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ON THE NILPOTENCY CLASS OF THE

AUTOMORPHISM GROUP OF SOME FINITE

p-GROUPS

S. FOULADI* AND R. ORFI

Communicated by Saeid Azam

Abstract. Let G be a p-group of order pn and Φ=Φ(G) be the

Frattini subgroup of G. It is shown that the nilpotency class of

AutΦ(G), the group of all automorphisms of G centralizing G/Φ(G),

takes the maximum value n−2 if and only if G is of maximal class.

We also determine the nilpotency class of AutΦ(G) when G is a

finite abelian p-group.

1. Introduction

It is well known [3, III, Satz 3.17] that if G is a finite p-group with the

Frattini subgroup Φ = Φ(G), then AutΦ(G) is a finite p-group. Liebeck

[5] found an upper bound for the nilpotency class of AutΦ(G).

Here, we find the nilpotency class of AutΦ(G) in some cases. A

straightforward consequence of the result in [5] shows that the nilpo-

tency class of AutΦ(G) is less than or equal to n−2, for all non-cyclic p-

groups of order pn. Here, we show that the nilpotency class of AutΦ(G)

takes the maximum value n − 2 if and only if G is of maximal class.

Moreover, we find the nilpotency class of AutΦ(G) for a finite abelian

p-group G in terms of its invariants, where p is an odd prime.
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Throughout, the following notation is used. The terms of the lower

central series of G are denoted by Γi = Γi(G). The center of G is

denoted by Z = Z(G). The nilpotency class of a group G is denoted

by cl(G). If α is an automorphism of G and x is an element of G, we

write xα for the image of x under α. The inner automorphism induced

by the element g is denoted by σg. For a normal subgroup N of G, we

let AutN (G) denote the group of all automorphisms of G centralizing

G/N . We write d(G) for the minimal number of generators of G. An

extra-special p-group is a p-group G with Φ(G) = Z(G) = G′ ∼= Zp. A

non-abelian group that has no non-trivial abelian direct factor is said

to be purely non-abelian. Also, Zn is the cyclic group of order n. All

unexplained notation is standard and follows that of [4].

2. Maximum Value of cl(AutΦ(G))

Let G be a non-cyclic p-group of order pn. In this section, we prove

that cl(AutΦ(G)) takes the maximum value n − 2 if and only if G is

of maximal class. First, we give some basic results that are needed for

the main results of this section. In [5], Liebeck proved the following

theorems which play important roles in our proofs.

Theorem 2.1. [ 5, Theorem 2] Let G be a finite d-generator p-group

with lower central series G = Γ1 > · · · > Γc > Γc+1 = 1 and Φ(G) 6= 1.

Let Γc have exponent pm. If N = Γp
m−1

c , the group generated by all

pm−1th powers of elements of Γc, then

(i) N is elementwise fixed by all automorphisms in AutΦ(G),

(ii) AutN (G) ≤ Z(AutΦ(G)),

(iii) AutN (G) has order prd, where pr is the order of N ,

(iv) AutΦ(G)/AutN (G) ↪→ AutΦ/N (G/N).

Theorem 2.2. [5, Theorem 3] Let G be as in Theorem 2.1, with Φ(G) 6=
1, and let Γi(G)/Γi+1(G) have exponent pmi, for 1 ≤ i ≤ c. Then,

AutΦ(G) is nilpotent and cl(AutΦ(G)) ≤ (
∑c

i=1mi)− 1.

Now, we begin by stating a number of lemmas that will be used in

the sequel.

