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G-FRAMES AND HILBERT-SCHMIDT OPERATORS

M. R. ABDOLLAHPOUR AND A. NAJATI∗

Communicated by Heydar Radjavi

Abstract. In this paper we introduce and study Besselian g-frames.
We show that the kernel of associated synthesis operator for a
Besselian g-frame is finite dimensional. We also introduce α-dual of
a g-frame and we get some results when we use the Hilbert-Schmidt
norm for the members of a g-frame in a finite dimensional Hilbert
space.

1. Introduction

Frames for Hilbert spaces introduced by Duffin and schaeffer in 1952
[4]. A sequence {fi}i∈I ⊆ H is a frame for H, if there exist two positive
constants A,B such that

(1.1) A‖f‖2 ≤
∞∑
i=1

|〈f, fi〉|2 ≤ B‖f‖2

for all f ∈ H. The numbers A,B are called frame bounds. Various gen-
eralizations of frames in Hilbert spaces have been proposed and stud-
ied recently. For example, frame of subspaces [2], Pseudo frames for
subspaces[7], Bounded quasi-projectors [5], oblique frames [3] etc. Wen-
chang Sun in his paper [12] introduced the concept of g-frames which
include all mentioned generalizations. Members of ordinary frames are
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vectors of a Hilbert space, while members of g-frames are bounded op-
erators. Besselian frames and near-Riesz bases in Hilbert spaces intro-
duced by Holub [6]. Also, Besselian frame of subspaces introduced and
discussed in [9]. The authors of this paper in [1], introduced the concept
of near g-Riesz bases and they showed that a near g-Riesz basis is a
Besselian g-frame.
In this paper by using the concept of Besselian frame and g-frame we
define Besselian g-frame and investigate some of their properties. In
section 2, we give the basic definitions and known results needed. In
section 3, we investigate some properties of Besselian g-frames. In par-
ticular, we show that under some conditions, the kernel of associated
synthesis operator for a Besselian g-frame is finite dimensional. In sec-
tion 4, we introduce α-dual of a g-frame and we get some results when
we use the Hilbert-Schmidt norm for the members of a g-frame in a finite
dimensional Hilbert space.

2. Preliminaries

Throughout this paper, H is a separable Hilbert space and {Hi}i∈I is
a sequence of separable Hilbert spaces, where I is a subset of N.

Definition 2.1. The sequence {Λi ∈ B(H,Hi) : i ∈ I} is called a g-
Bessel sequence if there exists B > 0 such that

(2.1)
∑
i∈I
‖Λif‖2 ≤ B‖f‖2

for all f ∈ H.

Let {Λi ∈ B(H,Hi) : i ∈ I} be given. Let us define(∑
i∈I
⊕Hi

)
l2

=

{
{gi} : gi ∈ Hi,

∑
i∈I
‖gi‖2 <∞

}
with the inner product given by 〈{fi}, {gi}〉 =

∑
i∈I〈fi, gi〉. It is clear

that
(∑

i∈I ⊕Hi
)
l2

is a Hilbert space with respect to the pointwise op-

erations. It is proved in [10] , if {Λi ∈ B(H,Hi) : i ∈ I} is a g-Bessel
sequence for H, then the operator

T :

(∑
i∈I
⊕Hi

)
l2

→ H
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defined by

(2.2) T ({gi}) =
∑
i∈I

Λ∗i (gi)

is well defined, bounded and T ∗f = {Λif}i∈I .

Definition 2.2. We call a sequence {Λi ∈ B(H,Hi) : i ∈ I} a g-frame
for H with respect to {Hi}i∈I if there exist two positive constants A and
B such that

(2.3) A‖f‖2 ≤
∑
i∈I
‖Λif‖2 ≤ B‖f‖2

for all f ∈ H. We call A and B the lower and upper g−frame bounds,
respectively.
We call {Λi}i∈I a tight g-frame if A = B and Parseval g-frame if A =
B = 1.

The sequence {Λi ∈ B(H,Hi) : i ∈ I} is a g-frame for H if and
only if the operator T defined by (2.2) is bounded and onto (see [10]).
The operators T and T ∗ are called the synthesis and analysis operators,
respectively.

