, v) = 2U.ω(U)− ω([U,U ]s) = (2α′(t).ω(α′(t)))|t=0 = 0.

�

Corollary 2.6. Let f ∈ C∞(M) be a function. Then, ds(dsf) = 0 if
and only if, for all geodesic α, we have f(α(t)) = at+ b.

Proof. From the above theorem, ds(dsf) = 0, if and only if, for all
geodesic α, we have (dsf)(α′(t)) = a, where a is constant. Also, we have
(dsf)(α′(t)) = (f ◦ α)′(t). Hence, there exists a constant b such that
f(α(t)) = at+ b. �

The following corollary is also deduced from Theorem 2.5.

Corollary 2.7. A vector field X on a manifold M is Killing if and only
if, for all geodesic α, < X,α′(t) > is constant.

By considering a fixed connection on M , we can define the symmetric
Lie derivative, along a TM -valued symmetric form, as follows:

LsΦ = [iΦ, d
s], ∀Φ ∈ S(M,TM).

In [4], we proved that if η ⊗X is a decomposable symmetric form and
ω ∈ S(M), then

Lsη⊗Xω = η ∨ LsXω − dsη ∨ iXω.

Theorem 2.8. [4] Let ∇ be a torsion-free connection on M . Every
derivation D ∈ Derk(S(M)) can be uniquely written in the form D =
i(Φ)+LsΨ, for some Φ ∈ Sk+1(M,TM) and Ψ ∈ Sk(M,TM). Moreover,
Ψ is independent of ∇.

It is not difficult to show that D is algebraic if and only if Ψ = 0 and
D = ds if and only if Ψ = 1TM and Φ = 0 (see [4]).

Let Φ ∈ Sk(M,TM) and Ψ ∈ Sl(M,TM) be two symmetric forms.
Then, [LsΦ, L

s
Ψ] is a derivation of degree k + l on S(M). By Theorem

2.8, there exist a unique Θ ∈ Sk+l(M,TM) and Ω ∈ Sk+l+1(M,TM)
such that [LsΦ, L

s
Ψ] = i(Ω) + LsΘ. We define that the Frölicher-Nijenhuis

bracket of Φ and Ψ is equal to Θ and we denote it by [Φ,Ψ].
From the above definition, we have the following proposition.
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Proposition 2.9. [4] Let Φ = φ⊗X and Ψ = ψ⊗Y be two decomposable
symmetric forms. Then,

[φ⊗X,ψ ⊗ Y ] =φ ∨ ψ ⊗ [X,Y ] + φ ∨ (LsXψ)⊗ Y − (LsY φ) ∨ ψ ⊗X−
dsφ ∨ iXψ ⊗ Y + dsψ ∨ iY φ⊗X.

3. Main results

Let E be a vector bundle with the connection ∇ over M and ∇̄ be
a torsion-free linear connection on M . For every section Z ∈ Γ(E), the
bilinear map

∇∇Z : X(M)× X(M) −→ Γ(E),

defined by

∇∇Z(X,Y ) = ∇X∇Y Z −∇∇̄XY
Z

can be written as the sum of its symmetric and antisymmetric parts as
follows:

∇∇Z(X,Y ) =
1

2
(∇X∇Y Z +∇Y∇XZ −∇∇̄XY

Z −∇∇̄YX
Z)+

1

2
(∇X∇Y Z −∇Y∇XZ −∇∇̄XY

Z +∇∇̄YX
Z)

=
1

2
(∇X∇Y Z +∇Y∇XZ −∇[X,Y ]sZ)+

1

2
(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z).

The last term in the parentheses is the antisymmetric part of ∇∇Z
and is the curvature of ∇, which is denoted by R(X,Y )Z. The first
expression is the symmetric part of ∇∇Z and we call it the symmetric
curvature of ∇ and denote it by RsZ(X,Y ). So,

RsZ(X,Y ) = ∇X∇Y Z +∇Y∇XZ −∇[X,Y ]sZ.

Note that RsZ(X,Y ) is not tensorial in argument Z, but it is tensorial
and symmetric in two arguments X,Y . Moreover, R does not depend
on the choice of ∇̄, but Rs does.

