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ON MODULE EXTENSION BANACH ALGEBRAS

A. R. MEDGHALCHI AND H. POURMAHMOOD-AGHABABA∗

Communicated by Fereidoun Ghahramani

Abstract. Let A be a Banach algebra and X be a Banach A-
bimodule. Then S = A⊕X, the l1-direct sum of A and X becomes
a module extension Banach algebra when equipped with the algebra
product (a, x).(a′, x′) = (aa′, ax′+xa′). In this paper, we investigate
biflatness and biprojectivity for these Banach algebras. We also
discuss on automatic continuity of derivations on S = A⊕A.

1. Introduction

In this paper we shall focus on an especial kind of Banach alge-
bras which are constructed from a Banach algebra A and a Banach
A-bimodule X, called module extension Banach algebras. The module
extension Banach algebra corresponding to A and X is S = A⊕X, the
l1-direct sum of A and X, with the algebra product defined as follows:

(a, x).(a′, x′) = (aa′, ax′ + xa′) (a, a′ ∈ A, x, x′ ∈ X).

The article is organized as follows: In section 2, we bring some pre-
liminaries. In section 3, we verify the biflatness and biprojectivity of
S. Using these Banach algebras, we construct a class of non-biflat and
non-biprojective Banach algebras. In section 4, we discuss on automatic
continuity of derivations on S = A⊕A and we prove that S = A⊕A has
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automatically continuous derivations if and only if A has automatically
continuous derivations.

2. Preliminaries

Let A be a Banach algebra. The product map on A extends to a
map ∆A : A⊗̂A → A, determined by ∆A(a ⊗ b) = ab for all a, b ∈ A,
where A⊗̂A denotes the projective tensor product. The projective tensor
product A⊗̂A becomes a Banach A-bimodule with the following module
actions:

a.(b⊗ c) = ab⊗ c, (b⊗ c).a = b⊗ ca (a, b, c ∈ A).

By above actions, ∆A becomes an A-bimodule homomorphism.
A Banach algebra A is called biprojective if ∆A has a bounded right

inverse which is an A-bimodule homomorphism and is called biflat if ∆∗
A

has a bounded left inverse which is an A-bimodule homomorphism.
Let Lx : A → X and Rx : A → X be bounded linear maps defined by

Lx(a) = xa and Rx(a) = ax for all a ∈ A. We consider the set M(X)
of all double multipliers of A-bimodule X, i.e., the set of all pairs (L,R)
of bounded linear maps from A to X such that L is a right A-module
homomorphism, R is a left A-module homomorphism and aL(b) = R(a)b
for all a, b ∈ A. Linear operations in M(X) are defined as usual. The
norm of (L,R) ∈ M(X) is ∥(L,R)∥ = max{∥L∥, ∥R∥} where ∥L∥ and
∥R∥ are the operator norms of L and R. With operations

a.(L,R) = (LR(a), RR(a)), (L,R).a = (LL(a), RL(a)),

M(X) becomes a Banach A-bimodule. We say that a derivation D :
A → X is determined by a multiplier of X if there exists (L,R) ∈ M(X)
such that D = L−R.

Let A and X be as above. Then X∗, the dual space of X, is also a
Banach A-bimodule as well via

⟨x, a.ϕ⟩ := ⟨x.a, ϕ⟩, ⟨x, ϕ.a⟩ := ⟨a.x, ϕ⟩ (a ∈ A, ϕ ∈ X∗, x ∈ X).

A derivation from A into X is a linear map satisfying

D(ab) = a.(Db) + (Da).b (a, b ∈ A).

For each x ∈ X we denote by adx the derivation adx(a) = a.x− x.a for
all a ∈ A, which is called an inner derivation. We denote by Z1(A,X)
the space of all bounded derivations from A into X, and by B1(A,X)
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the space of all inner derivations from A into X. The first cohomol-
ogy group of A and X, denoted by H1(A,X), is the quotient space
Z1(A,X)/B1(A,X). A Banach algebra A is called weakly amenable if
H1(A,A∗) = 0.

Throughout this paper, A will denote a Banach algebra, X a Banach
A-bimodule and S the corresponding module extension Banach algebra
of A and X. AX, XA and AXA will denote the subsets {ax | a ∈ A, x ∈
X}, {xa | a ∈ A, x ∈ X} and {axb | a, b ∈ A, x ∈ X} of X, respectively.

