USING KULLBACK-LEIBLER DISTANCE FOR
PERFORMANCE EVALUATION OF SEARCH DESIGNS

H. TALEBI* AND N. ESMAILZADEH

Communicated by Ahmad Reza Soltani

Abstract. This paper considers the search problem, introduced by Srivastava [10]. This is a model discrimination problem. In the context of search linear models, discrimination ability of search designs has been studied by several researchers. Some criteria have been developed to measure this capability, however, they are restricted in a sense of being able to work for searching only one possible nonzero effect. In this paper, two criteria are proposed, based on Kullback-Leibler distance. These criteria are able to evaluate the search ability of designs, without any restriction on the number of nonzero effects.

1. Introduction

Consider the following linear model for a 2^m factorial experiment,

$$y = X_1\beta_1 + X_2\beta_2 + e, \quad \text{Var}(e) = \sigma^2 I,$$

where $y(N \times 1)$ is a vector of observations, $X_i(N \times \nu_i)$ are known design matrices and $\beta_i(\nu_i \times 1)$ are vectors of fixed unknown factorial effects for $i = 1, 2$, $e(N \times 1)$ is an error vector, σ^2 is the error variance and I_N is the identity matrix of order N. We know about β_2 partially. That is, at most k elements of β_2 are nonzero but those elements are unknown. We

MSC(2011): Primary: 62k15; Secondary: 62k05
Keywords: Search designs, search linear model, Kullback-Leibler distance, model discrimination.
Received: 28 June 2010, Accepted: 31 October 2010.
*Corresponding author
© 2011 Iranian Mathematical Society.
are interested in identifying and estimating the \(k \) nonzero parameters of \(\beta_2 \) along with the estimation of \(\beta_1 \). This is so called a search problem and the related design which is able to solve this problem is a search design (SD). Now, let \(S \) denotes a set of \(\left(\binom{\nu_2}{k} \right) \) partially non-nested reduced models, \(M_i \), of (1.1). That is,

\[
S = \{ M_i : y = X_1 \beta_1 + X_{2i} \beta_{2i} + e \},
\]

where \(\beta_{2i} \) is the \(i \)-th possible \(k \times 1 \) vector of parameters of \(\beta_{2i} \in \beta_2 \) and \(X_{2i} \) are its corresponding columns in \(X_2 \) for \(i = 1, 2, ..., \left(\binom{\nu_2}{k} \right) \). Models in \(S \) are common in \(\beta_1 \) and all differ in \(\beta_{2i} \) and only one of them, say \(M_0 \), is true. One may discriminate between any two models in order to come up with the true model. In the context of search linear model, Srivastava [10] proposed the following condition to solve the discrimination problem

\[
\text{rank}(X_1; X_{2i}; X_{2j}) = \nu_1 + 2k,
\]

for any pairs of \(X_{2i} \) and \(X_{2j} \) in \(X_2 \). This condition is necessary and sufficient for the noiseless case, \(\sigma^2 = 0 \). However, for the noisy case, \(\sigma^2 > 0 \), (3) is not sufficient but is still necessary. One way to overcome this problem, proposed by Srivastava [10], is to calculate the sum of squared error (\(\text{SSE} \)) for each of \(\left(\binom{\nu_2}{k} \right) \) models and choose one with minimum \(\text{SSE} \) as the true model. Shirakura et al. [9] considered the stochastic properties of \(\text{SSE} \) for a given search design and defined the search probability (SP) \(P[\text{SSE}(M_0) < \text{SSE}(M_i)|M_0, M_i, \sigma^2] \), for any two models, in order to measure the discrimination capability of the SD. They gave an exact expression of SP for \(k = 1 \) when errors are normally distributed. Based on the SP, to compare the SDs, some criteria are given in [9, 5] and [11]. All of these criteria are applicable for \(k = 1 \). Creation and development of criterion to do the task for \(k \geq 1 \) is our challenge in this research.

