BEST PROXIMITY PAIR AND COINCIDENCE POINT THEOREMS FOR NONEXPANSIVE SET-VALUED MAPS IN HILBERT SPACES

A. AMINI-HARANDI

Communicated by Nezam Mahdavi-Amiri

Abstract. This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets A and B of a Hilbert space H and the set-valued maps $F : A \to 2^B$ and $G : A_0 \to 2^{A_0}$, where $A_0 = \{x \in A : \|x - y\| = d(A, B) \text{ for some } y \in B\}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0 \in A$ such that

$$d(G(x_0), F(x_0)) = d(A, B).$$

1. Introduction

Let (M, d) be a metric space and let A and B be nonempty subsets of M. Let $d(A, B) = \inf \{d(a, b) : a \in A, b \in B\}$. Let

$$B_0 := \{b \in B : d(a, b) = d(A, B) \text{ for some } a \in A\},$$

and

$$A_0 := \{a \in A : d(a, b) = d(A, B) \text{ for some } b \in B\}.$$

Let $G : A_0 \to 2^{A_0}$ and $F : A \to 2^B$ be set valued maps. $(G(x_0), F(x_0))$ is called a best proximity pair, if $d(G(x_0), F(x_0)) = d(A, B)$. Best proximity pair theorems analyse the conditions on F, G, A and B under which the problem of minimizing the real valued function $x \to d(G(x), F(x))$

Keywords: Best proximity pair, coincidence point, nonexpansive map, Hilbert space.

Received: 10 February 2010, Accepted: 27 July 2010.

© 2011 Iranian Mathematical Society.
has a solution. In the setting of normed spaces and hyperconvex metric spaces, the best proximity pair problem has been studied by many authors, see [1, 2, 3, 5, 7, 8].

Let H be a Hilbert space and $A, B \subseteq H$. It is well-known that if A and B are compact subsets of M, then there exist $a_0 \in A$ and $b_0 \in B$ such that $d(A, B) = d(a_0, b_0)$. Therefore, in this case

$$d(A, B) = 0 \iff A \cap B \neq \emptyset.$$

Let M be a metric space and let M denote the family of nonempty, closed bounded subsets of M. Let $A, B \in M$. The Hausdorff metric d_H on M defined by

$$d_H(A, B) = \inf \{ \epsilon > 0 : A \subseteq N_\epsilon(B) \text{ and } B \subseteq N_\epsilon(A) \},$$

where $N_\epsilon(A)$ denotes the closed ϵ-neighborhood of A, that is, $N_\epsilon(A) = \{ x \in M : d(x, A) \leq \epsilon \}$. Let X and Y be topological spaces with $C \subseteq Y$. Let $G : X \to 2^Y$ be a set-valued map with nonempty values. The inverse image of C under G is

$$G^{-}(C) = \{ x \in X : G(x) \cap B \neq \emptyset \}.$$

A set-valued map $F : A \to 2^B$ is said to be nonexpansive, if for each $x, y \in A$

$$d_H(F(x), F(y)) \leq \| x - y \|.$$

Given a nonempty closed convex subset A of a Hilbert space H, P_A will always denote the nearest point projection of H onto A. We will use the well-known fact that P_A is nonexpansive and so is continuous.

Lemma 1.1. ([5, Lemma 3.1]) Let A be a nonempty closed convex subset of a Hilbert space H. If C and D are nonempty closed and bounded subsets of H, then

$$d_H(P_A(C), P_A(D)) \leq d_H(C, D).$$

Let $(X, \| \cdot \|)$ be a reflexive Banach space and $A \subseteq X$ be nonempty, closed, convex and bounded. It is well-known that for each $x \in X$, $P_A(x) \neq \emptyset$. Here we give the proof for the completeness. For each $n \in \mathbb{N}$, let $A_n(x) = \{ y \in A : d(x, y) \leq d(x, A) + \frac{1}{n} \}$. Notice that $(A_n(x))$ is a decreasing sequence of nonempty closed, convex bounded subsets of the reflexive Banach space X, so by Šmulina theorem we have [4, page 433]

