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BANACH MODULE VALUED SEPARATING MAPS

AND AUTOMATIC CONTINUITY

L. MOUSAVI∗ AND F. SADY

Communicated by Mohammad Sal Moslehian

Abstract. For two algebras A and B, a linear map T : A −→ B
is called separating, if x · y = 0 implies Tx · Ty = 0 for all x, y ∈ A.
The general form and the automatic continuity of separating maps
between various Banach algebras have been studied extensively. In
this paper, we first extend the notion of separating map for module
case and then we give a description of a linear separating map
T : B −→ X , where B is a unital commutative semisimple regular
Banach algebra satisfying the Ditkin’s condition and X is a left
Banach module over a unital commutative Banach algebra. We
also show that if X is hyper semisimple and T is bijective, then T
is automatically continuous and T−1 is separating as well.

1. Introduction

The notion of separating maps between two arbitrary algebras or be-
tween two spaces of functions A and B is a well-known notation. For
such structures a map T : A −→ B is separating if x · y = 0 implies
Tx · Ty = 0 for all x, y ∈ A. When A and B are spaces of functions, the
separating maps are, indeed, those maps that send every pair of func-
tions in A with disjoint cozero sets to a pair of functions in B with the
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same property. Weighted composition operators are standard examples
of linear separating maps between spaces of functions. In fact, it is well
known that in certain important cases all linear separating maps are
weighted composition operators. For instance, if X and Y are compact
Hausdorff spaces, then any linear separating map T from the supremum
norm Banach algebra C(X) of all continuous complex-valued functions
on X into C(Y ) is a weighted composition operator (on a subset of
Y ) which is automatically continuous, if T is bijective [14]. This result
has been extended in [15] for the case, where X is locally compact and
C(X) is replaced by the Banach algebra C0(X) consisting of all con-
tinuous complex valued functions on X vanishing at infinity and in [12]
for separating maps between certain commutative semisimple regular
Banach algebras.

Linear maps T : Lp(µ) −→ Lp(µ) with the property that f · g = 0,
a.e., implies Tf ·Tg = 0, a.e., were considered by Banach in [6]. Later on
J. Lamperti in [18] and W. Arendt in [5] continued the Banach’ research.
A separating map between two vector lattices is defined by this property
that |Tf |∧|Tg| = 0 whenever |f |∧|g| = 0. For some related results in the
vector lattices case we refer the reader to [1, 5] and for the separating
maps between ceratin subalgebras of continuous functions we refer to
[2, 3, 4, 7, 13, 14, 16, 17].

In this paper, introducing the notion of cozero set for elements in a
Banach module, we extend the notion of separating maps to Banach
module case. Then, we generalize the main results of [12] and give
a partial description of a separating map from a unital commutative
semisimple Banach algebra B which is regular and satisfies the Ditkin’s
condition to a certain left Banach module X . In particular, we show
that if X is hyper semisimple (in the sense of Definition 2.5 in [9]), then
every bijective linear separating map T : B −→ X is continuous and T−1

is separating as well (Theorem 3.11).

2. Preliminaries

Let A be a unital commutative Banach algebra with maximal ideal
space σ(A) and let X be a left Banach A-module which is unital; that is,
1A ·x = x for all x ∈ X , where 1A is the unit element of A. Following [9]
we say that a linear functional ξ ∈ X ∗ is a point multiplier on X if there
exists a point ϕ ∈ σ(A) such that 〈ξ, ax〉 = ϕ(a)〈ξ, x〉 for all x ∈ X and
a ∈ A. Submodules with codimension 1 in X are called hyper maximal
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submodules of X . By [8, Proposition 4.3] a proper closed submodule
P of X is hyper maximal if and only if there exists a non-trivial point
multiplier ξ on X such that P = ker(ξ). We note that, in general, a
left Banach A-module may have no point multiplier, see for example [9,
Example 4.8].

For a unital commutative Banach algebra A and a unital left Banach
A- module X we denote the set of all non-trivial point multipliers in
the closed unit ball of X ∗ by σhA(X ). Since any scalar multiple of a
point multiplier is itself a point multiplier, each closed hyper maximal
submodule of X is the kernel of an element in σhA(X ).

