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CAUCHY-RASSIAS STABILITY OF LINEAR
MAPPINGS IN BANACH MODULES ASSOCIATED
WITH A GENERALIZED JENSEN TYPE MAPPING

C.-G. PARK AND J.H. SONG∗
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Abstract. Let X and Y be vector spaces. We show that a map-
ping f : X → Y satisfies the functional equation,

f

(
x1 +

2d∑
j=2

(−1)jxj

)
−f

(
x1 +

2d∑
j=2

(−1)j−1xj

)
= 2

2d∑
j=2

(−1)jf(xj)

if and only if the mapping f : X → Y is Cauchy additive, and
prove the Cauchy-Rassias stability of the above functional equation
in Banach modules over a unital C∗-algebra, and in Poisson Banach
modules over a unital Poisson C∗-algebra. Let A and B be unital
C∗-algebras, Poisson C∗-algebras or Poisson JC∗-algebras. As an
application, we show that every almost homomorphism h : A → B
of A into B is a homomorphism when h(2nuy) = h(2nu)h(y) or
h(2nu ◦ y) = h(2nu) ◦ h(y), for all unitaries u ∈ A, all y ∈ A, and
n = 0, 1, 2, · · · .

Moreover, we prove the Cauchy-Rassias stability of homomor-
phisms in C∗-algebras, Poisson C∗-algebras or Poisson JC∗-algebras.
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1. Introduction

Ulam [26] raised the following question: Under what conditions does
there exist an additive mapping near an approximate additive mapping?
Hyers [4] gave a partial affirmative answer to the question of Ulam in
the context of Banach spaces. Th.M. Rassias [18] extended the theorem
of Hyers by considering the unbounded Cauchy difference. His result
has provided a lot of influence in the development of what is known as
Cauchy-Rassias stability of functional equations. Găvruta [2] general-
ized the Rassias’ result to a more general unbounded control function.
Beginning around the year 1980, the topic of approximate homomor-
phisms, or the stability of the equation of homomorphism, was taken up
by a number of mathematicians (cf. [1], [5]–[8], [10], [14], [17]–[25]).

Throughout this paper, assume that d is a positive integer.
We solve the following functional equation,

f

x1 +
2d∑

j=2

(−1)jxj

 − f

x1 +
2d∑

j=2

(−1)j−1xj


= 2

2d∑
j=2

(−1)jf(xj),(1.1)

which is called a generalized Jensen type functional equation, and whose
solution is called a generalized Jensen type mapping. Moreover, we prove
the Cauchy-Rassias stability of the functional equation (1.1) in Banach
modules over a unital C∗-algebra. Our main purpose is to investigate
homomorphisms between C∗-algebras, between Poisson C∗-algebras and
between Poisson JC∗-algebras, and to prove their Cauchy-Rassias sta-
bility.

2. A generalized Jensen type mapping

Throughout this section, assume that X and Y are linear spaces.

Lemma 2.1. A mapping f : X → Y satisfies (1.1) for all x1, x2, · · · ,
x2d ∈ X and f(0) = 0 if and only if f is Cauchy additive.
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Proof. Assume that f : X → Y satisfies (1.1) for all x1, x2, · · · , x2d ∈
X. Putting x3 = · · · = x2d = 0 in (1.1), we get

f(x1 + x2)− f(x1 − x2) = 2f(x2)(2.1)

for all x1, x2 ∈ X. Putting x2 = x1 in (2.1), we get

f(2x1) = 2f(x1)

for all x1 ∈ X. Putting x1 − x2 = x and 2x2 = y in (2.1), we get

f(x + y) = f(x1 + x2) = f(x1 − x2) + f(2x2) = f(x) + f(y)

for all x, y ∈ X. Thus, f is Cauchy additive.
The converse is obviously true. �

3. Cauchy-Rassias stability of the generalized Jensen type
mapping in Banach modules over a C∗-algebra

Throughout this section, assume that A is a unital C∗-algebra with
norm | · | and unitary group U(A), and that X and Y are left Banach
modules over A with norms || · || and ‖ · ‖, respectively.

Given a mapping f : X → Y , we set

Duf(x1, · · · , x2d) := f

ux1 +
2d∑

j=2

(−1)juxj


− f

ux1 +
2d∑

j=2

(−1)j−1uxj

− 2
2d∑

j=2

(−1)juf(xj)

for all u ∈ U(A) and all x1, · · · , x2d ∈ X.

