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MODULE COHOMOLOGY GROUP OF INVERSE

SEMIGROUP ALGEBRAS

E. NASRABADI∗ AND A. POURABBAS

Communicated by Gholam Hossein Esslamzadeh

Abstract. Let S be an inverse semigroup and let E be its sub-
semigroup of idempotents. In this paper we define the n-th mod-
ule cohomology group of Banach algebras and show that the first
module cohomology group H1

ℓ1(E)(ℓ
1(S), ℓ1(S)(n)) is zero, for ev-

ery odd n ∈ N. Next, for a Clifford semigroup S we show that
H2

ℓ1(E)(ℓ
1(S), ℓ1(S)(n)) is a Banach space, for every odd n ∈ N.

1. Introduction

Amini in [1] developed the concept of module amenability for a class
of Banach algebras which is in fact a generalization of the Johnson’s
amenability. For example, for every inverse semigroup S with subsemi-
group E of idempotents, he showed that the ℓ1(E)-module amenability
of ℓ1(S), in the particular case where the left action is trivial and the
right action is natural, is equivalent to the amenability of S. Duncan
and Namioka in [3] have shown that ℓ1(S) is not amenable, for some
amenable semigroup S. In fact, they showed that the amenability of in-
verse semigroup algebra ℓ1(S) implies that E is finite, but there are many
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amenable inverse semigroups including the bicyclic semigroup and Clif-
ford semigroups with an infinite set of idempotents. Amini and Bagha
in [2] introduced the concept of weak module amenability and showed
that if S is commutative, ℓ1(S) is always weak ℓ1(E)-module amenable.

Note that in the group case Johnson [6] showed that a group G is
amenable if and only if L1(G) is amenable and in [7] he showed that
L1(G) is always weakly amenable.

In this paper, we shall be concerned with the structure of the first
and second module cohomology group of ℓ1(S) with coefficients in the

n-th dual space ℓ1(S)(n), for every odd n ∈ N.
We begin by recalling some terminology.
Let A and A be Banach algebras such that A is a Banach A-module

with compatible actions, that is,

α · (ab) = (α · a)b, a(α · b) = (a · α)b (α ∈ A, a, b ∈ A).

If A and B are Banach algebras and Banach A-modules with compat-
ible actions, an A -module map is a mapping T : A→ B with

T (a± b) = T (a)± T (b), T (α · a) = α · T (a), T (a · α) = T (a) · α,

where α ∈ A and a, b ∈ A. Note that T is not necessarily linear, so it is
not necessarily an A-module homomorphism.

Let X be a Banach A-module and a Banach A-module with compat-
ible actions, that is,

α · (a · x) = (α · a) · x, (a · α) · x = a · (α · x), (α · x) · a = α · (x · a),

where α ∈ A, a ∈ A and x ∈ X and the same, for the other side action.
Then, X is called a Banach A-A-module, and is called a commutative
Banach A-A-module whenever α · x = x ·α, for every α ∈ A and x ∈ X.
If moreover

a · x = x · a (a ∈ A, x ∈ X),

then X is called a bi-commutative Banach A-A-module.
Let X be a Banach space with the dual space X ′. If X is a (commu-

tative) Banach A-A-module, then so is X ′, where the actions of A and
A on X ′ are defined by

(α · f)(x) = f(x · α), (a · f)(x) = f(x · a),

where α ∈ A, a ∈ A, f ∈ X ′, x ∈ X. In particular, if A is a commutative
Banach A-module, then it is a commutative Banach A-A-module. In
this case, the dual space A′ is also a commutative Banach A-A-module.
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An A-module map D : A→ X is called an A-module derivation, if

D(ab) = a ·D(b) +D(a) · b (a, b ∈ A),

Note that D is not necessarily linear and if there exists a constant
M > 0 such that ∥D(a)∥ ≤ M∥a∥, for each a ∈ A, then D is bounded
and its boundedness implies its norm continuity.