In this section, we assume that A is a unital commutative Banach
algebra and X is a unital left Banach A-module with σhA(X ) 6= ∅ unless
otherwise is specified.

Considering A as a (left) Banach module over itself we see that
σhA(A) = {λϕ : λ ∈ C, 0 < |λ| ≤ 1, ϕ ∈ σ(A)} and σ(A) = {ξ ∈
σhA(A) : 〈ξ, 1〉 = 1}. We always endow σ(A) with the Gelfand topol-

ogy and σhA(X ) with the relative weak-star topology. Since for each

ξ ∈ σhA(X ) the corresponding ϕ ∈ σ(A) satisfying 〈ξ, ax〉 = ϕ(a)〈ξ, x〉
for all x ∈ X and a ∈ A, is uniquely determined we can define a map ΛA :
σhA(X ) −→ σ(A) such that for each ξ ∈ σhA(X ), 〈ξ, ax〉 = ΛA(ξ)(a)〈ξ, x〉,
a ∈ A, x ∈ X . It is easy to see that σhA(X ) ∪ {0} is compact and ΛA is
continuous.

For an ideal I in A, h(I) denotes the hull of I, i.e., the closed subset
{ϕ ∈ σ(A) : ϕ|I = 0} of σ(A) and for a subset E of σ(A), we set
k(E) =

⋂
ϕ∈E ker(ϕ). For a submodule M of X we define (M : X ) =

{a ∈ A : aX ⊆ M}. The Gelfand radical radA(X ) of X is defined by
radA(X ) = ∩ξ∈σhA(X) ker(ξ) and we say that X is hyper semisimple if

radA(X ) = {0}. For each subset M of X we set annA(M) = {a ∈ A :
aM = {0}}. We note that Proposition 3.2 in [9] shows that the above
definition of radA(X ) is compatible with the same definition in [9].

Clearly, every (unital) commutative semisimple Banach algebra is a
hyper semisimple module over itself. The reader can find some examples
of hyper semisimple and non-hyper semisimple left Banach A-modules
in [9]. As another example of a hyper semisimple left Banach module,
let X be the sup-norm Banach space C[0, 1] and let A = Cn[0, 1] be the
Banach algebra of all n-times continuously differentiable functions on
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[0, 1] equipped with the following norm

‖f‖ = Σn
k=0

‖f (k)‖[0,1]
k!

(f ∈ A),

where ‖.‖[0,1] is the supremum norm on [0, 1]. It is easy to see that
X is a hyper semisimple (left) Banach A-module under the pointwise
multiplication as its module action.

We say that A satisfies the Ditkin’s condition, if for each a ∈ A and
ϕ ∈ σ(A) with ϕ(a) = 0, there exists a sequence (an) in A such that
for each n ∈ N, the Gelfand transformation ân of an vanishes on a
neighborhood of ϕ and lim ‖ana− a‖ = 0 as n −→∞.

It is easy to verify that (radA(X ) : X ) = radA(A) whenever the nat-
ural defined map ΛA is surjective. But, in general, ΛA is not surjective
(see Example 2.1). Obviously, for each ξ ∈ σhA(X ), ΛA(ξ) = ΛA(λξ), for
all λ ∈ C with |λ| ≤ 1, so that ΛA is not injective.

Remark 2.1. Let ∆A(X ) be the set of all closed hyper maximal submod-
ules of X . Then, since for two elements ξ1, ξ2 ∈ σhA(X ) with ker(ξ1) =
ker(ξ2) we have ΛA(ξ1) = ΛA(ξ2), so we can define a natural map
νA : ∆A(X ) −→ σ(A) such that ΛA(ξ) = νA(ker(ξ)) for each ξ ∈ σhA(X ).
[ 9, [9, Proposition 3.6] when X is hyper semisimple the natural defined
map νA is surjective if and only if annA(X ) = radA(A). But, the fol-
lowing example shows that the equality annA(X ) = radA(A) does not
imply, in general, the surjectivity of νA. Indeed, in the proof of [9,
Proposition 3.6] the author claims that νA(∆A(X)) is hull-kernel closed
in σ(A) (since ∆A(X ) is hull-kernel closed, in the sense that he has de-
fined earlier), while his previous result, i.e., Proposition 3.5 in [9] states
that for every hull-kernel closed subset S of ∆A(X ), νA(S) is closed in
the relative hull-kernel topology on the image of νA.