Theorem 3.1. Let f : X → Y be a mapping satisfying f(0) = 0 for
which there is a function ϕ : X2d → [0,∞) such that

ϕ̃(x1, · · · , x2d) :=
∞∑

j=0

1
2j

ϕ(2jx1, · · · , 2jx2d) < ∞,(3.1)

and

‖Duf(x1, · · · , x2d)‖ ≤ ϕ(x1, · · · , x2d),(3.2)
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for all u ∈ U(A) and all x1, · · · , x2d ∈ X. Then, there exists a unique
A-linear generalized Jensen type mapping L : X → Y such that

‖f(x)− L(x)‖ ≤ 1
2
ϕ̃(x, · · · , x︸ ︷︷ ︸

2d times

),(3.3)

for all x ∈ X.

Proof. Let u = 1 ∈ U(A). Putting x1 = · · · = x2d = x in (3.2), we have

‖f(2x)− 2f(x)‖ ≤ ϕ(x, · · · , x︸ ︷︷ ︸
2d times

),(3.4)

for all x ∈ X. So, ∥∥∥∥f(x)− 1
2
f(2x)

∥∥∥∥ ≤ 1
2
ϕ(x, · · · , x︸ ︷︷ ︸

2d times

),

for all x ∈ X. Hence,∥∥∥∥ 1
2n

f(2nx)− 1
2n+1

f(2n+1x)
∥∥∥∥ ≤ 1

2n+1
ϕ(2nx, · · · , 2nx︸ ︷︷ ︸

2d times

),(3.5)

for all x ∈ X and all positive integers n. By (3.5), we have∥∥∥∥ 1
2m

f(2mx)− 1
2n

f(2nx)
∥∥∥∥ ≤ n−1∑

k=m

1
2k+1

ϕ(2kx, · · · , 2kx︸ ︷︷ ︸
2d times

),(3.6)

for all x ∈ X and all positive integers m and n with m < n. This shows
that the sequence

{
1
2n f(2nx)

}
is Cauchy, for all x ∈ X. Since Y is

complete, then the sequence
{

1
2n f(2nx)

}
converges for all x ∈ X. So,

we can define a mapping L : X → Y by

L(x) := lim
n→∞

1
2n

f(2nx),

for all x ∈ X. We get

‖D1L(x1, · · · , x2d)‖ = lim
n→∞

1
2n
‖D1f(2nx1, · · · , 2nx2d)‖

≤ lim
n→∞

1
2n

ϕ(2nx1, · · · , 2nx2d) = 0,

for all x1, · · · , x2d ∈ X. By Lemma 2.1, L is Cauchy additive. Putting
m = 0 and letting n →∞ in (3.6), we get (3.3).



Stability of linear mappings in Banach modules 147

Now, let L′ : X → Y be another generalized Jensen type mapping
satisfying (3.3). Then, we have

‖L(x)− L′(x)‖ =
1
2n
‖L(2nx)− L′(2nx)‖

≤ 1
2n

(‖L(2nx)− f(2nx)‖+ ‖L′(2nx)− f(2nx)‖)

≤ 2
2n+1

ϕ̃(2nx, · · · , 2nx︸ ︷︷ ︸
2d times

),

which tends to zero as n →∞, for all x ∈ X. So, we can conclude that
L(x) = L′(x), for all x ∈ X. This proves the uniqueness of L.

By the assumption, for each u ∈ U(A), we get

‖DuL(x, x, 0, · · · , 0︸ ︷︷ ︸
2d− 2 times

)‖ = lim
n→∞

1
2n
‖Duf(2nx, 2nx, 0, · · · , 0︸ ︷︷ ︸

2d− 2 times

)‖

≤ lim
n→∞

1
2n

ϕ(2nx, 2nx, 0, · · · , 0︸ ︷︷ ︸
2d− 2 times

) = 0,

for all x ∈ X. So,

L(2ux) = 2uL(x),

for all u ∈ U(A) and all x ∈ X. Since L is additive, then

L(ux) = uL(x),

for all u ∈ U(A) and all x ∈ X.
Now, by the same reasoning as in the proofs of [15] and [16],

L(ax + by) = L(ax) + L(by) = aL(x) + bL(y),

for all a, b ∈ A (a, b 6= 0) and all x, y ∈ X. And L(0x) = 0 = 0L(x) for
all x ∈ X. So, the unique generalized Jensen type mapping L : A → B
is an A-linear mapping, as desired. �

Corollary 3.2. Let θ and p < 1 be positive real numbers. Let f : X → Y
be a mapping satisfying f(0) = 0 such that

‖Duf(x1, · · · , x2d)‖ ≤ θ
2d∑

j=1

||xj ||p,
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for all u ∈ U(A) and all x1, · · · , x2d ∈ X. Then, there exists a unique
A-linear generalized Jensen type mapping L : X → Y such that

‖f(x)− L(x)‖ ≤ 2d

2− 2p
θ||x||p,

for all x ∈ X.

