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RANKS OF MODULES RELATIVE TO A TORSION
THEORY

SH. ASGARI∗ AND A. HAGHANY

Communicated by Siamak Yassemi

Abstract. Relative to a hereditary torsion theory τ we intro-
duce a dimension for a module M , called τ -rank of M , which
coincides with the reduced rank of M whenever τ is the Goldie
torsion theory. It is shown that the τ -rank of M is measured
by the length of certain decompositions of the τ -injective hull
of M . Moreover, some relations between the τ -rank of M and
complements to τ -torsionfree submodules of M are obtained.

1. Introduction

Throughout the paper, rings will have unit elements and modules will
be unitary right modules. The category of all right R-modules is denoted
by Mod-R, and the notation ≤e will denote an essential submodule.
In the paper τ = (T ,F) will denote a fixed hereditary torsion theory
on Mod-R. Then, τ(M) =

∑
{N : N ≤ M, N ∈ T } is the τ -torsion

submodule of M ∈Mod-R. The module M is called τ -torsion, if M ∈ T ,
and τ -torsionfree, if M ∈ F . In fact, M is τ -torsion, if τ(M) = M , and
τ -torsionfree, if τ(M) = 0. A submodule A of M is called τ -dense, if
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M/A is τ -torsion and we denote this by A ≤τ−d M . It is clear that

τ(M) = {m ∈ M : ann(m) ≤τ−d RR}.

More information on torsion-theoretic concepts can be found in [5]. In
this paper we prove that whenever the uniform dimension of a comple-
ment to τ(M) is a finite number n then the uniform dimension of every
complement to τ(M) is n. We call this integer n, the τ -rank of M , and
if no such integer exists we say that M is not of finite τ -rank. We shall
prove that the hereditary torsion τ is stable, if and only if the τ -rank
of M coincides with the uniform dimension of M/τ(M) for every M ∈
Mod-R.

In Goldie’s theory of uniform dimension, within a module M , one
seeks for a submodule A = A1⊕ · · ·⊕Al with the largest possible l such
that each Ai is non-zero, and if such an A exists then A is essential in
M . In fact, M is measured by the largest possible direct sum of non-
zero submodules which it can contain. In section 2, we introduce the
notion of pseudo τ -essential submodule which has a role in the subject
of τ -rank similar to that of an essential submodule in Goldie’s theory
of uniform dimension. We say that a submodule A of M is pseudo τ -
essential, if for every submodule B of M , A ∩ B ≤ τ(M) implies that
B ≤ τ(M). This concept is a generalization of the notion of τ -essential
submodule. A submodule A of M is called τ -essential, if A is τ -dense
and essential in M . Such submodules appear in many concepts such as
(s-)τ -CS modules and the τ -injective hulls of modules which are torsion-
theoretic analogues of CS modules and the injective hulls of modules;
see [1] and [2]. Some properties of τ -essential submodules can be found
in [1, Proposition 3.1], and in Propositions 2.3 and 2.6 we show that
most of these properties hold more generally for pseudo τ -essential sub-
modules.

In section 3 we deal with the theory of τ -rank. Then, we will prove
that to find the τ -rank of a module M , one should look for a submodule
A = A1 ⊕ · · · ⊕ Al ⊕ B with the largest possible l such that each Ai is
non-zero τ -torsionfree and B is quasi-τ -torsion (that is τ(B) ≤e B), and
if such an A exists then A is pseudo τ -essential in M . As the uniform
dimension of a module M relates to the decomposition length of the
injective hull of M , we show that the τ -rank of M is measured by the
length of certain decompositions of the τ -injective hull of M . Indeed, in
Proposition 3.11 we show that the τ -rank of M is a finite number n, if
and only if the τ -injective hull of M is a direct sum of n pseudo τ -uniform
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modules and a quasi τ -torsion module. Finally section 4 is devoted to
some relations between τ -ranks and certain complements analogous to
the well known relations between uniform dimensions and complements.
In fact, the τ -rank of M is the supremum of the set of nonnegative in-
tegers k for which M contains a chain of length k of complements to
τ -torsionfree submodules of M .

