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ON n-COHERENT RINGS, n-HEREDITARY RINGS AND
n-REGULAR RINGS

7. ZHU

Communicated by Fariborz Azarpanah

ABSTRACT. We observe some new characterizations of n-presented
modules. Using the concepts of (n,0)-injectivity and (n,0)-flatness
of modules, we also present some characterizations of right n-coherent
rings, right n-hereditary rings, and right n-regular rings.

1. Introduction

Throughout this paper, n is a positive integer unless a special note,
R denotes an associative ring with identity and all modules considered
are unitary. For any R-module M, M* = Hom(M,Q/Z) will be the
character module of M.

B. Stenstrom [10] defined and studied F'P-injective modules. Follow-
ing [10], a right R-module M is said to be F P-injective, if Ext},(A4, M) =
0, for every finitely presented right R-module A. A right R-module A is
said to be finitely presented, if there is an exact sequence Fy; — Fy —
A — 0 in which Fy, Fy are finitely generated free right R-modules, or
equivalently, if there is an exact sequence P, — Py — A — 0 in which
P1, Py are finitely generated projective right R-modules. F P-injective
modules are also called absolutely pure modules in [8], these modules
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have been studied by many authors. In papers [8] and [10], right Noe-
therian rings, right coherent rings, right semihereditary rings and regu-
lar rings are characterized by F P-injective right R-modules. It is well
known that a left R-module M is flat if and only if Torf*(A, M) = 0, for
every finitely presented right R-module A. Costa [2] introduced the con-
cept of n-presented modules. Let n be a non-negative integer. According
to [2], a right R-module M is called n-presented in case there is an exact
sequence of right R-modules F,, - F;,_1 — -+ — F; — Fy = M — 0in
which every Fj; is a finitely generated free , equivalently projective right
R-module; And a ring R is called right n-coherent [2] in case every n-
presented right R-module is (n + 1)-presented. Clearly, a ring R is right
coherent if and only if it is right 1-coherent. We remark that the termi-
nology of “n-coherence” in this paper is Costa’s “n-coherence” but is not
the same as that of [3]. Let n,d be non-negative integers. According to
[12], a right R- module M is called (n,d)-injective, if Extf%ﬂ(A,M):O,
for every n-presented right R-module A; A left R- module M is called
(n, d)-flat, if Tor§+1(A, M)=0, for every n-presented right R-module A;
A ring R is called a right (n, d)-ring, if every n-presented right R-module
has the projective dimension at most d. Recall that a commutative right
(n,d)-ring is called an (n,d)-ring [2], (n,d)-rings have been studied by
several authors [2, 5, 6, 7, 12]. An (n,0)-ring is called an n-von Neumann
regular ring in papers [6] and [7].

In this paper, We will give Some characterizations and properties of
n-presented modules and (n,0)-injective modules as well as (n,0)-flat
modules. Moreover, we will generalize the concept of right semihered-
itary rings to right n-hereditary rings, and then we will generalize the
concepts of regular rings and n-von Neumann regular rings to right n-
regular rings. Right n-coherent rings, right n-hereditary rings and right
n-regular rings will be characterized by (n,0)-injective right R-modules
and (n,0)-flat left R-modules. (n,0)-injective dimensions of right R-
modules over right n-coherent rings and (n,0)-flat dimensions of right
R-modules over left n-coherent rings will be discussed.

First of all, we give some characterizations of n-presented modules.

Proposition 1.1. The following statements are equivalent for a right
R-module M:

(1) M is n-presented.
(2) There exists an exact sequence of right R-modules

O—-K,—F1—-—=F—=F—M=0
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such that Fy, - - - , Fy,_1 are finitely generated free right R-modules
and K, is finitely generated.
(3) There exists an exact sequence of right R-modules

0—-K,—>PFP,1—> =P —>Fp—->M-—=0

such that Py,--- , Pp—1 are finitely generated projective right R-
modules and K, is finitely generated.
(4) There exists an exact sequence of right R-modules

Phr—P1—= =P =P —M=0

such that Py, -+ , Ph_1, P, are finitely generated projective right
R-modules.
(5) There exists an exact sequence of right R-modules

O—-—K—F—M-—0

such that F' is finitely generated free right R-module and K is
(n — 1)-presented.
(6) There exists an exact sequence of right R-modules

0—-K—-P—->M=—=0

such that P is finitely generated projective right R-module and
K is (n — 1)-presented.