When X is a commutative Banach A-A-module, each x ∈ X defines
an A-module derivation

Dx(a) = a · x− x · a (a ∈ A),

these are called inner A-module derivations. If X is a bi-commutative
Banach A-A-module, then the inner derivations are zero.

Definition 1.1. The Banach algebra A is called A-module amenable, if
for any commutative Banach A-A-module X, every A-module derivation
D : A→ X ′ is inner.

We use the notation Z1
A(A,X) for the set of all A-module derivations

D : A → X and B1
A(A,X), for those which are inner. The first A-

module cohomology group with coefficients inX is denoted byH1
A(A,X)

which is the quotient group Z1
A(A,X)/B1

A(A,X). Hence, A is A-module
amenable if and only if H1

A(A,X
′) = 0, for each commutative Banach

A-A-module X.

Definition 1.2. The Banach algebra A is called weak A-module amenable,
if H1

A(A,A
′) is zero.

Definition 1.3. A is called n-weak A -module amenable, if H1
A(A,A

(n))
is zero.

Let A and A be Banach algebras such that A be a Banach A-module
and let X be a Banach A-A-module with compatible actions. An n-A-
module map is a mapping ϕ : An → X with the following properties;

ϕ(a1, . . . , ai−1, b± c, ai+1, . . . , an) =ϕ(a1, . . . , ai−1, b, ai+1, . . . , an)

± ϕ(a1, . . . , ai−1, c, ai+1, . . . , an),

ϕ(α · a1, a2, . . . , an) = α · ϕ(a1, a2, . . . , an),
ϕ(a1, a2, . . . , an · α) = ϕ(a1, a2, . . . , an) · α
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and

ϕ(a1, . . . , ai−1, ai · α, ai+1, . . . , an) = ϕ(a1, . . . , ai−1, ai, α · ai+1, . . . , an),

where a1, . . . , an, b, c ∈ A and α ∈ A. Note that ϕ is not necessarily
n-linear. The n-A-module map ϕ : An → X is bounded, if there exists
a constant M > 0 such that

|ϕ(a1, a2, . . . , an)| ≤M ∥ϕ∥ ∥a1∥ · · · ∥an∥ ,

where a1, . . . , an ∈ A. We use the notation CnA(A,X) for the set of all
bounded n-A-module maps from A to X.

For n ≥ 1, the map δn : CnA(A,X) −→ Cn+1
A (A,X) is given by

δnT (a1, . . . , an+1) = a1 · T (a2, . . . , an+1)

+

n∑
i=1

(−1)iT (a1, . . . , aiai+1, . . . an+1)

+(−1)n+1T (a1, . . . , an) · an+1,

where T ∈ CnA(A,X) and a1, . . . , an+1 ∈ A.
For every n ≥ 2, the space ker δn of all bounded n-A-module cocy-

cles is denoted by Zn
A(A,X) and the space Im δn−1 of all bounded n-

A-module coboundaries is denoted by BnA(A,X). We see that BnA(A,X)
is included in Zn

A(A,X) and that the n-th A-module cohomology group
Hn

A(A,X) is defined by the quotient

Hn
A(A,X) =

Zn
A(A,X)

BnA(A,X)
(n ≥ 2).

The space Zn
A(A,X) is a Banach space, but in general BnA(A,X) is not

closed, we regard Hn
A(A,X) as a complete seminormed space with re-

spect to the quotient seminorm. This seminorm is a norm if and only if
BnA(A,X) is a closed subspace of CnA(A,X), which means that Hn

A(A,X)
is a Banach space. It is unknown whether or not Hn

A(A,X) is a Banach
space, for every n ∈ N.

