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ON THE NILPOTENCY CLASS OF THE
AUTOMORPHISM GROUP OF SOME FINITE
p-GROUPS

S. FOULADI* AND R. ORFI
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ABSTRACT. Let G be a p-group of order p" and ®=&(G) be the
Frattini subgroup of G. It is shown that the nilpotency class of
Aut® (@), the group of all automorphisms of G centralizing G/®(G),
takes the maximum value n — 2 if and only if G is of maximal class.
We also determine the nilpotency class of Aut®(G) when G is a
finite abelian p-group.

1. Introduction

It is well known [3, II1, Satz 3.17] that if G is a finite p-group with the
Frattini subgroup ® = ®(G), then Aut®(G) is a finite p-group. Liebeck
[5] found an upper bound for the nilpotency class of Aut‘P(G).

Here, we find the nilpotency class of Aut®(G) in some cases. A
straightforward consequence of the result in [5] shows that the nilpo-
tency class of Auth(G) is less than or equal to n — 2, for all non-cyclic p-
groups of order p". Here, we show that the nilpotency class of Autq’(G)
takes the maximum value n — 2 if and only if G is of maximal class.
Moreover, we find the nilpotency class of Aut®(G) for a finite abelian

p-group G in terms of its invariants, where p is an odd prime.
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Throughout, the following notation is used. The terms of the lower
central series of G are denoted by I'; = I';(G). The center of G is
denoted by Z = Z(G). The nilpotency class of a group G is denoted
by cl(G). If o is an automorphism of G and x is an element of G, we
write % for the image of x under a. The inner automorphism induced
by the element g is denoted by o4. For a normal subgroup N of G, we
let Aut™(G) denote the group of all automorphisms of G centralizing
G/N. We write d(G) for the minimal number of generators of G. An
extra-special p-group is a p-group G with ®(G) = Z(G) = G' = Z,. A
non-abelian group that has no non-trivial abelian direct factor is said
to be purely non-abelian. Also, Z, is the cyclic group of order n. All
unexplained notation is standard and follows that of [4].

2. Maximum Value of cl(Aut®(G))

Let G be a non-cyclic p-group of order p™. In this section, we prove
that cl(Aut®(Q)) takes the maximum value n — 2 if and only if G is
of maximal class. First, we give some basic results that are needed for
the main results of this section. In [5], Liebeck proved the following
theorems which play important roles in our proofs.

Theorem 2.1. [ 5, Theorem 2| Let G be a finite d-generator p-group
with lower central series G =11 > --- >T.>T.y1 =1 and ®(G) # 1.
Let T'. have exponent p™. If N = Pé”"*l, the group generated by all
p™ L th powers of elements of I, then

(i) N is elementwise fived by all automorphisms in Aut®(G),
(i) AutN (@) < Z(Aut®(@)),
(iii) Aut™(G) has order p™®, where p" is the order of N,
(iv) Aut®(G)/Aut™ (G) — Aut®N(G/N).
Theorem 2.2. [5, Theorem 3| Let G be as in Theorem 2.1, with ®(G) #

1, and let T;(GQ)/Ti41(G) have exponent p™:, for 1 < i < c. Then,
Aut®(G) is nilpotent and cl(Aut®(G)) < (325, m;) — 1.

Now, we begin by stating a number of lemmas that will be used in
the sequel.

Lemma 2.3. Let G be a non-cyclic p-group of order p™. Then,
cd(Aut®(G)) <n —2.
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Proof. Suppose that cl(G) = ¢ and (n;1, ni2, . .., N4y, ) are the invariants
of T;(G)/Ti+1(Q), with nj; > njo > -+ > ny,,, for 1 < i < c¢. Hence,
C

Z(ml +nig 4+ ngpy) =,

i=1
and so Y i ;ni < n—1, since I'1(G)/T'2(G) is not cyclic. Now, by
Theorem 2.2, we deduce that cl(Aut®(G)) <n—2. O

Lemma 2.4. Let G be a non-abelian p-group of order p"™ and
A(Awt®(G)) = t, where 1 < t < n—2. If d(G/T9(G)) > n —t,
then d(G/F2(G)) = n — t, G/FQ(G) = sz7c+2 X Zp X oo X Zp and
I'i(G)/T541(G) = Zy, for 2 < i < ¢, where c is the nilpotency class of G.

