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UPPER BOUNDS ON THE SOLUTIONS TO n = p + m2

A. NAYEBI

Communicated by Michel Waldschmidt

Abstract. Hardy and Littlewood conjectured that every large in-
teger n that is not a square is the sum of a prime and a square.
They believed that the number R(n) of such representations for
n = p + m2 is asymptotically given by

R(n) ∼
√

n

log n

∞Y
p=3

�
1− 1

p− 1

�
n

p

��
,

where p is a prime, m is an integer, and
�

n
p

�
denotes the Legendre

symbol. Unfortunately, as we will later point out, this conjecture
is difficult to prove and not all integers that are nonsquares can
be represented as the sum of a prime and a square. Instead in
this paper we prove two upper bounds for R(n) for n ≤ N . The
first upper bound applies to all n ≤ N . The second upper bound
depends on the possible existence of the Siegel zero, and assumes
its existence, and applies to all N/2 < n ≤ N but at most� N1−δ1

of these integers, where N is a sufficiently large positive integer and
0 < δ1 ≤ 0.000025.

1. Introduction

1.1. Background Information. In this paper, we consider the follow-
ing conjecture of Hardy and Littlewood [4]:
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Conjecture 1.1 (Hardy-Littlewood; Conjecture H). Every large integer
n that is not a square is the sum of a prime and a square. The number
R(n) of representations for n = p + m2 is given asymptotically by

(1.1) R(n) ∼ P(n)
√

n

log n

(1.2) P(n) =
∞∏

p=3

(
1− 1

p− 1

(
n

p

))
,

where p is a prime, m is an integer, and
(

n
p

)
denotes the Legendre

symbol.

In 1937, Davenport and Heilbronn [5] proved that Conjecture 1.1 holds
for almost all natural numbers. In fact, they showed that if we define
the exceptional set as

E(N) := {n ≤ N : n is neither a square
nor the sum of a prime and a square},(1.3)

then

(1.4) |E(N)| � N logc N

for some c < 0. In 1968, Miech [12] proved that (1.4) holds for arbitrary
c < 0. Using the approach of Hardy and Littlewood [4] via theta-
functions, Vinogradov [2] proved that there exist effectively computable
constants c < 1 and γ > 0 such that |E(N)| ≤ γN c. Brünner, Perelli,
and Pintz [9] used the methods of Montgomery and Vaughan [7] to prove
the same result. Polyakov [11] independently demonstrated that the
results of Vinogradov [2] hold without using Siegel’s theorem, thereby
enabling him to attain effective results. Basing his methods on those of
[9], Wang [13] made the computation of c more rigorous and proved,

(1.5) |E(N)| � N0.99.

The exponent was subsequently improved by Li [8] to 0.9819.
Some work has been done in an attempt to the verify the asymptotic

formula for R(n) in Conjecture 1.1. Miech [12] proved that

(1.6) R(n) = P(n)
√

n

log n

(
1 + O

(
log log n

log n

))
holds for all but O(N(log N)A) positive integers n ≤ N with any fixed
A < 0. Polyakov also attempted to make progress on Conjecture 1.1
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[10] [11]. For all but � N · exp{−c
√

log N} integers n ≤ N , he obtained
the following

(1.7) R(n) = P(n)
√

n

log n

(
1 + O

(
exp

{
−

√
log n

log3 log n

}))
.

Unfortunately, a mistake occurs in one of Polyakov’s estimates [10], and
“due to the possible existence of the Siegel zero, such a result is unlikely
to be provable in the present state of knowledge” [9, pp. 347-8].

In this paper, the first upper bound we prove forR(n) holds for all n ≤
N (N sufficiently large) with no exceptions. The second upper bound
is achieved by way of Polyakov’s [11] methods, although he uses his
methods for the entirely different purpose of determining the cardinality
of the exceptional set E(N). This second upper bound assumes the
possible existence of the Siegel zero, and consequently has an exceptional
set. However, before we present the main results of this paper, we first
define some nomenclature.