Lemma 2.3. Let G be a non-cyclic p-group of order pn. Then,

cl(AutΦ(G)) ≤ n− 2.
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Proof. Suppose that cl(G) = c and (ni1, ni2, . . . , niri) are the invariants

of Γi(G)/Γi+1(G), with ni1 ≥ ni2 ≥ · · · ≥ niri , for 1 ≤ i ≤ c. Hence,
c∑
i=1

(ni1 + ni2 + · · ·+ niri) = n,

and so
∑c

i=1 ni1 ≤ n − 1, since Γ1(G)/Γ2(G) is not cyclic. Now, by

Theorem 2.2, we deduce that cl(AutΦ(G)) ≤ n− 2 . �

Lemma 2.4. Let G be a non-abelian p-group of order pn and

cl(AutΦ(G)) = t, where 1 ≤ t ≤ n − 2. If d(G/Γ2(G)) ≥ n − t,

then d(G/Γ2(G)) = n − t, G/Γ2(G) ∼= Zpt−c+2 × Zp × · · · × Zp and

Γi(G)/Γi+1(G) ∼= Zp, for 2 ≤ i ≤ c, where c is the nilpotency class of G.

Proof. Suppose that (ni1, ni2, . . . , niri) are the invariants of

Γi(G)/Γi+1(G), with ni1 ≥ ni2 ≥ · · · ≥ niri for 1 ≤ i ≤ c. We have
c∑
i=1

(ni1 + ni2 + · · ·+ niri) = n.

If n1j > 1, for some 2 ≤ j ≤ n − t, then
∑c

i=1 ni1 ≤ t. Hence,

cl(AutΦ(G)) ≤ t − 1, by Theorem 2.2, which is impossible. Therefore,

n1j = 1, for 2 ≤ j ≤ n − t. Now, we have r1 = n − t; for other-

wise, r1 > n − t and by the same argument as above we deduce that

cl(AutΦ(G)) ≤ t− 1, which is a contradiction. So,

G/Γ2(G) ∼= Zpn11 × Zp × · · · × Zp
with d(G/Γ2(G)) = n − t. We see that ni1 = 1, for 2 ≤ i ≤ c, by [2,

Theorem 1.5]. Moreover if |Γi(G)/Γi+1(G)| > p, for some 2 ≤ i ≤ c, then

again cl(AutΦ(G)) ≤ t − 1. Thus, Γi(G)/Γi+1(G) ∼= Zp, for 2 ≤ i ≤ c,

completing the proof. �

Lemma 2.5. Let G be a non-abelian group of order pn (n ≥ 4) and

cl(G) = n− 2. If G/Γ2(G) ∼= Zp2 × Zp, then cl(AutΦ(G)) ≤ n− 3.

Proof. We use induction on n. For n = 4, we claim that G is purely

non-abelian. Otherwise, we may write G = A × B, where A 6= 1 is

abelian and B is purely non-abelian. Hence, B is extra-special of or-

der p3 and so G/G′ ∼= Zp × Zp × Zp, which is a contradiction. By [6,

Lemma 0.4], we have exp(G/Z(G)) = exp(G′) = p, which implies that

G/Z(G) is elementary abelian. Therefore, Φ(G) ≤ Z(G). Now, we prove
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that AutΦ(G) is abelian. To see this, we consider two cases for Z(G).

First, we suppose that Z(G) ∼= Zp2 . Then by [1, Theorem 1], we have

|AutZ(G)| = p3, and so |AutΦ(G)| ≤ p3. Also, |AutG
′
(G)| ≥ p2 and

AutG
′
(G) ≤ Z(AutΦ(G)), by Theorem 2.1 (iii) and (ii). This yields that

AutΦ(G) is abelian. Next, suppose that Z(G) is elementary abelian.

Therefore, AutΦ(G) fixes Gp elementwise, since Φ(G) ≤ Z(G). Hence,

by Theorem 2.1(i), AutΦ(G) fixes Φ(G) elementwise and consequently

AutΦ(G) is abelian. Now, suppose that n ≥ 5 and the result holds for

any group of order less than pn. On setting N = Γn−2(G), we may

see that cl(G/N) = n − 3, |G/N | = pn−1 and G/N satisfies the condi-

tions of the Lemma. Thus, cl(AutΦ/N (G/N)) ≤ n− 4, by the induction

hypothesis. Now, the parts (ii) and (iv) of Theorem 2.1 imply that

cl(AutΦ(G)) ≤ n− 3, as desired. �

We have the following theorem due to Müller [7]

Theorem 2.6. [7, Theorem] If G is a finite p-group which is neither

elementary abelian nor extra-special, then AutΦ(G)/Inn(G) is a non-

trivial normal p-subgroup of the group of outer automorphisms of G.