Proposition 1.4. [8, Proposition 1.1] Let X and Y be Banach spaces
and let Φ : X → Y be a bounded linear map. If there exists a constant
M such that, for every y ∈ ImΦ there exists an element x ∈ X such
that ∥x∥ ≤M ∥y∥ and y = Φ(x), then ImΦ is closed.
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2. First module cohomology group of inverse semigroup
algebras

Let S be a commutative inverse semigroup and E be the set of idem-
potent elements in S, then E is a commutative inverse semigroup and
ℓ1(S) is a commutative Banach ℓ1(E)-module with the actions

δs · δe = δe · δs = δse (e ∈ E, s ∈ S),

where δs is the point mass at s. Since E is commutative, these actions
are module actions.

In this section, for a commutative inverse semigroup S, we will show
that the first module cohomology group of ℓ1(S) (as an ℓ1(E)-module)

with coefficients in (ℓ1(S))(2n+1) is trivial or H1
ℓ1(E)(ℓ

1(S),X ′) = 0 where

X = ℓ(2n)(S).

Remark 2.1. Set X = (ℓ1(S))(2n). We note that (ℓ1(S))′ = ℓ∞(S) is
a commutative unital C∗-algebra. Because the second dual of a commu-
tative unital C∗-algebra is a commutative von Neumann algebra, then
X ′ = (ℓ1(S))(2n+1) is the underlying space of a commutative von Neu-
mann algebra, and hence it is an L∞-space. The space X ′

R of real-valued
functions in X ′ forms a complete lattice in the sense that every nonempty
subset of X ′

R that is bounded above has a supremum.

Note that for every t ∈ S there exists a unique t∗ in S such that
tt∗t = t and t∗tt∗ = t∗, we say that t∗ is the unique inverse of t.

Lemma 2.2. Let S be a commutative inverse semigroup and X be as
in Remark (2.1). Let D be a ℓ1(E)-module derivation. Then, for every
s, t ∈ S, we have

(2.1) δs∗ · [δ(ts∗)∗ ·D(δts∗)] · δs = δt∗ ·D(δt) · δs∗s +D(δt∗ts∗) · δs.

and

(2.2) δt∗ ·D(δt) · δs∗s = δs∗ · [δ(ts∗)∗ ·D(δts∗)] · δs + δt∗ts∗ ·D(δs),

where s∗ and t∗ are the unique inverses of s and t in S respectively.

Proof. Since D is a ℓ1(E)-module derivation, for every e ∈ E we have
D(δe) = 0. But, s∗s ∈ E and hence δs∗s ∈ ℓ1(E), for every s ∈ S, so we
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have

0 = D(δs∗s) = δs∗ ·D(δs) +D(δs∗) · δs,
that is,

(2.3) δs∗ ·D(δs) = −D(δs∗) · δs
Now, for every s, t ∈ S since t∗t and s∗s are in E by using (2.3), we
obtain

δt∗ ·D(δt) · δs∗s = δt∗ ·D(δts∗ ∗ δs)
= δt∗ ·D(δts∗) · δs + δt∗ts∗ ·D(δs)

= δt∗ ·D(δts∗ss∗) · δs + δt∗ts∗ ·D(δs)

sinceD(δts∗ss∗) = D(δs∗sts∗) = δs∗s ·D(δts∗)

= δs∗ · [δ(ts∗)∗ ·D(δts∗)] · δs + δt∗ts∗ ·D(δs)

= δs∗ · [δ(ts∗)∗ ·D(δts∗)] · δs −D(δt∗ts∗) · δs,
so, we have shown that

δs∗ · [δ(ts∗)∗ ·D(δts∗)] · δs = δt∗ ·D(δt) · δs∗s +D(δt∗ts∗) · δs.

Using (2.3), we obtain

δt∗ ·D(δt) · δs∗s = δs∗ · [δ(ts∗)∗ ·D(δts∗)] · δs + δt∗ts∗ ·D(δs).

□

Lemma 2.3. Let S be a commutative inverse semigroup and X be as in
Remark (2.1). Let D be a ℓ1(E)-module derivation. Then, there exists
a ψ ∈ X ′ such that for every s ∈ S

D(δs) = δs · ψ − ψ · δs.