$$P_A(x) = \bigcap_{n=1}^{\infty} A_n(x) \neq \emptyset.$$
Lemma 1.2. ([5, Lemma 3.2]) Let X be a reflexive Banach space. Let A be a nonempty bounded closed convex subset of X, and let B be a nonempty closed convex subset of X. Then, A_0 and B_0 are nonempty and satisfy

$$P_B(A_0) \subseteq B_0 \text{ and } P_A(B_0) \subseteq A_0.$$

Recall that a Banach space X is uniformly convex, if given $\epsilon > 0$ there is a $\delta > 0$ such that whenever $\|x\| = \|y\| = 1$ and $\|x - y\| \geq \epsilon$, then $\|\frac{x+y}{2}\| \leq 1 - \delta$.

Theorem 1.3. ([6]) Let X be a uniformly convex Banach space, Let K be a bounded, closed and convex subset of X, and suppose $F : K \to 2^K$ is a compact-valued, nonexpansive set-valued map. Then, F has a fixed point.

2. Main results

We first present a coincidence point theorem for nonexpansive set-valued self maps.

Theorem 2.1. Let H be a Hilbert space and K be a closed, bounded convex subset of H. Let $F : K \to 2^K$ be a nonexpansive set-valued map with nonempty compact values. Let $G : K \to 2^K$ be an onto, set-valued map for which $G^{-1}(C)$ is compact for each compact set $C \subseteq K$. Assume that for each compact subsets C and D of K

$$d_H(G^{-1}(C), G^{-1}(D)) \leq d_H(C, D).$$

Then, there exists a $x_0 \in K$ with

$$F(x_0) \cap G(x_0) \neq \emptyset.$$

Proof. Since

$$F(x_0) \cap G(x_0) \neq \emptyset \Leftrightarrow x_0 \in G^{-1}(F(x_0)) = \{x \in H : G(x) \cap F(x_0) \neq \emptyset\},$$

then, the conclusion follows, if we show that the set-valued map $J(x) = G^{-1}(F(x)) : K \to 2^K$ has a fixed point. Since G is onto, then $J(x) \neq \emptyset$. For each $x \in K$, since $F(x)$ is compact, then $J(x) = G^{-1}(F(x))$ is compact. Now, we show that J is nonexpansive. For each $x, y \in K$ we have

$$d_H(J(x), J(y)) = d_H(G^{-1}(F(x)), G^{-1}(F(y))) \leq d_H(F(x), F(y)) \leq \|x - y\|. $$
Therefore, \(J \) satisfies all conditions of Theorem 1.3 and so has a fixed point. \(\square \)

Now, we obtain a best proximity pair theorem for nonexpansive set-valued maps in Hilbert spaces.

Theorem 2.2. Let \(H \) be a Hilbert space. Let \(A \) be a nonempty bounded closed convex subset of \(H \), and let \(B \) be a nonempty closed convex subset of \(H \). Let \(F : A \to 2^B \) be a nonexpansive set-valued map with nonempty compact values. Let \(G : A_0 \to 2^{A_0} \) be an onto set-valued map for which \(G^{-1}(C) \) is compact for each compact set \(C \subseteq A_0 \). Assume that for each compact subsets \(C \) and \(D \) of \(A_0 \)
\[
d_H(G^{-1}(C), G^{-1}(D)) \leq d_H(C, D).
\]
Assume that \(F(A_0) \subseteq B_0 \). Then, there exists a \(x_0 \in A_0 \) such that
\[
d(G(x_0), F(x_0)) = d(A, B).
\]

