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THE (R,S)-SYMMETRIC AND (R,S)-SKEW

SYMMETRIC SOLUTIONS OF THE PAIR OF MATRIX

EQUATIONS A1XB1 = C1 AND A2XB2 = C2

M. DEHGHAN∗ AND M. HAJARIAN

Communicated by Heydar Radjavi

Abstract. Let R ∈ Cm×m and S ∈ Cn×n be nontrivial involu-
tion matrices; i.e., R = R−1 6= ± I and S = S−1 6= ± I. An
m×n complex matrix A is said to be an (R,S)-symmetric ((R,S)-
skew symmetric) matrix if RAS = A (RAS = −A). The (R,S)-
symmetric and (R,S)-skew symmetric matrices have a number of
special properties and widely used in engineering and scientific com-
putating. Here, we introduce the necessary and sufficient conditions
for the solvability of the pair of matrix equations A1XB1 = C1 and
A2XB2 = C2, over (R,S)-symmetric and (R,S)-skew symmetric
matrices, and give the general expressions of the solutions for the
solvable cases. Finally, we give necessary and sufficient conditions
for the existence of (R,S)-symmetric and (R,S)-skew symmetric
solutions and representations of these solutions to the pair of ma-
trix equations in some special cases.

1. Introduction

Throughout, the notation Cm×n represents the vector space of all
m×n matrices over the complex field C. By AT , we denote the transpose
matrix of A. The conjugate transpose of the matrix A ∈ Cm×n is
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denoted by A∗. We define a conditional inverse of A ∈ Cm×n, denoted
by A−, to be any matrix B ∈ Cn×m satisfying ABA = A. The symbol
A⊗B denotes the Kronecker matrix product, (aijB). The symbol vec(A)
denotes the mn × 1 vector formed by the vertical concatenation of the
matrix A. For a given mn × 1 vector w, we use Invecm,n(w) to denote
the m × n matrix W ∈ Cm×n such that vec(W ) = w. Now, we define
(R,S)-symmetric and (R,S)-skew symmetric matrices as follows.

Definition 1.1. [22] Assume that R ∈ Cm×m and S ∈ Cn×n are non-
trivial involution matrices, that is, R = R−1 6= ± I and S = S−1 6= ± I.
An m×n matrix A is said to be an (R,S)-symmetric ((R,S)-skew sym-

metric) matrix if RAS = A (RAS = −A). Sm×nR,S and S̃m×nR,S represent

the set of m×n (R,S)-symmetric and (R,S)-skew symmetric matrices,
respectively.

The (R,S)-symmetric and (R,S)-skew symmetric matrices have wide
applications in information theory, linear estimate theory and numerical
analysis [1, 16, 27, 28]. Solving matrix equations is a topic of very active
research in computational mathematics, and has been widely applied in
various areas such as principal component analysis, biology, electricity,
solid mechanics, automatics control theory, vibration theory, and so on.
A large number of papers have presented several methods for solving
matrix equations [9, 8, 20, 23, 25, 26]. Dai [3] and Chu [2] studied the
linear matrix equation

AXB = C,

with a symmetric condition on the solution X. Ramadan and El-
Sayed [21] proposed a simple method for generating a nonsingular solu-
tion of the matrix equation XH = HX, where the matrix H is in an
unreduced lower Hessenberg form. Mitra [17, 18] proposed conditions
for the existence of a solution and a representation of a general common
solution to the pair of individually consistent simultaneous linear matrix
equations

(1.1) A1XB1 = C1 and A2XB2 = C2.

Also Navarra et al. [19] studied a representation of the solution X to
the pair of matrix equations (1.1). In [24], Wang considered (1.1) over
an arbitrary regular ring with identity and derived the necessary and
sufficient conditions for the existence and the expression for the general
solution of the pair of matrix equations. In [4, 5, 7], some iterative
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algorithms were proposed to solve the Sylvester matrix equation and
the generalized coupled Sylvester matrix equations over reflexive and
anti-reflexive matrices. In [6], an iterative algorithm was constructed
for solving the second-order Sylvester matrix equation

EV F 2 −AV F − CV = BW.