2. Pseudo τ-essential submodules

In this section we introduce the notion of a pseudo τ -essential sub-
module and give some properties of such submodules for later use. We
say that a submodule A of a module M is pseudo τ -essential in M and
write A ≤p.τ.e M , if for every submodule B of M , A∩B ≤ τ(M) implies
that B ≤ τ(M). Clearly every τ -torsionfree essential submodule of M
is pseudo τ -essential. Moreover, if A is a submodule of a τ -torsionfree
module M , then A is pseudo τ -essential in M if and only if A is essential
in M .

The first result shows that the notion of pseudo τ -essential is a gen-
eralization of the notion of τ -dense. In particular, every τ -essential
submodule is pseudo τ -essential.

Proposition 2.1. Every τ -dense submodule of M is pseudo τ -essential
in M .

Proof. Assume that A is a τ -dense submodule of M . Let A∩B ≤ τ(M)
for some submodule B of M , and b ∈ B. As τ(M/A) = M/A, there
exists a τ -dense right ideal I of R such that bI ≤ A. Then, bI ≤ A∩B ≤
τ(M), hence b + τ(M) ∈ τ(M/τ(M)) = 0 and so b ∈ τ(M). �

Proposition 2.2. Let A be a τ -torsionfree submodule of M and B a
submodule of M which is maximal with respect to the property A∩B = 0.
Then, A⊕B ≤p.τ.e M and (A⊕B)/B ≤p.τ.e M/B.

Proof. Assume that C is a submodule of M such that (A ⊕ B) ∩ C ≤
τ(M). Let a ∈ A; if a = b + c, for some b ∈ B and c ∈ C, then
a−b ∈ (A⊕B)∩C and so (a−b)I = 0 for some dense right ideal I of R.
Thus, aI = bI ≤ A∩B = 0, hence a ∈ τ(M) and so a = 0. This implies
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that A ∩ (B + C) = 0, hence by hypothesis C ≤ B and so C ≤ τ(M).
This shows that A⊕B ≤p.τ.e M . The pseudo τ -essentiality of (A⊕B)/B
is clear as it is a τ -torsionfree essential submodule of M/B. �

A hereditary torsion theory is called stable if the torsion class is closed
under injective envelopes; equivalently, τ(M) is (essentially) closed, for
every module M .

Proposition 2.3. The following statements are equivalent for a sub-
module A of M .

(1) A ≤p.τ.e M .
(2) (A + τ(M))/τ(M) ≤e M/τ(M).
(3) For all m ∈ M\τ(M), there exists r ∈ R such that mr ∈ A\τ(A).

If the hereditary torsion theory τ is stable, then the above statements are
equivalent to

(4) A + τ(M) ≤e M .
(5) A⊕B ≤e M , for some τ -torsion submodule B of M .
(6) A ∩B 6= 0, for every non-zero τ -torsionfree submodule B of M .

Proof. Clearly (1) ⇒ (3) and (3) ⇒ (2).
(2) ⇒ (1). Let B be a submodule of M , for which A ∩B ≤ τ(M). If

a ∈ A, b ∈ B with a+τ(M) = b+τ(M) then there exists a τ -dense right
ideal I such that (a − b)I = 0. Then, aI = bI ≤ A ∩ B ≤ τ(M), hence
a + τ(M) ∈ τ(M/τ(M)) = 0. This implies that (A + τ(M))/τ(M) ∩
(B + τ(M))/τ(M) = 0, thus by hypothesis B ≤ τ(M).

Now, assume that the hereditary torsion theory τ is stable.
(1) ⇒ (6). Let B be a non-zero τ -torsionfree submodule of M . Then,

by (1), A ∩B is non-τ -torsion, hence A ∩B 6= 0.
(6) ⇒ (5). There exists a submodule B of M such that A⊕B ≤e M .

Also, there exists a submodule B′ of B such that B′⊕τ(B) ≤e B. Then,
(6) implies that B′ = 0, hence τ(B) ≤e B. Since τ(B) is closed in B we
conclude that B = τ(B).

(5) ⇒ (4). This is obvious.
(4) ⇒ (2). This is clear as A + τ(M) ≤e M and τ(M) is a closed

submodule of M . �

Corollary 2.4. Every essential submodule of M is pseudo τ -essential
in M if and only if τ(M) is (essentially) closed. Consequently, for every
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module M the set of essential submodules in M is a subset of pseudo
τ -essential submodules in M if and only if the hereditary torsion theory
τ is stable.