(7) M is finitely generated and, if the sequence of right R-modules
0—>L—F — M — 0 is exact with F' finitely generated free,
then L is (n — 1)-presented.

(8) M is finitely generated and, if the sequence of right R-modules
0—L—P— M — 0 is exact with P finitely generated projec-
tive, then L is (n — 1)-presented.

Proof. (1) & (2)= (3) < (4), (7) = (5), (8) = (6) are obvious.

(3) = (2). Use induction on n. In case of n = 1, suppose there exists
an exact sequence of right R-modules 0 — K1 — Py — M — 0, where
Py is finitely generated projective module and K is finitely generated.
Then, there exists an exact sequence of right R-modules 0 - K — Fy —
M — 0 with Fp finitely generated free module. By Schanuel’s Lemma,
Ki® Fy = K& Py, so K is finitely generated and the result follows.
Now, suppose (3) implies (2), for n — 1. Then, if there exists an exact
sequence of right R-modules

0K, B P ™ %o
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such that Py, --- , P,_1 are finitely generated projective right R-modules
and K, is finitely generated. Then, we have an exact sequence

0—>z’m(dn_1)—>Pn_2—>~-—>P1d%PO@M—m.

By induction hypothesis, There exists an exact sequence of right R-
modules

0—=+Kn1—Fpo——=F—->M=0
such that Fy,--- , F,,_o are finitely generated free right R-modules and
K,,_1 is finitely generated. Let F),,_1 5 K,_1 be epic with Fj, 1 finitely
generated free module, then we obtain an exact sequence

0— Ker(nr) > Fyq— -+ — F — Fyp— M —0.
By the generalization of Schanuel’s Lemma [9, Exercise 3.37], Ker(m) is

finitely generated, and (2) follows.
(2) = (5). Suppose there exists an exact sequence of right R-modules

0—>Kn—>Fn,1—>~--—>F1ﬂ>Fod4M—>()

such that Fy,---, F,—1 are finitely generated free right R-modules and
K, is finitely generated. Take K = im(d;), then K is (n — 1)-presented
and the sequence 0 - K — Fy — M — 0 is exact.

(5) = (2). Let 0 = K 3 F %M =5 0 be exact, where K is (n — 1)-
presented. Then, there exists an exact sequence

0Ky Fo ™ 5 RBR 8K 0

such that Fy,---, F,_1 are finitely generated free right R-modules and
K, is finitely generated, and thus we have an exact sequence of right
R-modules

0—>Kn—>Fn_1—>---—>F2—>F10£>1F£>M—>0

and (2) follows.

(5) = (7). Assume (5), then there exists an exact sequence of right
R-modules 0 - K — F' — M — 0. Clearly, M is finitely generated. If
the sequence of right R-modules 0 - L — F' — M — 0 is exact with
F finitely generated free, then by Schanuel’s Lemma, K & F = L & F”,
and so L is (n — 1)-presented by [11, Theorem 1].

(3) = (6) is similar to (2) = (5), (6) = (8) is similar to (5) = (7). O

From Proposition 1.1(5), it is easy to see that right n-coherent ring is
right (n + 1)-coherent.
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2. n-coherent rings

We begin this section with some characterizations of right n-coherent
rings.

Theorem 2.1. The following statements are equivalent for a ring R:

(1) R is right n-coherent.
(2) If the sequence

(%) FRUp ™ RS R%y o

is exact, where each F; is a finitely generated free right R-module,
then there exists an exact sequence of right R-modules

dp, dp—
%) Fp S E,BE, S SR B ERR M0
where each F; is a finitely generated free right R-module.
(3) Every (n—1)-presented submodule of a projective right R-module
18 n-presented.