Proof. Define ϕ(x1, · · · , x2d) = θ
∑2d

j=1 ||xj ||p, and apply Theorem 3.1
to obtain the desired result. �

Theorem 3.3. Let f : X → Y be a mapping satisfying f(0) = 0 for
which there is a function ϕ : X2d → [0,∞) such that

ϕ̃(x1, · · · , x2d) :=
∞∑

j=1

2jϕ
(x1

2j
, · · · ,

x2d

2j

)
< ∞,

‖Duf(x1, · · · , x2d)‖ ≤ ϕ(x1, · · · , x2d),

for all u ∈ U(A) and all x1, · · · , x2d ∈ X. Then, there exists a unique
A-linear generalized Jensen type mapping L : X → Y such that

‖f(x)− L(x)‖ ≤ 1
2
ϕ̃(x, · · · , x︸ ︷︷ ︸

2d times

),

for all x ∈ X.

Proof. Replacing x by x
2 in (3.4), we have∥∥∥f(x)− 2f(

x

2
)
∥∥∥ ≤ ϕ(

x

2
, · · · ,

x

2︸ ︷︷ ︸
2d times

),

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 3.1. �

4. Isomorphisms between unital C∗-algebras

Throughout this section, assume that A is a unital C∗-algebra with
norm || · ||, unit e and unitary group U(A), and that B is a unital C∗-
algebra with norm ‖ · ‖.

We investigate C∗-algebra isomorphisms between unital C∗-algebras.
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Theorem 4.1. Let h : A → B be a bijective mapping satisfying h(0) = 0
and h(2nuy) = h(2nu)h(y), for all u ∈ U(A), all y ∈ A, and n =
0, 1, 2, · · · , for which there is a function ϕ : A2d → [0,∞) satisfying
(3.1) such that∥∥∥∥∥∥h

µx1 +
2d∑

j=2

(−1)jµxj

 − h

µx1 +
2d∑

j=2

(−1)j−1µxj


−2

2d∑
j=2

(−1)jµh(xj)

∥∥∥∥∥∥ ≤ ϕ(x1, · · · , x2d),(4.1)

‖h(2nu∗)− h(2nu)∗‖ ≤ ϕ(2nu, · · · , 2nu︸ ︷︷ ︸
2d times

),(4.2)

for all u ∈ U(A), all x1, · · · , x2d ∈ A, all µ ∈ T1 := {λ ∈ C | |λ| = 1}
and n = 0, 1, 2, · · · . Assume that

lim
n→∞

h(2ne)
2n

is invertible.(4.3)

Then, the bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. We consider a C∗-algebra as a Banach module over a unital C∗-
algebra C. So, by Theorem 3.1, there exists a unique C-linear generalized
Jensen type mapping H : A → B such that

‖h(x)−H(x)‖ ≤ 1
2
ϕ̃(x, · · · , x︸ ︷︷ ︸

2d times

).(4.4)

for all x ∈ A. The mapping H : A → B is given by

H(x) = lim
n→∞

1
2n

h(2nx),(4.5)

for all x ∈ A.
By (3.1) and (4.2), we get

H(u∗) = lim
n→∞

h(2nu∗)
2n

= lim
n→∞

h(2nu)∗

2n
=

(
lim

n→∞

h(2nu)
2n

)∗
= H(u)∗,

for all u ∈ U(A). Since H is C-linear and each x ∈ A is a finite linear
combination of unitary elements (see [9]), i.e., x =

∑m
j=1 λjuj (λj ∈
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C, uj ∈ U(A)), then

H(x∗) = H

 m∑
j=1

λju
∗
j

 =
m∑

j=1

λjH(u∗j ) =
m∑

j=1

λjH(uj)∗

=

 m∑
j=1

λjH(uj)