Proof. This follows by Proposition 2.3-(2) and [4, Proposition 1.27-
((1) ⇔ (3))]. �

Corollary 2.5. The following statements are equivalent for a module
M .

(1) Every submodule of M is pseudo τ -essential.
(2) Every submodule of M is τ -dense.
(3) Every submodule of M is τ -torsion.
(4) M has a τ -torsion pseudo τ -essential submodule.
(5) τ(M) is pseudo τ -essential in M .
(6) M is τ -torsion.

Proposition 2.6. (1) Suppose A ≤ B ≤ C are modules. Then,
A ≤p.τ.e C if and only if A ≤p.τ.e B and B ≤p.τ.e C.

(2) Let A1, A2, B1 and B2 be modules such that A1 ≤p.τ.e B1 and
A2 ≤p.τ.e B2. Then, A1 ∩A2 ≤p.τ.e B1 ∩B2.

(3) Assume that f : B → C is a homomorphism of modules, and
A ≤p.τ.e C. Then, f−1(A) ≤p.τ.e B.

(4) Let Aλ be a submodule of Bλ, for all λ in a set Λ. Then,
⊕

Λ Aλ

≤p.τ.e
⊕

Λ Bλ if and only if Aλ ≤p.τ.e Bλ, for all λ ∈ Λ.

Proof. (1) and (2) follow easily from the definition.
(3). Let b ∈ B \ τ(B). By Proposition 2.3-(3) it suffices to show that

there exists r ∈ R such that br ∈ f−1(A) \ τ(f−1(A)). If f(b) 6∈ τ(C),
as A ≤p.τ.e C, there exists r ∈ R such that f(b)r ∈ A \ τ(A). Hence,
br ∈ f−1(A) \ τ(f−1(A)). Now, assume that f(b) ∈ τ(C). There exists
a τ -dense right ideal I of R such that f(b)I = 0. If bI ≤ τ(B) then
b + τ(B) ∈ τ(B/τ(B)) = 0 which is a contradiction. Thus, bI 6≤ τ(B)
and so bI 6≤ τ(f−1(A)). Hence, there exists x ∈ I such that bx ∈
f−1(A) \ τ(f−1(A)).

(4). The implication (⇒) follows from Proposition 2.3-(3). For the
converse implication (⇐), by Proposition 2.3-(3) it is enough to check
the case of a finite direct sum, and by induction it suffices to check the
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case Λ = {1, 2}. The latter follows from (2) and (3) for projections
B1 ⊕B2 → Bλ (λ = 1, 2). �

Let us call a module M quasi-τ -torsion if τ(M) ≤e M . Clearly every
submodule of a quasi-τ -torsion module is quasi-τ -torsion, and every di-
rect sum of quasi-τ -torsion modules is quasi-τ -torsion. Every τ -torsion
module is quasi-τ -torsion, however the next result shows that the class
of τ -torsion modules coincides with the class of quasi-τ -torsion modules
precisely when the hereditary torsion theory τ is stable.

Proposition 2.7. The class of τ -torsion modules is equal to the class
of quasi-τ -torsion modules if and only if the hereditary torsion theory τ
is stable.

Proof. For (⇒), it suffices to show that τ(M) is (essentially) closed in
M , for any module M . Then, assume that τ(M) ≤e K ≤ M . Clearly
τ(K) = τ(M), hence K is quasi-τ -torsion and so it is τ -torsion by
hypothesis. Thus, K = τ(M). The converse implication (⇐) is clear.

�

Proposition 2.8. A module M is quasi-τ -torsion if and only if M has
a pseudo τ -essential submodule which is quasi-τ -torsion.

Proof. The implication (⇒) is clear. For (⇐), let M have a pseudo τ -
essential submodule A which is quasi-τ -torsion. If τ(M) is not essential
in M then there exists a non-zero submodule K of M such that τ(M)∩
K = 0. Since A ≤p.τ.e M we conclude that A∩K 6= 0. Thus, τ(A) ≤e A
implies that τ(A) ∩K 6= 0 which is a contradiction. �

3. τ-Ranks

Let M be a non-quasi-τ -torsion module. We say that M is pseudo
τ -uniform if every non-quasi-τ -torsion submodule of M is pseudo τ -
essential. Equivalently, a pseudo τ -uniform module is a non-quasi-τ -
torsion module M such that for every A,B ≤ M if A ∩ B is τ -torsion
then A is quasi-τ -torsion or B is τ -torsion. For a τ -torsionfree mod-
ule the properties of uniform and pseudo τ -uniform are equivalent. By
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Proposition 2.3, if M is a non-quasi-τ -torsion module for which M/τ(M)
is uniform then M is pseudo τ -uniform. Moreover, by Proposition 2.1, if
M is a non-quasi-τ -torsion module which is τ -uniform (see [1, Definition
3.18]) then M is pseudo τ -uniform.