1.2. Notation. We will use some of the same notation used by Polyakov
[11] for simplicity:

Suppose m and u are natural numbers; p is a prime; N is a suf-
ficiently large positive integer; µ is the Möbius function; ϕ is Euler’s
totient function; P(n) :=

∏∞
p=3

(
1− 1

p−1

(
n
p

))
where (n/p) is the Le-

gendre symbol; 0 < δ ≤ 0.0025; 0 < δ1 ≤ 0.000025; ε > 0; Q = N εδ;
τ = N1−46δ; s = σ + it is a complex variable; c, c1, c2, . . . are absolute
positive constants; χ is a Dirichlet character mod q; χ0 is the princi-
pal character mod q; χ∗ is the primitive character corresponding to χ;∑

χ is the summation over all characters mod q;
∑

a≤q
∗ is the sum-

mation over a reduced system of residues mod q; L(s, χ) =
∑∞

n=1
χ(n)
ns

is the L-function defined for σ > 1; β, also known as a Siegel zero,
is an exceptional real zero (if it exists) in the region <(s) ≥ c log−1 Q
for the L-function L(s, χ̃) with the real primitive character χ̃ mod r̃

where r̃ ≤ Q = exp{log1/2 N}; ε(β) = ε(β, Q) is a function equal to
1 if β exists and is equal to 0 if otherwise; α and x are real variables;
e(x) = exp{2πix}; B is a bounded quantity whose absolute value is
bounded above by some constant that is independent of n and N .

1.3. Main Theorem. Now we are ready to state the central results of
this paper.
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Theorem 1.2. For all n ≤ N ,

(1.8) R(n) ≤ 2 ·P(n)
N

log N

(
1 + O

(
log log 3N

log N

))
.

For all N/2 < n ≤ N except for at most � N1−δ1 of these integers, if
the Siegel zero β does indeed exist,

(1.9) R(n) �N P(n)N1/2 exp
{−c

δ

}
(1− β) log N.

If the Siegel zero does not exist, then the (1 − β) log N term in (1.9) is
removed and the resultant bound holds for all N/2 < n ≤ N except for
at most � N1−δ of these integers. Note that δ and δ1 are fixed, where
0 < δ ≤ 0.0025 and 0 < δ1 ≤ 0.000025, as defined in §1.2.

Although we have not proven Conjecture 1.1 (which is unlikely to
be proven in the current state of knowledge anyway), our results are
of interest. The upper bounds in Theorem 1.2 involve P(n) (just like
Conjecture 1.1 does), the treatment of the conjectural Siegel zero is
explicit, the cardinality of the exceptional set in (1.9) is rather small
since it is contained within the cardinality of the exceptional set given
by Brünner, Perelli, and Pintz [9] (see our §1.1). Moreover, under the
likely assumption that the Siegel zero β does not exist, the upper bound
in (1.8) has no exceptions.

2. Preliminaries

In order to prove Theorem 1.2, we introduce some auxiliary functions
and lemmas about these functions. We should inform the reader that
any lemma that is presented without proof in this paper means that it
has already been stated and proven by Polyakov [11]. Put

P (α) :=
∑

Q<p≤N

log pe(pα)

F (α) :=
∑

√
N/2<n≤

√
N

e(m2α)

R(n) :=
∑

Q<p≤N
n=p+m2

∑
√

N/2<m≤
√

N

log p.

(2.1)

Note that R(n) and R(n) are easily related by partial summation. An
upper bound of �-type on R(n) is applicable to R(n). Thus, for N/2 <
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n ≤ N ,

(2.2) R(n) =
∫ 1

0
P (α)F (α)e(−nα)dα =

∫ 1−1/τ

−1/τ
P (α)F (α)e(−nα)dα.

