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G-FRAMES AND HILBERT-SCHMIDT OPERATORS

M. R. ABDOLLAHPOUR AND A. NAJATT*

Communicated by Heydar Radjavi

ABSTRACT. In this paper we introduce and study Besselian g-frames.
We show that the kernel of associated synthesis operator for a

Besselian g-frame is finite dimensional. We also introduce a-dual of

a g-frame and we get some results when we use the Hilbert-Schmidt

norm for the members of a g-frame in a finite dimensional Hilbert

space.

1. Introduction

Frames for Hilbert spaces introduced by Duffin and schaeffer in 1952
[4]. A sequence {fi}icr C H is a frame for H, if there exist two positive
constants A, B such that

o0
(1.1) ANFIZ < ST )2 < BISIP

i=1
for all f € H. The numbers A, B are called frame bounds. Various gen-
eralizations of frames in Hilbert spaces have been proposed and stud-
ied recently. For example, frame of subspaces [2], Pseudo frames for
subspaces[7], Bounded quasi-projectors [5], oblique frames [3] etc. Wen-
chang Sun in his paper [12] introduced the concept of g-frames which
include all mentioned generalizations. Members of ordinary frames are
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vectors of a Hilbert space, while members of g-frames are bounded op-
erators. Besselian frames and near-Riesz bases in Hilbert spaces intro-
duced by Holub [6]. Also, Besselian frame of subspaces introduced and
discussed in [9]. The authors of this paper in [1], introduced the concept
of near g-Riesz bases and they showed that a near g-Riesz basis is a
Besselian g-frame.

In this paper by using the concept of Besselian frame and g-frame we
define Besselian g-frame and investigate some of their properties. In
section 2, we give the basic definitions and known results needed. In
section 3, we investigate some properties of Besselian g-frames. In par-
ticular, we show that under some conditions, the kernel of associated
synthesis operator for a Besselian g-frame is finite dimensional. In sec-
tion 4, we introduce a-dual of a g-frame and we get some results when
we use the Hilbert-Schmidt norm for the members of a g-frame in a finite
dimensional Hilbert space.

2. Preliminaries

Throughout this paper, H is a separable Hilbert space and {H,;}cr is
a sequence of separable Hilbert spaces, where I is a subset of N.

Definition 2.1. The sequence {A; € B(H,H;) : i € I} is called a g-
Bessel sequence if there exists B > 0 such that

(2.1) > IAflI? < BIIfIP
i€l
forall f € H.

Let {A; € B(H,H;) : i € I} be given. Let us define

(Z EB%‘) = {{Qi} RS Hi,z lgsll* < OO}
i€l I el

with the inner product given by ({fi},{g:}) = > ic;(fi;9i)- It is clear
that (Ziel ®Hi)l2 is a Hilbert space with respect to the pointwise op-
erations. It is proved in [10] , if {A; € B(H,H;) : i € I} is a g-Bessel
sequence for H, then the operator

T: <Z@Hi>l —H

iel )
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defined by
(22) T({gi}) = A (90)
il
is well defined, bounded and 7™ f = {A; f}ier.

Definition 2.2. We call a sequence {A; € B(H,H;) :i € I} a g-frame
for H with respect to {H;}icr if there exist two positive constants A and
B such that

(2.3) AIfIP <Y IAf 1P < BIIP

el
for all f € H. We call A and B the lower and upper g—frame bounds,
respectively.

We call {A;}icr a tight g-frame if A = B and Parseval g-frame if A =
B=1.

The sequence {A; € B(H,H;) : i € I} is a g-frame for H if and
only if the operator T defined by (2.2) is bounded and onto (see [10]).
The operators T and T™ are called the synthesis and analysis operators,
respectively.

Proposition 2.3. [12] Let {A; € B(H,H;) : i € I} be a g-frame for H.
The operator
S:H—MH, Sf=> AAf
el
s a positive, bounded and invertible operator.