Proposition 2.3. [12] Let {Λi ∈ B(H,Hi) : i ∈ I} be a g-frame for H.
The operator

S : H → H, Sf =
∑
i∈I

Λ∗iΛif

is a positive, bounded and invertible operator.

Proposition 2.3 implies that every f ∈ H can be represented as

(2.4) f = SS−1f =
∑
i∈I

Λ∗iΛiS
−1f, f = S−1Sf =

∑
i∈I

S−1Λ∗iΛif.

The operator S is called the g-frame operator of {Λi}i∈I .
It is easy to check that if {Λi ∈ B(H,Hi) : i ∈ I} is a g-Bessel sequence,
then S is well defined and S = TT ∗. We end this section by definition
of g-Riesz basis.

Definition 2.4. A sequence {Λi ∈ B(H,Hi) : i ∈ I} is called a g-Riesz
basis for H with respect to {Hi}i∈I if there exist two positive constants
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A and B such that for any finite subset F ⊆ I and gi ∈ Hi, i ∈ F,

(2.5) A
∑
i∈F
‖gi‖2 ≤ ‖

∑
i∈F

Λ∗i gi‖2 ≤ B
∑
i∈F
‖gi‖2,

and {Λi ∈ B(H,Hi) : i ∈ I} is g-complete, i.e., {f : Λif = 0, i ∈ I} = 0.

It is proved in [10], that {Λi ∈ B(H,Hi) : i ∈ I} is g-complete if and
only if span{Λ∗i (Hi)}i∈I = H .

3. Besselian g-frames

As usual, we denote by l2(I) the Hilbert space of all square-summable
sequences of scalars {ci}i∈I . If {fi}i∈I is a frame for H, then

∑
i∈I cifi

converges if {ci}i∈I ∈ l2(I). But the converse is not true in general (see
[6]). We say that a frame {fi}i∈I for H is

• Besselian if, whenever
∑

i∈I cifi converges, then {ci}i∈I ∈ l2(I);
• a near-Riesz basis, if there is a finite set σ for which {fi}i∈I\σ is

a Riesz basis for H.

We recall the following characterization of frames which are near-Riesz
bases.

Theorem 3.1. [6] If {fi}i∈I is a frame in H, the following are equiva-
lent:

(i) {fi}i∈I is a near-Riesz basis for H;
(ii) {fi}i∈I is Besselian;
(iii)

∑
i∈I cifi converges if and only if {ci}i∈I ∈ l2(I).

Besselian frame of subspaces introduced and discussed in [9]. Here we
introduce the concept of Besselian g-frames.

Definition 3.2. Let Λ = {Λi}i∈I be a g-frame for H with respect to
{Hi}i∈I . We call Λ a Besselian g-frame if, whenever

∑
i∈I Λ∗i gi con-

verges, then

{gi}i∈I ∈

(∑
i∈I
⊕Hi

)
l2

.

Let {eij}j∈Ji be an orthonormal basis for Hi for each i ∈ I and {Λi ∈
B(H,Hi) : i ∈ I} be given. Then {Λ∗i eij}i∈I,j∈Ji is a frame (res. Riesz
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basis) for H if and only if {Λi}i∈I is a g-frame (res. g-Riesz basis) for H
(see [12]).

Theorem 3.3. Suppose that dimHi < ∞ for each i ∈ I. Let Λ =
{Λi}i∈I be a Besselian g-frame for H with respect to {Hi}i∈I and T be
the associated synthesis operator for Λ. Then KerT is finite dimensional.

Proof. Let {eij}j∈Ji be an orthonormal basis for Hi for each i ∈ I.
Then {Λ∗i eij}i∈I,j∈Ji is a frame for H. Suppose that

∑
i∈I
∑

j∈Ji cijΛ
∗
i eij

converges. Since Λ is a Besselian g-frame, we get
{∑

j∈Ji cijeij

}
i∈I
∈(∑

i∈I ⊕Hi
)
l2

. So

∑
i∈I

∑
j∈Ji

|cij |2 =
∑
i∈I

∥∥∥∑
j∈Ji

cijeij

∥∥∥2
<∞.