Remark 3.1. The concept of symmetric curvature tensor is used already
in mathematics, but with a completely different meaning than is given
here.
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Let ∇ be a connection on E, and ∇̄ be a torsion-free linear connec-
tion on M . We define the symmetric differential ds : Sk(M,E) −→
Sk+1(M,E) by

(dsΦ)(X1, . . . , Xk+1) =
∑
i

∇XiΦ(X1, . . . , X̂i, . . . , Xk+1)−∑
i<j

Φ([Xi, Xj ]
s, X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1),

and (dsZ)(X) = ∇XZ, Z ∈ ΓE, X ∈ X(M). Note that this definition
is well defined and ds depends on the two connections ∇ and ∇̄. Now,
let X and Y be two vector fields on M and Z be a section of E. Then,

(ds ◦ dsZ)(X,Y ) = RsZ(X,Y ).

Hence, ds ◦ dsZ = 0 if and only if RsZ = 0.
As was mentioned before, for every vector fields X and Y on M , the

derivation [LsX , L
s
Y ] is of degree 0, and by Theorem 2.8, it can be written

in the form of LsΨ+i(Φ), for some Φ ∈ S1(M,TM) and Ψ ∈ S0(M,TM).
We show that

[LsX , L
s
Y ] = Ls[X,Y ] + i(2∇[X,Y ]−R(X,Y ) +RsX(·, Y )−RsY (X, ·)).

Let f ∈ C∞(M), ω ∈ S1(M), and U ∈ X(M), then

[LsX , L
s
Y ](f) = LsXY (f)− LsYX(f) = XY (f)− Y X(f) = Ls[X,Y ](f).

For ω ∈ S1(M), we have

([LsX , L
s
Y ]ω)(U) = (LsX ◦ LsY ω)(U)− (LsY ◦ LsXω)(U)

= X(Y (ω(U))−X(ω([Y, U ]s))− Y (ω([X,U ]s))

+ω([Y, [X,U ]s]s)− Y (X(ω(U)) + Y (ω([X,U ]s)) +

X(ω([Y,U ]s))− ω([X, [Y, U ]s]s)

= [X,Y ](ω(U)) + ω
(
∇Y∇XU −∇X∇Y U +∇Y∇UX

−∇X∇UY +∇[X,U ]sY −∇[Y,U ]sX
)
.

On the other hand,

((Ls[X,Y ] + i(2∇[X,Y ]−R(X,Y ) +RsX(·, Y )−RsY (X, ·)))ω)(U) =

[X,Y ](ω(U))− ω([[X,Y ], U ]s) + ω(2∇U [X,Y ])− ω(R(X,Y )U

−RsX(U, Y ) +RsY (X,U)) = [X,Y ](ω(U)) + ω(∇Y∇XU −∇X∇Y U
+∇Y∇UX −∇X∇UY +∇[X,U ]sY −∇[Y,U ]sX).
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We now state and prove the following theorem.

Theorem 3.2. Let Φ = φ ⊗ X and Ψ = ψ ⊗ Y be two decomposable
symmetric forms. Then, [LsΦ, L

s
Ψ] = Ls[Φ,Ψ] + i(Ω), where,

Ω =φ ∨ ψ ∨ (2∇[X,Y ]−R(X,Y ) +RsX(·, Y )−RsY (X, ·))+
2dsφ ∨ ψ ⊗∇XY − 2φ ∨ dsψ ⊗∇YX − φ ∨ [LsX , d

s]ψ ⊗ Y+

ψ ∨ [LsY , d
s]φ⊗X + dsdsφ ∨ iXψ ⊗ Y − dsdsψ ∨ iY φ⊗X.

Proof. Let ω be a 1-form. Then, we have

([LsΦ, L
s
Ψ]− LsΘ)ω = Lsφ⊗X(Lsψ⊗Y ω)− Lsψ⊗Y (Lsφ⊗Xω)− LsΘω

= Lsφ⊗X(ψ ∨ LsY ω − dsψ ∨ iY ω)−
Lsψ⊗Y (φ ∨ LsXω − dsφ ∨ iXω)− LsΘω.