Dirichlet’s approximation theorem leads us to the notion that each
α ∈ [−1/τ, 1 − 1/τ ] can be represented in the form α = a

q + z for
1 ≤ q ≤ z, gcd(a, q) = 1, and |z| ≤ 1

qτ . Let

M1 := {α ∈ [−1/τ, 1− 1/τ ] : for which q ≤ Q

is in the indicated representation}
M2 := {α ∈ [−1/τ, 1− 1/τ ] : for which q ≤ Q

is not in the indicated representation}.

(2.3)

Now, put R(n) = R1(n) + R2(n), where

R1(n) =
∫

M1

P (α)F (α)e(−nα)dα

R2(n) =
∫

M2

P (α)F (α)e(−nα)dα.

(2.4)

Lemma 2.1. For all N/2 < n ≤ N except for � N1−δ integers n,

(2.5) R2(n) � n1/2−2δ.

Proof. By using Parseval’s identity to show that

(2.6)
∑
n≤N

R2
2(n) ≤ max

M1

|F (α)|2
∫ 1

0
|P (α)|2dα

where

(2.7)
∫ 1

0
|P (α)|2dα =

∑
Q<p≤N

log2 N � N log N,

Polyakov [11] proves that

(2.8)
∑
n≤N

R2
2(n) ≤ N2−5δ,

which implies our lemma. �

As Polyakov [11] mentions, the following lemma is due to Karatsuba
[1, Ch. IX, Sec. 2].
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Lemma 2.2. There exists a constant c > 0 such that L(s, χ∗) 6= 0 for
σ ≥ 1 − c log−1 Q and for all primitive characters χ∗ mod r, where
r ≤ Q and Q ≥ 2, with the possible exception of at most one primi-
tive character χ̃ mod r̃. If this character exists, then it is a quadratic
character and the unique Siegel zero β for the L-function L(s, χ̃) satisfies

(2.9) c1r̃
−1/2 log−2 r̃ ≤ 1− β ≤ c log−1 Q.

Also, if there are any L(s, χ), where χ is a real character mod q, such
that L(β, χ) = 0 in (2.9), then q ≡ 0 (mod r̃).

Next, put

V (a, q) :=
∑

1≤m≤q

e

(
m2 a

q

)

K(z) :=
∑

N/4<m≤N

e(mz)
2
√

m
.

(2.10)

Thus, R1(n) = R
(1)
1 (n) + R

(2)
1 (n) + R

(3)
1 (n) if

R
(1)
1 (n) =

(∑
q≤Q

µ(q)
qϕ(q)

∑
a≤q

∗V (a, q)e
(
−n

a

q

))

×

(∫ 1/(qτ)

−1/(qτ)
T (z, 1)K(z)e(−nz)dz

− ε(β)
∑
q≤Q

q≡0 (mod r̃)

τ(χ̃χ0)
qϕ(q)

∑
a≤q

∗V (a, q)χ̃(a)

)

×

(
e

(
−n

a

q

)∫ 1/q(τ)

−1/(qτ)
T (z, β)K(z)e(−nz)dz

)

R
(2)
1 (n) =

∑
q≤Q

∑
a≤q

∗
∫ 1/(qτ)

−1/(qτ)
P

(
a

q
+ z

)(
F

(
a

q
+ z

)
− V (a, q)

q
K(z)

)

e

(
−n

(
a

q
+ z

))
dz
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R
(3)
1 (n) =

∑
q≤Q

1
qϕ(q)

∑
a≤q

∗V (a, q)e
(
−n

a

q

)∑
χ

χ(a)τ(χ̃)

×
∫ 1/(qτ)

−1/(qτ)
K(z)W (χ, z)e(−nz)dz,

where, as defined by Montgomery and Vaughan [7],

T (z, γ) =
∑

Q<u≤N

uγ−1e(uz)

and
W (χ, z) =

∑
Q<p≤N

χ(p) log pe(pz)

in which χ 6= χ0 and χ 6= χ̃χ0, and τ(χ) is the Gauss sum.
In order to develop an upper bound for R1(n) we need three more

lemmas.