Proof. Suppose that (ni1,ni2,...,nir,) are the invariants of
Fi(G)/FH_l(G), with n;1 > ng > -+ > N, for 1 <i < c¢. We have
(&

Z(nil + ) + -+ niri) =n.

i=1
If ny; > 1, for some 2 < j < n —t, then Zle n;1 < t. Hence,
cl(Aut®(G)) <t — 1, by Theorem 2.2, which is impossible. Therefore,
ny; = 1, for 2 < j < n -t Now, we have r; = n — t; for other-
wise, 71 > n —t and by the same argument as above we deduce that
cl(Aut®(G)) <t — 1, which is a contradiction. So,

G/Ty(G) = 7,

with d(G/T'2(G)) = n —t. We see that n;; = 1, for 2 < ¢ < ¢, by [2,
Theorem 1.5]. Moreover if |I';(G) /Ti+1(G)| > p, for some 2 < i < ¢, then
again cl(Aut®(G)) <t — 1. Thus, I';(G)/Ti11(G) = Z,, for 2 < i < ¢,
completing the proof. O

nll XZpX---XZp

Lemma 2.5. Let G be a non-abelian group of order p"™ (n > 4) and

(G)=n—2. If G/T2(G) X Zy2 X Ly, then cl(Aut®(G)) <n —3.

Proof. We use induction on n. For n = 4, we claim that G is purely
non-abelian. Otherwise, we may write G = A X B, where A # 1 is
abelian and B is purely non-abelian. Hence, B is extra-special of or-
der p? and so G/G' = Z, x Z, x Zp, which is a contradiction. By [6,
Lemma 0.4], we have exp(G/Z(G)) = exp(G’) = p, which implies that
G/Z(G) is elementary abelian. Therefore, ®(G) < Z(G). Now, we prove
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that Aut®(G) is abelian. To see this, we consider two cases for Z(G).
First, we suppose that Z(G) = Z,2. Then by [1, Theorem 1], we have
|Aut?(G)| = p%, and so |[Aut®(G)| < p?. Also, |Aut® (G)| > p? and
Aut? (G) < Z(Aut®(@)), by Theorem 2.1 (iii) and (ii). This yields that
Aut®(G) is abelian. Next, suppose that Z(G) is elementary abelian.
Therefore, Aut®(G) fixes GP elementwise, since ®(G) < Z(G). Hence,
by Theorem 2.1(i), Aut®(G) fixes ®(G) elementwise and consequently
Aut‘b(G) is abelian. Now, suppose that n > 5 and the result holds for
any group of order less than p". On setting N = I',_2(G), we may
see that cI(G/N) =n — 3, |G/N| = p"»~! and G/N satisfies the condi-
tions of the Lemma. Thus, cl(Aut®"N(G/N)) < n — 4, by the induction
hypothesis. Now, the parts (ii) and (iv) of Theorem 2.1 imply that
c(Aut®(G)) < n — 3, as desired. O

We have the following theorem due to Miiller [7]

Theorem 2.6. [7, Theorem| If G is a finite p-group which is neither
elementary abelian nor extra-special, then Aut®(G)/Inn(G) is a non-
trivial normal p-subgroup of the group of outer automorphisms of G.

Corollary 2.7. Let G be an extra-special p-group of order p™. Then,
Aut®(G) is elementary abelian of order p"~.

Theorem 2.8. Let G be a non-abelian p-group of order p" (n > 3).
Then, G is of mazimal class if and only if cl(Aut®(G)) = n — 2.

Proof. If G is of maximal class, then cl(Aut®(G)) > n—2, since Inn(G) <
Aut®(G). So, cl(Aut®(G)) = n — 2, by Lemma 2.3. Now, suppose
that cl(Aut®(G)) = n — 2. By induction on n, we prove that G is
of maximal class. If n = 3, then obviously G is of maximal class.
Assume that |G| = p", n > 4 and the result holds for any group of
order less than p". If cl(G) = ¢, then G/T'2(G) = Zyn-c x Z, and
I'i(G) /T (G) = Zyp, for 2 < i < ¢, by Lemma 2.4. On setting
N = I'(G), we see that cl(Aut®N(G/N)) > n — 3, by Theorem 2.1
(ii) and (iv). Consequently, cl(Aut®N(G/N)) = n — 3, by Theorem
2.2. Hence by the induction hypothesis, G/N is of maximal class, which
implies that cl(G) = cl(G/N) + 1 =n — 1, as desired. O

