TOPOLOGICAL CENTERS OF THE $N-T H$ DUAL OF MODULE ACTIONS

K. HAGHNEJAD AZAR* AND A. RIAZI

Communicated by Antony To-Ming Lau

Abstract

We study the topological centers of $n t h$ dual of Banach \mathcal{A}-modules and we extend some propositions from Lau and Ülger into $n-t h$ dual of Banach \mathcal{A}-modules where $n \geq 0$ is even number. Let \mathcal{B} be a Banach \mathcal{A} - bimodule. By using some new conditions, we show that $Z_{\mathcal{A}^{(n)}}^{\ell}\left(\mathcal{B}^{(n)}\right)=\mathcal{B}^{(n)}$ and $Z_{\mathcal{B}^{(n)}}^{\ell}\left(\mathcal{A}^{(n)}\right)=\mathcal{A}^{(n)}$. We get some conclusions on group algebras.

1. Introduction

Throughout this paper, \mathcal{A} is a Banach algebra and $\mathcal{A}^{*}, \mathcal{A}^{* *}$, respectively, are the first and second dual of \mathcal{A}. A bounded net $\left(e_{\alpha}\right)_{\alpha \in I}$ in \mathcal{A} is called a bounded left approximate identity (BLAI) [respectively bounded right approximate identity (BRAI)] if, for each $a \in \mathcal{A}, e_{\alpha} a \rightarrow a$ [respectively $\left.a e_{\alpha} \rightarrow a\right]$. Moreover, (e_{α}) is called a (two sided) bounded approximate identity (BAI), if for every $a \in \mathcal{A}$, the conditions $e_{\alpha} a \rightarrow a$ and $a e_{\alpha} \rightarrow a$ both hold. For $a \in \mathcal{A}$ and $a^{\prime} \in \mathcal{A}^{*}$, we denote by $a^{\prime} a$ and $a a^{\prime}$ respectively, the functionals on \mathcal{A}^{*} defined by $\left\langle a^{\prime} a, b\right\rangle=\left\langle a^{\prime}, a b\right\rangle=a^{\prime}(a b)$ and $\left\langle a a^{\prime}, b\right\rangle=\left\langle a^{\prime}, b a\right\rangle=a^{\prime}(b a)$ for all $b \in \mathcal{A}$. The Banach algebra \mathcal{A} is embedded in its second dual via the identification $\left\langle a, a^{\prime}\right\rangle-\left\langle a^{\prime}, a\right\rangle$ for every $a \in \mathcal{A}$ and $a^{\prime} \in \mathcal{A}^{*}$. We denote the set $\left\{a^{\prime} a: a \in \mathcal{A}\right.$ and $\left.a^{\prime} \in \mathcal{A}^{*}\right\}$

[^0]and $\left\{a a^{\prime}: a \in \mathcal{A}\right.$ and $\left.a^{\prime} \in \mathcal{A}^{*}\right\}$ by $\mathcal{A}^{*} A$ and $A \mathcal{A}^{*}$, respectively. Clearly these two sets are subsets of \mathcal{A}^{*}.
Let \mathcal{A} has a $B A I$. If the equality $\mathcal{A}^{*} \mathcal{A}=\mathcal{A}^{*},\left(\mathcal{A} \mathcal{A}^{*}=\mathcal{A}^{*}\right)$ holds, then we say that \mathcal{A}^{*} factors on the left (right). If both equalities $\mathcal{A}^{*} \mathcal{A}=\mathcal{A} \mathcal{A}^{*}=\mathcal{A}^{*}$ hold, then we say that \mathcal{A}^{*} factors on both sides.
Let X, Y, Z be normed spaces and let $m: X \times Y \rightarrow Z$ be a bounded bilinear mapping. Arens in [1] offers two natural extensions $m^{* * *}$ and $m^{t * * * t}$ of m from $X^{* *} \times Y^{* *}$ into $Z^{* *}$ as follows

