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ON A CONJECTURE OF A BOUND FOR THE
EXPONENT OF THE SCHUR MULTIPLIER OF A

FINITE p-GROUP

B. MASHAYEKHY∗, A. HOKMABADI AND F. MOHAMMADZADEH

Communicated by Jamshid Moori

Abstract. Let G be a p-group of nilpotency class k with finite
exponent exp(G) and let m = blogp kc. We show that exp(M (c)(G))

divides exp(G)pm(k−1), for all c ≥ 1, where M (c)(G) denotes the c-
nilpotent multiplier of G. This implies that exp(M(G)) divides
exp(G), for all finite p-groups of class at most p− 1. Moreover, we
show that our result is an improvement of some previous bounds
for the exponent of M (c)(G) given by M. R. Jones, G. Ellis and P.
Moravec in some cases.

1. Introduction and motivation

Let a group G be presented as a quotient of a free group F by a
normal subgroup R. Then, the c-nilpotent multiplier of G (the Baer
invariant of G with respect to the variety of nilpotent group of class at
most c) is defined to be

M (c)(G) =
R ∩ γc+1(F )

[R, cF ]
,
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where [R, cF ] denotes the commutator subgroup [R,F, ..., F︸ ︷︷ ︸
c−times

] and c ≥ 1.

The case c = 1 which has been much studied is the Schur multiplier
of G, denoted by M(G). When G is finite, M(G) is isomorphic to the
second cohomology group H2(G, C∗) (see G. Karpilovsky [6] and C. R.
Leedham-Green and S. McKay [8] for further details).

It has been interested to find a relation between the exponent of
M (c)(G) and the exponent of G. Let G be a finite p-group of nilpo-
tency class k ≥ 2 with exponent exp(G). M. R. Jones [5] proved that
exp(M(G)) divides exp(G)k−1. This has been improved by G. Ellis [3]
who showed that exp(M (c)(G)) divides exp(G)dk/2e, where dk/2e denotes
the smallest integer n such that n ≥ k/2. For c = 1, P. Moravec [11]
showed that dk/2e can be replaced by 2blog2 kc which is an improvement,
if k ≥ 11.

In this paper, we will show that if G is a finite exponent p-group of
class k ≥ 1, then exp(M (c)(G)) divides exp(G)pm(k−1), for all c ≥ 1,
where m = blogp kc. Note that this result is an improvement of the
results of Jones, Ellis and Moravec, if blogp kc(k−1)/k < e, blogp kc(k−
1)/dk/2e − 1 < e, blogp kc(k − 1)/2blog2 kc − 1 < e, respectively, where
exp(G) = pe.

It was a longstanding open problem as to whether exp(M(G)) divides
exp(G), for every finite group G. In fact, it was conjectured that the
exponent of the Schur multiplier of a finite p-group is a divisor of the
exponent of the group itself. I. D. Macdonld and J. W. Wamsley [1]
constructed an example of a group of order 221 which has exponent 4,
whereas its Schur multiplier has exponent 8, hence the conjecture is
not true in general. Also, Moravec [12] gave an example of a group of
order 2048 and nilpotency class 6 which has exponent 4 and multiplier
of exponent 8. He also proved that if G is a group of exponent 4,
then exp(M(G)) divides 8. Nevertheless, Jones [5] has shown that the
conjecture is true for p-groups of class 2 and emphasized that it is true
for some p-groups of class 3. S. Kayvanfar and M. A. Sanati [7] have
proved the conjecture for p-groups of class 4 and 5, with some conditions.
A. Lubotzky and A. Mann [9] showed that the conjecture is true for
powerful p-groups. The first and the third authors [10] showed that the
conjecture is true for nilpotent multipliers of powerful p-groups. Finally,
Moravec [11, 12] showed that the conjecture is true for metabelian groups
of exponent p, p-groups with potent filtration and p-groups of maximal
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class. Note that a consequence of our result shows that the conjecture
is true for all finite p-groups of class at most p− 1.

2. Preliminaries

In this section, we are going to recall some notions we will use in the
next section.

Definition 2.1. (M. Hall [4]). Let X be an independent subset of a free
group, and select an arbitrary total order for X. We define the basic
commutators on X, their weight wt, and the ordering among them as
follows:

(1) The elements of X are basic commutators of weight one, ordered
according to the total order previously chosen.