Proof. By Lemma 1.2, \(A_0 \) and \(B_0 \) are nonempty. Let us show that \(A_0 \) is closed. To this end, let \(x_n \in A_0 \) be a convergent sequence, say, \(x_n \to x_0 \in A \). Then, for each \(n \in \mathbb{N} \), there exists \(y_n \in B \) such that \(d(x_n, y_n) = d(A, B) \). Thus, \(\{y_n\} \) is a bounded sequence in \(B \) (note that \(\{x_n\} \) is bounded). Since bounded subsets of a reflexive Banach space are weakly sequentially compact [4, Theorem 28, page 68], then passing to a subsequence, if necessary, we may assume that \((y_n) \) converges weakly, say to \(y_0 \in B \). Since \(\|\cdot\| \) is weakly lower semicontinuous, then we get
\[
\|x_0 - y_0\| \leq \lim_{n \to \infty} \|x_n - y_n\| = d(A, B).
\]
Therefore, \(\|x_0 - y_0\| = d(A, B) \), and so \(x_0 \in A_0 \). From Lemma 1.2, \(P_A(B_0) \subseteq A_0 \) and by Lemma 1.1,
\[
d_H(P_A(F(x)), P_A(F(y))) \leq d_H(F(x), F(y)) \leq \|x - y\|.
\]
Then, the map \(P_A(F(.)) : A_0 \to A_0 \) is a nonexpansive set-valued map. Moreover, \(A_0 \) is a nonempty closed bounded convex subsets of \(H \), and for each \(x \in A_0 \), \(P_A(F(x)) \) is a compact subset of \(A_0 \) (note \(F(x) \) is compact and \(P_A \) is continuous). Hence, by Theorem 2.1 there exists a \(x_0 \in A_0 \) such that
\[
P_A(F(x_0)) \cap G(x_0) \neq \emptyset.
Let \(z_0 \in P_A(F(x_0)) \cap G(x_0) \), then there exists \(y_0 \in F(x_0) \) so that \(z_0 = P_{A_0}(y_0) \). Since \(x_0 \in A_0 \) and \(y_0 \in F(x_0) \subseteq B_0 \), there exists \(a_0 \in A_0 \) such that \(d(a_0, y_0) = d(A, B) \). Therefore,
\[
d(A, B) \leq d(G(x_0), F(x_0)) \leq d(z_0, F(x_0)) \leq d(P_{A_0}(y_0), y_0) \leq d(a_0, y_0) = d(A, B)
\]
Thus,
\[
d(G(x_0), F(x_0)) = d(A, B).
\]

Remark 2.3. Let \(A \) be a nonempty bounded, closed convex subset of \(H \). Let \(G : A_0 \rightarrow A_0 \) be an onto isometry. We show that \(G \) satisfies all the conditions of Theorem 2.2. Let \(C \) be a compact subset of \(A_0 \). Since \(G \) is an isometry, then \(G^{-1}(C) = G^{-1}(C) \) is compact (note \(G^{-1} \) is isometry and so is continuous). Since \(G : A_0 \rightarrow A_0 \) is isometry, then \(d_H(G^{-1}(C), G^{-1}(D)) = d_H(C, D) \), for compact subsets \(C \) and \(D \) of \(A_0 \).

If we take \(G = I \), Theorem 2.2 reduces to Theorem 3.3 of Kirk, Reich and Veeramani [5].

Theorem 2.4. Let \(H \) be a Hilbert space. Let \(A \) be a nonempty bounded closed convex subset of \(H \), and let \(B \) be a nonempty closed convex subset of \(H \). Let \(F : A \rightarrow 2^B \) be a nonexpansive set-valued map with nonempty compact values. Assume that \(F(A_0) \subseteq B_0 \). Then, there exists a \(x_0 \in A_0 \) such that
\[
d(x_0, F(x_0)) = d(A, B).
\]

Acknowledgments

This research was in part supported by a grant from IPM (No. 89470016). The author was also partially supported by the Center of Excellence for Mathematics, University of Shahrekord.

References

A. Amini-Harandi
Department of Mathematics, University of Shahrekord, P.O. Box 115, Shahrekord, Iran
and
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

Email: aminih_a@yahoo.com