Lemma 2.3. For N/2 < n ≤ N ,

R
(1)
1 (n)

= Σ(n, Q)
∑

n=u+m

1
2
√

m
− ε(β)Σ(n, Q, β)

∑
n=u+m

uβ−1

2
√

m
+ BN1/2−34δ

(2.11)

where

(2.12) Σ(n, Q) =
∑
q≤Q

µ(q)
qϕ(q)

∑
a≤q

∗V (a, q)e
(
−n

a

q

)

(2.13) Σ(n, Q, β) =
∑
q≤Q

q≡0 (mod r̃)

τ(χ̃χ0)
qϕ(q)

∑
a≤q

∗V (a, q)χ̃(a)e
(
−n

a

q

)
.

Lemma 2.4. It follows from the relation given in (2.7) that for all
N/2 < n ≤ N ,

(2.14) R
(2)
1 (n) � N

∑
q≤Q

∑
a≤q

∗
∫ 1/(qτ)

−1/(qτ)

(
q +

N

qτ

)
dz.
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Lemma 2.5. Put q = kr where gcd(k, r) = 1 (because otherwise R
(3)
1 (n)

would be 0), then for all N/2 < n ≤ N ,

R
(3)
1 (n) =

(∑
r≤Q

1
rϕ(r)

∑
χ∗ mod r

τ(χ∗)
∑
a1≤r

∗V (a1, r)

)

·

(
χ∗(a1)e

(
−n

a1

r

)∫ 1/rτ

−1/rτ
K(z)W (χ∗, z)e(−nz)dz

)

·

( ∑
k≤Q/r

gcd(k,r)=1

µ(k)
kϕ(k)

∑
a≤k

∗V (a, k)e
(
−n

a

k

)
+ BN1/2−2δ

)
.

(2.15)

The last set of two lemmas deals with auxiliary functions that will
later be useful in developing an upper bound for R(n).

Lemma 2.6. Let P(n) be defined as in §1.2, then for all n ≤ N , except
for � N0.7 of these integers,

(2.16) Σ(n, Q) = P(n) + Bn−2δ1 .

Lemma 2.7. If r ≤ Q, then for all n ≤ N , except for � N1−δ1 of these
integers, gcd(t, n) ≤ N1−δ1.

Now we are ready to prove our main theorem.

3. Proof of Theorem 1.2

Since R(n) = R1(n) + R2(n) and in Lemma 2.1 we prove an upper
bound for R2(n), all we have to do is to prove an upper bound for R1(n).
In order to do so, we examine R

(1)
1 (n), R

(2)
1 (n), and R

(3)
1 (n), individually.

In (2.11) of Lemma 2.3, a simplified expression is given for R
(1)
1 (n).

Σ(n, Q) is evaluated in Lemma 2.6. Similarly, ε(β) is defined to be
either 1 or 0 depending on the existence of β. Hence, in order to prove an
upper bound for R

(1)
1 (n), we must prove upper bounds for

∑
n=u+m

1
2
√

m
,

Σ(n, Q, β), and uβ−1.
It follows from Lemma 2.7 that for all N/2 < n ≤ N , with t = r̃,

except for � N1−δ1 of these integers, when r̃ > N3.6δ1 [11],

(3.1) Σ(n, Q, β) � n−2δ1 .
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From Lemma 2.2, it follows that for Q < u ≤ N ,

(3.2) 1− uβ−1 =
∫ 1

β
us−1 log uds ≥ c3(1− β) log n,

which implies

(3.3) uβ−1 ≤ 1− c3(1− β) log n.

It is easy to see that

(3.4)
∑

n=u+m

1
2
√

m
≤ ζ(2)

2
.

As a result, if the Siegel zero β exists, then

R
(1)
1 (n) �

( ∑
n=u+m

1
2
√

m

)
×
(
P(n) + Bn−2δ1 − n−2δ1(1− c3(1− β) log n)

)
+ BN1/2−34δ.

(3.5)

If the Siegel zero β does not exist, then

(3.6) R
(1)
1 (n) �

( ∑
n=u+m

1
2
√

m

)(
P(n) + Bn−2δ1

)
+ BN1/2−34δ.