Corollary 2.7. Let G be an extra-special p-group of order pn. Then,

AutΦ(G) is elementary abelian of order pn−1.

Theorem 2.8. Let G be a non-abelian p-group of order pn (n ≥ 3).

Then, G is of maximal class if and only if cl(AutΦ(G)) = n− 2.

Proof. IfG is of maximal class, then cl(AutΦ(G)) ≥ n−2, since Inn(G) ≤
AutΦ(G). So, cl(AutΦ(G)) = n − 2, by Lemma 2.3. Now, suppose

that cl(AutΦ(G)) = n − 2. By induction on n, we prove that G is

of maximal class. If n = 3, then obviously G is of maximal class.

Assume that |G| = pn, n ≥ 4 and the result holds for any group of

order less than pn. If cl(G) = c, then G/Γ2(G) ∼= Zpn−c × Zp and

Γi(G)/Γi+1(G) ∼= Zp, for 2 ≤ i ≤ c, by Lemma 2.4. On setting

N = Γc(G), we see that cl(AutΦ/N (G/N)) ≥ n − 3, by Theorem 2.1

(ii) and (iv). Consequently, cl(AutΦ/N (G/N)) = n − 3, by Theorem

2.2. Hence by the induction hypothesis, G/N is of maximal class, which

implies that cl(G) = cl(G/N) + 1 = n− 1, as desired. �

Lemma 2.9. If G is a p-group of order pn (n ≥ 4) and cl(G) = n− 2,

then AutΦ(G) is of class n− 3.
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Proof. We have p2 ≤ |G/Γ2(G)| ≤ p3. If G/Γ2(G) is elementary abelian,

then cl(AutΦ(G)) ≤ n − 3, by Theorem 2.2. Therefore, cl(AutΦ(G)) =

n − 3, since Inn(G) ≤ AutΦ(G). Now, if G/Γ2(G) ∼= Zp2 × Zp, then

cl(AutΦ(G)) ≤ n− 3, by Lemma 2.5, which completes the proof. �

Remark 2.10. The converse of Lemma 2.9 does not hold. To see this

we consider a family of groups of order p5 for any prime p as follows:

G = 〈a1, a2, a3, a4, a5|ap1 = a3, a
p
2 = a4, a

p
3 = a5, a

p
4 = ap5 = 1,

[a1, a2] = a5, [ai, aj ] = 1〉,
where, 1 ≤ i < j ≤ 5 and (i, j) 6= (1, 2).

Obviously, we have |G′| = p, which implies that cl(G) = 2. Now, since

exp(G/G′) = p2, we see that cl(AutΦ(G)) ≤ 2, by Theorem 2.2. Further-

more, we define the maps α and β by aα1 = a1a4, aαi = ai for 2 ≤ i ≤ 5

and aβ2 = a2a3, aβ4 = a4a5, aβi = ai, for i ∈ {1, 3, 5}. Now, it is easy

to show that α, β ∈ AutΦ(G) since Φ(G) = 〈a3, a4, a5〉. Also, αβ 6= βα,

which yields cl(AutΦ(G)) = 2.

Theorem 2.11. Let G be a non-abelian p-group of order pn and

G′ = Φ(G). Then, cl(G) = c if and only if cl(AutΦ(G)) = c− 1, where,

2 ≤ c ≤ n− 1.

Proof. First suppose that cl(G) = c. Then, exp(Γi(G)/Γi+1(G)) = p,

for 1 ≤ i ≤ c, by [2, Theorem 1.5]. Hence, cl(AutΦ(G)) ≤ c − 1, by

Theorem 2.2. Moreover, cl(Inn(G)) = c− 1, completing the proof. Now

if cl(AutΦ(G)) = c − 1 and cl(G) = d, then by the same argument as

above we have cl(AutΦ(G)) = d− 1. This implies that d = c. �

3. cl(AutΦ(G)) When G Is Abelian

Let G be an abelian p-group, where p is an odd prime. In this section,

we find the nilpotency class of AutΦ(G) according to the invariants of

G. First, we find AutΦ(G) for cyclic and elementary abelian p-groups

G.