Zhou et al. [31] proposed an iterative method for finding weighted
least squares solutions to the coupled Sylvester matrix equations. Ding
and Chen [10, 11] presented the hierarchical gradient iterative (HGI)
algorithms for general matrix equations and hierarchical least-squares-
iterative (HLSI) algorithms for the generalized coupled Sylvester matrix
equation and general coupled matrix equations [12, 13]. The HGI al-
gorithms [10, 11] and HLSI algorithms [14, 11, 13] for solving general
(coupled) matrix equations are two innovational and computationally
efficient numerical ones and were proposed based on the hierarchical
identification principle [12, 15], which regards the unknown matrix as
the system parameter matrix to be identified.
The reminder of our work is organized as follows. In Section 2, we first re-
view some structure properties of the (R,S)-symmetric and (R,S)-skew

symmetric matrices, subsets Sm×nR,S and S̃m×nR,S . Then, we will present the

necessary and sufficient conditions for the existence of (R,S)-symmetric
and (R,S)-skew symmetric solutions of (1.1), respectively. Some special
cases of the pair of matrix equations (1.1) over (R,S)-symmetric and
(R,S)-skew symmetric matrices are considered in Section 3.

2. Main Results

In this section, we first discuss the structure and properties of the
(R,S)-symmetric and (R,S)-skew symmetric matrices and subsets Sm×nR,S

and S̃m×nR,S . Assume that R ∈ Cm×m and S ∈ Cn×n are nontrivial involu-
tion matrices. From “an involution is diagonalizable”, there are positive
numbers r, k and matrices P ∈ Cm×r, Q ∈ Cm×(m−r), U ∈ Cn×k and
V ∈ Cn×(n−k) such that [22]

P ∗P = I, Q∗Q = I, RP = P, RQ = −Q,

and

U∗U = I, V ∗V = I, SU = U, SV = −V.
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Also, if we consider

(2.1)

Û =
U∗(I + S)

2
, V̂ =

V ∗(I − S)

2
, P̂ =

P ∗(I + R)

2
, Q̂ =

Q∗(I −R)

2
,

then we have
(2.2)

P̂P = I, P̂Q = 0, Q̂P = 0, Q̂Q = I, ÛU = I, ÛV = 0, V̂ U = 0, V̂ V = I.

This implies:

(2.3)
[
U V

]−1
=

[
Û

V̂

]
and

[
P Q

]−1
=

[
P̂

Q̂

]
.

In the following lemmas, we will give characterizations of (R,S)-symmetric
and (R,S)-skew symmetric matrices.

Lemma 2.1. [22] A is (R,S)-symmetric if and only if

(2.4) A =
[
P Q

] [A1 0
0 A4

] [
Û

V̂

]
,

where, A1 ∈ Cr×k and A4 ∈ C(m−r)×(n−k).

Lemma 2.2. [22] A is (R,S)-skew symmetric if and only if

(2.5) A =
[
P Q

] [ 0 A2

A3 0

] [
Û

V̂

]
,

where, A2 ∈ Cr×(n−k) and A3 ∈ C(m−r)×k.

Without loss of generality, in the rest of this paper we assume that the
matrices Ai, Bi, Ci ∈ Cn×n; i = 1, 2; have the following decompositions:

(2.6)



[
Û

V̂

]
Ai

[
P Q

]
=

[
Ai,1 Ai,2

Ai,3 Ai,4

]
,[

Û

V̂

]
Bi

[
P Q

]
=

[
Bi,1 Bi,2

Bi,3 Bi,4

]
,

C ′i =

[
Û

V̂

]
Ci

[
P Q

]
=

[
Ci,1 Ci,2

Ci,3 Ci,4

]
,
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where, Ai,1 ∈ Cr×r, Bi,1 ∈ Ck×k, Ci,1 ∈ Cr×k, Ai,4 ∈ C(n−r)×(n−r),

Bi,4 ∈ C(n−k)×(n−k) and Ci,4 ∈ C(n−r)×(n−k), for i = 1, 2. Also, we let

A′i = (Ai,1
T Ai,3

T )T , B′i = (Bi,1, Bi,2),

(2.7)

A′′i = (Ai,2
T Ai,4

T )T and B′′i = (Bi,3, Bi,4),

for i = 1, 2. The following theorems provide the general conditions
for the existence of the (R,S)-symmetric and (R,S)-skew symmetric
solutions to the pair of matrix equations (1.1).

Theorem 2.3. Let Ai, Bi, Ci ∈ Cn×n, for i = 1, 2, be given matrices.
Then, the following conditions are equivalent.

(1) The pair of matrix equations (1.1) has a common solution X ∈ Sn×nR,S .

(2) The following pair of matrix equations has the solutions X1 and
X4:

(2.8) A′1X1B
′
1 + A′′1X4B

′′
1 = C ′1 and A′2X1B

′
2 + A′′2X4B

′′
2 = C ′2.