We now move on to formulate an upper bound for R
(2)
1 (n). This is a

rather easy task to complete since Polyakov [11] already proves it. Using
(2.7), it follows from Lemma 2.3,

(3.7) R
(2)
1 (n) � N100δ.

Lastly, we prove an upper bound for R
(3)
1 (n). If we consider the sum

in (2.15) of Lemma 2.5 for r ≤ N5δ then we can denote this first partial
sum as R

(3.1)
1 (n). If we consider the same sum for N5δ < r ≤ Q, then

we can denote this second partial sum as R
(3.2)
1 (n). Hence, R

(3)
1 (n) =

R
(3.1)
1 (n) + R

(3.2)
1 (n). Polyakov [11] proves that for all n ≤ N except for

� N0.7 of these integers,
(3.8)

R
(3.1)
1 (n) � (P(n)+Bn−2δ1)

∑
r≤N5δ

∑
χ∗ mod r

(∫ 1/(rτ)

−1/(rτ)
|W (χ∗, z)|2dz

)1/2

.
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The double sum in (3.8) was considered by Montgomery and Vaughan
[7] who showed that if the Siegel zero β exists for n ≤ N ,

∑
r≤N5δ

∑
χ∗ mod r

(∫ 1/(rτ)

−1/(rτ)
|W (χ∗, z)|2dz

)1/2

� N1/2 exp
{−c

δ

}
(1− β) log N,(3.9)

and in the absence of an exceptional zero β,

(3.10)
∑

r≤N5δ

∑
χ∗ mod r

(∫ 1/(rτ)

−1/(rτ)
|W (χ∗, z)|2dz

)1/2

� N1/2 exp
{−c

δ

}
.

With the assistance of Lemma 2.7, with t = r and δ1 = δ, Polyakov
[11] proves that independent of the existence of the Siegel zero β, for all
N/2 < n ≤ N , except for � N1−δ of these integers,

(3.11) R
(3.2)
1 (n) � N1/2−2δ.

Combining our results yields two upper bounds for R(n) for N/2 < n ≤
N . The first bound assumes the existence of β and holds for all but at
most � N1−δ1 of these integers,

(3.12) R(n) �N P(n)N1/2 exp
{−c

δ

}
(1− β) log N.

Note that we only considered the case of r̃ > N3.6δ1 when obtaining the
estimate in (3.12). For r̃ ≤ N3.6δ1 , we have then that for all n ≤ N
except for � N0.7 of these integers, |Σ(n, Q, β)| ≤ P(n)+Bn−2δ1 , from
which one derives that the bound in (3.12) still holds.

The second bound assumes that β does not exist, and holds for all
N/2 < n ≤ N except for at most � N1−δ of these integers,

(3.13) R(n) �N P(n)N1/2 exp
{
− c

δ

}
.

We can also obtain an unconditional upper bound on R(n) of the correct
order of magnitude with no exceptions by way of sieve methods. We will
derive an upper bound on Rk(n), the number of representations for the
equation n = p + mk where k ≥ 2, and then take the case for k = 2.

Let A stand for a general integer sequence to be “sifted” and let P
stand for a “sifting” set of primes. Moreover, S(A ;P, z) is a sifting
function where z ≥ 2 is a real number. In the case of the present
problem, we are sifting the set of numbers n −m2 in order to estimate



Upper bounds on the solutions to n = p + m2 105

how often it is prime. The appropriate method we will utilize is to
obtain a Selberg upper bound for S(A ;P, z). Typically, an upper bound
produced by Selberg’s method is of �-type; however, by incorporating
several important theorems of Halberstam and Richert [6], more explicit
estimates can be yielded. We should note that neither the problem of
the sum of a prime and a square nor the problem of the sum of a prime
and a k-th power is dealt with in [6].