Lemma 3.1. If G is a cyclic group of order pn, then AutΦ(G) ∼= Zpn−1.

Proof. Let G = 〈x〉. Then, obviously the automorphism α, defined

by xα = x1+p, is of order pn−1 lying in AutΦ(G). Therefore, we can
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complete the proof by the fact that Aut(G) ∼= Zpn−1(p−1) and |α| =

pn−1. �

Lemma 3.2. Let G be a finite p-group. Then, AutΦ(G) = 1 if and only

if G is elementary abelian.

Proof. Let G be an elementary abelian p-group, then AutΦ(G) = 1, by

Theorem 2.6. Now, if AutΦ(G) = 1. Then Inn(G) = 1, or equivalently,

G is abelian. Assume that G = 〈x1〉 × · · · × 〈xr〉, where |xi| = pmi ,

for 1 ≤ i ≤ r and m1 ≥ m2 ≥ · · · ≥ mr. We claim that m1 = 1; for

otherwise, 1 6= xp1 ∈ Φ(G) and so the map α defined by xα1 = x1+p
1 ,

xαi = xi (2 ≤ i ≤ r) is a non-trivial automorphism of AutΦ(G), which is

a contradiction. �

Lemma 3.3. Let G be a finite p-group. Then, AutΦ(G) is a non-trivial

cyclic group if and only if G is cyclic of order greater than p.

Proof. If G ∼= Zpn , where n > 1, then Lemma 3.1 completes the proof.

Now, assume that AutΦ(G) is non-trivial and cyclic. Therefore, G is

abelian, since Inn(G) ≤ AutΦ(G). If G is not cyclic, then we may

write G = 〈x〉 × 〈y〉 × H, where, |x| = pm, |y| = pn, m ≥ n ≥ 1 and

exp(H) ≤ pn. Hence, m > 1, by Lemma 3.2, and so 1 6= xp ∈ Φ(G).

Therefore, we may define the automorphisms σ and τ by xσ = x1+p,

yσ = y, hσ = h, for all h ∈ H and xτ = x, yτ = yxp
m−1

, hτ = h, for all

h ∈ H. Obviously, σ, τ ∈ AutΦ(G) and 〈σ〉 ∩ 〈τ〉 = 1. This implies that

〈σ〉 × 〈τ〉 ≤ AutΦ(G), which is a contradiction. �

Now, let G be an abelian p-group and let (m1,m2, . . . ,mr) be the

invariants of G with m1 ≥ m2 ≥ · · · ≥ mr. For the rest of the paper, we

assume that G is neither cyclic nor elementary abelian. Therefore, we

may write m1 > 1 and r > 1. In Lemma 3.4, we find, AutΦ(G) for the

case m1 > 1 and m2 = 1. Then, in Theorem 3.5, we consider the case

m2 > 1.

Lemma 3.4. Let G be a non-cyclic abelian p-group and let

(m1,m2, . . . ,mr) be the invariants of G with m1 ≥ m2 ≥ · · · ≥ mr

and m1 > 1, m2 = 1. Then,

(i) AutΦ(G) is abelian of order pm1+r−2.

(ii) AutΦ(G) has the invariants (m1 − 1,m2, . . . ,mr).
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Proof. (i) Let G = 〈x1〉 × · · · × 〈xr〉, where, |x1| = pm1 and |x2| = · · · =
|xr| = p. Then, we may easily see that any automorphism α of G, which

fixes G/Φ(G) elementwise, has the form: xα1 = x1+`1p
1 , xαi = xix

`ip
m1−1

1 ,

where, 0 ≤ `1 < pm1−1 and 0 ≤ `i < p, for 2 ≤ i ≤ r. This completes

the proof.