Proof. (1) = (2). By the exactness of (*), we have an exact sequence

O%Ker(dn)%Fn%Fn—ldgl"'%Flﬂ)FOd#M—)O

Since R is right n-coherent, M is (n+ 1)-presented, so there exists an
exact sequence of right R-modules

0= Ly —F,—-F _— = F —>F—-M-=0

where each F) is finitely generated free, L, is finitely generated. By
the generalization of Schanuel’s Lemma [9, Exercise 3.37], Ker(d,) is
finitely generated, and then there exists a finitely generated free module
F,+1 such that (**) holds.

(2) = (1) is clear.

(1) < (3) by Proposition 1.1. O

Recall that a right R-module M is F' P-injective if and only if it is pure
in every module containing it as a submodule. A submodule A of the
right R-module B is said to be a pure submodule if for all left R-module
M, the induced map A ® g M — B ®r M is monic, or equivalently,
every finitely presented module is projective with respect to the exact
sequence 0 - A — B — B/A — 0. In this case, the exact sequence
0 -+ A— B— B/A— 0is called pure. We call a short exact sequence
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of right R-modules 0 - A — B — C — 0 n-pure, if every n-presented
right R- module is projective with respect to this sequence.
Next, we give some characterizations of (n,0)-injective modules.

Theorem 2.2. Let M be a right R-module, then the following state-
ments are equivalent:

(1) M is (n,0)-injective.

(2) M is injective with respect to every exact sequence 0 — C —
B — A — 0 of right R-modules with A n-presented.

(3) If K is an (n — 1)-presented submodule of a projective right R-
module P, then every right R-homomorphism f from K to M
extends to a homomorphism from P to M.

(4) Every ezact sequence 0 — M — M' — M" — 0 is n-pure.

(5) There exists an n-pure exact sequence 0 — M — M’ — M" — 0
of right R-modules with M’ injective.

(6) There exists an n-pure exact sequence 0 — M — M’ — M" — 0
of right R-modules with M’ (n,0)-injective.

Proof. (1) = (2). By the exact sequence Hom(B, M) — Hom(C, M) —
Exth(A, M) =0.

(2) = (3). Let F = P @ P’, where F is a free right R-module. Since
K is finitely generated, there exists a finitely generated free module Fj
such that K < F; <% F. But, K is (n — 1)-presented, so F/K is
n-presented, and thus the induced map Hom(Fy, M) — Hom(K, M) is
surjective by (2), and (3) follows.

(3) = (1). For any n-presented module A, there exists an exact se-
quence 0 - K — P — A — 0, where P is finitely generated projective,
K is (n—1)-presented. Hence, we get an exact sequence Hom(P, M) —
Hom(K, M) — Exth(A, M) — Exth(P, M) = 0, and thus Exth(A, M)
= 0 by (3). Therefore, M is (n,0)-injective.

(1) = (4). Assume (1). Then, we have an exact sequence Hom(A, M)
— Hom(A, M") — E:ct}z(A, M) = 0, for every n-presented module A,
and so (4) follows.

(4) = (5) = (6) are obvious.
(6) = (1). By (6), we have an n-pure exact sequence 0 — M — M’ ER
M"” — 0 of right R-modules where M’ is (n,0)-injective, and so, for

each n-presented module A, we have an exact sequence Hom/(A, M) Eit
Hom(A, M") — Exth(A, M) — Exth(A,M’') = 0 with f. epic. Which
implies that Exth(A, M) =0, and (1) follows. O
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Lemma 2.9(2) in [1] and Theorem 2.2(3) immediately yield the next
two results.

Proposition 2.3. Let n > 2, then every direct limit of (n,0)-injective
right R-modules is (n,0)-injective.

Proposition 2.4. Let {M; | i € I} be a family of right R-modules, then
the following statements are equivalent:

(1) Each M; is (n,0)-injective.

(2) [Lic; M; is (n,0)-injective.

(8) @icrM; is (n,0)-injective.