Example 2.2. Consider the algebra A =lip([0, 1], α) of all complex val-
ued functions f on [0, 1] satisfying the Lipschitz condition of order α,

0 < α < 1, such that lim |f(x)−f(y)|
|x−y|α = 0 as |x − y| → 0. Then, A

is a unital commutative semisimple Banach algebra under the following
norm

‖f‖ = ‖f‖[0,1] + sup
x 6=y

|f(x)− f(y)|
|x− y|α

(f ∈ A)
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and furthermore the maximal ideal space of A is equal to [0, 1] via the
evaluation homomorphisms. Now, set X = {f ∈ A : f(0) = 0}. Then,
X is a (maximal) ideal of A, so that it can be considered as a left Banach
A-module. For each t ∈ [0, 1] let δt be the evaluation homomorphism at
t defined on A. Then, clearly for each t ∈ (0, 1], δt|X ∈ σhA(X ). Now,

let ξ ∈ σhA(X ), then by the definition, there exists a point t ∈ [0, 1]
such that 〈ξ, fg〉 = f(t)〈ξ, g〉, f ∈ A, g ∈ X . Since A satisfies the
Ditkin’s condition [11, Theorem 4.4.30], we can see easily that for each
g ∈ ker(δt)∩X , 〈ξ, g〉 = 0, that is, ker(δt)∩X ⊆ ker(ξ). Hence, ξ = λδt|X
and so ker(ξ) = ker(δt|X ). This obviously implies that t 6= 0. It is simple
to observe that X is hyper semisimple and radA(A) = annA(X ) = {0},
but the above argument shows that the evaluation homomorphism δ0 at
0 is not in the range of ΛA.

We note that, indeed, the proof of [9, Proposition 3.6] concludes that
if X is hyper semisimple and annA(X ) = radA(A) , then νA has a dense
range in σ(A) with respect to the hull-kernel topology.

3. Main Results

In this section, we introduce the notion of cozero set for an element
of a left Banach module and the notion of separating maps between two
left Banach modules. Then, we give a description of a linear separating
map T : B −→ X , where B is a unital commutative semisimple regular
Banach algebra satisfying the Ditkin’s condition and X is a unital left
Banach module over a unital commutative Banach algebra A. We show
that for such T there exists a partition {σ0, σc, σd} for σhA(X ) such that
σ0 is closed and σd is open and there exist continuous functions Φ :
σc ∪ σd −→ σ(A) and ω : σc −→ C such that 〈ξ, T b〉 = ω(ξ)Φ(ξ)(b) for
all ξ ∈ σc and b ∈ B.

As before we assume that A is a unital commutative Banach algebra
and X is a unital left Banach A-module with σhA(X ) 6= ∅ and with the

natural map ΛA : σhA(X ) −→ σ(A).

Definition 3.1. For each x ∈ X we define the hyper cozero set cozh(x)
of x ∈ X , by cozh(x) = {ξ ∈ σhA(X ) : 〈ξ, x〉 6= 0} and the cozero set

coz(x) of x by coz(x) = ΛA(cozh(x))

We note that the notion of the support for an element x ∈ X is a well
known notion. Indeed, the support supp(x) of x ∈ X (which is called
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as Arveson local spectrum by some authors) is defined as the hull of
the closed ideal annA(x) in A, see for example [19, Section 4.12] and
[9]. The next lemma shows that if X is hyper semisimple, then for each
x ∈ X , supp(x) is, indeed, the the closure of the cozero set coz(x) with
respect to the hull-kernel topology on σ(A).

If we consider A as a left Banach module over itself (with multipli-
cation as its module action), then it is easy to see that for each a ∈ A,
the above defined cozero set coz(a) is, indeed, the cozero set of â as a
continuous function on σ(A).