Hence {Λ∗i eij}i∈I,j∈Ji is Besselian. Let Q be the associated synthesis
operator for {Λ∗i eij}i∈I,j∈Ji , then dim KerQ <∞ [6, Theorem 2.3 ]. Let
us define Eij ∈

(∑
i∈I ⊕Hi

)
l2

by

(3.1) (Eij)k =

{
eij , i = k
0, i 6= k

for all i, j, k ∈ I. It is easy to check that {Eij}i∈I,j∈Ji is an orthonormal
basis for

(∑
i∈I ⊕Hi

)
l2

(see[10]). By the definition of Q and T , it is clear

that

Q({cij}i∈I,j∈Ji) =
∑
i∈I

∑
j∈Ji

cijΛ
∗
i eij = T

(∑
i∈I

∑
j∈Ji

cijEij

)
.

Now we consider the mapping

ϕ : KerQ→ KerT, ϕ({cij}i∈I,j∈Ji) =
∑
i∈I

∑
j∈Ji

cijEij .

It is obvious that ϕ is linear and injective. We claim that ϕ is surjective.
Let {gi}i∈I ∈ KerT. Then gi ∈ Hi and gi =

∑
j∈Ji λijeij for each i ∈ I.

Since ‖gi‖2 =
∑

j∈Ji |λij |
2, we have

∑
i∈I
∑

j∈Ji |λij |
2 =

∑
i∈I ‖gi‖2 <
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∞. Therefore {λij}i∈I,j∈Ji ∈ l2 and

Q
(
{λij}i∈I,j∈Ji

)
= T

(∑
i∈I

∑
j∈Ji

λijEij

)
= T

(
{gi}i∈I

)
= 0,

ϕ
(
{λij}i∈I,j∈Ji

)
=
∑
i∈I

∑
j∈Ji

λijEij = {gi}i∈I .

Hence dim KerT = dim KerQ <∞ and the proof is completed. �

In the next theorem we get characterizations of generalized frames,
Riesz bases, and frames.

Theorem 3.4. Let {Λi ∈ B(H,Hi) : i ∈ I} be given and let {gij}j∈Ki be
a frame (res. Riesz basis) for Hi with bounds Ai, Bi for each i ∈ I such
that 0 < A = infi∈I Ai and B = supi∈I Bi <∞. Then {Λ∗i gij}i∈I,j∈Ki is
a frame (res. Riesz basis) for H if and only if {Λi}i∈I is a g-frame (res.
g-Riesz basis) for H with respect to {Hi}i∈I .

Proof. (1) Let f ∈ H and {Λ∗i gij}i∈I,j∈Ki be a frame for H with bounds
0 < C ≤ D. Then

A
∑
i∈I
‖Λif‖2 ≤

∑
i∈I

Ai‖Λif‖2 ≤
∑
i∈I

∑
j∈Ki

|〈gij ,Λif〉|2

=
∑
i∈I

∑
j∈Ki

|〈Λ∗i gij , f〉|2 ≤ D‖f‖2

and

C‖f‖2 ≤
∑
i∈I

∑
j∈Ki

|〈Λ∗i gij , f〉|2 =
∑
i∈I

∑
j∈Ki

|〈gij ,Λif〉|2

≤
∑
i∈I

Bi‖Λif‖2 ≤ B
∑
i∈I
‖Λif‖2.

Hence
C

B
‖f‖2 ≤

∑
i∈I
‖Λif‖2 ≤

D

A
‖f‖2.

Next we assume that {Λi}i∈I is a g-frame for H with bounds 0 < C0 ≤
D0. By the same argument we have

AC0‖f‖2 ≤
∑
i∈I

∑
j∈Ki

|〈Λ∗i gij , f〉|2 ≤ BD0‖f‖2
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for all f ∈ H.
(2) Suppose that {Λ∗i gij}i∈I,j∈Ki is a Riesz basis for H with Riesz

basis bounds 0 < C ≤ D. Let F ⊆ I be a finite subset of I and gi ∈ Hi
for each i ∈ F. Then we have gi =

∑
j∈Ji λijgij where {λij} ∈ l2(Ki).