Theorem 3.1. Let A1⊕ · · ·⊕Am⊕K and B1⊕ · · ·⊕Bn⊕L be pseudo
τ -essential submodules of a module M such that each Ai and each Bj is
pseudo τ -uniform and K and L are quasi-τ -torsion. Then, m = n.

Proof. Clearly a complement to τ(Ai) in Ai is a non-zero τ -torsionfree
submodule and so it is pseudo τ -essential in Ai. Thus, by Proposition
2.6-(4), we can assume that each Ai is τ -torsionfree and uniform. Sim-
ilarly we can assume that each Bj is τ -torsionfree and uniform. Now,
let m ≤ n and set A = A2 ⊕ · · · ⊕ Am. If A ∩ Bj 6= 0, for all j, then
A ∩Bj ≤p.τ.e Bj and so

(A ∩B1)⊕ · · · ⊕ (A ∩Bn)⊕ L ≤p.τ.e B1 ⊕ · · · ⊕Bn ⊕ L,

hence (A∩ (B1⊕· · ·⊕Bn))⊕L ≤p.τ.e B1⊕· · ·⊕Bn⊕L ≤p.τ.e M . Thus,
by Proposition 2.6-(1), A⊕L ≤p.τ.e M ; note that A∩L is a τ -torsionfree
submodule of the quasi-τ -torsion module L and so it is zero. However
(A1 ⊕ · · · ⊕ Am) ∩ L = 0 and so (A ⊕ L) ∩ A1 = 0 which is impossible
since A1 is non-τ -torsion. Hence, A∩Bj = 0, for some j, say j = 1 and
set B = A ⊕ B1. If A1 ∩ B = 0 then A1 + A + B1 would be a direct
sum and so it is τ -torsionfree, hence (A1 ⊕ A ⊕ B1) ∩ K = 0. Thus,
(A1 ⊕ A ⊕ K) ∩ B1 = 0 which is impossible as A1 ⊕ A ⊕ K ≤p.τ.e M .
Therefore, A1 ∩B 6= 0 and so

(A1 ∩B)⊕A2 ⊕ · · · ⊕Am ⊕K ≤p.τ.e A1 ⊕ · · · ⊕Am ⊕K ≤p.τ.e M,

hence by Proposition 2.6-(1), B ⊕K ≤p.τ.e M . This shows that we can
replace the summand A1 of A1⊕· · ·⊕Am⊕K by B1. By repeating this
process we obtain

B1 ⊕B2 ⊕A3 ⊕ · · · ⊕Am ⊕K ≤p.τ.e M,

and after m steps we will arrive at B1⊕ · · · ⊕Bm⊕K ≤p.τ.e M which is
impossible if m < n, since (B1 ⊕ · · · ⊕Bm ⊕K) ∩Bm+1 = 0 and Bm+1

is non-τ -torsion. Thus, m = n as desired. �

Proposition 3.2. Let M1 ⊕ · · · ⊕Mn ⊕N be a pseudo τ -essential sub-
module of a module M such that each Mi is pseudo τ -uniform and N
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is quasi-τ -torsion. Then, M does not contain any direct sum of n + 1
non-quasi-τ -torsion submodules.

Proof. If n = 0 then M is quasi-τ -torsion by Proposition 2.8 and so the
conclusion is clear. Now, let n > 0 and assume that the statement holds
for n − 1. Let M contain a direct sum A1 ⊕ · · · ⊕ An+1 of n + 1 non-
quasi-τ -torsion submodules. As every non-quasi-τ -torsion module has a
nonzero τ -torsionfree submodule, we can assume that A1, . . ., An+1 are
non-zero τ -torsionfree. Moreover, Bi = (M1 ⊕ · · · ⊕ Mn ⊕ N) ∩ Ai is
non-quasi-τ -torsion since M1 ⊕ · · · ⊕Mn ⊕N is pseudo τ -essential, and
clearly B1 ⊕ · · · ⊕ Bn+1 ≤ M1 ⊕ · · · ⊕Mn ⊕N . Hence, we may assume
that M = M1 ⊕ · · · ⊕Mn ⊕N . Now, set A = A1 ⊕ · · · ⊕An. If A ∩M1