∗

= H

 m∑
j=1

λjuj

∗

= H(x)∗,

for all x ∈ A.
Since h(2nuy) = h(2nu)h(y) for all u ∈ U(A), all y ∈ A, and all

n = 0, 1, 2, · · · , then

H(uy) = lim
n→∞

1
2n

h(2nuy) = lim
n→∞

1
2n

h(2nu)h(y) = H(u)h(y),(4.6)

for all u ∈ U(A) and all y ∈ A. By the additivity of H and (4.6),

2nH(uy) = H(2nuy) = H(u(2ny)) = H(u)h(2ny),

for all u ∈ U(A) and all y ∈ A. Hence,

H(uy) =
1
2n

H(u)h(2ny) = H(u)
1
2n

h(2ny),(4.7)

for all u ∈ U(A) and all y ∈ A. Taking the limit in (4.7) as n →∞, we
obtain:

H(uy) = H(u)H(y),(4.8)

for all u ∈ U(A) and all y ∈ A. Since H is C-linear and each x ∈ A is a
finite linear combination of unitary elements, i.e., x =

∑m
j=1 λjuj (λj ∈

C, uj ∈ U(A)), then it follows from (4.8) that

H(xy) = H

 m∑
j=1

λjujy

 =
m∑

j=1

λjH(ujy) =
m∑

j=1

λjH(uj)H(y)

= H

 m∑
j=1

λjuj

 H(y) = H(x)H(y),

for all x, y ∈ A.
By (4.6) and (4.8),

H(e)H(y) = H(ey) = H(e)h(y),

for all y ∈ A. Since limn→∞
h(2ne)

2n = H(e) is invertible, then

H(y) = h(y),
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for all y ∈ A.
Therefore, the bijective mapping h : A → B is a C∗-algebra isomor-

phism.

Corollary 4.2. Let h : A → B be a bijective mapping satisfying h(0) =
0 and h(2nuy) = h(2nu)h(y), for all u ∈ U(A), all y ∈ A, and all
n = 0, 1, 2, · · · , for which there exist constants θ ≥ 0 and p ∈ [0, 1) such
that ∥∥∥∥∥∥h

µx1 +
2d∑

j=2

(−1)jµxj

 − h

µx1 +
2d∑

j=2

(−1)j−1µxj


−2

2d∑
j=2

(−1)jµh(xj)

∥∥∥∥∥∥ ≤ θ
2d∑

j=1

||xj ||p,

‖h(2nu∗)− h(2nu)∗‖ ≤ 2d2npθ

for all µ ∈ T1, all u ∈ U(A), n = 0, 1, 2, · · · , and all x1, · · · , x2d ∈ A.
Assume that limn→∞

h(2ne)
2n is invertible. Then, the bijective mapping

h : A → B is a C∗-algebra isomorphism.

Proof. Define ϕ(x1, · · · , x2d) = θ
∑2d

j=1 ||xj ||p, and apply Theorem 4.1
to obtain the desired result. �

Theorem 4.3. Let h : A → B be a bijective mapping satisfying h(0) = 0
and h(2nuy) = h(2nu)h(y), for all u ∈ U(A), all y ∈ A, and n =
0, 1, 2, · · · , for which there is a function ϕ : A2d → [0,∞) satisfying
(3.1), (4.2), and (4.3) such that∥∥∥∥∥∥h

µx1 +
2d∑

j=2

(−1)jµxj

 − h

µx1 +
2d∑

j=2

(−1)j−1µxj


− 2

2d∑
j=2

(−1)jµh(xj)

∥∥∥∥∥∥ ≤ ϕ(x1, · · · , x2d),(4.9)

for all x1, · · · , x2d ∈ A and µ = 1, i. If h(tx) is continuous in t ∈ R for
each fixed x ∈ A, then the bijective mapping h : A → B is a C∗-algebra
isomorphism.
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Proof. Put µ = 1 in (4.9). By the same reasoning as in the proof
of Theorem 4.1, there exists a unique generalized Jensen type mapping
H : A → B satisfying (4.4). By the same reasoning as in the proof of
Theorem of [18], the mapping H : A → B is R-linear.

Put µ = i in (4.9). By the same method as in the proof of Theorem
4.1, one can obtain:

H(ix) = lim
n→∞

h(2nix)
2n

= lim
n→∞

ih(2nx)
2n

= iH(x),

for all x ∈ A.
For each element λ ∈ C, λ = s + it, where s, t ∈ R. So,

H(λx) = H(sx + itx) = sH(x) + tH(ix) = sH(x) + itH(x)
= (s + it)H(x) = λH(x)

for all λ ∈ C and all x ∈ A. So,

H(ζx + ηy) = H(ζx) + H(ηy) = ζH(x) + ηH(y),

for all ζ, η ∈ C, and all x, y ∈ A. Hence, the additive mapping H : A →
B is C-linear.