In general, some advances have been made by researchers to provide criteria for model discrimination through the design optimization. For normally distributed error, Atkinson and Fedorov [1, 2] introduced a criterion to obtain the optimum design through discrimination between two homoscedastic models, which is the so called T-optimality. Uciniski and Bogacka [12] developed it to the heteroscedastic case. Lopez-Fidalgo et al. [8] extended the optimal design criterion, based on KL distance, for non-normal models to discriminate between the true model and its alternative by considering the system of hypotheses

\[
H_0 : M = M_i,
\]

(1.4)

\[
H_1 : M = M_0.
\]
In this paper, we proposed two new criteria, based on the Kullback-Liebler (KL) distance, in the context of search linear model (1.1). The KL distance was proposed by Kullback and Liebler [7] to measure the distance between density functions, f_1 and f_2, under two candidate models.

Now, let $f_1(y, X_{20}, \beta_{20}, \sigma)$ and $f_2(y, X_{2i}, \beta_{2i}, \sigma)$ be density functions of observations under true and alternative models, respectively. The KL distance is given by

$$I_i(f_1, f_2) = \int f_1(y, X_{20}, \beta_{20}, \sigma) \log \left\{ \frac{f_1(y, X_{20}, \beta_{20}, \sigma)}{f_2(y, X_{2i}, \beta_{2i}, \sigma)} \right\} dy,$$

where $dy = dy_1...dy_N$ and $y' = (y_1, ..., y_N)$. Suppose the components of the error vector e are independently distributed as $N(0, \sigma^2)$. The expression (1.5) is reduced to the following explicit form:

$$I_i(f_1, f_2) = \frac{1}{2\sigma^2} (X_{20} \beta_{20} - X_{2i} \beta_{2i})'(X_{20} \beta_{20} - X_{2i} \beta_{2i}).$$

It means, under the normality assumption the KL distance is simplified to a quantity which measures the distance between means of two models. The minimum discrimination distance function, minimizes (1.6) with respect to all vector β_{2i}. The minimum value of (1.6) occurs at $\beta_{2i} = (X_{2i}'X_{2i})^{-1}X_{2i}'X_{20} \beta_{20}$ and is given by

$$I_i(\rho, X_{20}) = \min_{\beta_{2i}} I_i(f_1, f_2) = \frac{1}{2} \rho'X_{20}'(I - H_i)X_{20}\rho,$$

where $\rho = \frac{1}{\sigma} \beta_{20}$ and $H_i = X_{2i}(X_{2i}'X_{2i})^{-1}X_{2i}'$. This is the T-optimality criterion obtained by Atkinson and Fedorov [1], [2] and is the so-called non-centrality parameter of the likelihood ratio test for lack of fit of postulating M_i when the true model is M_0. [8]

In next two sections, we will use (1.7) to propose new dual-job KL-criterion for discriminating models and evaluate the search capability of SDs for $k = 1$ and 2. The expected KL-criterion (EKL) is given in Section 4. It will allow us to evaluate the search performance of design through the discrimination job for all $k \geq 1$.

2. Kullback-Leibler search criterion

Minimum discrimination distance given in (1.7) provides a measure to discriminate between two candidate models, M_0 and M_i. Now, in view of searching the true model consider the (^r_k) rival models of the
set S given in (1.2). Any model in S can be the true model, M_0, given by,

$$(2.1) \quad M_0 : y = X_1\beta_1 + X_{20}\beta_{20} + e.$$

Let S_0 denotes the set of all $\binom{n}{k}$-1 possible alternative $M_i (\neq M_0)$, of which at least one effect in β_{2i} is not of β_{20}. To discriminate the true model based on (1.7), we consider a two-stage procedure and propose the Kullback-Leibler search criterion (KL-criterion), for a given search design T, by

$$(2.2) \quad KL_T(\rho) = \min_S \min_{S_0} I_i(\rho, X_{20}).$$

Note that $KL_T(\rho)$ is a real valued function of vector ρ, which depends on design through X_{20} and X_{2i}. From T-optimality property given in (1.7), it is most desirable that $KL_T(\rho)$ be a large value. This means that a search design T with larger value of $KL_T(\rho)$ has a larger capability in discriminating the true model among all competing models. Therefore, having (2.2) we are able to compare and rank the SDs with respect to their discrimination capacity. In the following, we will employ $KL_T(\rho)$ in more details for evaluating search ability and ranking search designs. Before going into more details, we give the following definition.