Proposition 2.3 implies that every f € H can be represented as
(24) f=8Sf=> MNST, f=S5T1SF=) STAIAS
i€l i€l
The operator S is called the g-frame operator of {A;}icr.
It is easy to check that if {A; € B(H,H;) : i € I} is a g-Bessel sequence,
then S is well defined and S = TT*. We end this section by definition
of g-Riesz basis.

Definition 2.4. A sequence {A; € B(H,H;) :i € I} is called a g-Riesz
basis for H with respect to {H;}icr if there exist two positive constants
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A and B such that for any finite subset F C I and g; € H;, i € F,
(2.5) AN gl < 1D Ajgl> < B llgill,

i€F ieF icF
and {\; € B(H,H;) : i € I} is g-complete, i.e., {f : Nif =0,i€ I} =0.

It is proved in [10], that {A; € B(H,M,;) : i € I} is g-complete if and
only if span{Af(H:)}ie; = H -

3. Besselian g-frames

As usual, we denote by (?(I) the Hilbert space of all square-summable
sequences of scalars {c;}ier. If {fi}ier is a frame for H, then ), ;¢ f;
converges if {c;}ic; € I2(I). But the converse is not true in general (see
[6]). We say that a frame {f;};cr for H is

e Besselian if, whenever _,_; ¢; fi converges, then {c;}icr € I*(1);
e a near-Riesz basis, if there is a finite set o for which {f;}icpo is
a Riesz basis for H.
We recall the following characterization of frames which are near-Riesz
bases.

Theorem 3.1. [6] If {fi}icr is a frame in H, the following are equiva-
lent:

(1) {fi}ier is a near-Riesz basis for H;
(i1) {fi}tier is Besselian;
(iil) Y;escifi converges if and only if {c;}icr € 1*(I).

Besselian frame of subspaces introduced and discussed in [9]. Here we
introduce the concept of Besselian g-frames.

Definition 3.2. Let A = {A;}icr be a g-frame for H with respect to
{Hitier. We call A a Besselian g-frame if, whenever ), ; Afg; con-

verges, then
{gi}ier € (Z EB'Hi> -
l2

i€l

Let {ei;}jes, be an orthonormal basis for #; for each ¢ € I and {A; €
B(H,M;) : i € I} be given. Then {A}e;j}icr jes, is a frame (res. Riesz
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basis) for H if and only if {A;};cs is a g-frame (res. g-Riesz basis) for ‘H
(see [12]).

Theorem 3.3. Suppose that dimH; < oo for each i € I. Let A =
{Ai}ier be a Besselian g-frame for H with respect to {H;}ier and T be
the associated synthesis operator for A. Then KerT is finite dimensional.

Proof. Let {e;;j}jes, be an orthonormal basis for H; for each i € I.
Then {Aei;}icr jes, is a frame for H. Suppose that ), ; ZjeJi cijAles;

converges. Since A is a Besselian g-frame, we get {Zje J; Cij€ij €
el

(Ziel @Hi)zz' So

DD el =) H > cijei

icl jEJ; i€l jeJ;

2
< o0.

Hence {Aje;j}ierjes, is Besselian. Let @ be the associated synthesis
operator for {Aje;;}ier jes,, then dim KerQ < oo [6, Theorem 2.3]. Let
us define E;; € (Zie[ @Hi) by

la
B o e¢j7 7= k
(3.1) e A

for all i, j,k € I. It is easy to check that {Ejj}ier jes, is an orthonormal
basis for (3¢, @Hi)lg (see[10]). By the definition of @ and T, it is clear
that

QUcijticrjen) =YY cijhje; = T( > Cij%‘)-
i€l jeJd; i€l jed;
Now we consider the mapping
p:KerQ = KerT,  o({cijlierjes) = » > cijEij.

el jeld;

It is obvious that ¢ is linear and injective. We claim that ¢ is surjective.
Let {g;}icr € KerT. Then g; € H; and g; = EjeJi Aijeij for each i € I.