Using the definition of LsΘω and the above relation, we conclude that:

([LsΦ, L
s
Ψ]− LsΘ)ω =

φ ∨ LsX(ψ ∨ LsY ω − dsψ ∨ iY ω)− dsφ ∨ iX(ψ ∨ LsY ω − dsψ ∨ iY ω)−
ψ ∨ LsY (φ ∨ LsXω − dsφ ∨ iXω) + dsψ ∨ iY (φ ∨ LsXω − dsφ ∨ iXω)−
(φ ∨ ψ ∨ Ls[X,Y ]ω − d

sφ ∨ ψ ∨ i[X,Y ]ω − φ ∨ dsψ ∨ i[X,Y ]ω+

φ ∨ LsXψ ∨ LsY ω − dsφ ∨ LsXψ ∨ iY ω − φ ∨ dsLsXψ ∨ iY ω−
LsY φ ∨ ψ ∨ LsXω + ds(LsY φ) ∨ ψ ∨ iXω + LsY φ ∨ dsψ ∨ iXω−
dsφ ∨ iXψ ∨ LsY ω + dsdsφ ∨ iXψ ∨ iY ω + dsφ ∨ dsiXψ ∨ iY ω+

dsψ ∨ iY φ ∨ LsXω − dsdsψ ∨ iY φ ∨ iXω − dsψ ∨ dsiY φ ∨ iXω)

= i(Ω)ω.

�

Definition 3.3. A section Z ∈ ΓE is called affinewise, if its symmetric
curvature tensor vanishes, i.e., RsZ = 0. In particular, affinewise section
of E = TM is called an affinewise vector field.

The set of affinewise sections is a linear subspace of ΓE. In particular,
the zero section is an affinewise. We now state three examples of the
affinwise sections.

Example 3.4. Let Z be a parallel section of the vector bundle E. Since
for every vector field V , ∇V Z = 0, we find RsZ = 0, thus all parallel
sections are affinewise.
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Example 3.5. Consider a trivial vector bundle F = Rn × V with the
trivial connection on it and trivial connection on Rn. A section of F is
a smooth map Z : Rn −→ V . By a routine calculation, we find RsZ = 0
if and only if Z is an affine map. So, the affinewise sections of F are
the same as the affine maps.

Example 3.6. For a manifold M with connection ∇, consider a trivial
line bundle F = M × R with the trivial connection on it. Sections of
F are smooth functions f : M −→ R. Since, Rsf = ds(dsf), then f is

affinewise if and only if ds(dsf) = 0.

For geodesic vector fields, we have a relation for computing the sym-
metric curvature. If X is a geodesic vector field on M , then for any
section Z of E, we have

RsZ(X,X) = 2∇X∇XZ.

In the remainder of our work, let I be an interval containing 0. For
any curve γ : I −→ M we denote the parallel translation along γ by
Pγ . For every ξ ∈ Eγ(0) and t ∈ I, (Pγξ)(t) is the parallel transport of ξ
along γ to Eγ(t)M .

Lemma 3.7. Let Z be an affinewise section of E. Assume that γ :
I −→M is a geodesic of ∇̄ such that γ(0) = p and γ′(0) = v. Then, for
every q = γ(t0), we have

Zq = (Pγ(Zp + t0∇vZ))(t0).

Proof. Define the curve h : I −→ Ep by (Pγh(t))(t) = Zγ(t). Note
that h is a smooth map and (Pγh′(t))(t) = ∇γ′(t)Z. By repeating this
procedure, we find (Pγh′′(t))(t) = ∇γ′(t)∇γ′(t)Z. If X is a local geodesic
vector field such that Xp = γ′(0), then

0 = RsZ(γ′(t), γ′(t)) = 2(∇X∇XZ)γ(t) = 2(∇γ′(t)∇γ′(t)Z) = 2(Pγh′′(t))(t).

So, for every t ∈ I, h′′(t) = 0. This means that h(t) = at + b, in which
a = h′(0) = ∇vZ and b = h(0) = Zp. So,

Zq = (Pγ(Zp + t0∇vZ))(t0).

�

Conversely, every section of E with the above property is an affinewise
section.
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Lemma 3.8. Let Z and Z ′ be two affinewise sections of E such that,
for some p ∈M , Zp = Z ′p, and for all v ∈ TpM , ∇vZ = ∇vZ ′. If V is a
convex open neighborhood of o ∈ TpM such that the map exp is defined
on it, then Z = Z ′ on exp(V ).