Lemma 2.5. Let E be an injective right R-module and N its (k,0)-
injective submodule, then E/N is (k+ 1,0)-injective.

Proof. Let A be any (k + 1)-presented right R-module. Then, there
exists an exact sequence 0 - B — P — A — 0, where P is a finitely
generated projective module and B is k-presented. So we get two exact
sequences

0 = Exth(A, E) — Exth(A, E/N) — Ext%(A,N) — Exth(A,E) =0
and
0 = Exth(P,N) — Exth(B,N) — Exth(A,N) — Ext%(P,N) =0

Hence, Exth(A,E/N) & Exth(B,N) = 0, this follows that E/N is
(k + 1, 0)-injective. O

Theorem 2.6. Let A be an (n — 1)-presented right R-module. Then,
A is n-presented if and only if Exth(A, M) = 0, for any (n,0)-injective
module M.

Proof. = . It is obvious.

<. Use induction on n. In case n = 1, then the implication holds by
[4]. Suppose the implication holds when n = k. Then, when n =k + 1,
assume A is an k-presented right R-module and Exth(A, M) = 0, for
every (k+ 1,0)-injective module M. Since A is k-presented, there exists
an exact sequence 0 - L — F — A — 0 with F finitely generated
free and L (k — 1)-presented. So, for any (k,0)-injective module N, we
have Exth(L, N) 2 Ext%(A,N) & Exth(A, E(N)/N). By Lemma 2.5,
E(N)/N is (k+1,0)-injective, so Exth(A, E(N)/N) = 0 by conditions,
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and whence Emt}%(L, N) = 0. Therefore, L is k-presented by hypothesis,
which shows that A is (k + 1)-presented. O

Theorem 2.7. The following statements are equivalent for a ring R.

(1) R is right n-coherent.

(2) Exth(A,N) =0, for any n-presented right R-module A and any
(n+ 1,0)-ingective right R-module N.

(3) Exth(A,N) =0, for any n-presented right R-module A and any
(n, 0)-injective right R-module N.

(4) If Nis an (n,0)-injective right R-module, N is an (n,0)-injective
submodule of N, then N/Nj is (n,0)-injective.

(5) For any (n,0)-injective right R-module N, E(N)/N is (n,0)-
mjective.

Proof. (1) = (2) and (4) = (5) are obvious.

(2) = (1) by Theorem 2.6.

(1) = (3). Since A is n-presented, by Proposition 1.1(5), there exists
an exact sequence of right R-modules 0 - K — F — A — 0, where F
is finitely generated free, K is (n — 1)-presented, and we get an induced
exact sequence

0 = Exth(F,N) — Eath(K,N) — Ext%(A, N) — Exth(F,N) = 0.

Hence, Ext%(A,N) = Exth(K,N). Since R is right n-coherent, by
Theorem 2.1, K is n-presented, so Exth(K, N)=0, and thus Ext%(A, N)
=0.

(3) = (4). For any n-presented right R-module A. The exact se-
quence 0 - N; — N — N/N; — 0 induces the exactness of the se-
quence

0= Ext'(A,N) - Ext'(A,N/N,) — Ext*(A,N;) = 0.

Therefore, Ext!(A, N/Ny) = 0, as desired.

(5) = (1). Let A be any n-presented right R-module. Then, by
Proposition 1.1(5), there is an exact sequence of right R-modules 0 —
K — F - A — 0, where F is finitely generated free, K is (n — 1)-
presented. Then, for any (n,0)-injective module N, E(N)/N is (n,0)-
injective by (5). From the exactness of the two sequences

0= Ext'(F,N) — Ext'(K,N) — Ext*(A,N) — Ext*(F,N) =0
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and
0 = Ext'(A, E(N)) — Ext'(A, E(N)/N) — Ext*(A,N) —
Ext*(A, E(N)) =0,
we have Ext'(K,N) = Ext?(A,N) = Ext'(A, E(N)/N) = 0, so Ext!