Lemma 2.9. If G is a p-group of order p™ (n > 4) and cl(G) =n — 2,
then Aut®(Q) is of class n — 3.
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Proof. We have p? < |G/T2(G)| < p3. If G/T3(G) is elementary abelian,
then cl(Aut®(G)) < n — 3, by Theorem 2.2. Therefore, cl(Aut®(G)) =
n — 3, since Inn(G) < Aut®(G). Now, if G/T9(G) = Ly X Ly, then
c(Aut®(G)) < n — 3, by Lemma 2.5, which completes the proof. O

Remark 2.10. The converse of Lemma 2.9 does not hold. To see this
we consider a family of groups of order p° for any prime p as follows:

— P _ p _ P _ p_ P _
G_ <a17a27a37a47a5|a1 - a37a2 - a47a3 - a57a4 - a5 - 17

a1, as] = as, [ai, a;] = 1),

where, 1 <i < j <5 and (i,7) # (1,2).

Obviously, we have |G'| = p, which implies that cl(G) = 2. Now, since
exp(G/G") = p?, we see that cl(Aut®(G)) < 2, by Theorem 2.2. Further-
more, we define the maps o and § by af = a1as4, af = a; for2 <i <5
and ag = asas, af = aqas, aiﬁ = a;, for i € {1,3,5}. Now, it is easy
to show that a, f € Aut®(G) since ®(G) = (a3, aq,as). Also, o # Ba,
which yields cl(Aut®(G)) = 2.

Theorem 2.11. Let G be a non-abelian p-group of order p™ and
G’ = ®(G). Then, cl(G) = c if and only if cl(Aut®(Q)) = ¢ — 1, where,
2<c<n-1.

Proof. First suppose that cl(G) = c¢. Then, exp(I';(G)/Ti+1(G)) = p,
for 1 < i < ¢, by [2, Theorem 1.5]. Hence, cl(Aut®(G)) < ¢ — 1, by
Theorem 2.2. Moreover, cl(Inn(G)) = ¢ — 1, completing the proof. Now
if cl(Aut®(G)) = ¢ — 1 and cl(G) = d, then by the same argument as
above we have cl(Aut®(G)) = d — 1. This implies that d = c. O

3. cl(Aut®(G)) When G Is Abelian

Let G be an abelian p-group, where p is an odd prime. In this section,
we find the nilpotency class of Aut®(G) according to the invariants of
G. First, we find Aut®(G) for cyclic and elementary abelian p-groups
G.

Lemma 3.1. If G is a cyclic group of order p*, then Aut®(G) = L1

Proof. Let G = (z). Then, obviously the automorphism «, defined
by z* = z'*P, is of order p"~! lying in Aut®(G). Therefore, we can
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complete the proof by the fact that Aut(G) = Zpn-1(,-1) and |a| =
n—1
pe . O

Lemma 3.2. Let G be a finite p-group. Then, Aut®(G) = 1 if and only
if G is elementary abelian.

Proof. Let G be an elementary abelian p-group, then Autq)(G) =1, by
Theorem 2.6. Now, if Aut®(G) = 1. Then Inn(G) = 1, or equivalently,
G is abelian. Assume that G = (x1) x -+ X (x,), where |z;|] = p™,
for 1 <i<rand my > mg > --- > m,. We claim that m; = 1; for
otherwise, 1 # z} € ®(G) and so the map « defined by z§ = x}+p,
z$ = x; (2 <i <r)is a non-trivial automorphism of Aut®(G), which is
a contradiction. g

Lemma 3.3. Let G be a finite p-group. Then, Autq)(G) 18 a non-trivial
cyclic group if and only if G is cyclic of order greater than p.

Proof. It G = Zpn, where n > 1, then Lemma 3.1 completes the proof.
Now, assume that Aut®(G) is non-trivial and cyclic. Therefore, G is
abelian, since Inn(G) < Aut®(G). If G is not cyclic, then we may
write G = (z) x (y) x H, where, |z| = p™, |y = p", m > n > 1 and
exp(H) < p™. Hence, m > 1, by Lemma 3.2, and so 1 # zP € ®(G).
Therefore, we may define the automorphisms ¢ and 7 by 2° = z' TP,
v =y, h°=h,forallh € H and 2™ =z, y" = ya?" ', h™ = h, for all
h € H. Obviously, 0,7 € Aut®(G) and (¢) N (7) = 1. This implies that
(o) x (1) < Aut®(@), which is a contradiction. O

Now, let G be an abelian p-group and let (mj,mg,...,m,) be the
invariants of G with mq > mo > --- > m,.. For the rest of the paper, we
assume that G is neither cyclic nor elementary abelian. Therefore, we
may write m; > 1 and 7 > 1. In Lemma 3.4, we find, Aut®(G) for the
case m1 > 1 and mo = 1. Then, in Theorem 3.5, we consider the case
meo > 1.