Proof. Let q be a point of exp(V ). For some v ∈ TpM , we can define
the geodesic γ(t) = exp(tv). We have γ(0) = p and γ′(0) = v, and for
some t0, γ(t0) = q . From Lemma 3.7, we have

Zq = (Pγ(Zp + t0∇vZ))(t0), Z ′q = (Pγ(Z ′p + t0∇vZ ′))(t0).

Since Zp = Z ′p and ∇vZ = ∇vZ ′, we obtain Zq = Z ′q. �

Lemma 3.9. Let ∇ be a connection on M . Given p ∈ M , there ex-
ists an open neighborhood U of p such that for all q ∈ U , there exists
an open neighborhood Wq ⊆ TqM of 0 ∈ TqM such that exp |Wq

is a

diffeomorphism and p ∈ exp(Wq).

Proof. This lemma is a standard one. We only give a sketch of the

proof. Let an open set T̃M of TM be the domain of exp. Define the

map F : T̃M −→M ×M by

F (v) = (π(v), exp(v)).

We know that (F∗)0p is an isomorphism. From the inverse map theorem,
the proof can be completed. �

Theorem 3.10. Let Z be an affinewise section of E. If M is connected
and, for some p ∈ M , Zp, and for every v ∈ TpM , the ∇vZ are given,
then Z is determined everywhere on M .

Proof. Suppose that Z ′ is another affinewise vector field, such that Z ′p =
Zp and, for all v ∈ TpM , ∇vZ ′ = ∇vZ. We must prove that Z ′ = Z.

Let B = {x ∈M | Zx = Z ′x, ∀v ∈ TxM ∇vZ = ∇vZ ′}. Since p ∈ B,
then B is non-empty. We show that B is open and closed.

Suppose that x ∈ B. There exists an open convex neighborhood V of
o ∈ TxM such that exp is a diffeomorphism on it. The set U = exp(V )
is an open set of M and by Lemma 3.8, Z = Z ′ on U . Since U is open,
for all q ∈ U , and v ∈ TqM , we have ∇vZ = ∇vZ ′. Thus, U ⊆ B, i.e.,
B is open.

Let x be a limit point of B. Consider the open neighborhood U of
x in Lemma 3.9. Since x is a limit point of B, there exists a point q
in B ∩ U . Let Wq be the open neighborhood of TqM such that exp
is a diffeomorphism and x ∈ exp(Wq). From Lemma 3.8, Z = Z ′ on
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U = exp(Wq). Since U is open and x ∈ U , for all ∈ TxM , we have
∇vZ = ∇vZ ′. Thus, x ∈ B, i.e., B is closed.

Therefore, B is a non-empty open and closed subset of M and since
M is connected, then we have B = M and Z = Z ′. �

Corollary 3.11. If M is connected, then the set of all affinewise sec-
tions of E is a linear subspace of ΓE of dimension less than or equal to
m+m · n, where, n = dimM and m = rankE.

Proposition 3.12. Suppose E is a Riemannian vector bundle and ∇
is a Riemannian connection, and M is geodesically complete. If Z is a
bounded affinewise section of E, then Z is parallel, and so its length is
constant.

Proof. Let p be a point of M and v ∈ TpM . Suppose γ : R −→M is the
geodesic of M with γ(0) = p and γ′(0) = v. From Lemma 3.7, we have

Zγ(t) = (Pγ(Zp + t∇vZ))(t).

Since Pγ is an isometry, we have

|t|‖∇vZ‖ − ‖Zp‖ ≤ ‖Zp + t∇vZ‖ = ‖(Pγ(Zp + t∇vZ))(t)‖ = ‖Zγ(t)‖.
If ∇vZ 6= 0, then the left hand side of the above inequality tends to
infinity, as t→∞. This is in contradiction with the boundedness of Z.
Hence, ∇vZ = 0, i.e., Z is parallel. �

Corollary 3.13. On compact Riemannian manifolds, only parallel vec-
tor fields are affinewise.

Corollary 3.14. For the sphere Sn of dimension n ≥ 2, there is no
non-zero affinewise vector field.

Proposition 3.15. For the sphere S2, there is no non-zero affinewise
local vector field.