3. Biflatness and Biprojectivity of Module Extension Banach
Algebras

Our aim in this section is to state the biflatness and biprojectivity of
S in terms of biflatness and biprojectivity of A and some conditions on
X. The next two theorems give some conditions on A and X which are
necessary for biflatness and biprojectivity of S. We use the notation ⟨E⟩
for the linear span of a subset E of X.

Theorem 3.1. Let the module extension Banach algebra S be biflat.
Then

(i) A is biflat;
(ii) if ρA is a left inverse of ∆∗

A, then ρ∗A(a) vanishes on the subset
X(S⊗̂S)∗X of (A⊗̂A)∗, for all a ∈ A;

(iii) ⟨AX +XA⟩ is dense in X;
(iv) AXA = 0.

Proof. (i) Let ρS be a bounded left inverse for ∆∗
S which is a S-bimodule

homomorphism and let q1 : A
∗ → S∗ and q2 : (A⊗̂A)∗ → (S⊗̂S)∗ be the

canonical embeddings and let r : S∗ → A∗ be the restriction map. Define
ρA = r◦ρS ◦q2. Obviously ρA is a bounded A-bimodule homomorphism.
For f ∈ A∗ and (a1, x1), (a2, x2) ∈ S we have

⟨(a1, x1)⊗ (a2, x2), q2 ◦∆∗
A(f)⟩ = ⟨a1 ⊗ a2,∆

∗
A(f)⟩

= ⟨∆A(a1 ⊗ a2), f⟩
= ⟨a1a2, f⟩,

and

⟨(a1, x1)⊗ (a2, x2),∆
∗
S ◦ q1(f)⟩ = ⟨∆S((a1, x1)⊗ (a2, x2)), q1(f)⟩

= ⟨(a1a2, a1x2 + x1a2), q1(f)⟩
= ⟨a1a2, f⟩.
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Therefore, q2 ◦∆∗
A = ∆∗

S ◦ q1 and so

ρA ◦∆∗
A = r ◦ ρS ◦ q2 ◦∆∗

A = r ◦ ρS ◦∆∗
S ◦ q1

= r ◦ idS∗ ◦ q1 = r ◦ q1 = idA∗ .

Hence A is biflat.
(ii) First note that every element of X(S⊗̂S)∗X vanishes on the sub-

space (A⊗̂X)⊕ (X⊗̂A)⊕ (X⊗̂X) of S⊗̂S, and thus it can be viewed as
an element of (A⊗̂A)∗. Now let a ∈ A, x, y ∈ X and f ∈ (S⊗̂S)∗. Then

⟨xfy, ρ∗A(a)⟩ = ⟨ρA(xfy), a⟩ = ⟨r ◦ ρS ◦ q2(xfy), a⟩ = ⟨r ◦ ρS(xfy), a⟩
= ⟨r(xρS(f)y), a⟩ = ⟨xρS(f)y, a⟩ = ⟨ρS(f), yax⟩ = 0.

(iii) Since S is biflat, ⟨S2⟩ is dense in S. Hence ⟨AX +XA⟩ is dense
in X.

(iv) Since S is biflat, by [9, Theorem 5.9(ii)], for every S-bimodule Y
each derivation D : S → Y , is determined by a multiplier of Y ∗∗. So
there exists (L,R) ∈ M(Y ∗∗) such that D = L−R. Now consider X as
an S-bimodule by the following module actions:

(3.1) (a, x).y = ay, y.(a, x) = ya (a ∈ A, x, y ∈ X),

and define D : S → X by D(a, x) = x. It is easy to check that D is
a bounded derivation. Thus there exists (L,R) ∈ M(X∗∗) such that
L(a, x) − R(a, x) = x, for all a ∈ A and x ∈ X. By the derivation
property of D and the multiplier property of (L,R) we have

ay + xb = L(a, x)b− aR(b, y) (a, b ∈ A, x, y ∈ X),

note that X∗∗ is an S-bimodule with the actions same as (3.1). By
letting a = 0 we obtain

(3.2) L(0, x)b = xb (b ∈ A, x ∈ X).

On the other hand, by the property of multipliers we have aL(b, x) =
R(a, y)b. So by setting b = 0 we get

(3.3) aL(0, x) = 0 (a ∈ A, x ∈ X).