is quasi-τ -torsion then A ∩M1 = 0 since A is τ -torsionfree. Then, we
can embed A in M2 ⊕ · · · ⊕ Mn ⊕ N by using the natural projection
M → M2 ⊕ · · · ⊕Mn ⊕N . Thus, M2 ⊕ · · · ⊕Mn ⊕N contains a direct
sum of n non-quasi-τ -torsion submodules, contradicting the induction
hypothesis. Therefore, A∩M1 is non-quasi-τ -torsion and similarly so is
A ∩Mi, for all i. Thus, A ∩Mi ≤p.τ.e Mi and so

(A ∩M1)⊕ · · · ⊕ (A ∩Mn)⊕N ≤p.τ.e M1 ⊕ · · · ⊕Mn ⊕N ≤p.τ.e M.

Consequently A ⊕N ≤p.τ.e M . However (A1 ⊕ · · · ⊕ An+1) ∩N is a τ -
torsionfree submodule of the quasi-τ -torsion module N , hence it is zero
and so (A⊕N)∩An+1 = 0 which is impossible as An+1 is non-τ -torsion.
Hence, M does not contain a direct sum of n + 1 non-quasi-τ -torsion
submodules. �

Corollary 3.3. For any module M , the uniform dimensions of all com-
plements to τ(M) (in M) are equal.

Proof. Assume that there exists a complement C to τ(M) of finite uni-
form dimension n. Then, C contains an essential submodule C1⊕· · ·⊕Cn

such that each Ci is uniform. By Proposition 2.2, there exists a sub-
module D such that C ⊕D ≤p.τ.e M , hence by Proposition 2.6-(4), (1),
C1⊕ · · · ⊕Cn⊕D ≤p.τ.e M . If D is non-quasi-τ -torsion then it contains
a non-zero τ -torsionfree submodule B. Thus, (B⊕C)∩τ(M) = 0 which
is impossible, hence D is quasi-τ -torsion. Therefore, by Proposition 3.2,
if a complement to τ(M) is of finite uniform dimension then every com-
plement to τ(M) is of finite uniform dimension and by Theorem 3.1, the
uniform dimensions of all complements to τ(M) are equal. �
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As Corollary 3.3 shows, for any module M either all complements to
τ(M) are not of finite uniform dimension or all complements to τ(M)
are of finite uniform dimension n. Let us call this integer n, the τ -rank
of M and denote this by rτ (M). Note that rτ (M) = 0 if and only if M is
quasi-τ -torsion. If a complement (hence, every complement) to τ(M) is
not of finite uniform dimension, we say that M is not of finite τ -rank and
write rτ (M) = ∞. Let u.dim(M) denote the uniform dimension of M .
Clearly u.dim(M) = rτ (M) + u.dim(τ(M)), hence rτ (M) = u.dim(M)
if M is τ -torsionfree and the converse holds if M is of finite uniform
dimension.

Proposition 3.4. The following statements are equivalent for a module
M .

(1) M has finite τ -rank n.
(2) M has a pseudo τ -essential submodule which is a finite direct

sum of n τ -torsionfree uniform submodules and a quasi-τ -torsion
submodule.

(3) M has a pseudo τ -essential submodule which is a finite direct
sum of n pseudo τ -uniform submodules and a quasi-τ -torsion
submodule.

(4) M contains a direct sum of n non-quasi-τ -torsion submodules,
but no direct sum of n + 1 non-quasi-τ -torsion submodules.

(5) M contains a direct sum of n non-zero τ -torsionfree submodules,
but no direct sum of n + 1 non-zero τ -torsionfree submodules.

Proof. (1) ⇒ (2). Assume that C is a complement to τ(M). As the proof
of Corollary 3.3 shows there exist some τ -torsionfree uniform submodules
C1, . . . , Cn of C and a quasi-τ -torsion submodule D of M such that
C1 ⊕ · · · ⊕ Cn ⊕D ≤p.τ.e M .