Lemma 3.2. If A is regular and X is hyper semisimple, then supp(x) =

coz(x) for each x ∈ X .

Proof. Assume first that a ∈ annA(x). Then, since 0 = 〈ξ, ax〉 =
ΛA(ξ)(a)〈ξ, x〉 for all ξ ∈ σhA(X ), it follows that ΛA(ξ)(a) = 0 for all

ξ ∈ cozh(x). Hence, annA(x) ⊆ ∩ξ∈cozh(x) ker(ΛA(ξ)) = k(coz(x)). On

the other hand, if a ∈ k(coz(x)), then 〈ξ, ax〉 = ΛA(ξ)(a)〈ξ, x〉 = 0 for
all ξ ∈ cozh(x) which clearly implies that ax ∈ radA(X ) = {0}. There-

fore, annA(x) = k(coz(x)) and so h(annA(x)) = hk(coz(x)) = coz(x),
since A is assumed to be regular. �

Proposition 3.3. (a) coz(x1+x2) ⊂ coz(x1)∪coz(x2), for each x1, x2 ∈
X .

(b) coz(ax) ⊂ coz(a) ∩ coz(x), for each a ∈ A, x ∈ X .
(c) If X is hyper semisimple and x ∈ X such that coz(x) = ∅, then

x = 0.

Proof. It is straightforward. �

Definition 3.4. Let Y be a left Banach module over a unital commu-
tative Banach algebra B. We say that a linear map T : X −→ Y is
separating , if coz(x)∩ coz(x′) = ∅ implies coz(Tx)∩ coz(Tx′) = ∅ for all
x, x′ ∈ X .

A linear operator T on X is local, if supp(Tx) ⊆ supp(x) for all x ∈ X
(see for example [9,10,17]). It is easy to see that if A is regular and X
is hyper semisimple such that for each x ∈ X , coz(x) is an open subset
of σ(A), then any local operator on X is separating. In particular, if B
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is a non-unital commutative semisimple regular Banach algebra with A
as its unitization and X is a proper dense ideal in B which is a Banach
algebra with respect to a norm ‖.‖X satisfying ‖bx‖X ≤ ‖b‖ · ‖x‖X , for
all b ∈ B and x ∈ X , then regarding X as a Banach A-module (with
natural module action) it can be easily verified that σhA(X ) = {λϕ|X :
0 < |λ| ≤ 1, ϕ ∈ σ(B)} whenever X is essential as a Banach B-module,
i.e., span{bx : b ∈ B, x ∈ X} is dense in X . Hence, in this case, in the
Banach A-module X , coz(x) = {ϕ ∈ σ(B) : ϕ(x) 6= 0}, x ∈ X , which
is an open subset of σ(A). Thus, in this case all local operators on X
(as a Banach A-module) are separating. As an example of the ideals
with the above mentioned properties we can refer to Segal algebras on a
locally compact abelian group G as dense ideals in L1(G) (see [11, Pages
491-492]).

It is also easy to verify that the class of separating maps on X in-
cludes the class of all simple multipliers on X in the sense of [9]. By [9,
Definition 4.2] a simple multiplier on X is a linear map T : X −→ X
satisfying T (a · x) = a · Tx for a ∈ A and x ∈ X , leaving each closed
hyper maximal submodule of X invariant.

In the following we adapt the results of [12] concerning separating
maps between commutative semisimple regular Banach algebras to get
similar results for separating maps from unital commutative semisimple
regular Banach algebras into certain left Banach modules.

In the sequel we assume that A and B are unital commutative Banach
algebras, where B is semisimple and regular. We assume, furthermore,
that X is a unital left Banach A-module with σhA(X ) 6= ∅ and T : B −→
X is a linear separating map. Considering B as a left Banach module
over itself by coz(b) we mean the cozero set of b ∈ B which is the same

as the cozero set of the continuous function b̂ on σ(B).
We divide the set σhA(X ) into three parts as follows

σ0 = {ξ ∈ σhA(X ) : ξ ◦ T = 0},

σd = {ξ ∈ σhA(X )\σ0 : ξ ◦ T is not continuous },

σc = {ξ ∈ σhA(X )\σ0 : ξ ◦ T is continuous }.