(2) Having defined the basic commutators of weight less than n, the
basic commutators of weight n are the ck = [ci, cj ], where:
(a) ci and cj are basic commutators and wt(ci) + wt(cj) = n,

and
(b) ci > cj, and if ci = [cs, ct], then cj ≥ ct.

(3) The basic commutators of weight n follow those of weight less
than n. The basic commutators of weight n are ordered among
themselves lexicographically; that is, if [b1, a1] and [b2, a2] are
basic commutators of weight n, then [b1, a1] ≤ [b2, a2] if and only
if b1 < b2 or b1 = b2 and a1 < a2.

Lemma 2.2. (Struik [13] ). Let x1, x2, ..., xr be any elements of a group
and let υ1, υ2, ... be the sequence of basic commutators of weight at least
two in the xi’s, in ascending order. Then,

(x1x2...xr)α = xα
i1x

α
i2 ...x

α
irυ

f1(α)
1 υ

f2(α)
2 ...υ

fi(α)
i ... ,

where {i1, i2, ..., ir} = {1, 2, ..., r}, α is a nonnegative integer and

fi(α) = a1

(
α

1

)
+ a2

(
α

2

)
+ ... + awi

(
α

wi

)
, (I)

with a1, ..., awi ∈ Z and wi is the weight of υi in the xi’s.
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Lemma 2.3. (Struik [13] ). Let α be a fixed integer and G be a nilpotent
group of class at most k. If b1, . . . , br ∈ G and r < k, then

[b1, ..., bi−1, b
α
i , bi+1, ..., br] = [b1, ..., br]αυ

f1(α)
1 υ

f2(α)
2 ...,

where υi’s are commutators in b1, ..., br of weight strictly greater than r,
and every bj, 1 ≤ j ≤ r, appears in each commutator υi, the υi’s listed
in ascending order. The fi(α)’s are of the form (I), with a1, ..., awi ∈ Z
and wi is the weight of υi ( in the bj’s ) minus (r − 1).

Remark 2.4. Outer commutators on the letters x1, x2, . . . , xn, . . . are
defined inductively as follows:

The letter xi is an outer commutator word of weight one. If u =
u(x1, . . . , xs) and v = v(xs+1, . . . , xs+t) are outer commutator words of
weights s and t, then w(x1, . . . , xs+t) = [u(x1, . . . , xs), v(xs+1, . . . , xs+t)]
is an outer commutator word of weight s+t and will be written w = [u, v].

It is noted by Struik [13] that Lemma 2.3 can be proved by a simi-
lar method, if [b1, .., bi−1, b

α
i , bi+1, ..., br] and [b1, ..., br] are replaced with

outer commutators.

By a routine calculation we have the following useful fact.

Lemma 2.5. Let p be a prime number and k be a nonnegative integer.
If m = blogp kc, then pt divides

(
pm+t

k

)
, for all integers t ≥ 1.

3. Main results

In order to prove the main result we need the following lemma.

Lemma 3.1. Let G be a p-group of class k and exponent pe with a free
presentation F/R. Then, for any c ≥ 1, every outer commutator of
weight w > c in F/[R, cF ] has an order dividing pe+m(c+k−w), where
m = blogp kc.

Proof. Since γk+1(F ) ⊆ R, we have γc+k+1(F ) ⊆ [R, cF ]. Also, for all
x in F and t ≥ 0 we have xpe+t ∈ R and hence every outer commutator
of weight w > c in F , in which xpe+t

appears, belongs to [R, cF ]. Now,
we use inverse induction on w to prove the lemma. For the first step,
w = c + k, the result follows by the above argument and Lemma 2.3.
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Now, assume that the result is true, for all l > w. Put α = pe+m(c+k−w)

and let u = [x1, . . . , xw] be an outer commutator of weight w. Then, by
Lemma 2.3 and Remark 2.4 we have

[xα
1 , . . . , xw] = [x1, . . . , xw]αυ

f1(α)
1 υ

f2(α)
2 . . . ,

where the υ
fi(α)
i are as in Lemma 2.3. Note that w < wi = wt(υi) ≤ c+k

modulo [R, cF ] and hence fi(α) = a1

(
α
1

)
+ a2

(
α
2

)
+ ... + awi

(
α
ki

)
, where

ki = wi − w + 1 ≤ c + k − w + 1 ≤ k, for all i ≥ 1. Thus, Lemma
2.5 implies that pe+m(c+k−w−1) divides the fi(α)’s. Now, by induction
hypothesis υ

fi(α)
i ∈ [R, cF ], for all i ≥ 1. On the other hand, since

xα
1 ∈ R and w > c, [xα

1 , . . . , xw] ∈ [R, cF ]. Therefore, uα ∈ [R, cF ] and
this completes the proof. �

Theorem 3.2. Let G be a p-group of class k and exponent pe. Let G =
F/R be any free presentation of G. Then, the exponent of γc+1(F )/[R, cF ]
divides pe+m(k−1), where m = blogp kc, for all c ≥ 1.