Since {gij}j∈Ki is a Riesz basis for Hi, we have

(3.2)

A
∑
j∈Ki

|λij |2 ≤ Ai
∑
j∈Ki

|λij |2 ≤
∥∥∥ ∑
j∈Ki

λijgij

∥∥∥2
= ‖gi‖2,

∥∥∥ ∑
j∈Ki

λijgij

∥∥∥2
≤ Bi

∑
j∈Ki

|λij |2 ≤ B
∑
j∈Ki

|λij |2.

Therefore

C

B

∑
i∈F
‖gi‖2 ≤ C

∑
i∈F

∑
j∈Ki

|λij |2 ≤
∥∥∥∑
i∈F

∑
j∈Ki

λijΛ
∗
i gij

∥∥∥2
= ‖

∑
i∈F

Λ∗i gi‖2,∥∥∥∑
i∈F

∑
j∈Ki

λijΛ
∗
i gij

∥∥∥2
≤ D

∑
i∈F

∑
j∈Ki

|λij |2 ≤
D

A

∑
i∈F
‖gi‖2.

Since {Λ∗i gij}i∈I,j∈Ki is a Riesz basis for H, we have span{Λ∗i gij}i∈I,j∈Ki
= H and so span{Λ∗i (Hi)}i∈I = H. Hence {Λi}i∈I is a g-Riesz basis for
H with respect to{Hi}i∈I .

Conversely, let {Λi}i∈I be a g-Riesz basis for H with bounds 0 < C0 ≤
D0 and {cij} be a finite scalar sequence. Then

C0

∑
i

∥∥∥∑
j

cijgij

∥∥∥2
≤
∥∥∥∑

i

Λ∗i (
∑
j

cijgij)
∥∥∥2
≤ D0

∑
i

∥∥∥∑
j

cijgij

∥∥∥2

and

A
∑
j

|cij |2 ≤ Ai
∑
j

|cij |2 ≤
∥∥∥∑

j

cijgij

∥∥∥2
≤ Bi

∑
j

|cij |2 ≤ B
∑
j

|cij |2.

Hence

AC0

∑
i,j

|cij |2 ≤
∥∥∥∑

i,j

cijΛ
∗
i gij

∥∥∥2
≤ BD0

∑
i,j

|cij |2.

Moreover, we have H = span{Λ∗i (Hi)}i∈I = span{Λ∗i gij}i∈I,j∈Ki . So
{Λ∗i gij}i∈I,j∈Ki is a Riesz basis for H.

For any sequence {Hi}i∈I of Hilbert spaces, we can find a Hilbert
space K to contain all the Hi by setting K =

(∑
i∈I ⊕Hi

)
l2
. �
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Proposition 3.5. Let Λ = {Λi}i∈I be a g-frame for H with respect to
{Hi}i∈I and E ⊆ I such that

〈Λ∗i gi,Λ∗jgj〉 = δij〈gi, gj〉, gi ∈ Hi, gj ∈ Hj , i, j ∈ E.
Then f =

∑
i∈E Λ∗iΛif for all f ∈ span{Λ∗i (Hi)}i∈E .

Proof. First of all, the series
∑

i∈E Λ∗iΛif are convergent for all f ∈ H.
To see this, let J be a finite subset of E. Then∥∥∥∑

i∈J
Λ∗iΛif

∥∥∥2
=
∑
i∈J
‖Λif‖2 ≤

∑
i∈I
‖Λif‖2

for all f ∈ H. Since {Λi}i∈I is a g-frame for H, we get
∑

i∈E Λ∗iΛif
converges. Let f ∈ span{Λ∗i (Hi)}i∈E , then f =

∑
i∈E Λ∗i gi where gi ∈

Hi and the set { i ∈ E : Λ∗i gi 6= 0 } is finite. We show that gi = Λif for
i ∈ E. Let h ∈ Hi, then

〈Λif, h〉 = 〈
∑
k∈E

ΛiΛ
∗
kgk, h〉 =

∑
k∈E
〈Λ∗kgk,Λ∗ih〉

=〈Λ∗i gi,Λ∗ih〉 = 〈gi, h〉.
So gi = Λif for i ∈ E and f =

∑
i∈E Λ∗iΛif.