Proof. Suppose that Z be a non-zero affinewise local vector field on S2,
defined on an open set U . Let p = (0, 0, 1) be the north pole of S2.
By rotation and multiplication to a scalar, we can assume p ∈ U and
Zp = (1, 0, 0). Let (ϕ, θ) be the sphere coordinate on S2 , 0 < ϕ < π,
0 < θ < 2π. Hence, we have

∇ ∂
∂φ

∂

∂φ
= 0 , ∇ ∂

∂φ

∂

∂θ
= ∇ ∂

∂θ

∂

∂φ
= cotφ

∂

∂θ
, ∇ ∂

∂θ

∂

∂θ
= −1

2
sin 2φ

∂

∂φ
.

Let Z = Z1 ∂
∂φ + Z2 ∂

∂θ . Then the condition RsZ = 0 is satisfied if and

only if
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∂2Z1

∂φ2
= 0,(3.1)

∂2Z2

∂φ2
+ 2

∂Z2

∂φ
cotφ− Z2 = 0,(3.2)

∂2Z1

∂θ2
− Z1 cos2 φ− ∂Z2

∂θ
sin 2φ = 0,(3.3)

2
∂Z1

∂θ
cotφ− Z2 cos2 φ+

∂2Z2

∂θ2
= 0,(3.4)

2
∂2Z1

∂φ∂θ
− ∂Z2

∂φ
sin 2φ− 1

2
Z2 sin 2φ− Z2 cos2 φ = 0,(3.5)

2
∂2Z2

∂φ∂θ
+ 2

∂Z1

∂φ
cotφ− Z1 + 2

∂Z2

∂θ
cotφ = 0.(3.6)

Let q be a point of U distinct from p, and its coordinate be (ϕ, θ).
Then, the geodesic joining p and q are given by
γ(t) = (sin t cos θ, sin t sin θ, cos t), where, γ(0) = p , γ(ϕ) = q. For
v ∈ TpS2, put L(v) = ∇vZ. Then, by Lemma 3.4, we have

Zq = (Pγ(Zp + ϕL(γ′(0))))(ϕ).

Suppose that the matrix L in the basis {e1 = (1, 0, 0), e2 = (0, 1, 0)}
of TpS

2 is:

L =

(
a b
c d

)
.

Then, by simple calculations, we get

Z1 = 1 + φ(a cos2 θ + d sin2 θ + (b+ c) sin θ cos θ),

Z2 =
1

sinφ
(sin θ + φ(c cos2 θ − b sin2 θ + (d− a) sin θ cos θ)).

It is easy to see that these functions do not satisfy the equations (1)-(6).
For example, consider equation (6). By calculation, for arbitrary φ and
θ = π

2 , we obtain:

2d cosφ− sinφ− dφ sinφ+ 2a− 2d

sinφ
= 0.

But, for the above equation, we can consider two cases: for a = 0, if
φ → 0, then the left hand side tends to −1 and in the case a 6= 0, if
φ→ 0, then the left hand side tends to infinity. Thus, in both cases, we
have a contradiction. �
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Note. By the same argument, it follows that, there are no local affinewise
vector fields on the n-dimensional sphere Sn, with n ≥ 2.

Lemma 3.16. Let E be a Riemannian vector bundle, and Z be an
affinewise section of E. If ‖Z‖ is constant on an open set U , then Z is
parallel on U .

Proof. Suppose p ∈ U and v ∈ TpM , for the geodesic γ : I −→ U , which
satisfies γ(0) = p and γ′(0) = v. We have Zγ(t) = (Pγ(Zp + t∇vZ))(t).
Since Pγ is an isometry, we have

∀t ∈ I ‖Zp‖ = ‖Zγ(t)‖ = ‖(Pγ(Zp + t∇vZ))(t)‖ = ‖Zp + t∇vZ‖.
So,

t2‖∇vZ‖2 + 2tZp · ∇vZ = 0.

If ∇vZ 6= 0, this equation can not hold for all t ∈ I. Therefore, ∇vZ =
0. �

Lemma 3.17. Suppose E is a Riemannian vector bundle and ∇ is a
Riemannian connection. If Z is an affinewise section of E and, for
some point p ∈ M , for all v ∈ TpM , ∇vZ = 0, then for every open
set W ⊆ TpM , where, 0p ∈ W and exp is a diffeomorphism on it, Z is
parallel on exp(W ).