Proof. Let D ∈ Z1
ℓ1(E)(ℓ

1(S),X ′). Set

Λ = {Re δt∗ ·D(δt) : t ∈ S} ,
where t∗ is the unique inverse of t in S. Since Λ is bounded above by
∥D∥ in X ′

R, then ψr = sup(Λ) exists in X ′
R.

Taking supremum over all t ∈ S of real part of (2.1) and since for
every s, x ∈ S

sup
t∈S

{Re δt∗ ·D(δt) · δs∗s(f) + ReD(δt∗ts∗) · δs(f)} ≥

sup
t∈S

{Re δt∗ ·D(δt) · δs∗s(f)}+ReD(δx∗xs∗) · δs(f),
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we obtain

δs∗ · ψr · δs(f) ≥ sup
t∈S

{Re δt∗ ·D(δt) · δs∗s(f) + ReD(δt∗ts∗) · δs(f)}

≥ sup
t∈S

{Re δt∗ ·D(δt) · δs∗s(f)}+ReD(δs∗ss∗) · δs(f)

= ψr · δs∗s(f) + ReD(δs∗ss∗) · δs(f)
= ψr · δs∗s(f) + ReD(δs∗) · δs(f),

so we have shown that

(2.4) ReD(δs∗) · δs(f) ≤ δs∗ · ψr · δs(f)− ψr · δs∗s(f).

Similarly, taking supremum over all t ∈ S of real part of (2.2) we obtain

ψr · δs∗s(f) ≥ sup
t∈S

{Re δs∗ · [δ(ts∗)∗ ·D(δts∗)] · δs(f)

+ Re δt∗ts∗ ·D(δs)(f)}
≥ sup

t∈S
{Re δs∗ · [δ(ts∗)∗ ·D(δts∗)] · δs(f)}

+Re δs∗ss∗ ·D(δs)(f)

= δs∗ · ψr · δs(f) + Re δs∗ss∗ ·D(δs)(f)

= δs∗ · ψr · δs(f) + Re δs∗ ·D(δs)(f),

so we have shown that

(2.5) ReD(δs∗) · δs(f) ≥ δs∗ · ψr · δs(f)− ψr · δs∗s(f).

Now, using (2.4) and (2.5), we obtain

ReD(δs∗) · δs(f) = δs∗ · ψr · δs(f)− ψr · δs∗s(f),

using (2.3), we obtain

(2.6) Re δs∗ ·D(δs)(f) = ψr · δs∗s(f)− δs∗ · ψr · δs(f).

Now, by replacing f with f · δs in (2.6), we obtain

Re δss∗ ·D(δs)(f) = δs · ψr · δs∗s(f)− δss∗ · ψr · δs(f).

Since δss∗ ∈ ℓ1(E) commute with elements of Λ and so with ψr and
δss∗s = δs, therefore we have

(2.7) Re δss∗ ·D(δs)(f) = δs · ψr(f)− ψr · δs(f).

Similarly, by considering imaginary parts, we obtain ψi such that

(2.8) Im δss∗ ·D(δs)(f) = δs · ψi(f)− ψi · δs(f).
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By putting ψ = ψr + iψi ∈ X ′ and using (2.7) and (2.8), we obtain

δss∗ ·D(δs)(f) = δs · ψ(f)− ψ · δs(f).

On the other hand

δss∗ ·D(δs) = D(δss∗ · δs) = D(δs),

hence we get

D(δs) = δs · ψ − ψ · δs.
□

Theorem 2.4. Let S be a commutative inverse semigroup. Then,
H1
ℓ1(E)(ℓ

1(S),X ′) is zero, where X = (ℓ1(S))(2n), for every n ∈ N.