For the case f ∈ span{Λ∗i (Hi)}i∈E , there exists a sequence {fn} in
span{Λ∗i (Hi)}i∈E such that fn → f as n → ∞. Let B be the upper
g-frame bound for Λ. We have∥∥∥∑

i∈E
Λ∗iΛifn −

∑
i∈E

Λ∗iΛif
∥∥∥2

=
∥∥∥∑
i∈E

Λ∗iΛi(fn − f)
∥∥∥2

=
∑
i∈E
‖Λi(fn − f)‖2

≤B‖fn − f‖2 → 0.

Hence f =
∑

i∈E Λ∗iΛif. �

Definition 3.6. A g-frame {Λi}i∈I for H with respect to {Hi}i∈I is
called a g-Riesz frame if for every J ⊆ I, {Λi}i∈J is a g-frame for
span{Λ∗i (Hi)}i∈J with uniform g-frame bounds A,B.

Proposition 3.7. Let Λ = {Λi ∈ B(H,Hi) : i ∈ I} be a g-frame for H
with bounds 0 < C ≤ D such that

(3.3) 〈Λ∗i gi,Λ∗jgj〉 = δij〈gi, gj〉, gi ∈ Hi, gj ∈ Hj , i, j ∈ I.
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Then Λ is a g-Riesz frame with bounds 1 and D. Moreover, if {gij}j∈Ki
is a Riesz frame for Hi with bounds Ai, Bi for each i ∈ I and 0 < A =
infi∈I Ai, B = supi∈I Bi <∞, then {Λ∗i gij}i∈I,j∈Ki is a Riesz frame for
H.

Proof. Let E ⊆ I and W = span{Λ∗i (Hi)}i∈E . By Proposition 3.5 we
have

‖f‖2 =
∥∥∥∑
i∈E

Λ∗iΛif
∥∥∥2

=
∑
i∈E
‖Λif‖2 ≤

∑
i∈I
‖Λif‖2 ≤ D‖f‖2

for all f ∈W . Now we assume that {gij}j∈Ki is a Riesz frame for Hi and
I0 ⊆ I. We show that {Λ∗i gij}i∈I0,j∈K1

i
is a frame for span{Λ∗i gij}i∈I0,j∈K1

i

with uniform frame bounds A and BD, where K1
i ⊆ Ki for each i ∈ I0.

Let f ∈ span{Λ∗i gij}i∈I0,j∈K1
i

and k ∈ I0. Then there is a finite scalar

sequence {cij} such that Λkf =
∑

i,j cijΛkΛ
∗
i gij . It follows from (3.3)

that

Λlf =
∑
j

cljΛlΛ
∗
l glj =

∑
j

cljglj .

Therefore Λlf ∈ span{glj}j∈K1
l

for all f ∈ span{Λ∗i gij}i∈I0,j∈K1
i

and all

l ∈ I0. Since {Λi}i∈I is a g-Riesz frame we have

(3.4) ‖f‖2 ≤
∑
i∈I0

‖Λif‖2 ≤ D‖f‖2

for all f ∈ span{Λ∗i gij}i∈I0,j∈K1
i
. Also {gij}j∈Ki is a Riesz frame for Hi

so

(3.5) Ai‖Λif‖2 ≤
∑
j∈K1

i

|〈Λif, gij〉|2 ≤ Bi‖Λif‖2

for all f ∈ H. Therefore (3.4) and (3.5) imply that

A‖f‖2 ≤
∑
i∈I0

Ai‖Λif‖2

≤
∑
i∈I0

∑
j∈K1

i

|〈f,Λ∗i gij〉|2 ≤
∑
i∈I0

Bi‖Λif‖2 ≤ BD‖f‖2

for all f ∈ span{Λ∗i gij}i∈I0,j∈K1
i

�
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4. α-dual of g-frames and Hilbert-Schmidt operators

In this section H denotes a finite dimensional Hilbert space. We also
denote the norm of a Hilbert-Schmidt operator T by ‖T‖2.

Definition 4.1. Let {Λi ∈ B(H,Hi) : i ∈ I} and {Θi ∈ B(H,Hi) : i ∈
I} be g-frames for H. We say that {Θi}i∈I is a dual g-frame (or simply
dual) of {Λi}i∈I if

f =
∑
i∈I

Λ∗iΘif

holds for all f ∈ H.