Since [|g;||* = > i, [Xij|?, we have > ., D e, Xij|2 = Yier laill? <
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oo. Therefore {\;;}ier jes; € 17 and

Q({Nijtierjes,) = T( Z Z )\z’jEij> =T ({gi}icr) =0,

iel jeJ;
o({Nijtierjen) =D > NijEij = {gitier-
iel jEJi
Hence dim KerT = dim Ker(Q) < co and the proof is completed. O

In the next theorem we get characterizations of generalized frames,
Riesz bases, and frames.

Theorem 3.4. Let {A; € B(H,H;) :i € I} be given and let {gi;}jek, be
a frame (res. Riesz basis) for H; with bounds A;, B; for each i € I such
that 0 < A = infc; A; and B = sup;c; B; < 0o. Then {A}gij}icr jek, 15
a frame (res. Riesz basis) for H if and only if {A\;}icr is a g-frame (res.
g-Riesz basis) for H with respect to {H;}ier-

Proof. (1) Let f € H and {Agij}icr jek,; be a frame for H with bounds
0 < C < D. Then

AY ISP < D AlASIP <D0 Hgig M)

i€l i€l i€l jEK;
=> "> [{Afgy, HIP < DIIFI?
icl jEK;
and
CIAP <D 1A HP =D Wgijs AP
icl jEK; icl jEK;
<> BilIAfIP < BY AP
i€l icl
Hence

C2 o _ Do
IR < I < S
i€l
Next we assume that {A;};cs is a g-frame for H with bounds 0 < Cj <
Dy. By the same argument we have

ACHII? < 32 3 [(Asgig, )P < BDo £

i€l jEK;



G-frames and Hilbert-Schmidt operators 147

for all f € H.

(2) Suppose that {A}g;j}icrjer, is a Riesz basis for H with Riesz
basis bounds 0 < C' < D. Let F C I be a finite subset of I and g; € H;
for each i € F. Then we have g; = > . ;. Aijgi; where {\;;} € 12(K;).
Since {gi;}jek, is a Riesz basis for H;, we have

A Nl < A4S Dol < || 32 Ao = el
(3.2) JEK; JEK; JEK;
| S v < B S P <B Y Pl
]G i ]E i ]EK
Therefore
Bl <C8 Sl < |25 aaia| =1 S atal
i€l i€F jeK; 1€F jeK;

|23 iz < DX 3 ol < T3l

icF jeK; i€F jekK; i€l

Since {Agij}icr jek, is a Riesz basis for H, we have span{ A} g;; }ier,jek;
= H and so span{A;(H;)}icr = H. Hence {A;}icr is a g-Riesz basis for
H with respect to{H;}icr-

Conversely, let {A;};er be a g-Riesz basis for H with bounds 0 < C <
Dg and {c;;} be a finite scalar sequence. Then

G H D ciifi < H PRHOD Cz’jgz’j)H2 <Dy, H > cijgi i
i - - 2
and
AD el < Ay el < H > cigis
J j ;

Hence

2
<BY leiiP <BY el
J J
2
ACy Z leij? < H Z cij i 9ij
2% 12

Moreover, we have H = span{A;(H;)}icr = Span{A;g;;}icr jek;. SO
{A?gij}ier,jek, is a Riesz basis for H.

<BDy Y _ |ij|*.
i

For any sequence {#;};c; of Hilbert spaces, we can find a Hilbert
space K to contain all the H; by setting K = (Ziel @Hi)lz' O
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Proposition 3.5. Let A = {A;}icr be a g-frame for H with respect to
{H;}icr and E C I such that

(A7gi, Ajg5) = 0ij{9i, 95),  9i € His g5 € Hy, 4,5 € E.
Then f =3 ,cp AfAif for all f € span{A;(H;)}icE-

Proof. First of all, the series } .. A7A; f are convergent for all f € H.
To see this, let J be a finite subset of E. Then

| Soant | =S el < 3 s
ieJ ieJ el
for all f € H. Since {A;}icr is a g-frame for H, we get >, p AjAf
converges. Let f € span{Aj(H;)}ick, then f = ). p Ajg; where g; €
H; and the set {i € E: Afg; # 0} is finite. We show that g; = A;f for
1 € E. Let h € H;, then
(Aif by = (OO Ailige,h) = (Apge, A7h)
keE keE
=(A7gi, Ajh) = (g, h).