(2) ⇒ (3). This implication is clear.
(3) ⇒ (4). This follows by Proposition 3.2.
(4) ⇒ (5). This implication is clear as every non-quasi-τ -torsion

submodule has a non-zero τ -torsionfree submodule and every non-zero
τ -torsionfree submodule is non-quasi-τ -torsion.

(5) ⇒ (1). By hypothesis there exists a direct sum of n non-zero τ -
torsionfree submodules K1 ⊕ · · · ⊕Kn. This direct sum can be enlarged
into a complement C of τ(M). Then, C contains a direct sum of n
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non-zero τ -torsionfree submodules, but no direct sum of n + 1 non-zero
τ -torsionfree submodules and so u.dim(C) = n. �

Corollary 3.5. The following statements are equivalent for a module
M .

(1) M is of finite τ -rank.
(2) M contains no infinite direct sum of non-quasi-τ -torsion sub-

modules.
(3) M contains no infinite direct sum of non-zero τ -torsionfree sub-

modules.

Proof. The implication (1) ⇒ (2) follows by Proposition 3.4, and (2) ⇒
(3) is clear.

(3) ⇒ (1). Let C be a complement to τ(M). By hypothesis C con-
tains no infinite direct sum of non-zero submodules, hence C is of finite
uniform dimension. �

Corollary 3.6. For any module M ,
rτ (M) = sup{k : M contains a direct sum of k non-quasi-τ -torsion
submodules} = sup{k : M contains a direct sum of k non-zero τ -
torsionfree submodules}.

Corollary 3.7. rτ (M) ≤ rτ (M/N) ≤ u.dim(M/N), for every τ -torsion
submodule N of M . In particular, rτ (M) ≤ u.dim(M/τ(M)). More-
over, rτ (M) = u.dim(M/τ(M)) for every module M , if and only if the
hereditary torsion theory τ is stable.

Proof. Assume that M contains a direct sum A1 ⊕ A2 ⊕ · · · ⊕ Ak of
non-zero τ -torsionfree submodules. If N is a τ -torsion submodule of
M then M/N has a direct sum of non-zero τ -torsionfree submodules
(A1+N)/N⊕(A2+N)/N⊕· · ·⊕(Ak +N)/N . Thus, rτ (M) ≤ rτ (M/N)
by Corollary 3.6. If τ is stable and A1/τ(M) ⊕ · · · ⊕ Ak/τ(M) is a
direct sum of non-zero submodules of M/τ(M), then B1 ⊕ · · · ⊕ Bk is
a direct sum of non-zero τ -torsionfree submodules of M , where Bi is
a complement to τ(M) in Ai. Thus, u.dim(M/τ(M)) ≤ rτ (M) and
so rτ (M) = u.dim(M/τ(M)). Now, let rτ (M) = u.dim(M/τ(M)), for
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every module M . Then, u.dim(M/τ(M)) = 0, for every quasi-τ -torsion
module M . Hence, every quasi-τ -torsion module is τ -torsion and so the
hereditary torsion theory is stable by Proposition 2.7. �

Corollary 3.8. Let A be a submodule of M .
(1) rτ (A) ≤ rτ (M).
(2) rτ (A) = rτ (M) if and only if rτ (A) = ∞ or if rτ (A) = k < ∞

then every complement in M of each direct sum of k non-zero
τ -torsionfree submodules of A is quasi-τ -torsion.

(3) rτ (A) = rτ (M) if rτ (A) = ∞ or A ≤p.τ.e M . The converse holds
if the hereditary torsion theory τ is stable.

Proof. Clearly (1) follows by Corollary 3.6.
(2). (⇐). By Corollary 3.5, if rτ (A) = ∞ then rτ (M) = ∞. Now,

assume that rτ (A) = k < ∞. By Proposition 3.4, A contains a direct
sum of k non-zero τ -torsionfree submodules A1 ⊕ · · · ⊕ Ak and so by
Proposition 2.2, A1 ⊕ · · · ⊕ Ak ⊕ B ≤p.τ.e M for a submodule B of M
which is maximal with respect to the property (A1 ⊕ · · · ⊕Ak)∩B = 0.
By hypothesis B is quasi-τ -torsion, hence rτ (M) = k.