(3) The following system of matrix equations has the solutions X1 and
X4:

(2.9)

A1,1X1B1,1 + A1,2X4B1,3 = C1,1, A2,1X1B2,1 + A2,2X4B2,3 = C2,1,

A1,1X1B1,2 + A1,2X4B1,4 = C1,2, A2,1X1B2,2 + A2,2X4B2,4 = C2,2,

A1,3X1B1,1 + A1,4X4B1,3 = C1,3, A2,3X1B2,1 + A2,4X4B2,3 = C2,3,

A1,3X1B1,2 + A1,4X4B1,4 = C1,4, A2,3X1B2,2 + A2,4X4B2,4 = C2,4,

in which case, the common solution X ∈ Sn×nR,S is represented by

X =
[
P Q

] [X1 0
0 X4

] [
Û

V̂

]
,

where, X1 ∈ Cr×k and X4 ∈ C(n−r)×(n−k).

Proof. First we show that (2)⇔ (3). By substituting (2.7) into (2.8), we
can obtain the system of matrix equations (2.9). This implies (2)⇔ (3).
(1) ⇔ (3). Suppose that the system of matrix equations (1.1) has a
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common solution X ∈ Sn×nR,S . By Lemma 2.1, there exist X1 ∈ Cr×k and

X4 ∈ C(n−r)×(n−k) so that

X =
[
P Q

] [X1 0
0 X4

] [
Û

V̂

]
.

Now, from A1XB1 = C1 and A2XB2 = C2 and using the decompositions
(2.6), we getA1,1X1B1,1 + A1,2X4B1,3 A1,1X1B1,2 + A1,2X4B1,4

A1,3X1B1,1 + A1,4X4B1,3 A1,3X1B1,2 + A1,4X4B1,4

=

C1,1 C1,2

C1,3 C1,4

 ,

andA2,1X1B2,1 + A2,2X4B2,3 A2,1X1B2,2 + A2,2X4B2,4

A2,3X1B2,1 + A2,4X4B2,3 A2,3X1B2,2 + A2,4X4B2,4

=

C2,1 C2,2

C2,3 C2,4

 .

Conversely, if the system of matrix equations (2.9) has solutions X1 and
X4, then it not difficult to get

A1XB1 = C1 and A2XB2 = C2,

where,

X =
[
P Q

] [X1 0
0 X4

] [
Û

V̂

]
∈ Sn×nR,S

�

Similar to the proof of Theorem 2.3, we can prove the following the-
orem.

Theorem 2.4. Let Ai, Bi, Ci ∈ Cn×n, for i = 1, 2, be given matrices.
Then the following conditions are equivalent.

(1) The pair of matrix equations (1.1) has a common solution X ∈ S̃n×nR,S .

(2) The following system of matrix equations has the solutions X2 and
X3:

(2.10) A′′1X3B
′
1 + A′1X2B

′′
1 = C ′1 and A′′2X3B

′
2 + A′2X2B

′′
2 = C ′2.

(3) The following system of matrix equations has the solutions X2 and
X3:
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(2.11)

A1,2X3B1,1 + A1,1X2B1,3 = C1,1, A2,2X3B2,1 + A2,1X2B2,3 = C2,1,

A1,2X3B1,2 + A1,1X2B1,4 = C1,2, A2,2X3B2,2 + A2,1X2B2,4 = C2,2,

A1,4X3B1,1 + A1,3X2B1,3 = C1,3, A2,4X3B2,1 + A2,3X2B2,3 = C2,3,

A1,4X3B1,2 + A1,3X2B1,4 = C1,4, A2,4X3B2,2 + A2,3X2B2,4 = C2,4,

in which case, the common solution X ∈ S̃n×nR,S is represented by

X =
[
P Q

] [ 0 X2

X3 0

] [
Û

V̂

]
,

where, X2 ∈ Cr×(n−k) and X3 ∈ C(n−r)×k.

3. Some Special Cases

In the next theorems, we will consider the special cases when B1,1 =
B2,1 = B1,2 = B2,2 = 0 or A1,1 = A2,1 = A1,3 = A2,3 = 0. We
find necessary and sufficient conditions for the existence of the solution

X ∈ Sn×nR,S (X ∈ S̃n×nR,S ) and give the expression for the general solution.