Definition 2.1. Let T_1 and T_2 be two search designs with N treatments. Then T_1 is said to be better than T_2 for discriminating the true model if $KL_{T_1}(\rho) > KL_{T_2}(\rho)$.

Indeed, by this definition, we choose a design that has the better discrimination capability in the worst case. The following lemma will be useful in the next section.

Lemma 2.2. The minimum discrimination distance given in (1.7) is bounded above by $\frac{1}{2}\rho'X_{20}'X_{20}\rho$.

Proof. The proof is easily obtained from the positive semi-definite property of the matrix $X_{20}'H_iX_{20}$. \square

3. Implementation

In this section, we employ KL-criterion in (2.2) for comparing some search designs.
3.1. **Case** \(k = 1 \). Consider a SD with \(N \) treatments and let \(k = 1 \). It can be easily seen that \(I_i(\rho, X_{20}) = I_i(-\rho, X_{20}) \), i.e., \(I_i \) is symmetric in \(\rho \). This will allow us to focus on \(\rho \geq 0 \) for comparing search designs. It is also clear from Lemma 2.2 that \(I_i(\rho, X_{20}) \leq N\rho^2 \). Note that, in comparing SDs for this case the \(\rho \) will be canceled out and hence the actual value it takes immaterial. We put \(\rho = 1 \) in using Definition 2.1 for design comparison. Now, we can establish the following proposition.

Proposition 3.1. Consider a search design \(T \) with \(N \) runs. The following properties of \(KL_T(\rho) \) are true:

a) \(KL_T(\rho) = KL_T(-\rho) \).

b) for \(\rho = 1 \), \(0 \leq \frac{1}{N} KL_T(1) \leq 1 \).

The proof is obtained from the above discussion.

Based on Proposition 3.1, we use (2.2) to measure the search ability of designs \(D_1, D_2 \) and \(D_3 \), given in Table 1 and then rank them. Design

Table 1. \(D_1, D_2, D_3 \) and \(D_4 \) with 12 runs

<table>
<thead>
<tr>
<th>(D_1)</th>
<th>(D_2)</th>
<th>(D_3)</th>
<th>(D_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ + + + +</td>
<td>+ - - - -</td>
<td>+ + + + +</td>
<td>+ + + + +</td>
</tr>
<tr>
<td>- - - + +</td>
<td>- + - + -</td>
<td>- - - + +</td>
<td>- - - + +</td>
</tr>
<tr>
<td>+ + - - -</td>
<td>+ - + + +</td>
<td>+ - - + +</td>
<td>+ - - + +</td>
</tr>
<tr>
<td>- + + + -</td>
<td>- + + + +</td>
<td>- + + + +</td>
<td>+ - + + +</td>
</tr>
<tr>
<td>- - + + +</td>
<td>- + + + -</td>
<td>+ - + + +</td>
<td>- + + + -</td>
</tr>
<tr>
<td>+ - - - +</td>
<td>- + - - +</td>
<td>+ - - + -</td>
<td>- + - + -</td>
</tr>
<tr>
<td>- - + + -</td>
<td>- + - + -</td>
<td>+ - + + -</td>
<td>- + + - -</td>
</tr>
<tr>
<td>- + - + -</td>
<td>- + - + -</td>
<td>+ - - - +</td>
<td>- + - - +</td>
</tr>
<tr>
<td>+ - - + +</td>
<td>- + - + -</td>
<td>+ - + - -</td>
<td>- + + - +</td>
</tr>
<tr>
<td>- + - + +</td>
<td>- + - + -</td>
<td>+ - + - -</td>
<td>- + - - +</td>
</tr>
<tr>
<td>+ - - + +</td>
<td>- + - + -</td>
<td>+ - + + -</td>
<td>- + + - -</td>
</tr>
<tr>
<td>- + - + +</td>
<td>- + - + -</td>
<td>+ - + + -</td>
<td>- + - - +</td>
</tr>
<tr>
<td>+ - - + +</td>
<td>- + - + -</td>
<td>+ - + + -</td>
<td>- + + - -</td>
</tr>
</tbody>
</table>