Proof. For every q ∈ exp(W ), there exists a geodesic γ : I −→ M such
that γ(t0) = q. Consequently,

‖Zq‖ = ‖Pγ(Zp + t∇vZ)‖ = ‖PγZp‖ = ‖Zp‖.
So, Z has constant length on exp(W ), and by Lemma 3.16, Z is parallel
on exp(W ). �

Theorem 3.18. Let E be a Riemannian vector bundle, ∇ be a Rie-
mannian connection, and M be connected. Let Z be a section of E. If
for some p ∈M , for all v ∈ TpM , ∇vZ = 0, then Z is parallel.

Proof. Define

B = {q ∈M | ∀v ∈ TqM ∇vZ = 0}.
By assumption, p ∈ B, and so B is non-empty. By Lemma 3.8, B is
open. Let q be a limit point of B. By Lemma 3.8, we consider an
open neighborhood U of q in such a way that, for all q′ ∈ U , there
exists an open set W ⊆ Tq′M , with 0 ∈ W , and exp : W −→ exp(W )
is diffeomorphism and q ∈ exp(W ). Since U ∩ B 6= φ, we can choose
q′ ∈ U ∩ B. By Lemma 3.17, Z is parallel on exp(W ), and so for every
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v ∈ TqM , ∇vZ = 0, q ∈ B. Hence, B is an open and closed non-empty
subset of connected space M , and thus B = M and Z is parallel. �

Corollary 3.19. Let M be a connected manifold and f ∈ C∞(M). If
ds(dsf) = 0 and df is zero in some point of M , then f is constant.

Proof. Consider the trivial bundle E = M × R. If ds(dsf) = 0, then f
is an affinewise section of E that satisfies conditions of Theorem 3.18.
Therefore, f is a parallel section, i.e., ∇f = df = 0. Consequently, f is
constant. �

Theorem 3.20. Let (M, g) be a Riemannain manifold. If ds(dsf) = 0,
f is not a constant function and M is connected, then for every c ∈
f(M), f−1(c) is a flat submanifold, i.e., the second fundamental form
of f−1(c) vanishes.

Proof. Since f is a non-constant function and ds(dsf) = 0, it is easy to
see that the rank of f is 1. Therefore, for all constant c ∈ f(M), f−1(c)
is the submanifold of M . Assume t0 ∈ I, p ∈ f−1(c) and α : I −→M be
a geodesic such that α(t0) = p and α′(t0) ∈ Tpf−1(c). From Corollary
2.6, we have

f(α(t)) = at+ b ∀t ∈ I,
where, a = df(α′(t)). From the above equation, it is not difficult to show
that a = 0 and f(α(t)) = b, for all t ∈ I. Since α(t0) = p ∈ f−1(c), then
f(α(t0)) = c. Hence, we have

b = f(α(t0)) = c.

Consequently, f(α(t)) = c, for all t ∈ I, i.e., α(t) ∈ f−1(c). �

Let ∇ be a connection on a manifold M . An affine vector field on M
is a vector field X such that for all vector fields Y and Z, we have

LX(∇Y Z) = ∇LXY Z +∇Y LXZ.

Proposition 3.21. Let ∇ be a connection on a manifold M . If X is
an affine vector field and Z is an affinewise vector field, then [X,Z] is
an affinewise vector field.

Proof. Simple calculations show that for arbitrary vector fields Y , Z,
and W , we have

LX(RsZ(Y,W )) = RsLXZ
(Y,W ) +RsZ(LXY,W ) +RsZ(Y,LXW ).

Now, in the above equality, if Z is affinewise, then we find RsLXZ
(Y,W ) =

0. Hence, [X,Z] is affinewise. �
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Affine and affinewise vector fields are two distinct concepts. An
affinewise vector field is not necessarily an affine vector field. For ex-
ample, in Rn, the vector field Zq = (q, 2q) is affinewise, but it is not an
affine vector field. On Sn, with n ≥ 2, there exists no nonzero affinewise
vector field, but there exist nonzero Killing vector fields which are affine.

By contracting symmetric curvature, we can find new curvatures.
This contraction can be done in two ways.

Definition 3.22. Let {Ei} be a basis of local vector fields on M with
the dual basis {ωi}. For every vector field Z, we assign a 1-form ωZ as
follows, calling it the form curvature along Z,

ωZ(X) =
∑
i

ωi(RsZ(Ei, X)).

For example, if Z is a vector field on Rn, then ωZ = 2d(Div(Z)).