Now by (3.2) and (3.3) we have axb = a(L(0, x)b) = (aL(0, x))b = 0 for
all a, b ∈ A and x ∈ X. □

Corollary 3.2. If X is a non-trivial symmetric A-bimodule, then S =
A⊕X is not biflat.
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Theorem 3.3. Let the module extension Banach algebra S be biprojec-
tive. Then

(i) A is biprojective;
(ii) if ρA is a right inverse of ∆A, then XρA(A)X = 0;
(iii) ⟨AX +XA⟩ is dense in X;
(iv) AXA = 0.

Proof. Since every biprojective Banach algebra is biflat, by Theorem
3.1 we have to show (i) and (ii). Let ρS be a bounded right inverse
for ∆S which is an S-bimodule homomorphism and let p : S → A and
ι : A → S be defined by p(a, x) = a and ι(a) = (a, 0) respectively.
Define ρA = (p ⊗ p) ◦ ρS ◦ ι. Obviously ρA is a bounded A-bimodule
homomorphism and ∆A ◦ ρA = idA. For (ii), first note that A is an
S-bimodule via p and so p ⊗ p is an S-bimodule homomorphism. Now
let a ∈ A and x, y ∈ X, then

xρA(a)y = x(p⊗ p) ◦ ρS ◦ ι(a)y = x(p⊗ p) ◦ ρS(a, 0)y
= (p⊗ p) ◦ ρS(x(a, 0)y) = 0.

□

Corollary 3.4. The module extension Banach algebra S = A⊕X fails
to be biflat or biprojective whenever AXA ̸= 0.

Corollary 3.5. For each non-trivial Banach algebra A and each non-
negative integer n, the module extension Banach algebra S = A ⊕ A(n)

fails to be biflat or biprojective, where A(n) is the n-th dual space of A
for n ∈ N and A(0) = A.

Proof. Assume that S is biflat. By Theorem 3.1, ⟨A2⟩ is dense in A. Let

a, b ∈ A and let (Fn) be a sequence in ⟨A2⟩ with Fn =
∑m(n)

i=1 ai,nbi,n
such that limn Fn = a. Then ab = limn Fnb, so ⟨A2⟩ ⊆ ⟨A3⟩. Thus ⟨A3⟩
is dense in A. Now let n be even. Then from AA(n)A = 0 we have
A3 = 0 which implies A = 0. For odd n we have AA∗A = 0. Thus every
element of A∗ vanishes on A3 and so on A. Therefore A∗ = 0, which
implies A = 0. □

Example 3.6. Let G be a locally compact group, and let L1(G) and
M(G) be its group algebra and measure algebra respectively. Then the
module extension Banach algebras L1(G)⊕M(G), M(G)⊕ L1(G),
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M(G)⊕M(G), L1(G)⊕L1(G), L1(G)⊕L∞(G), are neither biprojective
nor biflat.

Now we proceed the converse of Theorems 3.1 and 3.3. We show that
if A has a bounded approximate identity, then the converses of Theorems
3.1 and 3.3 are true. Also, with some examples we show that this is the
best one can get.

Proposition 3.7. Suppose that A and X satisfy the conditions (i), (ii),
(iii) and (iv) of Theorem 3.1 and A has a bounded approximate identity
(in fact, A is amenable). Then the module extension Banach algebra S
is biflat.

Proof. Let (eα) be a bounded approximate identity for A. First we show
that ⟨AX⟩

∩
⟨XA⟩ = 0. Let F ∈ ⟨AX⟩

∩
⟨XA⟩. Then

F =
n∑

i=1

aixi =
m∑
j=1

yjbj (ai, bj ∈ A, xi, yj ∈ X),

and so

F = lim
α

eαF = lim
α

eα

m∑
j=1

yjbj = lim
α

m∑
j=1

eαyjbj = 0,

by condition (iv). Secondly we show that X = AX + XA. Let E be
the closure of ⟨AX⟩ in X. Then E is a left essential A-module and so
E = AX by Cohen’s factorization theorem [1, Theorem 11.10]. So AX
is a closed submodule of X. Similarly XA is a closed submodule of X
and AX+XA is dense in X. Now projections p : AX+XA → AX and
q : AX + XA → XA defined by p(u) = limα eαu and q(u) = limα ueα
are continuous and so we can extend continuously to p̃ : X → AX and
q̃ : X → XA. The restriction of p̃+ q̃ : X → AX +XA on AX +XA is
the identity map. For x ∈ X let (un) be a sequence in AX +XA which
converges to x. We have

x = lim
n

un = lim
n
(p̃+ q̃)(un) = lim

n
(p̃+ q̃)(x),

and so x ∈ AX + XA. Thus AX + XA = X. Let ι : A → S be the
canonical injection as in the proof of Theorem 3.3 and set ρ̃ = (ι⊗ ι)∗∗ ◦
ρ∗A. It is obvious that ρ̃ is a bounded A-bimodule homomorphism from
A∗∗ into (S⊗̂S)∗∗. Now define ρS : S → (S⊗̂S)∗∗ by