\(D_1 \) is a projection of Plackett-Burman design with 12 runs (\(PB_{12} \)) onto 5 factors. \(D_2 \) is given in [4] and \(D_3 \) in [11]. In model (1.1), we take \(\beta_1 \) as the vector of the general mean and main effects, and \(\beta_2 \) is restricted to 2- and 3- factor interactions. We also assume that 4 and higher order interactions are negligible. Designs \(D_1, D_2 \) and \(D_3 \) satisfy condition (1.3) for \(k = 1 \). The values of \(KL_{D_1}(1) \) and \(\frac{1}{N} KL_{D_1}(1) \) are given in Table 2 which shows that

\[KL_{D_1} > KL_{D_2} > KL_{D_3}. \]

It means, \(D_1 \) is superior to \(D_2 \) and \(D_2 \) is superior to \(D_3 \) in identifying the true model. The second row in Table 2 shows the discrimination capacity
of these designs compared to its upper bound 1, given in Proposition 3.1(b).

Table 2. Comparisons between designs D_1, D_2 and D_3

<table>
<thead>
<tr>
<th></th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$KL_{D_i}(1)$</td>
<td>10.667</td>
<td>9.0000</td>
<td>6.6667</td>
</tr>
<tr>
<td>$\frac{1}{N}KL_{D_i}(1)$</td>
<td>0.8889</td>
<td>0.7500</td>
<td>0.5556</td>
</tr>
</tbody>
</table>

3.2. Case $k = 2$. As already mentioned, none of the criteria given for measuring and comparing the search ability of designs, in the context of search linear models, are applicable for the case $k > 1$. An exception is given by Chatterjee et al. [3], in which, they consider $k = 2$ for comparing two-level supersaturated designs, using the SP given in [9]. The KL-criterion is applicable for $k \geq 2$. Here, we apply $KL_T(\rho)$ for designs D_4 and D_5, in order to measure their capability in searching and finding the superior design. Design D_4, presented in Table 1 is given in [5]. D_5 is any one of the designs that is chosen from the class of isomorphic projection designs of PB_{12} onto any four factors. These two designs satisfy the search condition (1.3) for $k = 2$, where β_i, $i = 1, 2$ are the same as those considered in Section 3.1. The values of $KL_{D_i}(\rho)$, for various values of $\rho = (\rho_1, \rho_2)$ are shown in Table 3. Results show that D_4 is superior in comparison to D_5. For $-2 \leq \rho_i \leq 2$, $i = 1, 2$,