Sogi=A;fforic Eand f =), p AjA:f.

For the case f € span{A;(H;)}ick, there exists a sequence {f,} in
span{A}(#;)}icr such that f, — f as n — oo. Let B be the upper
g-frame bound for A. We have

2 2
A

HZAinfn ~ ST AA

icE i€cE icE
=> IAilfu = DI?
i€l
<B||fn— fII* = 0.
Hence f =3, cp AJAf. O

Definition 3.6. A g-frame {A;};cr for H with respect to {H;}icr is
called a g-Riesz frame if for every J C I, {A;}ics is a g-frame for
span{ A} (M) }ics with uniform g-frame bounds A, B.

Proposition 3.7. Let A = {A; € B(H,H;) :i € I} be a g-frame for H
with bounds 0 < C < D such that

(3.3) (Afgi, Njg5) = 0ij{9i, 95),  9i € Hiy gj € My, 4,5 €1
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Then A is a g-Riesz frame with bounds 1 and D. Moreover, if {g:j}jck,
18 a Riesz frame for H; with bounds A;, B; for eachi € I and 0 < A =
infier Ai, B =sup;cr B; < 00, then {A}gij}tier jek, is a Riesz frame for
H.

Proof. Let E C I and W = span{A!(H;)}ice. By Proposition 3.5 we
have
2
112 = || S A

i€l

= IMFIP < D lAuf 11> < DI
icE icl

for all f € W. Now we assume that {g;;} ek, is a Riesz frame for H; and

Iy C I. We show that {Afgij}z‘elo,jeK} is a frame for W{Afgij}iejo,jefq

with uniform frame bounds A and BD, where K} C K; for each i € I.

Let f € span{A’;gij}ieIMeKil and k € Iy. Then there is a finite scalar

sequence {c;;} such that Apf = 37, . cijApAfgi;. It follows from (3.3)

that
Mf =) e iMAgy = gy
J J
Therefore A;f € span{glj}jeKl1 for all f € span{A;gij}icy, jex: and all
l € Iy. Since {A;}icr is a g-Riesz frame we have
(3.4) IFIP < Y IIAfIP < DI
i€lp

for all f € span{A}gij}icr, jext- Also {gij}jek, is a Riesz frame for H;
SO

(3.5) AP <Y 1Af, 9i) P < Bill A S|P
jeK}

for all f € H. Therefore (3.4) and (3.5) imply that

AFIP < DD AP

i€l
< DO KA <D BillAif|I? < BD| f|?
ielojeKil i€ly

for all f € span{Ajgij}iGIO’jeK} O
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4. a-dual of g-frames and Hilbert-Schmidt operators

In this section H denotes a finite dimensional Hilbert space. We also
denote the norm of a Hilbert-Schmidt operator T by ||T'|2.

Definition 4.1. Let {A; € B(H,H;) :i € I} and {©; € B(H,H;) :i €
I} be g-frames for H. We say that {©;}icr is a dual g-frame (or simply
dual) Of {Ai}iel if
f=>Y Ajeif
i€l
holds for all f € H.

It is easy to show that if {©;};cs is a dual g-frame of {A;};cs, then
{A;}ics will be a dual g-frame of {©;}c;.

Let {A; € B(H,H;) : i € I} be a g-frame for H with g-frame operator
S. Then (2.4) shows that {A;S7'},cs is a dual g-frame of {A; }iey.
{A;S™1 Yicr is called canonical dual g-frame of { A; }ier.