(K,N) = 0. By Theorem 2.6, K is n-presented, hence A is (n + 1)-
presented. Therefore, R is right n-coherent. O

Definition 2.8.
(1). The (n,0)-injective dimension of a module Mg is defined by
(n,0)-id(Mg) = inf{k : E:L‘t';;rl(A, M) =0, for every
n-presented module A}
(2). The right (n,0)-injective global dimension of a ring R is defined
by
r.(n,0)-ID(R)=sup{(n,0)-id(M): M is a right R-module}

Lemma 2.9. Let R be a right n-coherent ring and let M be a right
R-module, then the following statements are equivalent:

(1) (n,0)-id(M) < k.

(2) Extl?l(A, M) =0, for every n-presented right R-module A.

Proof. (1) = (2). Use induction on k. Clearly, if (n,0)-id(M) = k. If
(n,0)-id(M) < k — 1. Since A is n-presented, there exists an exact se-
quence 0 > N — P — A — 0, where P is a finitely generated projective
module and N is (n — 1)-presented. But, R is right n-coherent, N is
n-presented by Theorem 2.1, and so Ea:t’;;rl(A, M) = El‘tlf%(N, M)=0
by induction hypothesis.

(2) = (1) is clear. O

Corollary 2.10. Let R be a right n-coherent ring and let Mg be (n,0)-
injective, then E:L't]f%(A,M) = 0, for all n-presented modules A and all
positive integers k.

Corollary 2.11. Let R be a right n-coherent ring and let M be a right
dp—

R-module. If the sequence 0 — M N d# = By e E, — 0 s

exact with Ey,--- , Ex_1 (n,0)-injective, then Extlgrl(A, M) = Eazt}%(A,

Ey), for any n-presented right R-module A .
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Proof. Since R is right n-coherent and Ey, E1, - - - , Ex_1 are (n, 0)-injective,
by Corollary 2.10, we have Ea:tlgrl(A, M) = Exth(A im(dy))
= Brth V(A im(dy)) = -+ = Exth(A,im(dy_1)) = Exth(A, Ey). O

Theorem 2.12. Let R be a right n-coherent ring, M a right R-module
and k a non-negative integer, then the following statements are equiva-
lent:

(1) (n,0)-id(Mg) < k.
(2) ExthH (A, M) = 0, for all n-presented modules A and all positive

integers .

(3) EHIEH(A, M) =0, for all n-presented modules A.

(4) If the sequence 0 — M — Ey — -+ — Ex_1 — Ep — 0 is
exact with Ey, -, Ex_1 (n,0)-injective, then E} is also (n,0)-
mjective.

(5) There exists an exact sequence 0 — M — Ey — -+ — Ep_1 —
Ey — 0 of right R-modules with Eg, - -+ , Ex_1, E}, (n,0)-injective.

Proof. (1) = (2). Assume (1), then (n,0)-id(Mgr) < k+1—1, and so
(2) follows from Lemma 2.9.

(2) = (3) and (4) = (5) are obvious. (3) = (4) and (5) = (1) by
Corollary 2.11. O

Theorem 2.13. A right R-module M is (n,0)-flat if and only if the
canonical map M @ K — M ® P is monic for every finitely generated

projective left R-module P and any (n — 1)-presented submodule K of
P.

Proof. It follows from the exact sequence
0=Torl(M,P) = Torf(M,P/K) = M @ K — M ® P.
O

Theorem 2.14. Let {M; | i € I} be a family of right R-modules, con-
sider the following conditions:

(1) Each M; is (n,0)-flat.

(2) ®ierM; is (n,0)-flat.

(3) [Lic; M; is (n,0)-flat.
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Then, we always have (3) = (1) < (2). If n > 2, then these condi-
tions are equivalent.

Proof. (1) < (2) by the isomorphism Torf!(I[;c; Mi, A) = [l
Torf(M;, A). (3) = (1) is obvious. If n > 2, then by [1, Lemma
2.10], there is an isomorphism Tor{([];c; Mi, A) = [1;c; Torf'(M;, A),
for every n-presented left R-module A, so in this case, the conditions
(1), (2) and (3) are equivalent. O

Theorem 2.15. Let M be a right R-module, then
(1) M is (n,0)-flat if and only if M is (n,0)-injective.
(2) If n > 2, then M is (n,0)-injective if and only if M is (n,0)-flat.