(ii) For 2 ≤ i ≤ r, we define the automorphism αi by xαi
i = xix

pm1−1

1 ,

xαi
j = xj , where, 1 ≤ j ≤ r and j 6= i. Also, we define α1 by xα1

1 = x1+p
1 ,

xα1
j = xj , where, 2 ≤ j ≤ r. Obviously, |α1| = pm1−1, |α2| = |α3| =

· · · = |αr| = p. Therefore, by (i), we deduce that

AutΦ(G) = 〈α1〉 × 〈α2〉 × · · · × 〈αr〉,

as desired. �

Theorem 3.5. Let G be a non-cyclic abelian p-group and let

(m1,m2, . . . ,mr) be the invariants of G with m1 ≥ m2 ≥ · · · ≥ mr

and m2 > 1. Then,

(i) m2 − 1 ≤ cl(AutΦ(G)) ≤ m1 − 1.

(ii) If m1 > m2 then m2 ≤ cl(AutΦ(G)) ≤ m1 − 1.

Proof. (i) Let G ∼= 〈x1〉 × 〈x2〉 × · · · × 〈xr〉, where, |xi| = pmi ,

1 ≤ i ≤ r. For 1 ≤ i ≤ m2 − 1, we define the automorphisms αi
by xαi

1 = x1x
pi+pi+1+···+pm2−1

2 and xαi
j = xj , for 2 ≤ j ≤ r. Also, we

define the automorphism β by xβ1 = x1, xβ2 = x1+p+p2+···+pm2−1

2 and

xβj = xj , for 3 ≤ j ≤ r. Obviously, αi (1 ≤ i ≤ m2 − 1) and β are in

AutΦ(G). By an easy calculation, we may see that [β−1, α−1
i ] = α−1

i+1,

for 1 ≤ i ≤ m2 − 2. This implies that αi+1 ∈ Γi+1(AutΦ(G)), for

1 ≤ i ≤ m2 − 2. Since αm2−1 6= 1, we have Γm2−1(AutΦ(G)) 6= 1,

and so m2 − 1 ≤ cl(AutΦ(G)). Furthermore, cl(AutΦ(G)) ≤ m1 − 1, by

Theorem 2.2.

(ii) According to (i), we define the automorphism γ by xγ1 = x1, xγ2 =

x2x
pm1−m2

1 and xγj = xj , for 3 ≤ j ≤ r. We have [γ−1, α−1
m2−1] 6= 1

and αm2−1 ∈ Γm2−1(AutΦ(G)). Hence, Γm2(AutΦ(G)) 6= 1, and so

m2 ≤ cl(AutΦ(G)) ≤ m1 − 1. �

The following corollaries are immediate consequences of Theorem 3.5.
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Corollary 3.6. Let G be a non-cyclic abelian p-group and let

(m1,m2, . . . ,mr) be the invariants of G with m1 ≥ m2 ≥ · · · ≥ mr

and m1 = m2 > 1. Then, cl(AutΦ(G)) = m1 − 1.

Corollary 3.7. Let G be a non-cyclic abelian p-group and let

(m1,m2, . . . ,mr) be the invariants of G with m1 ≥ m2 ≥ · · · ≥ mr

and m2 = m1 − 1, m1 > 1. Then, cl(AutΦ(G)) = m2.

Theorem 3.8. Let G be an abelian p-group and let (m1,m2, . . . ,mr)

be the invariants of G with m1 ≥ m2 ≥ · · · ≥ mr. Then, AutΦ(G) is

non-trivial abelian if and only if either m1 > 1, m2 ≤ 1 or m1 = m2 = 2.

Proof. If either m1 > 1, m2 ≤ 1 or m1 = m2 = 2, then AutΦ(G) is

abelian by considering lemmas 3.4 and 3.1 and Corollary 3.6. Conversely,

if AutΦ(G) is non-trivial abelian, then m2 ≤ 2 by Theorem 3.5 (i). If

m2 = 2 then m1 = 2 by Theorem 3.5 (ii). Now, if m2 ≤ 1, then by using

lemma 3.1 and 3.2, we may see that m1 > 1. �
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