Proposition 4.2. Let {©; € B(H,H;) : i € I} be a dual of g-frame
{A; € B(H,H;) :i €1} for H. Then

I = 6il3 =Y A3+ 16:3 - 2dim H.

el el el

Proof. Suppose that {e,, }), is an orthonormal basis for H. We have

SO =613 =D 0 (A — ©i)en]?

iel el n
=3 (A — Oi)en, (Ai — ©;)en)
n el
=D ) el + >0 104en|
i€l n i€l n
- ZZ<A;k@Zemen> - ZZ(enaA;k@zen>
n i€l n el
=) A5+ 1164]l5 — 2dim H.
el el
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Corollary 4.3. Let {©; € B(H,H;) :i € I} and {A; € B(H,H;) : 1 €
I} be two Parseval g-frames for H. If {O;}ier is a dual of {A;}icr, then
AN, =0, forallieI.

Proof. Since H is a finite dimensional and {A;};cs is a Parseval g-frame
for H, we have Y,/ [|As]|3 = dim H (see [11]). Hence the result follows
by Proposition 4.2. O
Corollary 4.4. Let {©; € B(H,H;) : i € I} be a dual of {A; €
B(H,H;) : i € I} for H, where {©;}icr and {A;}icr are two tight g-
frames for H with bounds Bg and By, respectively. Then Bg + By = 2
if and only if A; = ©; for alli € 1.
Proof. Since Y,/ |Ai]|3 = BadimH and Y, [|©;]|3 = Be dimH, the
result follows from Proposition 4.2. O
Remark 4.5. Let {©; € B(H,H;):i € I} and {A; € B(H,H;) :i € I}
be two g-frames for H with the associated synthesis operators Ty and
To, respectively. Using the proof of Proposition 4.2, we get

S A = 613 = STIANE + DI04l — tr(TeT3) — tr(TAT5).

icl icl icl

Let {A; € B(H,H;) : i € I} be a g-frame for H with the frame
operator S. It is clear that {A;S* !};cr is a g-frame for H with the
property » .; ArA; S = Sof for all f € H. For a = 0 we get the
canonical dual g-frame of {A;}cr.

Definition 4.6. Let {A; € B(H,H;) : i € I} be a g-frame for H with
g-frame operator Sy. A g-frame {©; € B(H,H;) : i € I} is called a
a-dual of {Ai}tier if Y ;e Aj©i = S{f for all f € H.

It is clear that {AZ'SX_I}Z‘EI is a a-dual of {A;};c;. The canonical
dual g-frame of {A;};cr has some interesting properties between other
dual g-frames of {A;}ier (see [12]). We will show that the a-dual frame
{AiSX_l}ie 7 has some minimal properties between other a-dual frames
Of {Az}zel
Proposition 4.7. Let {©; € B(H,H;) : i € I} be a a-dual of {A; €
B(H,H;) : i € I} with g-frame operator Sg. Then

20-1 1
(4.1) SIS =118, [ < IS8l =Y lleil3.

el i€l
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The equality in (4.1) holds if and only if ©; = AiSf‘\*l for alli e I.

Proof. Let {e,}* | be an orthonormal basis for 7. We have

S TIASTTHE =D (S en AiSY )

el el n

=3 ) (ATASY en, ST ten)

i€l n
e Z<€n7 S?\a_len>
n

2a—1 1 2

— S 2 SMT_ — SQQ_I 2
Z<A €n, Sy % en) HA Hz’

dTN0iE =D (0;0ien en) = > (Soen, en) = 158113

el i€l n n

On the other hand

(4.2)
SOIASTHE =)0 Ay N en, MiSY en)

el i€l n

= (S¥en, Sy ten)

= Z Z(Af@ien, Sﬁ_len>

n el

= Z Z<@Z’€n, AiSK_16n>

n el

<D0 sy el % SN leienl? é.
[ ) (£geer)

n el n el
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So > ier 1ASYHI3 < Xics 194]|3 and we obtain (4.1).
I3 1ASY 2 = s 194]|3, then it follows from (4.2) that