Proof. (1) follows from the isomorphism Torf (M, A)* = Exth (A, M™).
(2). Since n > 2, we have an isomorphism Torf (A, M)~ Exth (A, M)*,
for every n-presented right R-module A by [1, Lemma 2.7(2)], and so
(2) holds. O

Corollary 2.16. If R is right coherent, then a right R-module M is
F P-injective if and only if M is flat.

Proof. Since R is right coherent, a right R-module is finitely presented
if and only if it is 2-presented. And so the result follows from Theorem
2.15(2). 0

Corollary 2.17. Pure submodules of (n,0)-flat modules is (n,0)-flat.

Proof. Let M be an (n,0)-flat module and M; a pure submodule of M,
then the pure exact sequence 0 — M; — M — M/M; — 0 induces a
split exact sequence 0 — (M/M;)* — M+ — M;” — 0. By Theorem
2.15(1), M is (n, 0)-injective, so M;" is (n, 0)-injective by Theorem 2.4,
and hence M; is (n,0)-flat by Theorem 2.15(1). O

Definition 2.18. The (n,0)-flat dimension of a module Mg is defined
by
(n,0)-fd(Mpg) = inf{k : TOTEH(M, A) =0, for all n-presented left
R-modules A.}
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Lemma 2.19. Let R be a left n-coherent ring and let M be a right
R-module, then the following statements are equivalent:

(1) (n,0)-fd(Mg) < k.

(2) Tor,i_l(M, A) =0, for every n-presented left R-module A.

Proof. (1) = (2). Use induction on k. Clear, if (n,0)-fd(M) = k. If
(n,0)-fd(M) < k — 1. Since A is n-presented, there exists an exact
sequence 0 - N — P — A — 0, where P is a finitely generated projec-
tive module and N is (n — 1)-presented. But, R is left n-coherent, N is
n-presented, and hence Tor,i_l(M, A) = Torf(M,N) = 0 by induction
hypothesis.

(2) = (1) is clear. O

Corollary 2.20. Let R be a left n-coherent ring and Mg be (n,0)-
flat, then Torf (M, A) = 0, for all n-presented left R-modules A and all
positive integers k.

Corollary 2.21. Let R be a left n-coherent ring and M be a right
R-module. If the sequence of right R-modules 0 — Fy, % Fr_4 dk—_>1
LB it i\ Fy N M 0 s exact with Fo, -+ ,Fx_1 (n,0)-flat, then
Torf(Fy, A) = Torfl, (M, A), for any n-presented left R module A.

Proof. Since R is left n-coherent and Fy, Fi,--- , Fy_1 are (n,0)-flat, by
Corollary 2.20, we have

Tor,§+1(M, A) = Torf(Ker(dy), A) = Torlt | (Ker(dy), A)
>~ Torf(Ker(dy_1), A) = Torl(Fy, A).
U

12

Theorem 2.22. Let R be a left n-coherent ring , M be a right R-module
and k > 0, then the following statements are equivalent:
(1) (n,0)-fd(Mp) < k.
(2) TO’I“E+Z(M, A) =0, for all n-presented left R-modules A and all
positive integers .
(3) Torf (M, A) =0, for all n-presented left R-modules A.
(4) If the sequence 0 — Fy, — F_1 — -+ — Fy = M — 0 is ezact
with Fy,- -+, Fx—1 (n,0)-flat, then also Fy is (n,0)-flat.
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(5) There exists an exact sequence 0 — Fy, — Fj_1 — -+ — Fy —
M — 0 of right R-modules with Fy,--- , Fx_1, Fy (n,0)-flat.

Proof. (1) = (2). Assume (1), then (n,0)-fd(Mgr) < k+1—1, and so
(2) follows from Lemma 2.19.