The sequence that is to be sifted for 1 < Y ≤ N is

A = {n−mk : N − Y < n ≤ N}

From Theorem 5.3 of Halberstam and Richert [6], we let F (n) to be a
distinct irreducible polynomial with integral and positive leading coeffi-
cients, and let ρk(p, n) denote the number of solutions to the congruence

mk − n ≡ 0 (mod p),

with n constant for the purposes of the congruence. Also, N and Y are
real numbers satisfying

1 < Y ≤ N.

Hence from [6] and taking g = 1,

|{n : N − Y < n ≤ N,n−mk = p}| ≤ 2
∏
p

(
1− ρk(p, n)− 1

p− 1

)
· Y

log Y

(
1 + O

(
log log 3Y

log Y

))
.

Now we take the case for k = 2. Thus for Y = N ,

|{n : 0 < n ≤ N,n−m2 = p}| ≤ 2
∏
p

1−

(
n
p

)
p− 1


· N

log N

(
1 + O

(
log log 3N

log N

))
.

(3.14)

Theorem 1.2 follows. Note that the O constants may be subject to
the dependency mentioned in Remark 1 of Halberstam and Richert [6,
Ch. 5, Sec. 6].
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4. A note on the combinatorial sieve

Of course, Selberg’s method is not the only sieve method that can be
used to obtain an upper bound on R(n) for n ≤ N with no exceptions.
For instance, we can obtain an upper bound for S(A ;P, z) via a com-
binatorial sieve, as Zaccagnini [3] mentions. Hence, as in the derivation
of (3.14), our upper bound will be applicable to Rk(n) and then we will
take the case for k = 2. We proceed as follows.

The sequence that is to be sifted for u ≥ 1 and N1/u ≥ 2 is

A = {n−mk : 0 ≤ n ≤ N}

Lemma 4.1. Let F1(n), · · · , Fg(n) be distinct irreducible polynomials
with integral and positive leading coefficients whereF (n)=F1(n) · · ·Fg(n).
Let ρ(p, n) denote the number of solutions to the congruence

F (n) ≡ 0 (mod p).

Assume that for all primes p

ρ(p, n) < p.

Let q = q(N,u) denote a number having no prime divisors less than
N1/u and satisfying log q

log N � 1.
Then

|{n : 0 ≤ n ≤ N, Fi(n) = qi for i = 1, · · · , g}|

= N
∏

p<N1/u

(
1− ρ(p, n)

p

){
1 + OF (exp{−u(log u

− log log 3u− log g − 2)}) + OF

(
exp{−

√
log N}

)}
.

(4.1)

Proof. Lemma 4.1 is Theorem 2.6 of Halberstam and Richert [6]. �

Remark 4.2. The O constant in (4.1) at most depends upon the degrees
and coefficients of F .
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Note that as stated by Halberstam and Richert [6], the expression to
the right side of the equality in (4.1) is equivalent to

(u · exp{−γ})g
∏
p

(
1− ρk(p, n)− 1

p− 1

)(
1− 1

p

)−g+1 N

log N

·
(

1 + O (exp{−u(log u− log log 3u− log g − 2)}) + O

(
u

log N

))
.

(4.2)

We take g = 1. Hence, we obtain from Lemma 4.1 and (4.2) an upper
bound on Rk(n) of the correct order of magnitude

|{n : 0 < n ≤ N,n−mk = p}|

≤ (u · exp{−γ})
∏
p

(
1− ρk(p, n)− 1

p− 1

)
N

log N

× (1 + O (exp{−u(log u− log log 3u− 2)}) +O

(
u

log N

))
.

For k = 2 and n ≤ N sufficiently large (N1/u ≥ 2 and u ≥ 1), we have

R(n) ≤ (u · exp{−γ}) P(n)
N

log N

·
(

1 + O (exp{−u(log u− log log 3u− 2)}) + O

(
u

log N

))
.

(4.3)

As in (3.14), the upper bound achieved in (4.3) has no exceptions for
n ≤ N . Note that the O constants may be subject to the dependency
mentioned in Remark 4.2.
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