Proof. Let D ∈ Z1
ℓ1(E)(ℓ

1(S),X ′). We show that there exists a function

ψ in X ′ such that D = adψ or D ∈ B1
ℓ1(E)(ℓ

1(S),X ′). By Lemma 2.3

there exists a ψ ∈ X ′ such that for every s ∈ S

(2.9) D(δs) = δs · ψ − ψ · δs.

Now, we will show that D is linear, for each s ∈ S and λ ∈ C, since
λδss∗ ∈ ℓ1(E), we have

D(λδs) = D(λδss∗ ∗ δs) = λδss∗ ·D(δs) = λD(δss∗ ∗ δs) = λD(δs),

but, D is additive, so we get D(λg) = λD(g), for each g ∈ ℓ1(S) of finite
support. Using the continuity of D and the fact that, all functions of
finite support are dense in ℓ1(S), we obtain that D is linear.

Also with the same reason as above for each g ∈ ℓ1(S) from (2.9) we
have

D(g) = g · ψ − ψ · g = adψ(g),

this shows that D ∈ B1
ℓ1(E)(ℓ

1(S),X ′) and this completes the proof. □

3. Second module cohomology group of inverse semigroup
algebras

Let S be an inverse semigroup and let E be the set of idempotent
elements in S which is central.
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In this section, we state the final result of this paper. We will show
that the second ℓ1(E)-module cohomology group of ℓ1(S) with coeffi-

cients in the (2n+ 1)-th dual space ℓ1(S)(2n+1) is a Banach space.
Why one wish to show that a cohomology group of a Banach algebra

is a Banach space? The reason is that, if the algebraic cohomology
group is trivial, then this often leads to the conclusion that the space
of coboundaries is dense in the space of cocycles. If additionally one
can prove that the space of coboundaries is closed, then one has a proof
that the cohomology is trivial. This is the method that the second
author and others used to show that H3(ℓ1(S), ℓ∞(S)) = 0, where S is
a semilattice [5].

In the rest of this paper, we set X = (ℓ1(S))(2n) as we mentioned in
Remark 2.1.

Lemma 3.1. Let S be an inverse semigroup and let ϕ ∈ C1
ℓ1(E)(ℓ

1(S),X ′).

Then, for every s ∈ S, e ∈ E and f ∈ X with ∥f∥ ≤ 1, we have

|ϕ(δes∗) · δs(f) + δes∗ · ϕ(δs)(f)| ≤ 2 ∥δϕ∥ ,
where s∗ is the unique inverse of s in S.

Proof. Let ϕ ∈ C1
ℓ1(E)(ℓ

1(S),X ′). Using the 2-coboundary map, for every

s, t ∈ S and f ∈ X with ∥f∥ ≤ 1, we have
(3.1)
|δϕ(δs, δt)(f)| = |ϕ(δs) · δt(f)− ϕ(δs ∗ δt)(f) + δs · ϕ(δt)(f)| ≤ ∥δϕ∥ .

Using (3.1) with e ∈ E instead of s, t ∈ S, respectively, we obtain

|ϕ(δe)(f)| ≤ ∥δϕ∥ .
Thus, for every e ∈ E and s ∈ S we have

|ϕ(δes∗) · δs(f) + δes∗ · ϕ(δs)(f)| ≤ |ϕ(δes∗) · δs(f) + δes∗ · ϕ(δs)(f)
− ϕ(δes∗s)(f)|+ |ϕ(δes∗s)(f)|

≤ 2 ∥δϕ∥ .
□

Corollary 3.2. Let S be an inverse semigroup and let the idempotents
of S are central. For every ϕ ∈ C1

ℓ1(E)(ℓ
1(S),X ′), we have

(3.2)
Re δt∗ ·ϕ(δt) ·δs∗s+Reϕ(δt∗ts∗) ·δs ≤ Re δs∗ · [δ(ts∗)∗ ·ϕ(δts∗)] ·δs+3 ∥δϕ∥ .
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Proof. For every s, t ∈ S and f ∈ X , since ϕ is a ℓ1(E)-module map and
using (3.1), by using the centrality of the idempotent s∗s, we obtain