Table 3. Comparisons between designs D_4 and D_5

<table>
<thead>
<tr>
<th>ρ_2</th>
<th>-2</th>
<th>-1.5</th>
<th>-1</th>
<th>-0.5</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>40.2286</td>
<td>22.6286</td>
<td>10.0571</td>
<td>2.5143</td>
<td>2.5143</td>
<td>10.0571</td>
<td>22.6286</td>
<td>40.2286</td>
</tr>
<tr>
<td>-1.5</td>
<td>22.6286</td>
<td>22.6286</td>
<td>10.0571</td>
<td>2.5143</td>
<td>2.5143</td>
<td>10.0571</td>
<td>22.6286</td>
<td>22.6286</td>
</tr>
<tr>
<td>-0.5</td>
<td>2.5143</td>
<td>2.5143</td>
<td>2.5143</td>
<td>2.5143</td>
<td>2.5143</td>
<td>2.5143</td>
<td>2.5143</td>
<td>2.5143</td>
</tr>
<tr>
<td>D_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>37.3333</td>
<td>21</td>
<td>9.3333</td>
<td>2.3333</td>
<td>2.3333</td>
<td>9.3333</td>
<td>21</td>
<td>37.3333</td>
</tr>
<tr>
<td>-1.5</td>
<td>21</td>
<td>21</td>
<td>9.3333</td>
<td>2.3333</td>
<td>2.3333</td>
<td>9.3333</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>-0.5</td>
<td>2.3333</td>
<td>2.3333</td>
<td>2.3333</td>
<td>2.3333</td>
<td>2.3333</td>
<td>2.3333</td>
<td>2.3333</td>
<td>2.3333</td>
</tr>
</tbody>
</table>

the plots of $KL_T(\rho)$ are presented in Figure 1, (a) and (b) for D_4 and D_5, respectively. The superimposed contour of these plots, at a given
Using Kullback-Leibler distance for ... 275

$KL_T(\rho)$ level, reveals the superiority of the design. That is, a design with interior contour is concordant with a higher $KL_T(\rho)$ at a given ρ. The contour plot for levels 4 and 8 are shown in Figure 2.

4. Expected KL-criterion

In design comparison, the effect size, ρ is canceled out from KL-criterion for $k = 1$. However, there is a serious problem due to the dependence of KL-criterion on ρ for $k > 1$. Therefore, the comparison
of search designs need to be done for many given different values of \(\rho \). This is a tedious and almost impossible task. In order to overcome this problem, we develop a new criterion by averaging (1.7) over \(\rho \), through a weight real valued function \(f(\rho) \). That is, consider \(\rho \) as a \(k \times 1 \) random vector with the multivariate probability density function (pdf) \(f(\rho) \) as a weight function. We propose the following quantity

\[
EKL_i(X_{20}) = \int I_i(\rho, X_{20}) f(\rho) d\rho.
\]

Note that \(EKL_i(X_{20}) \) depends on the design, through \(X_{20} \) and \(H_i \) given in (1.7), but is independent of \(\rho \). To simplify (4.1), let rewrite the quadratic form \(I_i(\rho, X_{20}) \) in (1.7) as follow:

\[
I_i(\rho, X_{20}) = \sum_{i=1}^{k} \rho_i^2 h_{ii} + \sum_{i \neq j} \rho_i \rho_j h_{ij},
\]

where \(h_{ij} \) is the \((i, j)\)-th, element of the matrix \(H_i(X_{20}) = X'_{20}(I-H_i)X_{20}; i, j = 1, 2, ..., k \). For i.i.d. \(\rho_i \)'s, the \(EKL_i(X_{2i}) \) is reduced to an explicit form of

\[
EKL_i(X_{20}) = \text{Trace}(H_i(X_{20})) \text{var}(\rho) + \sum_{i} \sum_{j} h_{ij} E^2(\rho),
\]

where \(E(\rho) \) and \(\text{var}(\rho) \) are common mean and variance of \(\rho_i \)'s, respectively. For a given design \(T \), the new modified criterion, say expected Kullback-Leibler (EKL), is defined as

\[
EKL_T = \min_{S} \min_{S_0} EKL_i(X_{20}).
\]

Larger value of \(EKL_T \) supports higher ability of design \(T \) in identifying the true model among a set of candidate models. One may use \(EKL_T \) to compare and rank the search designs. Let us to have the following definition:

Definition 4.1. Let \(T_1 \) and \(T_2 \) be two search designs with \(N \) treatments. Then \(T_1 \) is said to be better than \(T_2 \) for discriminating the true model if \(EKL_{T_1}(\rho) > EKL_{T_2}(\rho) \).