(2) = (3) and (4) = (5) are obvious. (3) = (4) and (5) = (1) by
Corollary 2.21 and Lemma 2.19. g

3. n-hereditary rings and n-regular rings

Recall that a ring R is called right semihereditary, if every finitely
generated right ideal of R is projective, or equivalently, if every finitely
generated submodule of a projective right R-modules is projective. Next,
we define n-hereditary rings as follows.

Definition 3.1. A ring R is called right n-hereditary, if every (n —1)-
presented submodule of projective right R-module is projective.

Clearly, a ring R is right semihereditary if and only if it is right 1-
hereditary. Right n-hereditary ring is right (n + 1)-hereditary.

Theorem 3.2. The following statements are equivalent for a ring R:
(1) R is right n-hereditary.
(2) R is right n-coherent and r.(n,0)-ID(R) < 1.
(8) Factor module of (n,0)-injective right R-module is (n, 0)-injective.
(4) Factor module of injective right R-module is (n,0)-injective.

(5) R is a right (n,1)-ring.

Proof. (1) = (2). Since R is right n-hereditary, every (n — 1)-presented
submodule of a projective right R-module is finitely generated projec-
tive, and hence n-presented, so R is right n-coherent. Now, let M be any
right R-module. Then, for any n-presented right R-module A, we have
an exact sequence 0 - N — P — A — 0 of right R-modules, where P
is finitely generated and projective, N is (n — 1)-presented and projec-
tive. Thus, the exact sequence 0 = Exth(N,M) — Ext%(A, M) —
Ext%(P,M) = 0 implies that Ext%(A,M) = 0. This follows that
r.(n,0)-ID(R) < 1 by Definition 2.8.

(2) = (3). Let M be an (n,0)-injective right R-module and K its
submodule. Then, for any n-presented module A, we have an exact
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sequence 0 = Exth(A, M) — Exth(A, M/K) — Ext%(A,K) = 0 by
(2) and Lemma 2.9, and so Exth(A, M/K) = 0, as required.

(3) = (4). It is obvious.

(4) = (5). Since Ext%(A, B) = Exth(A, E(B)/B) holds for any right
R-modules A and B, so (5) follows from (4).

(5) = (1). Let N be an (n — 1)-presented submodule of a projective
right R-module P. Then, there exists a finitely generated free module
F such that N is a submodule of F. Now, for any injective right R-
module E and every submodule K of E, since F/N is n-presented,
Ext%(F/N,K) =0 by (5), and so Exth(N, K) = 0 as the sequence 0 =
Exth(F,K) — Exth(N,K) — Ext%(F/N, K) = 0 is exact. This shows
that N is E-projective because of the exact sequence Hom(N, E) —
Hom(N,E/K) — Exth(N, K) = 0. Therefore, N is projective. O

Example 3.3. Let R be a non-coherent commutative ring of weak di-
mension one, then R is a (2,1)-ring but not a (1,1)-ring by [2, Example
(6.5)], and so R is a 2-hereditary ring which is not 1-hereditary by The-
orem 3.2.

Theorem 3.4. A domain R is n-hereditary if and only if every (n—1)-
presented torsion-free R-module is projective.

Proof. Since R is a domain, every finitely generated torsion-free R-
module may be imbedded in a free module and every submodule of
a free R-module is torsion-free. Hence, the results follows. O

Theorem 3.5. If n > 2, then the following statements are equivalent
for a ring R:

(1) R is a right n-hereditary ring.

(2) Every submodule of an (n,0)-flat left R-module is (n,0)-flat.
Proof. (1) = (2). Let M be an (n,0)-flat left R-module and let K be
its submodule. Then, for any n-presented right R-module A, there ex-
ists an exact sequence 0 - N — P — A — 0, where P is a finitely
generated projective module and N is (n — 1)-presented. Since R is
a right n-hereditary ring, IV is projective, hence we have an exact se-
quence 0 = Torl(P,M/K) — Torf(A,M/K) — Torf(N,M/K) =
0, it shows that Torf(A, M/K) = 0. Therefore, by the exact se-
quence 0 = Torf(A,M/K) — Torf{(A,K) — Torf{(A,M) = 0, we
get Torf((A, K) =0, i.e., K is (n,0)-flat.
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(2) = (1). Suppose B is an (n,0)-injective right R-module with an
exact sequence 0 — A — B — C' — 0. Then, BT is an (n,0)-flat left
R-module by Theorem 2.15(2), and the sequence 0 — C* — BT —
AT — 0 is exact. By (2), CT is (n,0)-flat, so C is (n,0)-injective again
by Theorem 2.15(2). Hence, R is right n-hereditary by Theorem 3.2(3).