For each ξ ∈ σc ∪ σd the support of the linear functional ξ ◦ T on B,
denoted by supp(ξ ◦T ), is defined as the set of all ϕ ∈ σ(B) such that for
each neighborhood U of ϕ there exists an element b ∈ B with coz(b) ⊆ U
and 〈ξ, T (b)〉 6= 0.
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Lemma 3.5. For each ξ ∈ σc ∪ σd, supp(ξ ◦ T ) is a singleton.

Proof. Let ξ ∈ σc ∪ σd. We first show that supp(ξ ◦ T ) is non-empty.
Assume towards a contradiction that supp(ξ ◦ T ) = ∅, then for each
ϕ ∈ σ(B) there exists an open neighborhood Uϕ of ϕ such that for each
b ∈ B with coz(b) ⊆ Uϕ we have 〈ξ, T (b)〉 = 0. Since σ(B) is compact,
there exist ϕi ∈ σ(B), i = 1, · · ·n, such that σ(B) =

⋃n
1 Uϕi . Set

Ui = Uϕi , i = 1, · · ·n. Then, by the regularity of B we can find elements
bi ∈ B, i = 1, · · ·n, such that for each i, coz(bi) ⊆ Ui and

∑n
i=1 bi = 1B,

where 1B is the unit element of B. The inclusion coz(bib) ⊆ coz(bi) ⊆ Ui
for each b ∈ B and i = 1, · · ·n, implies that 〈ξ, T (bib)〉 = 0 and so
〈ξ, T (b)〉 = 〈ξ, T (

∑n
i=1 bib)〉 = 0 for each b ∈ B. Hence, ξ ◦ T = 0 which

is impossible, since ξ ∈ σc ∪ σd.
Assume now that there exist two distinct points ϕ1 and ϕ2 in supp(ξ◦

T ) and let U1 and U2 be disjoint neighborhoods of ϕ1 and ϕ2, respec-
tively. Then, by the definition of supp(ξ ◦ T ), there exist elements
bi ∈ B, i = 1, 2, with coz(bi) ⊆ Ui and 〈ξ, T (bi)〉 6= 0. In particular,
coz(b1) ∩ coz(b2) = ∅ and hence coz(Tb1) ∩ coz(Tb2) = ∅. But, since
〈ξ, T (bi)〉 6= 0 it follows that ΛA(ξ) ∈ coz(Tb1) ∩ coz(Tb2) which is a
contradiction. �

The above lemma allows us to define a function Φ : σc ∪ σd −→ σ(B)
in such a way that supp(ξ ◦T ) = {Φ(ξ)}. We call Φ the support map of
T .

Lemma 3.6. The support map Φ is continuous.

Proof. Let (ξα) be a net in σc ∪ σd converging to a point ξ0 ∈ σc ∪
σd. Then, since σ(B) is compact we can assume that (Φ(ξα)) converges
to a point ϕ ∈ σ(B). Assume now that Φ(ξ0) 6= ϕ. Let U0 and U1

be disjoint neighborhoods of Φ(ξ0) and ϕ, respectively. Then, by the
definition of Φ, there exists an element b0 ∈ B with coz(b0) ⊆ U0 and
〈ξ0, T (b0)〉 6= 0. Since (Φ(ξα)) converges to ϕ and 〈ξ0, T b0〉 6= 0 it follows
that 〈ξα0 , T b0〉 6= 0 and Φ(ξα0) ∈ U1 for a sufficiently large α0. We can
now choose an element b1 ∈ B such that coz(b1) ⊆ U1 and 〈ξα0 , T (b1)〉 6=
0. Then, ξα0 ∈ cozh(Tb0) ∩ cozh(Tb1) and so ΛA(ξα0) ∈ coz(Tb0) ∩
coz(Tb1). Since T is assumed to be separating it follows that coz(b0) ∩
coz(b1) 6= ∅ which is a contradiction. �
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Proposition 3.7. (a) Let ξ ∈ σc ∪ σd and b ∈ B such that Φ(ξ) /∈
supp(b). Then, 〈ξ, T (b)〉 = 0.