Proof. It is easy to see that every element g of γc+1(F ) can be expressed
as g = y1y2 . . . yn, where yi’s are commutators of weight at least c + 1.
Put α = pe+m(k−1). Now, Lemma 2.2 implies the identity

gα = yα
i1y

α
i2 . . . yα

inυ
f1(α)
1 υ

f2(α)
2 . . . ,

where {i1, i2, . . . , in} = {1, 2, . . . , n} and υ
fi(α)
i ’s are as in Lemma 2.2.

Then, the υi’s are basic commutators of weight at least two and at most
k in the yi’s modulo [R, cF ] (note that γc+k+1(F ) ⊆ [R, cF ]). Thus,
Lemma 2.5 yields that pe+m(k−2) divides the fi(α)’s. Hence, υ

fi(α)
i ∈

[R, cF ], for all i ≥ 1 and yα
j ∈ [R, cF ], for all 1 ≤ j ≤ n, by Lemma 3.1.

Therefore, we have gα ∈ [R, cF ] and the desired result now follows. �

Now, we are in a position to state and prove the main result of the
paper.

Theorem 3.3. Let G be a p-group of class k and exponent pe. Then,
exp(M (c)(G)) divides exp(G)pm(k−1), where m = blogp kc, for all c ≥ 1.
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Proof. Let G = F/R be any free presentation of G. Then, M (c)(G) ≤
γc+1(F )/[R, cF ]. Therefore, exp(M (c)(G)) divides exp(γc+1(F )/[R, cF ]).
Now, the result follows by Theorem 2.3.

Note that the above result improves some previous bounds for the
exponent of M(G) and M (c)(G) as follows.
Let G be a p-group of class k and exponent pe, then we have the following
improvements.

(i) If blogp kc(k − 1)/k < e, then exp(G)pblogp kc(k−1) < exp(G)k−1.
Hence, in this case our result is an improvement of Jones’s result [5].
In particular, our result improves the Jones’s one for every p-group of
exponent pe and of class at most pe − 1.

(ii) If blogp kc(k − 1)/dk/2e − 1 < e, then exp(G)pblogp kc(k−1) <

exp(G)dk/2e which shows that in this case our result is an improvement
of Ellis’s result [3]. In particular, our result improves the Ellis’s one for
every p-group of exponent pe and of class k < pe/3, for all k ≥ 3, or of
class k < pe/4, for all k ≥ 4.

(iii) If blogp kc(k − 1)/2blog2 kc − 1 < e, then exp(G)pblogp kc(k−1) <

exp(G)2blog2 kc. Thus, in this case our result is an improvement of
Moravec’s result [11]. In particular, our result improves the Moravec’s
one for every p-group of exponent pe and of class k < e, for all k ≥ 2. �

Corollary 3.4. Let G be a finite p-group of class at most p − 1, then
exp(M (c)(G)) divides exp(G), for all c ≥ 1. In particular, exp(M(G))
divides exp(G).

Note that the above corollary shows that the mentioned conjecture
on the exponent of the Schur multiplier of a finite p-group holds for all
finite p-group of class at most p− 1.

Remark 3.5. Let G be a finite nilpotent group of class k. Then, G is
the direct product of its Sylow subgroups, G = Sp1 × · · · × Spn. Clearly,

exp(G) =
n∏

i=1

exp(Spi).

By a result of G. Ellis [2, Theorem 5] we have

M (c)(G) = M (c)(Sp1)× · · · ×M (c)(Spn).
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For all 1 ≤ i ≤ n, put mi = blogpi
kc. Then, by Theorem 3.3 we have

exp(M (c)(G)) | exp(G)
n∏

i=1

p
mi(k−1)
i .

Hence, the conjecture on the exponent of the Schur multiplier holds for
all finite nilpotent group G of class at most Max{p1 − 1, ..., pn − 1},
where p1, ..., pn are all the distinct prime divisors of the order of G.
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