It is easy to show that if {Θi}i∈I is a dual g-frame of {Λi}i∈I , then
{Λi}i∈I will be a dual g-frame of {Θi}i∈I .

Let {Λi ∈ B(H,Hi) : i ∈ I} be a g-frame for H with g-frame operator
S. Then (2.4) shows that {ΛiS

−1}i∈I is a dual g-frame of {Λi }i∈I .
{ΛiS

−1 }i∈I is called canonical dual g-frame of {Λi }i∈I .

Proposition 4.2. Let {Θi ∈ B(H,Hi) : i ∈ I} be a dual of g-frame
{Λi ∈ B(H,Hi) : i ∈ I} for H. Then∑

i∈I
‖Λi −Θi‖22 =

∑
i∈I
‖Λi‖22 +

∑
i∈I
‖Θi‖22 − 2 dimH.

Proof. Suppose that {en}Mn=1 is an orthonormal basis for H. We have∑
i∈I
‖Λi −Θi‖22 =

∑
i∈I

∑
n

‖(Λi −Θi)en‖2

=
∑
n

∑
i∈I
〈(Λi −Θi)en, (Λi −Θi)en〉

=
∑
i∈I

∑
n

‖Λien‖2 +
∑
i∈I

∑
n

‖Θien‖2

−
∑
n

∑
i∈I
〈Λ∗iΘien, en〉 −

∑
n

∑
i∈I
〈en,Λ∗iΘien〉

=
∑
i∈I
‖Λi‖22 +

∑
i∈I
‖Θi‖22 − 2 dimH.

�
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Corollary 4.3. Let {Θi ∈ B(H,Hi) : i ∈ I} and {Λi ∈ B(H,Hi) : i ∈
I} be two Parseval g-frames for H. If {Θi}i∈I is a dual of {Λi}i∈I , then
Λi = Θi for all i ∈ I.

Proof. Since H is a finite dimensional and {Λi}i∈I is a Parseval g-frame
for H, we have

∑
i∈I ‖Λi‖22 = dimH (see [11]). Hence the result follows

by Proposition 4.2. �
Corollary 4.4. Let {Θi ∈ B(H,Hi) : i ∈ I} be a dual of {Λi ∈
B(H,Hi) : i ∈ I} for H, where {Θi}i∈I and {Λi}i∈I are two tight g-
frames for H with bounds BΘ and BΛ, respectively. Then BΘ +BΛ = 2
if and only if Λi = Θi for all i ∈ I.

Proof. Since
∑

i∈I ‖Λi‖22 = BΛ dimH and
∑

i∈I ‖Θi‖22 = BΘ dimH, the
result follows from Proposition 4.2. �

Remark 4.5. Let {Θi ∈ B(H,Hi) : i ∈ I} and {Λi ∈ B(H,Hi) : i ∈ I}
be two g-frames for H with the associated synthesis operators TΛ and
TΘ, respectively. Using the proof of Proposition 4.2, we get∑

i∈I
‖Λi −Θi‖22 =

∑
i∈I
‖Λi‖22 +

∑
i∈I
‖Θi‖22 − tr(TΘT∗Λ)− tr(TΛT∗Θ).

Let {Λi ∈ B(H,Hi) : i ∈ I} be a g-frame for H with the frame
operator S. It is clear that {ΛiSα−1}i∈I is a g-frame for H with the
property

∑
i∈I Λ∗iΛiS

α−1 = Sαf for all f ∈ H. For α = 0 we get the
canonical dual g-frame of {Λi}i∈I .

Definition 4.6. Let {Λi ∈ B(H,Hi) : i ∈ I} be a g-frame for H with
g-frame operator SΛ. A g-frame {Θi ∈ B(H,Hi) : i ∈ I} is called a
α-dual of {Λi}i∈I if

∑
i∈I Λ∗iΘi = SαΛf for all f ∈ H.

It is clear that {ΛiSα−1
Λ }i∈I is a α-dual of {Λi}i∈I . The canonical

dual g-frame of {Λi}i∈I has some interesting properties between other
dual g-frames of {Λi}i∈I (see [12]). We will show that the α-dual frame
{ΛiSα−1

Λ }i∈I has some minimal properties between other α-dual frames
of {Λi}i∈I .