Theorem 3.23. Let Z be a vector field on a Riemannian manifold
(M, g). Then, we have

ωZ = 2d(Div(Z)) +Ric(., Z).

Proof. Let {Ei} be a basis of locally vector field with dual {ωi} and
[Ei, Ej ] = 0. Then,

d(DivZ)(El) = El(Div(Z)) = El(ω
i(∇EiZ))

= (∇El
ωi)(∇EiZ) + ωi(∇El

∇EiZ).

On the other hand, we have

Ric(El, Z) = ωi(R(Ei, El)Z) = ωi(∇Ei∇El
Z −∇El

∇EiZ)

= ωi(∇Ei∇El
Z)− ωi(∇El

∇EiZ).

So,

2d(Div(Z))(El) +Ric(El, Z) =

2(∇El
ωi)(∇EiZ) + ωi(∇El

∇EiZ) + ωi(∇Ei∇El
Z).

Now,

ωZ(El) = ωi(RsZ(El, Ei)) = ωi(∇El
∇EiZ +∇Ei∇El

Z −∇[Ei,El]sZ).

Since [Ei, El] = 0, we have [Ei, El]
s = 2∇El

Ei. Therefore,

ωZ(El) = ωi(∇El
∇EiZ) + ωi(∇Ei∇El

Z)− 2ωi(∇∇El
Ei
Z).
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To complete the proof, we must prove the following equality:

ωi(∇∇El
Ei
Z) = −(∇El

ωi)(∇EiZ).

Let Z = ZkEk. Hence,

ωi(∇∇El
Ei
Z) = ωi(∇∇El

Ei
ZkEk) = ωi(∇

Γr
il
Er
ZkEk)

= ωi(ΓrilEr(Z
k)Ek + ZkΓrilΓ

s
rkEs)

= ΓrilEr(Z
i) + ZkΓrilΓ

i
rk.

Now, compute the right hand side of the equality:

(∇El
ωi)(∇EiZ) = El(ω

i(∇EiZ
kEk))− ωi(∇El

∇EiZ
kEk)

= El(ω
i(Ei(Z

k)Ek + ZkΓskiEs))

− ωi(∇El
(Ei(Z

k)Ek) +∇El
(ZkΓrkiEr))

= El(Ei(Z
i)) + El(Z

kΓiki)− El(Ei(Zi))

− Ei(Zk)Γikl − El(ZkΓiki)− ZkΓrkiΓirl
= −ΓiklEi(Z

k)− ZkΓrkiΓirl.
�

Definition 3.24. Let {Ei} be an orthonormal basis of local vector fields
on the Reimannian manifold M . For every vector field Z, we assign a
vector field XZ as follows, calling it the vector curvature along Z,

XZ =
∑
i

RsZ(Ei, Ei).

Theorem 3.25. Let Z be a vector field on a Riemannian manifold M .
Then, XZ = 2tr∇2Z, where, tr∇2Z =

∑
∇2Z(Ei, Ei).

Proof. By simple calculations, we have

tr∇2Z =
∑
∇2Z(Ei, Ei) =

∑ 1

2
RsZ(Ei, Ei) +

1

2
R(Ei, Ei)(Z) =

1

2
XZ .

�

Now, we can restate some results about geometric vector fields from
[7] as follows.

Theorem 3.26. Let Z be a vector field on a Riemannian manifold
(M, g) with the the Ricci tensor Ric of g.

i) Z is harmonic if and only if < XZ , . >= 2Ric(Z, .).
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ii) If Z is a Killing field, then < XZ , . >= −2Ric(Z, .). The con-
verse holds if M is compact and DivZ = 0.

iii) If Z is an affine field, then divZ is locally constant and < XZ , . >
+2Ric(Z, .) = 0.

From Theorem 3.23 and Theorem 3.26, we can deduce the following
corollary.

Corollary 3.27. Let Z be a vector field on a Riemannian manifold M .

i) Z is harmonic if and only if div(Z) = 0 and < XZ , . >= 2ωZ(.).
ii) If Z is Killing, then div(Z) = 0 and < XZ , . >= −2ωZ(.). The

converse is true if M is compact.
iii) If Z is affine, then div(Z) is locally constant and < XZ , . >=
−2ωZ(.). If M is compact, conversely we can deduce Z is affine.
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