Re δt∗ · ϕ(δt) · δs∗s = Re δt∗ · ϕ(δts∗ ∗ δs)
≤ Re δt∗ · ϕ(δts∗) · δs +Re δt∗ts∗ · ϕ(δs) + ∥δϕ∥
= Re δt∗ · ϕ(δts∗ss∗) · δs +Re δt∗ts∗ · ϕ(δs) + ∥δϕ∥

sinceD(δts∗ss∗) = D(δs∗sts∗) = δs∗s ·D(δts∗) and by previous Lemma

= Re δs∗ · [δ(ts∗)∗ · ϕ(δts∗)] · δs +Re δt∗ts∗ · ϕ(δs) + ∥δϕ∥
≤ Re δs∗ · [δ(ts∗)∗ · ϕ(δts∗)] · δs − Reϕ(δt∗ts∗) · δs + 3 ∥δϕ∥ .

□

Lemma 3.3. Let S be an inverse semigroup and let the idempotents of
S are central. Let ϕ ∈ C1

ℓ1(E)(ℓ
1(S),X ′), then, there exists a

ψ ∈ C1
ℓ1(E)(ℓ

1(S),X ′) such that

|ϕ(δs)(f)− [δs · ψ(f)− ψ · δs(f)]| ≤ 6 ∥δϕ∥

for every s ∈ S.

Proof. Set

Λ = {Re δt∗ · ϕ(δt) : t ∈ S} ,
where t∗ is the unique inverse of t in S. Since Λ is bounded above by
∥ϕ∥ in X ′

R, then ψr = sup(Λ) exists in X ′
R.

Taking supremum over all t ∈ S of (3.2) and since for every s, x ∈ S

sup
t∈S

{Re δt∗ · ϕ(δt)·δs∗s(f) + Reϕ(δt∗ts∗) · δs(f)}

≥ sup
t∈S

{Re δt∗ · ϕ(δt) · δs∗s(f)}+Reϕ(δx∗xs∗) · δs(f),

we obtain

3 ∥δϕ∥+ δs∗ · ψr · δs(f) ≥ sup
t∈S

{Re δt∗ · ϕ(δt) · δs∗s(f)

+ Reϕ(δt∗ts∗) · δs(f)}
≥ sup

t∈S
{Re δt∗ · ϕ(δt) · δs∗s(f)}

+Reϕ(δs∗ss∗) · δs(f)
= ψr · δs∗s(f) + Reϕ(δs∗ss∗) · δs(f)
= ψr · δs∗s(f) + Reϕ(δs∗) · δs(f),
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so we have shown that

(3.3) Reϕ(δs∗) · δs(f)− [δs∗ · ψr · δs(f)− ψr · δs∗s(f)] ≤ 3 ∥δϕ∥ .
Now, by replacing f with δs∗ · f in (3.3), we obtain

(3.4) Reϕ(δs∗) · δss∗(f)− [δs∗ · ψr · δss∗(f)− ψr · δs∗ss∗(f)] ≤ 3 ∥δϕ∥ .
And by replacing f with (−δ∗s) · f in (3.3), we obtain

(3.5) − 3 ∥δϕ∥ ≤ Reϕ(δs∗) · δss∗(f)− [δs∗ ·ψr · δss∗(f)−ψr · δs∗ss∗(f)].
From (3.4) and (3.5), we have

|Reϕ(δs∗) · δss∗(f)− [δs∗ · ψr · δss∗(f)− ψr · δs∗ss∗(f)]| ≤ 3 ∥δϕ∥ ,
since δss∗ ∈ ℓ1(E), we have