Theorem 3.1. Let Ai, Bi, Ci ∈ Cn×n, for i = 1, 2, be given matrices.
If B1,1 = B2,1 = B1,2 = B2,2 = 0 or A1,1 = A2,1 = A1,3 = A2,3 = 0, then
the pair of matrix equations (1.1) has a common solution X ∈ Sn×nR,S

if and only if A′′1A
′′−
1 C ′1B

′′−
1 B′′1 = C ′1 and Invecn,n(GG−vec(F )) = F ,

where,
G = B′′∗2 ⊗A′′2 + E∗ ⊗D, D = −A′′2A′′−1 A′′1,

E = B′′1B
′′−
1 B′′2 , F = C ′2 −A′′2A

′′−
1 C ′1B

′′−
1 B′′2 ,

In which case, the general common solution is given by

X =
[
P Q

] [X1 0
0 Z

] [
Û

V̂

]
,

where,

Z = A′′−1 C ′1B
′′−
1 + Invec(n−r),(n−k)(G−vec(F ) + (I −G−G)vec(W ))

−A′′−1A′′1[Invec(n−r),(n−k)(G−vec(F ) + (I −G−G)vec(W ))]B′′1B
′′−
1 ,

X1 ∈ Cr×k, and W ∈ C(n−r)×(n−k) are arbitrary matrices.
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Proof. Let B1,1 = B2,1 = B1,2 = B2,2 = 0 or A1,1 = A2,1 = A1,3 =
A2,3 = 0, and let X ∈ Sn×nR,S be a solution of (1.1). We can assume that
X is represented by

X =
[
P Q

] [X1 0
0 X4

] [
Û

V̂

]
.

Now, it follows from (2.8) that

(3.1) A′′1X4B
′′
1 = C ′1, A′′2X4B

′′
2 = C ′2,

where,
(3.2)

A′′i = (Ai,2
T Ai,4

T )T and B′′i = (Bi,3 Bi,4), for i = 1, 2.

From the obtained results in [19], the pair of matrix equations A′′1X4B
′′
1 =

C ′1 and A′′2X4B
′′
2 = C ′2 has a common solution if and only if

A′′1A
′′−
1 C ′1B

′′−
1 B′′1 = C ′1 and Invecn,n(GG−vec(F )) = F, where,

A′′i = (Ai,2
T Ai,4

T )T , B′′i = (Bi,3 Bi,4) i = 1, 2,

G = B′′∗2 ⊗A′′2 + E∗ ⊗D, D = −A′′2A′′−1 A′′1,

E = B′′1B
′′−
1 B′′2 , F = C ′2 −A′′2A

′′−
1 C ′1B

′′−
1 B′′2 ,

In that case, the general solution is given by:

X4 = A′′−1 C ′1B
′′−
1 + Invec(n−r),(n−k)(G−vec(F ) + (I −G−G)vec(W ))

−A′′−1 A′′1[Invec(n−r),(n−k)(G−vec(F ) + (I −G−G)vec(W ))]B′′1B
′′−
1 ,

where, W ∈ C(n−r)×(n−k) is an arbitrary matrix. �

By a similar proof to the proof of Theorem 3.1, we can prove the
following theorem.

Theorem 3.2. Let Ai, Bi, Ci ∈ Cn×n, for i = 1, 2, be given matrices.
If B1,1 = B2,1 = B1,2 = B2,2 = 0 or A1,2 = A2,2 = A1,4 = A2,4 = 0, then

the pair of matrix equations (1.1) has a common solution X ∈ S̃n×nR,S

if and only if A′1A
′−
1 C ′1B

′′−
1 B′′1 = C ′1 and Invecn,n(GG−vec(F )) = F ,

where,
G = B′′∗2 ⊗A′2 + E∗ ⊗D, D = −A′2A′−1 A′1,

E = B′′1B
′′−
1 B′′2 , F = C ′2 −A′2A

′−
1 C ′1B

′′−
1 B′′2 ,

in which case, the general common solution is given by

X =
[
P Q

] [ 0 Z
X3 0

] [
Û

V̂

]
,
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where,

Z = A′−1 C ′1B
′′−
1 + Invecr,(n−k)(G−vec(F ) + (I −G−G)vec(W ))

−A′−1 A′1[Invecr,(n−k)(G−vec(F ) + (I −G−G)vec(W ))]B′′1B
′′−
1 ,

X3 ∈ C(n−r)×k and W ∈ Cr×(n−k) are arbitrary matrices.

4. Conclusions

We have considered the (R,S)-symmetric and (R,S)-skew symmetric
solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2.
By making use of the decompositions (2.6), we presented general analytic
formulae, and gave necessary and sufficient conditions for guaranteeing
the existence of these solutions. Also, we derived necessary and sufficient
conditions for the existence and the expressions for the general (R,S)-
symmetric and (R,S)-skew symmetric solutions to the pair of matrix
equations in some special cases.
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