(⇒). Let rτ (A) = k < ∞ and A1 ⊕ · · · ⊕ Ak be a direct sum of
k non-zero τ -torsionfree submodules of A. If a complement B in M
of A1 ⊕ · · · ⊕ Ak is non-quasi-τ -torsion, then there exists a non-zero τ -
torsionfree submodule C of B and so M contains the direct sum A1⊕· · ·⊕
Ak ⊕ C of k + 1 non-zero τ -torsionfree submodules which is impossible
as rτ (M) = k.

(3). The first statement is clear by Proposition 3.4 and Corollary 3.5.
Now, assume that τ is stable and rτ (A) = k < ∞, moreover A is not
pseudo τ -essential in M . Then, A contains a direct sum A1⊕· · ·⊕Ak of k
non-zero τ -torsionfree submodules. Since A is not pseudo τ -essential in
M , there exists a non-τ -torsion submodule B such that A⊕B ≤e M by
Proposition 2.3-(5). Thus, M contains the direct sum A1⊕· · ·⊕Ak⊕B of
non-τ -torsion submodules. Hence, rτ (M) ≥ k + 1 as the notions of non-
τ -torsion and non-quasi-τ -torsion are the same whenever a hereditary
torsion theory is stable. �

Note that by Corollaries 3.7 and 3.8, rτ (M) ≤ rτ (A)+ rτ (M/A) if A
is a τ -torsion submodule or a pseudo τ -essential submodule of M . The
next corollary shows that the inequality holds for some other submod-
ules of M . Recall that a submodule A of M is called τ -pure (or τ -closed)
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if M/A is τ -torsionfree.

Corollary 3.9. Let A be a τ -torsionfree submodule or a τ -pure submod-
ule of M . Then,

rτ (M) ≤ rτ (A)+ rτ (M/A).

Proof. Let A be a τ -torsionfree submodule. There exists a submodule B
such that A⊕ B ≤p.τ.e M . Then, rτ (M) = rτ (A⊕ B) = rτ (A)+ rτ (B).
But, B ∼= (A ⊕ B)/A ≤ M/A, hence rτ (B) ≤ rτ (M/A). Now, assume
that A is τ -pure, moreover C is a complement to τ(M) in M . Clearly
C ∩A can be enlarged to a complement D to τ(A) in A. Then,

u.dim(C) ≤ u.dim(C ∩A) + u.dim(C/(C ∩A))
≤ u.dim(D) + u.dim(M/A).

Since A is τ -pure, rτ (M/A) = u.dim(M/A) and so rτ (M) ≤ rτ (A)+
rτ (M/A). �

A module M is called τ -injective if for any τ -dense submodule A of
B, any homomorphism A → M extends to a homomorphism B → M .
If Eτ (M) is a τ -injective τ -essential extension of M , then Eτ (M) is the
smallest τ -injective module containing M . Moreover, it is unique up to
isomorphism. Eτ (M) is called the τ -injective hull of M . More properties
of the τ -injective hull of a module can be found in [2, § 3]. Note that
by Proposition 2.1, M ≤p.τ.e Eτ (M). Proposition 3.11 below interprets
the finiteness of the τ -rank of M via a certain decomposition length of
Eτ (M). The following lemma is helpful.

Lemma 3.10. A module M is pseudo τ -uniform if and only if Eτ (M)
is pseudo τ -uniform.

Proof. Clearly if M is non-quasi-τ -torsion then Eτ (M) is non-quasi-τ -
torsion and the converse holds by Proposition 2.8. For (⇒), assume
that A ∩ B ≤ τ(Eτ (M)). Then, (A ∩ M) ∩ (B ∩ M) ≤ τ(M), hence
by hypothesis A ∩M is quasi-τ -torsion or B ∩M is τ -torsion. However
M ≤p.τ.e Eτ (M) and so A ∩M ≤p.τ.e A, therefore A is quasi-τ -torsion
by Proposition 2.8 or B is τ -torsion. The converse implication (⇐) is
clear. �
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Proposition 3.11. rτ (M) = n < ∞ if and only if Eτ (M) is a direct
sum of n pseudo τ -uniform modules and a quasi-τ -torsion module.

Proof. (⇒). By hypothesis M contains pseudo τ -uniform submodules
A1, . . . , An and a quasi-τ -torsion submodule B such that

A1 ⊕ · · · ⊕An ⊕B ≤p.τ.e M.