ϕ(δs∗) · δss∗ = ϕ(δs∗ss∗) = ϕ(δs∗),

thus

|Reϕ(δs∗)(f)− [δs∗ · ψr · δss∗(f)− ψr · δs∗ss∗(f)]| ≤ 3 ∥δϕ∥ .
Since the idempotent ss∗ is central, then δss∗ ∈ ℓ1(E) commute with

elements of Λ and so with ψr and δs∗ss∗ = δs∗ , therefore we have

(3.6) |Reϕ(δs∗)(f)− [δs∗ · ψr(f)− ψr · δs∗(f)]| ≤ 3 ∥δϕ∥ ,
similarly by considering imaginary parts, we obtain ψi such that

(3.7) |Imϕ(δs∗)(f)− [δs∗ · ψi(f)− ψi · δs∗(f)]| ≤ 3 ∥δϕ∥ .
By putting ψ = ψr + iψi and using (3.6) and (3.7), we obtain

(3.8) |ϕ(δs∗)(f)− [δs∗ · ψ(f)− ψ · δs∗(f)]| ≤ 6 ∥δϕ∥ .
□

Theorem 3.4. Let S be an inverse semigroup and let the idempotents
of S are central. Then, H2

ℓ1(E)(ℓ
1(S),X ′) is a Banach space, where X =

(ℓ1(S))(2n), for every n ∈ N.

Proof. Let ϕ ∈ C1
ℓ1(E)(ℓ

1(S),X ′). We show that there exists a constant

M and ψ̄ ∈ C1
ℓ1(E)(ℓ

1(S),X ′) such that δψ̄ = δϕ and
∥∥ψ̄∥∥ ≤M ∥δϕ∥.

By Lemma 3.3 there exists a ψ ∈ C1
ℓ1(E)(ℓ

1(S),X ′) such that

(3.9) |ϕ(δs)(f)− [δs · ψ(f)− ψ · δs(f)]| ≤ 6 ∥δϕ∥ ,
for every s ∈ S.
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Now, we will show that ϕ is linear, for each s ∈ S and λ ∈ C, since
λδss∗ ∈ ℓ1(E), we have

ϕ(λδs) = ϕ(λδss∗ ∗ δs) = λδss∗ · ϕ(δs) = λϕ(δss∗ ∗ δs) = λϕ(δs),

since ϕ is additive, we get ϕ(λg) = λϕ(g), for each g ∈ ℓ1(S) of finite
support. But, ϕ is continuous and functions of finite support are dense
in ℓ1(S), hence ϕ is linear.

Also by the same reason for each g ∈ ℓ1(S) from (3.9) we have

|ϕ(g)(f)− (g · ψ − ψ · g)(f)| ≤ 6 ∥δϕ∥ ∥g∥ .
Define ψ̄ ∈ C1

ℓ1(E)(ℓ
1(S),X ′) by

ψ̄(g) = ϕ(g)− (g · ψ − ψ · g),
then δψ̄ = δϕ and

∣∣ψ̄(g)(f)∣∣ ≤ 6 ∥δϕ∥, for every g ∈ ℓ1(S) with ∥g∥ ≤ 1

and f ∈ X with ∥f∥ ≤ 1. So,
∥∥ψ̄∥∥ ≤ 6 ∥δϕ∥ and by Proposition 1.4,

Im δ = B2
ℓ1(E)(ℓ

1(S),X ′) is closed, which means that H2
ℓ1(E)(ℓ

1(S),X ′)

is a Banach space and this completes the proof. □

Corollary 3.5. Let S be a Clifford semigroup and let E be the set of
idempotent elements in S. Then, H2

ℓ1(E)(ℓ
1(S),X ′) is a Banach space,

where X = (ℓ1(S))(2n), for every n ∈ N.

Proof. By [4, Theorem 4.2.1] every Clifford semigroup is an inverse semi-
group, where its idempotents are central. So, by the previous theorem
H2
ℓ1(E)(ℓ

1(S),X ′) is a Banach space. □
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