ρS(a, bx+ yc) = ρ̃(a) + ρ̃(b)x+ yρ̃(c) (a, b, c ∈ A, x, y ∈ X).
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Since the norm of X is equivalent with the l1-norm of AX + XA and
ρ̃(b)x = limα ρ̃(eα)bx and yρ̃(c) = limα ycρ̃(eα), ρS is a well defined
bounded linear map. We show that ρS is an S-bimodule homomorphism.
For a, b ∈ A and x ∈ X we have axρ̃(b) = limα axbρ̃(eα) = 0 and
ρ̃(b)xa = limα ρ̃(eα)bxa = 0 by condition (iv). So for a, b, c, d ∈ A and
x, y, z ∈ X we have

ρS(d(a, bx+ yc)) = ρS(da, dbx+ dyc) = ρ̃(da) + ρ̃(db)x

= d(ρ̃(a) + ρ̃(b)x) = d(ρ̃(a) + ρ̃(b)x+ yρ̃(c))

= dρS(a, bx+ yc),

and by using condition (ii) we have

ρS(z(a, bx+ yc)) = ρS(za) = zρ̃(a) = z(ρ̃(a) + ρ̃(b)x+ yρ̃(c))

= zρS(a, bx+ yc).

Therefore, ρS is a left S-module homomorphism. Similarly, ρS is a right
S-module homomorphism. Since ∆∗∗

A ◦(ρ∗A|A) is the canonical embedding
of A into A∗∗, for a, b, c ∈ A and x, y ∈ X we have

∆∗∗
S (ρS(a)) = ∆∗∗

S (ρ̃(a)) = ∆∗∗
S ((ι⊗ ι)∗∗ ◦ ρ∗A(a)) = ∆∗∗

A (ρ∗A(a)) = a,

and

∆∗∗
S (ρS(bx+ yc)) = ∆∗∗

S (ρ̃(b)x+ yρ̃(c))

= ∆∗∗
S ((ι⊗ ι)∗∗ ◦ ρ∗A(b)x+ y(ι⊗ ι)∗∗ ◦ ρ∗A(c))

= ∆∗∗
A (ρ∗A(b))x+ y∆∗∗

A (ρ∗A(c))

= bx+ yc.

Therefore, ∆∗∗
S ◦ ρS is the canonical embedding of S into S∗∗ and so S

is biflat. □

Proposition 3.8. Suppose that A and X satisfy the conditions (i), (ii),
(iii) and (iv) of Theorem 3.3 and A has a bounded approximate identity.
Then the module extension Banach algebra S is biprojective.

Proof. As in the proof of Proposition 3.7, AX and XA are closed A-
submodules of X with trivial intersection and AX+XA = X. Therefore
we can define ρS : S → (A⊗̂A)⊕ (A⊗̂X)⊕ (X⊗̂A) ⊆ S⊗̂S by

ρS(a, bx+ yc) = ρA(a) + ρA(b)x+ yρA(c) (a, b, c ∈ A, x, y ∈ X).

As in Proposition 3.7, we see that ρS is a well defined bounded linear
map. We show that ρS is an S-bimodule homomorphism. Since A has a
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bounded approximate identity, we have AXρA(A) = 0, and so by using
conditions (ii) and (iv), for a, b, c, d ∈ A and x, y, z ∈ X we have

ρS(d(a, bx+ yc)) = ρS(da, dbx+ dyc) = ρA(da) + ρA(db)x

= d(ρA(a) + ρA(b)x) = d(ρA(a) + ρA(b)x+ yρA(c))

= dρS(a, bx+ yc),

and

ρS(z(a, bx+ yc)) = ρS(za) = zρA(a) = z(ρA(a) + ρA(b)x+ yρA(c))

= zρS(a, bx+ yc).