g

Corollary 3.6. Ifn > 2 and the weak dimension of R wD(R) < 1, then
R is left and right n-hereditary.

Proof. Assume M is an (n,0)-flat right R-module and K is a submodule
of M. Then, for any n-presented left R-module A, since wD(R) <
1, Torl{(M/K, A) = 0, this follows that T'orf*(K, A) = 0 because M
s (n,0)-flat, and thus K is (n,0)-flat. By Theorem 3.5, R is left n-
hereditary. Similarly, one can prove that R is right n-hereditary. 0

Next, we generalize the concepts of regular rings and n-von Neumann
rings to right n-regular rings.

Definition 3.7. A ring R is called right n-regular, if it is a right (n,0)-
ring.

Clearly, R is regular if and only if it is right 1-regular, R is n-von
Neumann ring, if it is a commutative right n-regular ring. Right n-
regular ring is right (n + 1)-regular.

Example 3.8. Let K be a field and E be a K-vector space with infinite
rank. Set B = K « E the trivial extension of K by E. Then, by [6,
Theorem 3.4], R is a commutative 2-regular rings which is not regular.
So, in general, right 2-reqular ring need not be regular.

Theorem 3.9. The following conditions are equivalent for a ring R.

(1) R is a right n-regular ring.

(2) Ewvery right R-module is (n,0)-injective.

(3) Ewery finitely generated right R-module is (n,0)-injective.

(4) R is right n-hereditary and Rp is (n,0)-injective.

(5) R is right n-coherent and every n-presented right R-module is
(n, 0)-injective.

(6) Ewvery (n—1)-presented submodule of a projective right R-module
s a direct summand.
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(7) Every n-presented right R-module is flat.
(8) Ewery left R-module is (n,0)-flat.

Proof. (1) = (2) = (3) are obvious.

(3) = (4). Assume (3). Then, clearly Rpg is (n,0)-injective. Let P be
a projective module and let K be an (n — 1)-presented submodule of P.
By (3), K is (n,0)-injective, so by Theorem 2.2(3), we have that K is a
direct summand of P and hence K is projective. Therefore, R is right
n-hereditary .

(4) = (5). Assume (4), then every (n — 1)-presented submodule of
a projective module is projective and finitely generated, and then it is
n-presented, so R is right n-coherent by Theorem 2.1(3). Now, let M be
an n-presented right R-module, then there exists an exact sequence of
right R-modules F' — M — 0, where F' is finitely generated free. Since
Rpg is (n, 0)-injective, by Proposition 2.4, F'is (n, 0)-injective. Observing
that R is right n-hereditary, by Theorem 3.2(3), M is (n,0)-injective.

(5) = (6). Let M be an (n — 1)-presented submodule of a projective
right R-module P. Then, M is a submodule of a finitely generated free
right R-module F'. By Proposition 1.1(5), F//M is n-presented. Since R
is right n-coherent, F//M is (n + 1)-presented. So, M is n-presented by
Proposition 1.1(7), and hence M is (n,0)-injective by (5). This follows
that M is a direct summand of P by Theorem 2.2(3).

(6) = (1). Let M be an n-presented right R-module, then there
exists an exact sequence of right R-modules 0 - K — P — M — O,
where P is finitely generated projective and K is (n — 1)-presented. By
hypothesis, K is a direct summand of P. Hence, M is isomorphic to a
direct summand of P, and so M is projective.

(1) & (7) and (7) < (8) are obvious. O
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