1. $m^{*}: Z^{*} \times X \rightarrow Y^{*}$, given by $\left\langle m^{*}\left(z^{\prime}, x\right), y\right\rangle=\left\langle z^{\prime}, m(x, y)\right\rangle$ where $x \in X, y \in Y, z^{\prime} \in Z^{*}$,
2. $m^{* *}: Y^{* *} \times Z^{*} \rightarrow X^{*}$, given by $\left\langle m^{* *}\left(y^{\prime \prime}, z^{\prime}\right), x\right\rangle=\left\langle y^{\prime \prime}, m^{*}\left(z^{\prime}, x\right)\right\rangle$ where $x \in X, y^{\prime \prime} \in Y^{* *}, z^{\prime} \in Z^{*}$,
3. $m^{* * *}: X^{* *} \times Y^{* *} \rightarrow Z^{* *}$, given by $\left\langle m^{* * *}\left(x^{\prime \prime}, y^{\prime \prime}\right), z^{\prime}\right\rangle$
$=\left\langle x^{\prime \prime}, m^{* *}\left(y^{\prime \prime}, z^{\prime}\right)\right\rangle$ where $x^{\prime \prime} \in X^{* *}, y^{\prime \prime} \in Y^{* *}, z^{\prime} \in Z^{*}$.
The mapping $m^{* * *}$ is the unique extension of m such that $x^{\prime \prime} \rightarrow m^{* * *}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ from $X^{* *}$ into $Z^{* *}$ is weak*-to-weak* continuous for every $y^{\prime \prime} \in Y^{* *}$, but the mapping $y^{\prime \prime} \rightarrow m^{* * *}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ is not in general weak*-to-weak* continuous from $Y^{* *}$ into $Z^{* *}$ unless $x^{\prime \prime} \in X$. Hence the first topological center of m may be defined as follows

$$
Z_{1}(m)=\left\{x^{\prime \prime} \in X^{* *}: y^{\prime \prime} \rightarrow m^{* * *}\left(x^{\prime \prime}, y^{\prime \prime}\right) \text { is weak }{ }^{*} \text {-to-weak }{ }^{*}\right.
$$

continuous $\}$.

Now let $m^{t}: Y \times X \rightarrow Z$ be the transpose of m defined by $m^{t}(y, x)=$ $m(x, y)$ for every $x \in X$ and $y \in Y$. Then m^{t} is a continuous bilinear map from $Y \times X$ to Z, and so it may be extended as above to $m^{t * * *}$: $Y^{* *} \times X^{* *} \rightarrow Z^{* *}$. The mapping $m^{t * * * t}: X^{* *} \times Y^{* *} \rightarrow Z^{* *}$ in general is not equal to $m^{* * *}$, see [1]. If $m^{* * *}=m^{t * * * t}$, then m is called Arens regular. The mapping $y^{\prime \prime} \rightarrow m^{t * * * t}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ is weak*-to-weak k^{*} continuous for every $y^{\prime \prime} \in Y^{* *}$, but the mapping $x^{\prime \prime} \rightarrow m^{t * * * t}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ from $X^{* *}$ into $Z^{* *}$ is not in general weak*-to-weak ${ }^{*}$ continuous for every $y^{\prime \prime} \in Y^{* *}$. So we define the second topological center of m as

$$
Z_{2}(m)=\left\{y^{\prime \prime} \in Y^{* *}: x^{\prime \prime} \rightarrow m^{t * * * t}\left(x^{\prime \prime}, y^{\prime \prime}\right) \text { is weak }{ }^{*} \text {-to-weak }{ }^{*}\right.
$$

continuous $\}$.
It is clear that m is Arens regular if and only if $Z_{1}(m)=X^{* *}$ or $Z_{2}(m)=$ $Y^{* *}$. Arens regularity of m is equivalent to the following

$$
\lim _{i} \lim _{j}\left\langle z^{\prime}, m\left(x_{i}, y_{j}\right)\right\rangle=\lim _{j} \lim _{i}\left\langle z^{\prime}, m\left(x_{i}, y_{j}\right)\right\rangle,
$$

whenever both limits exist for all bounded sequences $\left(x_{i}\right)_{i} \subseteq X,\left(y_{i}\right)_{i} \subseteq$ Y and $z^{\prime} \in Z^{*}$, see [18].
The mapping m is left strongly Arens irregular if $Z_{1}(m)=X$ and m is right strongly Arens irregular if $Z_{2}(m)=Y$.
Now let \mathcal{B} be a Banach \mathcal{A}-bimodule, and let

$$
\pi_{\ell}: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{B} \text { and } \pi_{r}: \mathcal{B} \times \mathcal{A} \rightarrow \mathcal{B} .
$$

be the left and right module actions of \mathcal{A} on \mathcal{B}, respectively. Then $\mathcal{B}^{* *}$ is a Banach $\mathcal{A}^{* *}$-bimodule with the following module actions where $\mathcal{A}^{* *}$ is equipped with the left Arens product

$$
\pi_{\ell}^{* * *}: \mathcal{A}^{* *} \times \mathcal{B}^{* *} \rightarrow \mathcal{B}^{* *} \text { and } \pi_{r}^{* * *}: \mathcal{B}^{* *} \times \mathcal{A}^{* *} \rightarrow \mathcal{B}^{* *}
$$