Proposition 4.7. Let {Θi ∈ B(H,Hi) : i ∈ I} be a α-dual of {Λi ∈
B(H,Hi) : i ∈ I} with g-frame operator SΘ. Then

(4.1)
∑
i∈I
‖ΛiSα−1

Λ ‖22 =
∥∥S 2α−1

2
Λ

∥∥2

2
≤ ‖S

1
2
Θ‖

2
2 =

∑
i∈I
‖Θi‖22.
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The equality in (4.1) holds if and only if Θi = ΛiS
α−1
Λ for all i ∈ I.

Proof. Let {en}Mn=1 be an orthonormal basis for H. We have

∑
i∈I
‖ΛiSα−1

Λ ‖22 =
∑
i∈I

∑
n

〈ΛiSα−1
Λ en,ΛiS

α−1
Λ en〉

=
∑
i∈I

∑
n

〈Λ∗iΛiSα−1
Λ en, S

α−1
Λ en〉

=
∑
n

〈en, S2α−1
Λ en〉

=
∑
n

〈S
2α−1

2
Λ en, S

2α−1
2

Λ en〉 =
∥∥S 2α−1

2
Λ

∥∥2

2
,

∑
i∈I
‖Θi‖22 =

∑
i∈I

∑
n

〈Θ∗iΘien, en〉 =
∑
n

〈SΘen, en〉 = ‖S
1
2
Θ‖

2
2.

On the other hand
(4.2)∑

i∈I
‖ΛiSα−1

Λ ‖22 =
∑
i∈I

∑
n

〈ΛiSα−1
Λ en,ΛiS

α−1
Λ en〉

=
∑
n

〈SαΛen, Sα−1
Λ en〉

=
∑
n

∑
i∈I
〈Λ∗iΘien, S

α−1
Λ en〉

=
∑
n

∑
i∈I
〈Θien,ΛiS

α−1
Λ en〉

≤

(∑
n

∑
i∈I
‖ΛiSα−1

Λ en‖2
) 1

2
(∑

n

∑
i∈I
‖Θien‖2

) 1
2

.
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So
∑

i∈I ‖ΛiS
α−1
Λ ‖22 ≤

∑
i∈I ‖Θi‖22 and we obtain (4.1).

If
∑

i∈I ‖ΛiS
α−1
Λ ‖22 =

∑
i∈I ‖Θi‖22, then it follows from (4.2) that∑

n

∑
i∈I
〈Θien,ΛiS

α−1
Λ en〉 =

∑
n

∑
i∈I

∣∣〈Θien,ΛiS
α−1
Λ en〉

∣∣
=

(∑
n

∑
i∈I
‖ΛiSα−1

Λ en‖2
) 1

2

(∑
n

∑
i∈I
‖Θien‖2

) 1
2

.

So 〈Θien,ΛiS
α−1
Λ en〉 ≥ 0 and 〈Θien,ΛiS

α−1
Λ en〉 = ‖Θien‖‖ΛiSα−1

Λ en‖
for all i, n. Therefore there exist λ, λi,n ≥ 0 such that

ΛiS
α−1
Λ en = λi,nΘien, ‖ΛiSα−1

Λ en‖ = λ‖Θien‖

for all i, n. Hence λi,n = λ and we conclude that ΛiS
α−1
Λ en = λΘien

for all i, n. Since
∑

i∈I ‖ΛiS
α−1
Λ ‖22 =

∑
i∈I ‖Θi‖22, we get λ = 1 and so

ΛiS
α−1
Λ en = Θien for all i, n. �

Corollary 4.8. Let {Λi ∈ B(H,Hi) : i ∈ I} be a g-frame for H with
g-frame operator SΛ. Then∑
i∈I
‖Λi − ΛiS

α−1
Λ ‖22 =

min
{∑
i∈I
‖Λi −Θi‖22 : {Θi ∈ B(H,Hi) : i ∈ I} is a α-dual of {Λi}i∈I

}
.

Moreover, if {Θi}i∈I is a α-dual of {Λi}i∈I , then
∑

i∈I ‖Λi − Θi‖22 =∑
i∈I ‖Λi − ΛiS

α−1
Λ ‖22 if and only if Θi = ΛiS

α−1
Λ for all i ∈ I.