There exists a submodule C of M for which A1⊕· · ·⊕An⊕B⊕C ≤e M .
Then, C is τ -torsion and by Proposition 2.6-(1),

A1 ⊕ · · · ⊕An ⊕B ⊕ C ≤p.τ.e M.

Thus, A1⊕· · ·⊕An⊕B⊕C is essential and pseudo τ -essential in Eτ (M).
Thus,

Eτ (M) = Eτ (A1 ⊕ · · · ⊕An ⊕B ⊕ C)
= Eτ (A1)⊕ · · · ⊕ Eτ (An)⊕ Eτ (B)⊕ Eτ (C),

where, each Eτ (Ai) is pseudo τ -uniform by Lemma 3.10 and Eτ (B) and
Eτ (C) are quasi-τ -torsion by Proposition 2.8.

(⇐). By Proposition 3.4, rτ (Eτ (M)) = n and so by Corollary 3.8-(3),
rτ (M) = rτ (Eτ (M)) = n. �

Corollary 3.12. rτ (
⊕k

i=1 Mi) =
∑k

i=1 rτ (Mi).

4. Complements and τ-ranks

Recall that for a module M , if u.dim(M) = n < ∞, then any chain
of complements has length ≤ n. In addition, u.dim(M) = ∞ if and
only if there exists an infinite strictly ascending chain of complements
in M if and only if there exists an infinite strictly descending chain of
complements (See [3, Propositions (6.29) and (6.30)]). In this section
we obtain similar relations for τ -rank of a module M in terms of certain
complement submodules.

Proposition 4.1. Let M be a module and rτ (M) = n < ∞. Then,
in M any chain of complements to τ -torsionfree submodules has length
≤ n.
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Proof. Let C0 < C1 < · · · < Ck, where each Ci−1 is a complement to
some τ -torsionfree submodule Ti of M . Then, each Ci−1 is a complement
to the τ -torsionfree submodule Ti ∩ Ci of Ci. Set Si = Ti ∩ Ci, for all
i = 1, . . . , k. Since Ci−1 6= Ci, we have Si 6= 0. Then, S1 ⊕ · · · ⊕ Sk is
a direct sum of k non-zero τ -torsionfree submodules of M , hence k ≤ n
by Corollary 3.6. �

Theorem 4.2. The following statements are equivalent for a module
M .

(1) rτ (M) = ∞.
(2) There exists an infinite strictly ascending chain of complements

to τ -torsionfree submodules in M .
(3) There exists an infinite strictly descending chain of complements

to τ -torsionfree submodules in M .

Proof. (1) ⇒ (2). By Corollary 3.5, M contains an infinite direct sum
T1 ⊕ T2 ⊕ · · · , where Ti is a non-zero τ -torsionfree submodule. Enlarge
T1 into a complement to T2⊕T3⊕· · · , say C1. Then, enlarge C1⊕T2 into
a complement to T3⊕T4⊕· · · , say C2. In this way, we get an ascending
chain C1 ≤ C2 ≤ · · · , where each Ci is a complement to a τ -torsionfree
submodule in M . Since Ti ≤ Ci and Ti ∩ Ci−1 = 0, we have Ci−1 6= Ci,
for all i.

(2) ⇒ (3). Assume that C0 < C1 < · · · , where each Ci is a com-
plement to a τ -torsionfree submodule in M . If Ck is τ -torsion then
Ck = τ(M) and so only C0 can be τ -torsion. Moreover, similar to
the proof of Proposition 4.1, Ci−1 is a complement to some non-zero
τ -torsionfree submodule Si in Ci. Enlarge S2 ⊕ S3 ⊕ · · · into a comple-
ment to S1, let L1 be this complement. Then, enlarge S3 ⊕ S4 ⊕ · · ·
into a complement to S2 in L1, say L2. Clearly L2 is a complement to
the non-zero τ -torsionfree submodule S1⊕S2 in M . Moreover, L2 < L1

since S2 ≤ L1 and L2 ∩ S2 = 0. By this process we get a strictly de-
scending chain of complements to τ -torsionfree submodules in M , i.e.,
L1 > L2 > · · · .

(3) ⇒ (1) is clear by Proposition 4.1. �

Recall that u.dim (M) = sup{k : M contains a chain of complements
of length k}. A similar result holds for the τ -rank of M .
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Corollary 4.3. For any module M ,
rτ (M) = sup{k : M contains a chain of length k of complements to
τ -torsionfree submodules}.
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