Similarly, $\mathcal{B}^{* *}$ is a Banach $\mathcal{A}^{* *}$-bimodule with the following module actions where $\mathcal{A}^{* *}$ is equipped with the right Arens product

$$
\pi_{\ell}^{t * * * t}: \mathcal{A}^{* *} \times \mathcal{B}^{* *} \rightarrow \mathcal{B}^{* *} \text { and } \pi_{r}^{t * * * t}: \mathcal{B}^{* *} \times \mathcal{A}^{* *} \rightarrow \mathcal{B}^{* *} .
$$

We may therefore define the topological centers of the left and right module actions of $\mathcal{A}^{* *}$ on $\mathcal{B}^{* *}$ as follows:

$$
\begin{gathered}
Z_{\mathcal{B}^{* *}}\left(\mathcal{A}^{* *}\right)=Z\left(\pi_{\ell}\right)=\left\{a^{\prime \prime} \in \mathcal{A}^{* *}: \text { the map } b^{\prime \prime} \rightarrow \pi_{\ell}^{* * *}\left(a^{\prime \prime}, b^{\prime \prime}\right):\right. \\
\left.\mathcal{B}^{* *} \rightarrow \mathcal{B}^{* *} \text { is weak }{ }^{*} \text {-to-weak }{ }^{*} \text { continuous }\right\} \\
Z_{\mathcal{B}^{* *}}^{t}\left(\mathcal{A}^{* *}\right)=Z\left(\pi_{r}^{t}\right)=\left\{a^{\prime \prime} \in \mathcal{A}^{* *}: \text { the map } b^{\prime \prime} \rightarrow \pi_{r}^{t * *}\left(a^{\prime \prime}, b^{\prime \prime}\right):\right. \\
\left.\mathcal{B}^{* *} \rightarrow \mathcal{B}^{* *} \text { weak }{ }^{*} \text {-to-weak }{ }^{*} \text { continuous }\right\} \\
Z_{\mathcal{A}^{* *}}\left(\mathcal{B}^{* *}\right)=Z\left(\pi_{r}\right)=\left\{b^{\prime \prime} \in \mathcal{B}^{* *}: \text { the map } a^{\prime \prime} \rightarrow \pi_{r}^{* * *}\left(b^{\prime \prime}, a^{\prime \prime}\right):\right. \\
\left.\mathcal{A}^{* *} \rightarrow \mathcal{B}^{* *} \text { is weak }{ }^{*} \text {-to-weak } k^{*} \text { continuous }\right\} \\
Z_{\mathcal{A}^{* *}}^{t}\left(\mathcal{B}^{* *}\right)=Z\left(\pi_{\ell}^{t}\right)=\left\{b^{\prime \prime} \in \mathcal{B}^{* *}: \text { the map } a^{\prime \prime} \rightarrow \pi_{\ell}^{t * * *}\left(b^{\prime \prime}, a^{\prime \prime}\right):\right. \\
\left.\mathcal{B}^{* *} \text { is weak }{ }^{*} \text {-to-weak }{ }^{*} \text { continuous }\right\} .
\end{gathered}
$$