The rest of the proof is the same as in the proof of Theorem 4.1. �

Now, we prove the Cauchy-Rassias stability of C∗-algebra homomor-
phisms in unital C∗-algebras.

Theorem 4.4. Let h :→ B be a mapping satisfying h(0) = 0 for which
there exists a function ϕ : A2d → [0,∞) satisfying (3.1), (4.1) and (4.2)
such that

‖h(2nu · 2nv)− h(2nu)h(2nv)‖ ≤ ϕ(2nu, 2nv, 0, · · · , 0︸ ︷︷ ︸
2d− 2 times

),(4.10)

for all u, v ∈ U(A) and n = 0, 1, 2, · · · . Then, there exists a unique
C∗-algebra homomorphism H : A → B satisfying (4.4).

Proof. By the same reasoning as in the proof of Theorem 4.1, there
exists a unique C-linear involutive generalized Jensen type mapping H :
A → B satisfying (4.4).
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By (4.10),

1
22n

‖h(2nu · 2nv)− h(2nu)h(2nv)‖ ≤ 1
22n

ϕ(2nu, 2nv, 0, · · · , 0︸ ︷︷ ︸
2d− 2 times

)

≤ 1
2n

ϕ(2nu, 2nv, 0, · · · , 0︸ ︷︷ ︸
2d− 2 times

),

which tends to zero by (3.1) as n →∞. By (4.5),

H(uv) = lim
n→∞

h(2nu · 2nv)
22n

= lim
n→∞

h(2nu)h(2nv)
22n

= lim
n→∞

h(2nu)
2n

h(2nv)
2n

= H(u)H(v),

for all u, v ∈ U(A). Since H is C-linear and each x ∈ A is a finite linear
combination of unitary elements, i.e., x =

∑m
j=1 λjuj (λj ∈ C, uj ∈

U(A)), then

H(xv) = H

 m∑
j=1

λjujv

 =
m∑

j=1

λjH(ujv) =
m∑

j=1

λjH(uj)H(v)

= H

 m∑
j=1

λjuj

 H(v) = H(x)H(v),

for all x ∈ A and all v ∈ U(A). By the same method as given above,
one can obtain:

H(xy) = H(x)H(y),

for all x, y ∈ A. So, the mapping H : A → B is a C∗-algebra homomor-
phism. �

Theorem 4.5. Let h : A → B be a mapping satisfying h(0) = 0 for
which there exists a function ϕ : A2d → [0,∞) satisfying (3.1), (4.2),
(4.9) and (4.10). If h(tx) is continuous in t ∈ R, for each fixed x ∈
A, then there exists a unique C∗-algebra homomorphism H : A → B
satisfying (4.4).

Proof. The proof is similar to the proofs of theorems 4.3 and 4.4. �
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5. Homomorphisms between Poisson C∗-algebras

A Poisson C∗-algebra A is a C∗-algebra with a C-bilinear map {·, ·} :
A × A → A, called a Poisson bracket, such that (A, {·, ·}) is a complex
Lie algebra and

{ab, c} = a{b, c}+ {a, c}b,
for all a, b, c ∈ A. Poisson algebras have played important roles in many
mathematical areas and have been studied to find sympletic leaves of the
corresponding Poisson varieties. It is also important to find or construct
a Poisson bracket in the theory of Poisson algebra (see [3], [11], [12],
[13]).

Throughout this section, let A be a unital Poisson C∗-algebra with
norm || · ||, unit e and unitary group U(A), and B a unital Poisson
C∗-algebra with norm ‖ · ‖.

Definition 5.1. A C∗-algebra homomorphism H : A → B is called a
Poisson C∗-algebra homomorphism if H : A → B satisfies

H({z, w}) = {H(z),H(w)},
for all z, w ∈ A.

We investigate Poisson C∗-algebra homomorphisms between Poisson
C∗-algebras.