Lemma 3.4. Let G be a mnon-cyclic abelian p-group and let
(my, ma,...,m;) be the invariants of G with my > mg > --- > m,
and m1 > 1, mo = 1. Then,

(1) Aut®(G) is abelian of order p™+7=2,

(i) Aut®(G) has the invariants (mi — 1,ma, ..., m.).
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Proof. (i) Let G = (x1) X - -+ X (x), where, |x1| = p™ and |xs| = -+ =
|z,| = p. Then, we may easily see that any automorphism « of G, which
fixes G/®(G) elementwise, has the form: ¢ = 21 TP, 20 = mia:?pmlil,
where, 0 < ¢; < p™ ' and 0 < ¢; < p, for 2 < i < r. This completes

the proof.

. ml—l
&= gaf ,
xj, where, 1 < j <r and j # i. Also, we define a; by 27" = x}ﬂ),

(ii) For 2 < i < r, we define the automorphism «; by z
% =
J

a§' = xj, where, 2 < j < 7. Obviously, |a1| = P ool = |ag| =
-+ = |ay| = p. Therefore, by (i), we deduce that

Autq)(G) = (1) X (a2) X -+ X {(ap),
as desired. 0

Theorem 3.5. Let G be a mnon-cyclic abelian p-group and let
(my,ma,...,m;) be the invariants of G with my > mg > --- > m,
and mg > 1. Then,

(i) mo — 1 < cl(Aut®(G)) < my — 1.
(ii) If my > ma then mo < cl(Aut®(G)) < my — 1.

Proof. (i) Let G = (x1) X (xg) X -+ X (x,), where, |z;| = p™,

1 <i <7 Forl < i< mg—1, we define the automorphisms «;
pz+pz+1+,_,+pm271

by xfllz‘ = x12h and x?i = zj, for 2 < j < r. Also, we
24 4 pyma—1
define the automorphism S by mf = 1, x§ = x§+p+p TP and

P xj, for 3 < j < r. Obviously, o (1 < i < mg —1) and § are in

J
Aut®(G). By an easy calculation, we may see that [371,a; '] = ai__fl,
for 1 < ¢ < mg — 2. This implies that «;11 € Fi+1(Aut<I’(G)), for
1 < i < mg— 2. Since am, 1 # 1, we have Ty 1(Aut®(G)) # 1,
and so my — 1 < cl(Aut®(@)). Furthermore, cl(Aut®(G)) < my — 1, by
Theorem 2.2.

(ii) According to (i), we define the automorphism v by z] = z1, 2] =

xga:]fmrm and x} = z;, for 3 < j < r. We have [7*1,04;”2_1] £ 1
and @, 1 € T, 1(Aut®(G)). Hence, Ty, (Aut®(G)) # 1, and so
me < cl(Autq)(G)) <mp—1. O

The following corollaries are immediate consequences of Theorem 3.5.
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Corollary 3.6. Let G be a non-cyclic abelian p-group and let
(my,ma,...,my) be the invariants of G with my > mg > -+ > m,
and my = mg > 1. Then, cl(Aut®(G)) = m; — 1.

Corollary 3.7. Let G be a mon-cyclic abelian p-group and let
(my,ma,...,m;) be the invariants of G with my > mg > --+ > m,
and mo =my — 1, my > 1. Then, cl(Aut®(G)) = ma.

Theorem 3.8. Let G be an abelian p-group and let (mi,ma,...,m;)
be the invariants of G with my > mo > --- > m,.. Then, Autq)(G) 18
non-trivial abelian if and only if either my > 1, mo <1 ormg = mg = 2.

Proof. If either my > 1, my < 1 or m; = mg = 2, then Autq’(G) is
abelian by considering lemmas 3.4 and 3.1 and Corollary 3.6. Conversely,
if Aut®(G) is non-trivial abelian, then my < 2 by Theorem 3.5 (i). If
mg = 2 then my = 2 by Theorem 3.5 (ii). Now, if my < 1, then by using
lemma 3.1 and 3.2, we may see that m; > 1. g
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