(b) If b, b′ ∈ B and b̂ = b̂′ on an open subset U of σ(B), then for any
ξ ∈ Φ−1(U), 〈ξ, T b〉 = 〈ξ, T b′〉.

Proof. (a) Let U = σ(B)\supp(b). Then, Φ(ξ) ∈ U and so there exists
b0 ∈ B such that coz(b0) ⊆ U and 〈ξ, T (b0)〉 6= 0, that is, ξ ∈ cozh(Tb0).
Since coz(b) ⊆ σ(B)\U it follows that coz(b) ∩ coz(b0) = ∅ and so
coz(Tb) ∩ coz(Tb0) = ∅. Thus, cozh(Tb) ∩ cozh(Tb0) = ∅ and conse-
quently ξ /∈ cozh(Tb), i.e., 〈ξ, T (b)〉 = 0 as desired.

(b) Let b ∈ B such that b̂ = 0 on U and let ξ ∈ Φ−1(U). Then,
for any ϕ ∈ σ(B)\U there exists an open neighborhood Uϕ of ϕ, such
that 〈ξ, T c〉 = 0, for each c ∈ B with coz(c) ⊆ Uϕ. Since σ(B) =⋃
ϕ∈σ(B)\U Uϕ ∪ U we can find ϕi ∈ σ(B)\U , i = 1, · · · , n, such that

σ(B) =
⋃n
i=1 Uϕi ∪ U . Set Ui = Uϕi for i = 1, · · · , n and Un+1 = U .

Then, for each i = 1, · · · , n+ 1, there exists bi ∈ B, such that coz(bi) ⊆
Ui, and

∑n+1
i=1 bi = 1B. Since coz(bn+1b) ⊆ coz(bn+1) ∩ coz(b) = ∅, we

have bn+1b = 0 and therefore 〈ξ, T b〉 = 〈ξ, T (
∑n+1

i=1 bib)〉 =∑n
i=1 〈ξ, T (bib)〉 = 0 as coz(bib) ⊆ Ui. �

Theorem 3.8. Let B satisfy the Ditkin’s condition. Then, there exists a
continuous function ω : σc −→ C such that 〈ξ, T b〉 = ω(ξ)Φ(ξ)(b) holds
for all ξ ∈ σc and b ∈ B.

Proof. Let ξ ∈ σc and define

Jξ = {b ∈ B : Φ(ξ) /∈ supp(b)}
and

Kξ = {b ∈ B : Φ(ξ)(b) = 0}.
Since B satisfies the Ditkin’s condition it is easy to see that Jξ is dense
in Kξ. Let b ∈ Jξ, then by Proposition 3.7(a), 〈ξ, T (b)〉 = 0, that is,

b ∈ ker(ξ ◦ T ). Therefore, Kξ = Jξ ⊆ ker(ξ ◦ T ) and so there exists a
non-zero scalar ω(ξ) ∈ C such that ξ ◦ T = ω(ξ) · Φ(ξ). This gives a
non vanishing function ω : σc −→ C such that ξ ◦ T = ω(ξ) · Φ(ξ) for
all ξ ∈ σc. Since 〈ξ, T (1B)〉 = ω(ξ), it is clear that ω is continuous on
σc. �

In the sequel we assume further that B satisfies the Ditkin’s condition.
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Lemma 3.9. If (ξα) is a net in σc ∪ σd such that Φ(ξα) 6= Φ(ξβ) for
each α 6= β, then limsup‖ξα ◦T‖ <∞. In particular, Φ(σd) is finite and
consists of non-isolated points.