We note that if \mathcal{B} is a left(respectively right) Banach \mathcal{A}-module and $\pi_{\ell}: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{B}$ (respectively $\pi_{r}: \mathcal{B} \times \mathcal{A} \rightarrow \mathcal{B}$) is left (respectively right) module action of \mathcal{A} on \mathcal{B}, then \mathcal{B}^{*} is a right (respectively left) Banach \mathcal{A}-module.
We write $a b=\pi_{\ell}(a, b), b a=\pi_{r}(b, a), \pi_{\ell}\left(a_{1} a_{2}, b\right)=\pi_{\ell}\left(a_{1}, a_{2} b\right)$, $\pi_{r}\left(b, a_{1} a_{2}\right)=\pi_{r}\left(b a_{1}, a_{2}\right), \pi_{\ell}^{*}\left(a_{1} b^{\prime}, a_{2}\right)=\pi_{\ell}^{*}\left(b^{\prime}, a_{2} a_{1}\right)$, $\pi_{r}^{*}\left(b^{\prime} a, b\right)=\pi_{r}^{*}\left(b^{\prime}, a b\right)$, for all $a_{1}, a_{2}, a \in \mathcal{A}, b \in \mathcal{B}$ and $b^{\prime} \in \mathcal{B}^{*}$ when there is no confusion.
Regarding \mathcal{A} as a Banach \mathcal{A}-bimodule, the operation $\pi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ extends to $\pi^{* * *}$ and $\pi^{t * * * t}$ defined on $\mathcal{A}^{* *} \times \mathcal{A}^{* *}$. These extensions are
known as the first(left) and the second (right) Arens products, respectively and in both cases, the second dual space $\mathcal{A}^{* *}$ becomes a Banach algebra. In this situation, we will also simplify our notations. So the first (left) Arens product of $a^{\prime \prime}, b^{\prime \prime} \in \mathcal{A}^{* *}$ will be simply denoted by $a^{\prime \prime} b^{\prime \prime}$ and will be defined by the following three steps:

$$
\begin{aligned}
\left\langle a^{\prime} a, b\right\rangle & =\left\langle a^{\prime}, a b\right\rangle, \\
\left\langle a^{\prime \prime} a^{\prime}, a\right\rangle & =\left\langle a^{\prime \prime}, a^{\prime} a\right\rangle, \\
\left\langle a^{\prime \prime} b^{\prime \prime}, a^{\prime}\right\rangle & =\left\langle a^{\prime \prime}, b^{\prime \prime} a^{\prime}\right\rangle .
\end{aligned}
$$

for every $a, b \in \mathcal{A}$ and $a^{\prime} \in \mathcal{A}^{*}$. Similarly, the second (right) Arens product of $a^{\prime \prime}, b^{\prime \prime} \in \mathcal{A}^{* *}$ will be denoted by $a^{\prime \prime} \circ b^{\prime \prime}$ and will be defined by :

$$
\begin{aligned}
\left\langle a o a^{\prime}, b\right\rangle & =\left\langle a^{\prime}, b a\right\rangle, \\
\left\langle a^{\prime} \circ a^{\prime \prime}, a\right\rangle & =\left\langle a^{\prime \prime}, a \circ a^{\prime}\right\rangle, \\
\left\langle a^{\prime \prime} \circ b^{\prime \prime}, a^{\prime}\right\rangle & =\left\langle b^{\prime \prime}, a^{\prime} \circ b^{\prime \prime}\right\rangle,
\end{aligned}
$$

for all $a, b \in \mathcal{A}$ and $a^{\prime} \in \mathcal{A}^{*}$.
The regularity of a normed algebra \mathcal{A} is defined to be the regularity of its algebra multiplication when considered as a bilinear mapping. Let $a^{\prime \prime}$ and $b^{\prime \prime}$ be elements of $\mathcal{A}^{* *}$. By Goldstine's Theorem [4, p.425] there are nets $\left(a_{\alpha}\right)_{\alpha}$ and $\left(b_{\beta}\right)_{\beta}$ in \mathcal{A} such that $a^{\prime \prime}=w e a k^{*}-\lim _{\alpha} a_{\alpha}$ and $b^{\prime \prime}=$ weak $k^{*}-\lim _{\beta} b_{\beta}$. So it is easy to see that for all $a^{\prime} \in \mathcal{A}^{*}$, we have

$$
\begin{aligned}
& \lim _{\alpha} \lim _{\beta}\left\langle a^{\prime}, \pi\left(a_{\alpha}, b_{\beta}\right)\right\rangle=\left\langle a^{\prime \prime} b^{\prime \prime}, a^{\prime}\right\rangle, \\
& \lim _{\beta} \lim _{\alpha}\left\langle a^{\prime}, \pi\left(a_{\alpha}, b_{\beta}\right)\right\rangle=\left\langle a^{\prime \prime} o b^{\prime \prime}, a^{\prime}\right\rangle
\end{aligned}
$$

where $a^{\prime \prime} b^{\prime \prime}$ and $a^{\prime \prime} \circ b^{\prime \prime}$ are the first and second Arens products of $\mathcal{A}^{* *}$, respectively, see [14, 18].
We find the usual first and second topological center of $\mathcal{A}^{* *}$, which are