Theorem 5.2. Let h : A → B be a mapping satisfying h(0) = 0 and
h(2nuy) = h(2nu)h(y), for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · ,
for which there exists a function ϕ : A2d+2 → [0,∞) such that

ϕ̃(x1, · · · , x2d, z, w) :=
∞∑

j=0

1
2j

ϕ(2jx1, · · · , 2jx2d, 2jz, 2jw) < ∞,(5.1)

‖h

µx1 +
2d∑

j=2

(−1)jµxj + {z, w}

− h

µx1 +
2d∑

j=2

(−1)j−1µxj


−2

2d∑
j=2

(−1)jµh(xj)− {h(z), h(w)}‖ ≤ ϕ(x1, · · · , x2d, z, w),(5.2)

‖h(2nu∗)− h(2nu)∗‖ ≤ ϕ(2nu, · · · , 2nu︸ ︷︷ ︸
2d times

, 0, 0),(5.3)
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for all u ∈ U(A), all x1, · · · , x2d, z, w ∈ A, all µ ∈ T1 and n = 0, 1, 2, · · · .
Assume that limn→∞

h(2ne)
2n is invertible. Then, the mapping h : A → B

is a Poisson C∗-algebra homomorphism.

Proof. The proof is similar to the proof of Theorem 2.1 in [15].

Now, we prove the Cauchy-Rassias stability of Poisson C∗-algebra
homomorphisms in unital Poisson C∗-algebras. �

Theorem 5.3. Let h : A → B be a mapping satisfying h(0) = 0 for
which there exists a function ϕ : A2d+2 → [0,∞) satisfying (5.1), (5.2)
and (5.3) such that

‖h(2nu · 2nv)− h(2nu)h(2nv)‖ ≤ ϕ(2nu, 2nv, 0, · · · , 0︸ ︷︷ ︸
2d times

),

for all u, v ∈ U(A) and n = 0, 1, 2, · · · . Then, there exists a unique
Poisson C∗-algebra homomorphism H : A → B satisfying

‖h(x)−H(x)‖ ≤ 1
2
ϕ̃(x, · · · , x︸ ︷︷ ︸

2d times

, 0, 0),

for all x ∈ A.

Proof. The proof is similar to the proofs of theorems 4.4 and 5.2. �

6. Cauchy-Rassias stability of homomorphisms in Poisson
Banach modules over a unital Poisson C∗-algebra

A Poisson Banach module X over a Poisson C∗-algebra A is a left
Banach A-module endowed with a C-bilinear map {·, ·} : A × X → X
such that

{{a, b}, x} = {a, {b, x}} − {b, {a, x}},
{a, b} · x = a · {b, x} − {b, a · x},

for all a, b ∈ A and all x ∈ X (see [3], [11], [12]). Here, “·” denotes the
associative module action.

Throughout this section, assume that A is a unital Poisson C∗-algebra
with unitary group U(A), and that X and Y are left Poisson Banach
A-modules with norms || · || and ‖ · ‖, respectively.
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Definition 6.1. A C-linear mapping H : X → Y is called a Poisson
module homomorphism if H : X → Y satisfies

H({{a, b}, x}) = {{a, b},H(x)},
H({a, b} · x) = {a, b} ·H(x),

for all a, b ∈ A and all x ∈ X.

We prove the Cauchy-Rassias stability of homomorphisms in Poisson
Banach modules over a unital Poisson C∗-algebra.

Theorem 6.2. Let h : X → Y be a mapping satisfying h(0) = 0 for
which there exists a function ϕ : X2d → [0,∞) satisfying (3.1) such that∥∥∥∥∥∥h

µx1 +
2d∑

j=2

(−1)jµxj

 − h

µx1 +
2d∑

j=2

(−1)j−1µxj

(6.1)

− 2
2d∑

j=2

(−1)jµh(xj)

∥∥∥∥∥∥ ≤ ϕ(x1, · · · , x2d),

‖h({{u, v}, x})− {{u, v}, h(x)}‖ ≤ ϕ(x, · · · , x︸ ︷︷ ︸
2d times

),(6.2)

‖h({u, v} · x)− {u, v} · h(x)‖ ≤ ϕ(x, · · · , x︸ ︷︷ ︸
2d times

),(6.3)

for all µ ∈ T1, all x, x1, · · · , x2d ∈ X and all u, v ∈ U(A). Then, there
exists a unique Poisson module homomorphism H : X → Y such that

‖h(x)−H(x)‖ ≤ 1
2
ϕ̃(x, · · · , x︸ ︷︷ ︸

2d times

),(6.4)

for all x ∈ X.