Proof. Assume on the contrary that limsup ‖ξα ◦ T‖ = ∞. Then, we
can choose a sequence (αn)n∈N such that αn < αn+1 and ‖ξαn ◦ T‖ ≥
n3 + ‖T1B‖ for each n ∈ N. Set ϕn = Φ(ξαn). We claim that there exist
a sequence (bn)n∈N in B and a sequence (Un) of disjoint open subsets of
σ(B) such that for each n ∈ N, ϕn ∈ Un, ‖bn‖ ≤ n−3, coz(bn) ⊆ Un and
|〈ξαn , T bn〉| ≥ n3. We first note that since for each n ∈ N, ‖ξαn ◦ T‖ >
n3 + ‖T1B‖ we can find a sequence (tn) in B such that ‖tn‖ ≤ 1 and
|〈ξαn , T tn〉| ≥ n3 + ‖T1B‖. Set zn = tn − ϕn(tn) · 1B. Then, ϕn(zn) = 0
and furthermore |〈ξαn , T zn〉| ≥ n3, since |〈ξαn , ϕn(tn) · T1B〉| ≤ ‖ξαn‖ ·
‖tn‖ · ‖T1B‖ ≤ ‖T1B‖. Now, since B satisfies the Ditkin’s condition,
for each n we can find an open neighborhood Un of ϕn and an element
en ∈ B such that ên = 0 on Un and ‖zn − znen‖ ≤ n−3. We may
assume that Un ∩ Um = ∅ for n 6= m. Set dn = zn − znen. Then,

since d̂n = ẑn on Un and ξαn ∈ Φ−1(Un), Proposition 3.7(b) implies that
|〈ξαn , Tdn〉| = |〈ξαn , T zn〉| ≥ n3. For each n ∈ N, let Vn be an open
neighborhood of ϕn such that Vn ⊆ Un. Then, by the regularity of B,
we can find a sequence (cn) in B such that for each n ∈ N, ĉn = 1 on Vn
and ĉn = 0 on σ(B)\Un. Now, since ϕn(cndn) = 0 and B satisfies the

Ditkin’s condition we can find a sequence (hn) in B such that each ĥn
vanishes on a neighborhood of ϕn and ‖cndn − hncndn‖ ≤ n−3. Now,
set bn = cndn − hncndn. Then, ‖bn‖ ≤ n−3, coz(bn) ⊆ coz(cn) ⊆ Un and
using Proposition 3.7(b) once again we can easily see that |〈ξαn , T bn〉| =
|〈ξαn , T (cndn)〉| = |〈ξαn , Tdn〉| ≥ n3 which establishes the claim.

Put now b = Σ∞n=1bn, then b is an element of B such that for each

n ∈ N, b̂ = b̂n on Un and consequently by Proposition 3.7(b)

|〈ξαn , T (b)〉| = |〈ξαn , T (bn)〉| ≥ n3.

Hence, ‖Tb‖ ≥ |〈ξαn , T (b)〉| ≥ n3 for each n ∈ N, which is impossible.
Therefore, limsup ‖ξα ◦ T‖ <∞

Assume now that Φ(σd) is not finite and let (ξn)n∈N be a sequence in
σd such that Φ(ξn) 6= Φ(ξm) for all n 6= m. Since for each n, ξn ◦ T is
non-continuous, it follows that ‖ξn◦T‖ =∞ and so lim sup ‖ξn◦T‖ =∞
which is a contradiction by the first part.
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We shall show that each point in Φ(σd) is a non-singular point. Let
ξ ∈ σd be such that Φ(ξ) is a singular point. Then, obviously for each
b ∈ B with Φ(ξ)(b) = 0 we have Φ(ξ) /∈ supp (b) and so by Proposition
3.7(a), ξ ◦T (b) = 0. Hence, ker(Φ(ξ)) ⊆ ker(ξ ◦T ) and therefore ξ ◦T =
λΦ(ξ) for some non-zero scalar λ, which is impossible since ξ ◦ T is not
continuous. �

Proposition 3.10. The subset σ0 is closed and σd is open in σhA(X ).