Thus ρS is a left S-module homomorphism. Similarly, one can show that
ρS is a right S-module homomorphism. Obviously, ρS is a right inverse
for ∆S and so S is biprojective. □

We point out that there is a large class of modules that satisfies in
conditions of Propositions 3.7 and 3.8. Let X and Y be Banach A-
bimodules. We denote by X0 (respectively, 0Y ) the A-bimodules with
right (respectively, left) trivial module action. Let X (respectively, Y )
be a left (respectively, right) essential A-module. Consider the direct
sum Z = X0 ⊕ 0Y with the following module actions:

a.(x, y) = a.x, (x, y).a = y.a (a ∈ A, x ∈ X, y ∈ Y ).

Then Z satisfies in conditions (iii) and (iv) of Propositions 3.7 and
3.8. Also, every essential left (respectively, right) A-module with trivial
right (respectively, left) module action satisfies in conditions (ii), (iii)
and (iv) of Propositions 3.7 and 3.8.

By the following examples we show that if the Banach algebra A has
an approximate identity (not necessarily bounded), then the conclusion
of Propositions 3.7 and 3.8 may fail. We also show that the biflatness or
biprojectivity of S does not imply that A has a bounded approximate
identity.

Example 3.9. Let A = l1, X = lp0 for 1 ≤ p ≤ ∞ and S = l1 ⊕ lp0.
We know that l1 is a commutative biprojective Banach algebra (with
pointwise multiplication) with approximate identity.

(i) Let p = 1. Define ρ : S → (l1⊗̂l1) ⊕ (l1⊗̂l10) ⊆ S⊗̂S by
ρ(δn, δm) = δn ⊗ δn + δm ⊗ δm and extend by linearity. It is
easy to see that ρ is a left inverse of ∆S which is a bounded S-
bimodule homomorphism. So S is a biprojective (and so biflat)
Banach algebra and A = l1 has no bounded approximate identity.
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(ii) Let 1 < p < ∞. If S is a biflat (biprojective) Banach alge-
bra, then by [2, Proposition 2.8.62] it is weakly amenable and so
H1(l1, 0l

q) = 0 by [11, Theorem 2.1], where 1/p+1/q = 1. Now
consider the bounded derivation D : l1 → 0l

q by Df = f . If D
is inner, then there is an element g ∈ lq such that gf = f for all
f ∈ l1, which implies that g(n) = 1 for all n ∈ N and so g /∈ lq.
Hence S can not be biflat (biprojective).

(iii) Let p = ∞. Define D : l1 → (0l
1)∗∗ = 0(l

1∗∗) with D(f) = f
as in (ii). If D is inner, then there is a F ∈ (l1)∗∗ such that
F□f = f , □ denotes the first Arens product on (l1)∗∗, for all
f ∈ l1. Now it is easy that one can find a bounded approximate
identity for l1 which is a contradiction.

4. Automatic Continuity of Derivations on S = A⊕A

Our aim in this section is to discuss on automatic continuity of deriva-
tions on S = A ⊕ A. We show that if A has a one-sided approximate
identity and H1(A,A) is trivial, then the module extension Banach al-
gebra S = A ⊕ A has automatically continuous derivations if and only
if A has automatically continuous derivations.

Notation 4.1. If A is a Banach algebra and X is a Banach A-bimodule,
we denote by

(i) Z(A) the algebraic center of A,
(ii) CA(X,X) the set {ada : X → X | a ∈ Z(A)},
(iii) HomA(X,X) the set of all A-bimodule homomorphisms (not nec-

essarily bounded) from X to X.

The following Proposition characterizes derivations on S [7, Proposi-
tion 2.2]. Note that the continuity property of derivations is not neces-
sary for this characterizing.

Proposition 4.2. Let S = A ⊕ X. Then D : S → S is a (bounded)
derivation if and only if

(4.1) D(a, x) = (DA(a) + T1(x), DX(a) + T2(x)) (a ∈ A, x ∈ X),

such that

(i) DA : A → A is a (bounded) derivation,
(ii) DX : A → X is a (bounded) derivation,
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(iii) T1 : X → A is a (bounded) A-bimodule homomorphism such that
T1(x)y + xT1(y) = 0 for all x, y ∈ X,

(iv) T2 : X → X is a (bounded) linear map such that

T2(ax) = aT2(x)+DA(a)x, T2(xa) = T2(x)a+xDA(a) (a ∈ A, x ∈ X).

Moreover, D is inner if and only if DA and DX are inner, T1 = 0 and
if DA = ada, then T2 = ada.