Proof. By the same reasoning as in the proof of Theorem 4.1, there
exists a unique C-linear mapping H : X → Y satisfying (6.4). The
C-linear mapping H : X → Y is given by

H(x) = lim
n→∞

1
2n

h(2nx),

for all x ∈ X.
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By (6.2), ∥∥∥∥ 1
2n

h(2n{{u, v}, x})−
{
{u, v}, 1

2n
h(2nx)

}∥∥∥∥
=

1
2n
‖h({{u, v}, 2nx})− {{u, v}, h(2nx)}‖

≤ 1
2n

ϕ(2nx, · · · , 2nx︸ ︷︷ ︸
2d times

),

which tends to zero for all x ∈ X by (3.1). So,

H({{u, v}, x}) = lim
n→∞

1
2n

h(2n{{u, v}, x}) = lim
n→∞

{{u, v}, 1
2n

h(2nx)},

= {{u, v},H(x)}

for all x ∈ X and all u, v ∈ U(A). Since H is C-linear and {·, ·} is
C-bilinear and since each a ∈ A is a finite linear combination of unitary
elements, i.e., a =

∑m
j=1 λjuj (λj ∈ C, uj ∈ U(A)), then

H({{a, v}, x}) = H




m∑
j=1

λjuj , v

 , x




=
m∑

j=1

λjH({{uj , v}, x}) =
m∑

j=1

λj{{uj , v},H(x)}

=




m∑
j=1

λjuj , v

 ,H(x)

 = {{a, v},H(x)},

for all x ∈ X and all v ∈ U(A). Similarly, one can show that

H({{a, b}, x}) = {{a, b},H(x)},

for all x ∈ X and all a, b ∈ A.
By (6.3), ∥∥∥∥ 1

2n
h(2n{u, v} · x)− {u, v} · 1

2n
h(2nx)

∥∥∥∥
=

1
2n
‖h({u, v} · 2nx)− {u, v} · h(2nx)‖

≤ 1
2n

ϕ(2nx, · · · , 2nx︸ ︷︷ ︸
2d times

),
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which by (3.1) tends to zero for all x ∈ X. So,

H({u, v} · x) = lim
n→∞

1
2n

h(2n{u, v} · x) = lim
n→∞

{u, v} · 1
2n

h(2nx)

= {u, v} ·H(x),

for all x ∈ X and all u, v ∈ U(A). Since H is C-linear and {·, ·} is
C-bilinear and since each a ∈ A is a finite linear combination of unitary
elements, i.e., a =

∑m
j=1 λjuj (λj ∈ C, uj ∈ U(A)), then

H({a, v} · x) = H


m∑

j=1

λjuj , v

 · x

 =
m∑

j=1

λjH({uj , v} · x)

=
m∑

j=1

λj{uj , v} ·H(x) =


m∑

j=1

λjuj , v

 ·H(x) = {a, v} ·H(x),

for all x ∈ X and all v ∈ U(A). Similarly, one can show that

H({a, b} · x) = {a, b} ·H(x),

for all x ∈ X and all a, b ∈ A. Thus, H : X → Y is a Poisson module
homomorphism.

Therefore, there exists a unique Poisson module homomorphism H :
X → Y satisfying (6.4). �

7. Homomorphisms between Poisson JC∗-algebras

The original motivation to introduce the class of nonassociative al-
gebras known as Jordan algebras came from quantum mechanics (see
[27]). Let L(H) be the real vector space of all bounded self-adjoint lin-
ear operators on H, interpreted as the observables of the system. In
1932, Jordan observed that L(H) is a (nonassociative) algebra via the
anticommutator product x ◦ y := xy+yx

2 . A commutative algebra X with
product x ◦ y is called a Jordan algebra. A unital Jordan C∗-subalgebra
of a C∗-algebra, endowed with the anticommutator product, is called a
JC∗-algebra. A Poisson C∗-algebra, endowed with the anticommutator
product, is called a Poisson JC∗-algebra.

Throughout this section, assume that A is a unital Poisson JC∗-
algebra with unit e, norm || · || and unitary group U(A), and that B
is a unital Poisson JC∗-algebra with unit e′ and norm ‖ · ‖.
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Definition 7.1. A C-linear mapping H : A → B is called a Poisson
JC∗-algebra homomorphism if H : A → B satisfies

H(x ◦ y) = H(x) ◦H(y),
H({x, y}) = {H(x),H(y)},

for all x, y ∈ A.