Proof. Since σ0 = ∩b∈B{ξ ∈ σhA(X ) : 〈ξ, T b〉 = 0}, it is clear that σ0 is
closed. On the other hand sup{|〈ξ, T b〉| : ξ ∈ σ0 ∪ σc} = sup{|〈ξ, T b〉| :
ξ ∈ σ0∪σc} ≤ ‖ω‖ · ‖b‖, where ‖ω‖ = supξ∈σc |ω(ξ)| = supξ∈σc |〈ξ, T1B〉|
which is clearly bounded by ‖T1B‖. This implies easily that for each
ξ ∈ σ0 ∪ σc, either ξ ◦ T = 0 or ξ ◦ T is continuous, that is, σ0 ∪ σc =
σ0 ∪ σc. Hence, σ0 ∪ σc is closed and therefore σd is open in σhA(X ). �

If X is hyper semisimple, then in an analogous way to the Gelfand rep-
resentation for the Banach algebras, we can identify X with a subspace
of C(σhA(X )∪{0}). This identification carries an A-module structure on
this subspace. In this case we see that, through this identification, The-
orem 3.8 gives a representation of the separating map T on the subset
σc of σhA(X ).

In the following we show that under the hyper semisimplicity assump-
tion on X every bijective separating map T : B −→ X can be considered
as a weighted composition operator on the whole σhA(X ) which is auto-
matically continuous and moreover, its inverse is separating as well.

Theorem 3.11. Let A, B and X be as in Theorem 3.8. If X is hyper
semisimple and T : B −→ X is a bijective separating map, then σc =
σhA(X ). In particular, T is continuous and T−1 is separating.

Proof. Let {σ0, σc, σd} be the partition given earlier for σhA(X ) . Since

T is surjective, it is easily seen that σ0 = ∅, i.e., σhA(X ) = σc ∪ σd. Let
ω and Φ be defined as in Theorem 3.8. We prove the theorem via the
following steps:

Step I. Φ(σhA(X )) = Φ(σc) = σ(B).

We first show that Φ(σhA(X )) = σ(B). Assume on the contrary that
there exist a point ϕ ∈ σ(B) and a neighbourhood U of ϕ such that
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U ∩ Φ(σhA(X )) = ∅. Then, using the regularity of B, we can find
a non-zero element b ∈ B whose support is contained in U . Thus,
for each ξ ∈ σhA(X ), 〈ξ, T (b)〉 = 0, by Proposition 3.7(a). Therefore,
T (b) ∈ radA(X ) = {0} and hence b = 0, which is a contradiction. Now,

it suffices to show that Φ(σd) ⊆ Φ(σc). As above assume on the con-
trary that there exist a point ξ ∈ σd and an open neighbourhood U of
Φ(ξ) such that U ∩ Φ(σc) = ∅. Since by Lemma 3.9, Φ(σd) is finite we
can assume that U ∩ Φ(σd) = {Φ(ξ)}. On the other hand, since Φ(σd)
consists of non-isolated points of σ(B) there exists a point ϕ ∈ U dis-
tinct from Φ(ξ). Then, U\{Φ(ξ)} is a neighbourhood of ϕ in σ(B) with

U\{Φ(ξ)} ∩Φ(σhA(X )) = ∅, that is, ϕ /∈ Φ(σhA(X )) which is a contradic-

tion. Therefore, Φ(σd) ⊆ Φ(σc) as desired.

Step II. T is continuous.
Let (bn) be a sequence in B such that bn → 0 and T (bn) → x for

some x ∈ X . Let b ∈ B such that Tb = x. Then, for any ξ ∈ σc we have
ξ◦T (bn)→ 0 and ξ◦T (bn)→ ξ◦T (b). Thus, 0 = 〈ξ, T b〉 = ω(ξ) ·Φ(ξ)(b)

for all ξ ∈ σc. Therefore, b̂ = 0 on Φ(σc) which implies that b = 0,

since b̂ is continuous and Φ(σc) is dense in σ(B). This shows that T is
continuous by the closed graph theorem.

We note that the above argument shows σd = ∅ and therefore σhA(X ) =
σc.

Step III. T−1 is separating.

Let b1, b2 ∈ B such that coz(Tb1)∩ coz(Tb2) = ∅. Then, b̂1 · b̂2 = 0 on
Φ(σc) = Φ(σhA(X )) which implies, as the above argument, that b1b2 = 0.
Thus, T−1 is separating. �
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