By [11, Lemma 3.2] again note that the continuity property of ho-
momorphisms is not necessary. For each (bounded) φ ∈ HomA(X,X),
Dφ : S → S defined by Dφ(a, x) = (0, φ(x)) is a (bounded) derivation.
Moreover, Dφ is inner if and only if φ ∈ CA(X,X). Also, by [7, Propo-
sition 2.4] for S = A⊕ A, every (bounded) derivation D : A → A gives

rise a (bounded) derivation D̃ : S → S with D̃(a, b) = (D(a), D(b)).

Moreover, D̃ is inner if and only if D is inner. So, we have the following
corollary:

Corollary 4.3. Let A be a Banach algebra and S = A⊕A. Then there
exists a linear isomorphism from H1(A,A) onto a subspace of H1(S,S).
In particular, if H1(S,S) = 0, then H1(A,A) = 0.

For presenting the main theorem of this section we need a Lemma.

Lemma 4.4. Let A be a Banach algebra with a one-sided approximate
identity, and let T ∈ HomA(A,A). Then T is automatically continuous.

Proof. Let (ei) be a left approximate identity for A (the other case is sim-
ilar). Let a, b ∈ A, and let (an) ⊆ A be a sequence such that limn an = a
and limn T (an) = b. We have

b = limi eib = limi limn eiT (an) = limi limn T (eian)

= limi limn T (ei)an = limi T (ei)a = limi T (eia)

= limi eiT (a) = T (a).

Therefore, the closed graph theorem [4, Theorem 5.12] establishes the
continuity of T . □

Theorem 4.5. Let A be a Banach algebra with a one-sided approximate
identity, S = A ⊕ A and H1(A,A) = 0. Then S has automatically
continuous derivations if and only if A has automatically continuous
derivations.
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Proof. One direction is an immediate consequence of Corollary 4.3. For
the other, let D : S → S be a derivation. Then D is of the form
(4.1). Let (ei) be a left approximate identity for A (the other case is
similar). By Lemma 4.4, T1 is continuous. For a ∈ A we have 2T1(aei) =
T1(a)ei + aT1(ei) = 0, thus by letting i → ∞ we obtain T1 = 0. Since
A has automatically continuous derivations, DA and DX are continuous
and since H1(A,A) = 0, we have DA = ada and DX = ady for some
a, y ∈ A. Thus

D(b, x) = (ada(b), ady(b) + T2(x)).

If we let

D0(b, x) = (ada(b), ady(b) + ada(x)) = ad(a,y)(b, x),

then D0 is inner and therefore is continuous. Moreover, the derivation
D̃ = D −D0 is of the following form:

D̃(b, x) = (0, T2(x)− ada(x)).

ObviouslyD is continuous if and only if D̃ is so and therefore T : X → X
defined by T (x) = T2(x)− ada(x) is continuous. For if b, x ∈ A then

T (bx) = T2(bx)− ada(bx) = bT2(x) + ada(b)x− ada(bx)

= bT2(x) + (bax− abx)− (bxa− abx)

= bT2(x) + bax− bxa = bT2(x)− bada(x) = bT (x),

and

T (xb) = T2(xb)− ada(xb) = T2(x)b+ xada(b)− ada(xb)

= T2(x)b+ (xba− xab)− (xba− axb)

= T2(x)b+ axb− xab = T2(x)b− ada(x)b = T (x)b.

Thus T ∈ HomA(A,A) and so by Lemma 4.4 is continuous. □

Corollary 4.6. Let A be a unital, commutative, semisimple Banach
algebra and S = A⊕A. Then every derivation D : S → S is continuous.

Proof. This follows immediately from Theorem 4.5, since every deriva-
tion on A is continuous by [5] and [10]. □

Note that, as we have discussed in [7, Remark 2.1], there are large
classes of Banach algebras A satisfy H1(A,A) = 0. For example:

(i) If A is a von-Neumann algebra, a commutative C∗-algebra, a
W ∗-algebra or a simple unital C∗-algebra (i.e., A has no proper
closed two-sided ideal.), then H1(A,A) = 0 [8].
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(ii) IfA is a semi-simple commutative Banach algebra, thenH1(A,A)
= 0 [10].

(iii) For a locally compact group G, H1(M(G),M(G)) = 0 [6].

Proposition 4.7. Suppose that S = A⊕X has automatically continu-
ous derivations. Then every derivation from A into X is automatically
continuous.

Proof. As in the proof of [7, Theorem 2.9] every derivation D : A → X
can be lift to a derivation δD : S → S defined by δD(a, x) = (0, D(a)).
Therefore, every derivation D : A → X is automatically continuous. □
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