$$
\begin{aligned}
& Z_{\mathcal{A}^{* *}}\left(\mathcal{A}^{* *}\right)=Z(\pi)=\left\{a^{\prime \prime} \in \mathcal{A}^{* *}: b^{\prime \prime} \rightarrow a^{\prime \prime} b^{\prime \prime} \text { is weak }{ }^{*} \text {-to-weak }{ }^{*}\right. \\
&\text { continuous }\}, \\
& Z_{\mathcal{A}^{* *}}^{t}\left(\mathcal{A}^{* *}\right)=Z\left(\pi^{t}\right)=\left\{a^{\prime \prime} \in \mathcal{A}^{* *}: a^{\prime \prime} \rightarrow a^{\prime \prime} \circ b^{\prime \prime} \text { is weak }{ }^{*}\right. \text {-to-weak }
\end{aligned}
$$

$$
\text { continuous \}. }
$$

An element $e^{\prime \prime}$ of $\mathcal{A}^{* *}$ is said to be a mixed unit if $e^{\prime \prime}$ is a right unit for the first Arens multiplication and a left unit for the second Arens multiplication. That is, $e^{\prime \prime}$ is a mixed unit if and only if, for each $a^{\prime \prime} \in \mathcal{A}^{* *}$, $a^{\prime \prime} e^{\prime \prime}=e^{\prime \prime} \circ a^{\prime \prime}=a^{\prime \prime}$. By [4, p.146] an element $e^{\prime \prime}$ of $\mathcal{A}^{* *}$ is mixed unit if and only if it is a weak ${ }^{*}$ cluster point of some BAI $\left(e_{\alpha}\right)_{\alpha \in I}$ in \mathcal{A}.

A functional a^{\prime} in \mathcal{A}^{*} is said to be wap (weakly almost periodic) on \mathcal{A} if the mapping $a \rightarrow a^{\prime} a$ from \mathcal{A} into \mathcal{A}^{*} is weakly compact. Pym in [18] showed that this definition is equivalent to the following condition.
For any two net $\left(a_{\alpha}\right)_{\alpha}$ and $\left(b_{\beta}\right)_{\beta}$ in $\{a \in \mathcal{A}:\|a\| \leq 1\}$, we have

$$
\lim _{\alpha} \lim _{\beta}\left\langle a^{\prime}, a_{\alpha} b_{\beta}\right\rangle=\lim _{\beta} \lim _{\alpha}\left\langle a^{\prime}, a_{\alpha} b_{\beta}\right\rangle,
$$

whenever both iterated limits exist. The collection of all wap functionals on \mathcal{A} is denoted by $\operatorname{wap}(\mathcal{A})$. We also have $a^{\prime} \in \operatorname{wap}(A)$ if and only if $\left\langle a^{\prime \prime} b^{\prime \prime}, a^{\prime}\right\rangle=\left\langle a^{\prime \prime} \circ b^{\prime \prime}, a^{\prime}\right\rangle$ for every $a^{\prime \prime}, b^{\prime \prime} \in \mathcal{A}^{* *}$.
This paper is organized as follows:
a) Let \mathcal{B} be a Banach \mathcal{A}-bimodule. Let $n \geq 0$ be an even number and $0 \leq$ $r \leq \frac{n}{2}$. Assume that $U_{n, r}=\left(\mathcal{A}^{(n-r)} \mathcal{A}^{(r)}\right)^{(r)}$ or $U_{n, r}=\left(\mathcal{A}^{(n-r)} \mathcal{A}^{(r-1)}\right)^{(r)}$ and $\phi \in U_{n, r}$. Then $\phi \in Z_{\mathcal{B}^{(n)}}^{\ell}\left(U_{n, r}\right)$ if and only if $b^{(n-1)} \phi \in \mathcal{B}^{(n-1)}$ for all $b^{(n-1)} \in \mathcal{B}^{(n-1)}$.
b) Let \mathcal{B} be a Banach \mathcal{A}-bimodule. Then
(1) $b^{(n)} \in Z^{\ell}{ }_{\mathcal{A}^{(n)}}\left(\mathcal{B}^{(n)}\right)$ if and only if $b^{(n-1)} b^{(n)} \in \mathcal{A}^{(n-1)}$ for all $b^{(n-1)} \in \mathcal{B}^{(n-1)}$.
(2) If $\phi \in Z^{\ell}{ }_{\mathcal{B}^{(n)}}\left(U_{n, r}\right)$, then $a^{(n-2)} \phi \in Z^{\ell}{ }_{\mathcal{B}^{(n)}}\left(\mathcal{A}^{(n)}\right)$ for all $a^{(n-2)} \in$ $\mathcal{A}^{(n-2)}$.
c) Let \mathcal{B} be a Banach space such that $\mathcal{B}^{(n)}$ is weakly compact. Then for Banach \mathcal{A}-bimodule \mathcal{B}, we have the following assertions.
(1) Suppose that $\left(e_{\alpha}^{(n)}\right)_{\alpha} \subseteq \mathcal{A}^{(n)}$ is a $B L A I$ for $\mathcal{B}^{(n)}$ such that