Note that the non-negative quantity \(I_i(\rho, X_{20}) \) is a convex function in \(\rho \), due to positive semi-definiteness of matrix \(H_i(X_{20}) \). The comparison of designs for large absolute values of \(\rho_i \)'s makes no sense, since KL-criterion shows high discrimination ability independent of designs. Thus, one may prefer a design that allocate a high discrimination measure to
small significant true effects. Naturally, we may choose a weight function $f(\rho)$ such that allocates larger weights to the lower values of true effects. The following weight function may work adequately,

$$f_i(\rho_i) = \begin{cases} \frac{1}{2}g(-\rho_i) & \text{if } \rho_i < 0 \\ \frac{1}{2}g(\rho_i) & \text{if } \rho_i > 0 \end{cases}$$

where $g(\rho_i)$ is pdf of a Gamma random variable with mean $\nu \lambda$. For weight function (4.5), the quantity (4.3) reduces to $EKL_i(X_{20}) = (\nu \lambda^2 + \nu^2 \lambda^2)\text{Trace}(H_i(X_{20}))$. Then, to rank the competing designs, one may cancel out the fixed coefficient $(\nu \lambda^2 + \nu^2 \lambda^2)$ and make comparison using the term $\text{Trace}(H_i(X_{20}))$. That is, the EKL_T in (4.4) reduces to

$$EKL_T = \min_{S} \min_{S_0} \text{Trace}(H_i(X_{20})).$$

Clearly, in (4.6), $EKL_T \leq kN$. Now, we use (4.6) to compare search designs D_4 and D_5 for $k = 2$ once more. The values of (4.6) for designs D_4 and D_5 are 10.0571 and 9.3333, respectively. Then, by Definition 4.1, D_4 is better than D_5 for discriminating the true model.

5. Discussion

Designing an efficient experiment is very important for making inference on the model parameters. Most of the time, designing is done on a known model. However, sometimes the underlying model is unknown. In this situation, the challenge is to find a design to discriminate between rival models efficiently. Search design, introduced by Srivastava [10], is able to solve this problem for partially non-nested unknown models. For a noisy case, $\sigma^2 > 0$, this gets harder. Based on comparison of SSE of models for discrimination, Shirakiura et al. [9] developed the search probability (SP) to evaluate the searching ability of proposed search designs. This criterion and the others proposed by researchers are based on SP, and are able to measure searching capability of designs only for the case $k = 1$. In this paper, we managed to overcome this restriction problem. Following [8] in presenting the KL-optimality criterion to obtain the optimal design, we developed two new criteria, based on the Kullback-Leibler distance in the context of search linear model in (1.1). We denoted these by KL and EKL criteria. These criteria coincide with T-optimality criterion, which is used to obtain optimum designs for discriminating between models under normality assumption of errors, introduced in [1] and [2]. T-optimality criterion function is the
so-called non-centrality parameter of the likelihood test for the system of hypothesis given in (1.4). It is known, that the power function of test is a non-decreasing function of non-centrality parameter. That is, a design with higher KL-criterion and EKL results in the higher of the power for testing two alternative models. This means that a superior design resulted from KL-criterion and EKL is concordant with a higher performance design, through power value criterion given in [6]. Note that, in Section 4, we considered the influence of nuisance parameter, σ^2, on the performance evaluation and comparison of designs, through the pdf $f(\rho)$. That is, comparing the candidate designs at lower values of ρ's, i.e., higher values of noise, makes more sense. To confirm the reliability of our new criteria, we employed them to calculate and evaluate the search capability of some search designs.

Acknowledgments

The authors would like to thank anonymous referee for his valuable comments and an associate editor for his attention and care.

References

Hooshang Talebi
Department of Statistics, University of Isfahan, P.O. Box 81746, Isfahan, Iran
Email: h_talebi@sci.ui.ac.ir

Nabaz Esmailzadeh
Department of Statistics, University of Kurdistan, P.O. Box 66177, Sanandaj, Iran
Email: N.Esmailzadeh@uok.ac.ir