Proof. Since∑
i∈I

∑
n

〈Θien,Λien〉 =
∑
n

〈SαΛen, en〉 =
∑
i∈I

∑
n

〈ΛiSα−1
Λ en,Λien〉,
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by Proposition 4.7 we have∑
i∈I
‖Λi −Θi‖22 =

∑
i∈I

∑
n

(
‖Λien‖2 + ‖Θien‖2 − 2<〈Θien,Λien〉

)
≥
∑
i∈I

∑
n

(
‖Λien‖2 + ‖ΛiSα−1

Λ en‖2 − 2<〈ΛiSα−1
Λ en,Λien〉

)
=
∑
i∈I

∑
n

‖(Λi − ΛiS
α−1
Λ )en‖2

=
∑
i∈I
‖Λi − ΛiS

α−1
Λ ‖22.

Therefore the above inequality implies that
∑

i∈I ‖Λi−Θi‖22 =
∑

i∈I ‖Λi−
ΛiS

α−1
Λ ‖22 if and only if

∑
i∈I
∑

n ‖ΛiS
α−1
Λ en‖2 =

∑
i∈I
∑

n ‖Θien‖2.

Hence by Proposition 4.7,
∑

i∈I ‖Λi − Θi‖22 =
∑

i∈I ‖Λi − ΛiS
α−1
Λ ‖22 if

and only if Θi = ΛiS
α−1
Λ for all i ∈ I. �

Corollary 4.9. Let {Θi ∈ B(H,Hi) : i ∈ I} is a dual of g-frame
{Λi ∈ B(H,Hi) : i ∈ I} for H. Then

(4.3)
∑
i∈I
‖Θi‖22 = ‖S

1
2
Θ‖

2
2 ≥ ‖S

− 1
2

Λ ‖
2
2 =

∑
i∈I
‖ΛiS−1

Λ ‖
2
2

where SΛ and SΘ are the g-frame operators of {Λi}i∈I and {Θi}i∈I ,
respectively. Moreover, the following are equivalent

(i)
∑

i∈I ‖Θi‖22 =
∑

i∈I ‖ΛiS
−1
Λ ‖22;

(ii) Θi = ΛiS
−1
Λ for all i ∈ I;

(iii) SΘ = S−1
Λ .

Proposition 4.10. Let {Λi ∈ B(H,Hi) : i ∈ I} be a g-frame and
{Θi ∈ B(H,Hi) : i ∈ I} be a Parseval g-frame for H. Then

(i) tr(TΘT∗Λ) + tr(TΛT∗Θ) ≤ 2‖S
1
4
Λ‖22;

(ii) tr(TΘT∗Λ) + tr(TΛT∗Θ) = 2‖S
1
4
Λ‖22 if and only if Θi = ΛiS

− 1
2

Λ for
all i ∈ I.

Proof. By Remark 4.5, tr(TΘT∗Λ) + tr(TΛT∗Θ) is real. Since {Θi}i∈I is
a Parseval g-frame for H, we have ‖TΘ‖ = ‖T ∗Θ‖ = 1. Let us denote
the trace-class norm by ‖.‖1. By a simple computation we get ‖T ∗Λ‖1 =

‖S
1
4
Λ‖22. By [8; Theorems 2.4.14 and 2.4.16], we get∣∣tr(TΘT∗Λ)

∣∣, ∣∣tr(TΛT∗Θ)
∣∣ ≤ ‖S 1

4
Λ‖

2
2.
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Therefore (i) is proved. To prove (ii), let tr(TΘT∗Λ) + tr(TΛT∗Θ) =

2‖S
1
4
Λ‖22. It follows from (i) that tr(TΘT∗Λ) = ‖S

1
4
Λ‖22. Hence we get the

result by Corollary 2.6 of [11]. �

Corollary 4.11. Let {Λi ∈ B(H,Hi) : i ∈ I} is a g-frame for H with
g-frame operator SΛ. Then

max {<tr(TΘT∗Λ) :{Θi ∈ B(H,Hi) : i ∈ I} is a Parseval g-frame for H}

= ‖S
1
4
Λ‖

2
2.
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