D7) (Oien, MiSy Nen) =D ) [(Oien, AiSy N en)]

n el n 1€l
1
2
_ (zz uAisx-lenn?)
n el
1
2
(zzneienn?) |
n €Il

So <@ien,A¢S/‘§‘flen> > 0 and <®ien,A¢S/‘§‘flen> = ||@l-en||HAin‘flen||
for all ¢,n. Therefore there exist A, A; , > 0 such that

NS en = Nin©ien,  |MiSY en| = A|Gien|

for all ¢,n. Hence \;,, = A and we conclude that AiSX‘_len = \O,e,
for all i,n. Since >, [|A:SY |2 = Yicr 116i13, we get A = 1 and so
AiSY e, = Oye, for all i,n. O

Corollary 4.8. Let {A; € B(H,H;) : i € I} be a g-frame for H with
g-frame operator Sp. Then

DA —AiSyTHE =
el
min { Z |Ai — ©;]13:{0; € B(H,H,;) :i € I} is a a-dual of {A;}ier }

i€l

Moreover, if {©;}icr is a a-dual of {Ai}icr, then D, ;||Ai — 0,3 =
Sier 1A = AiSYTH2 if and only if ©; = NSy for alli € 1.

Proof. Since

DD (Oien, Aien) =D (SKemsen) =D D (AiSF en, Nien),

el n n el n
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by Proposition 4.7 we have
DN =043 =D (IIAienll* + 118ienl* — 2R(Oien, Asen))
icl icl n
>3 > (lAienl? +1A:S3 ™ enll* — 2R(A:SF e, Aen))

i€l n

= D lI(A = A enl

i€l n
=D lIA — Aisy 3.
iel
Therefore the above inequality implies that Y, [Ai—65]13 = >,/ [|Ai—
AiSETHIZ if and only if 3,0, 30, [ASY enl? = i o 18ien
Hence by Proposition 4.7, Y,/ [Ai — 6413 = Y.c/ 1A — NS if
and only if ©; = AZ-SJC\“_1 forall ¢ € I. O

Corollary 4.9. Let {©; € B(H,H;) : i € I} is a dual of g-frame
{A; € B(H,H;) :i €1} for H. Then

1 _1
(4.3) D63 = 15313 > 15, %13 = > 185313

i€l el
where Sy and Se are the g-frame operators of {A;}icr and {©;}icr,
respectively. Moreover, the following are equivalent

(1) Xier €3 = Dier HAiSXIH%:'
(i1) ©; = NSyt forallieI;
(iii) Se = Sy'.
Proposition 4.10. Let {A; € B(H,H;) : i € I} be a g-frame and
{©; € B(H,H;):1 €1} be a Parseval g-frame for H. Then

1
(i) tr(TeT}) + tr(TATg) < 2[S313;
1 _
(ii) tr(TeTh) + tr(TATE) = 2[|Si||3 if and only if ©; = A; S,
allie 1.
Proof. By Remark 4.5, tr(TeT}) + tr(TATg) is real. Since {©;}er is

a Parseval g-frame for H, we have ||To|| = || 74| = 1. Let us denote
the trace-class norm by |.|[;. By a simple computation we get || T3] =

1
|S£]13. By [8; Theorems 2.4.14 and 2.4.16], we get

N

for

1
|tr(TeTH)|, [tr(TATE)| < IS4 13-
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Therefore (i) is proved. To prove (ii), let tr(TeT}) + tr(TATE) =
1

1 1
2[S1]13. It follows from (i) that tr(TeT}) = ||Si|l3. Hence we get the
result by Corollary 2.6 of [11]. O

Corollary 4.11. Let {A; € B(H,H;) : i € I} is a g-frame for H with
g-frame operator Sn. Then

max {Rtr(TeT}h):{0; € B(H,H;) :i € I} is a Parseval g-frame for H}

192
= [ISxl2-
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