We investigate Poisson JC∗-algebra homomorphisms between Poisson
JC∗-algebras.

Theorem 7.2. Let h : A → B be a mapping satisfying h(0) = 0 and
h(2nu◦y) = h(2nu)◦h(y), for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · ,
for which there exists a function ϕ : A2d+2 → [0,∞) satisfying (5.1) such
that ∥∥∥∥∥∥h

µx1 +
2d∑

j=2

(−1)jµxj + {z, w}

− h

µx1 +
2d∑

j=2

(−1)j−1µxj


−2

2d∑
j=2

(−1)jµh(xj)− {h(z), h(w)}

∥∥∥∥∥∥ ≤ ϕ(x1, · · · , x2d, z, w),(7.1)

for all x1, · · · , x2d, z, w ∈ A, and all µ ∈ T1. Assume:

lim
n→∞

h(2ne)
2n

= e′.(7.2)

Then, the mapping h : A → B is a Poisson JC∗-algebra homomorphism.

Proof. The proof is similar to the proofs of theorems 4.1 and 5.2. �

Corollary 7.3. Let h : A → B be a mapping satisfying h(0) = 0 and
h(2nu ◦ y) = h(2nu) ◦ h(y), for all u ∈ U(A), all y ∈ A, and all n =
0, 1, 2, · · · , for which there exist constants θ ≥ 0 and p ∈ [0, 1) such that∥∥∥∥∥∥h

µx1 +
2d∑

j=2

(−1)jµxj + {z, w}

− h

µx1 +
2d∑

j=2

(−1)j−1µxj


−2

2d∑
j=2

(−1)jµh(xj)− {h(z), h(w)}

∥∥∥∥∥∥ ≤ θ

 2d∑
j=1

||xj ||p + ||z||p + ||w||p

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for all µ ∈ T1, n = 0, 1, · · · , and all x1, · · · , x2d, z, w ∈ A. Assume
that limn→∞

h(2ne)
2n = e′. Then, the mapping h : A → B is a Poisson

JC∗-algebra homomorphism.

Proof. Define ϕ(x1, · · · , x2d, z, w) = θ
(∑2d

j=1 ||xj ||p + ||z||p + ||w||p
)
,

and apply Theorem 7.2 to obtain the desired result. �

Theorem 7.4. Let h : A → B be a mapping satisfying h(2x) = 2h(x),
for all x ∈ A for which there exists a function ϕ : A2d+2 → [0,∞)
satisfying (5.1), (7.1) and (7.2) such that

‖h(2nu ◦ y)− h(2nu) ◦ h(y)‖ ≤ ϕ(u, y, 0, · · · , 0︸ ︷︷ ︸
2d times

),

for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · . Then, the mapping
h : A → B is a Poisson JC∗-algebra homomorphism.

Proof. The proof is similar to the proofs of theorems 4.1 and 5.2. �

Now we prove the Cauchy-Rassias stability of homomorphisms in
Poisson JC∗-algebras.

Theorem 7.5. Let h : A → B be a mapping satisfying h(0) = 0 for
which there exists a function ϕ : A2d+4 → [0,∞) such that

ϕ̃(x1, · · · , x2d, z, w, a, b) :=
∞∑

j=0

1
2j

ϕ(2jx1, · · · , 2jx2d, 2jz, 2jw, 2ja, 2jb)

< ∞,

∥∥∥∥∥∥h

µx1 +
2d∑

j=2

(−1)jµxj + {z, w}+ a ◦ b

− h

µx1 +
2d∑

j=2

(−1)j−1µxj


−2

2d∑
j=2

(−1)jµh(xj)− {h(z), h(w)} − h(a) ◦ h(b)

∥∥∥∥∥∥
≤ ϕ(x1, · · · , x2d, z, w, a, b),
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for all µ ∈ T1 and all x1, · · · , x2d, z, w, a, b ∈ A. Then, there exists a
unique Poisson JC∗-algebra homomorphism H : A → B such that

‖h(x)−H(x)‖ ≤ 1
2
ϕ̃(x, · · · , x︸ ︷︷ ︸

2d times

, 0, 0, 0, 0),(7.3)

for all x ∈ A.

Proof. By the same reasoning as in the proof of theorem 4.1, there
exists a unique C-linear mapping H : A → B satisfying (7.3).

The rest of the proof is similar to the proofs of Theorems 4.1 and
5.2. �
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