$$
e_{\alpha}^{(n)} \mathcal{B}^{(n+2)} \subseteq \mathcal{B}^{(n)}
$$

for every α. Then \mathcal{B} is reflexive.
(2) Suppose that $\left(e_{\alpha}^{(n)}\right)_{\alpha} \subseteq \mathcal{A}^{(n)}$ is a $B R A I$ for $\mathcal{B}^{(n)}$ and

$$
Z_{e^{(n+2)}}^{\ell}\left(\mathcal{B}^{(n+2)}\right)=\mathcal{B}^{(n+2)},
$$

where $e_{\alpha}^{(n)} \xrightarrow{w^{*}} e^{(n+2)}$ in $\mathcal{A}^{(n)}$. If $\mathcal{B}^{(n+2)} e_{\alpha}^{(n)} \subseteq \mathcal{B}^{(n)}$ for every α, then $Z_{\mathcal{A}^{(n+2)}}^{\ell}\left(\mathcal{B}^{(n+2)}\right)=\mathcal{B}^{(n+2)}$.
d) Assume that \mathcal{B} is a Banach \mathcal{A}-bimodule. Then
(1) $\mathcal{B}^{(n+1)} \mathcal{A}^{(n)} \subseteq$ wap $_{\ell}\left(\mathcal{B}^{(n)}\right)$ if and only if

$$
\mathcal{A}^{(n)} \mathcal{A}^{(n+2)} \subseteq Z_{\mathcal{B}^{(n+2)}}^{\ell}\left(\mathcal{A}^{(n+2)}\right)
$$

(2) If $\mathcal{A}^{(n)} \mathcal{A}^{(n+2)} \subseteq \mathcal{A}^{(n)} Z_{\mathcal{B}^{(n+2)}}\left(\mathcal{A}^{(n+2)}\right)$, then

$$
\mathcal{A}^{(n)} \mathcal{A}^{(n+2)} \subseteq Z_{\mathcal{B}^{(n+2)}}^{\ell}\left(\mathcal{A}^{(n+2)}\right)
$$

e) Let \mathcal{B} be a left Banach \mathcal{A}-bimodule and let $n \geq 0$ be an even number. Suppose that $b_{0}^{(n+1)} \in \mathcal{B}^{(n+1)}$. Then $b_{0}^{(n+1)} \in \operatorname{wap}_{\ell}\left(\mathcal{B}^{(n)}\right)$ if and only if the mapping $T: b^{(n+2)} \rightarrow b^{(n+2)} b_{0}^{(n+1)}$ form $\mathcal{B}^{(n+2)}$ into $\mathcal{A}^{(n+1)}$ is weak*-to-weak continuous.
f) Let \mathcal{B} be a left Banach \mathcal{A}-bimodule. Then for $n \geq 2$, we have the following assertions.
(1) If $\mathcal{A}^{(n)}=a_{0}^{(n-2)} \mathcal{A}^{(n)}\left[\right.$ respectively, $\left.\mathcal{A}^{(n)}=\mathcal{A}^{(n)} a_{0}^{(n-2)}\right]$ for some $a_{0}^{(n-2)} \in \mathcal{A}^{(n-2)}$ and $a_{0}^{(n-2)}$ has $R w^{*} w$ - property [respectively $L w^{*} w-$ property] with respect to $\mathcal{B}^{(n)}$, then $Z_{\mathcal{B}^{(n)}}\left(\mathcal{A}^{(n)}\right)=\mathcal{A}^{(n)}$.
(2) If $\mathcal{B}^{(n)}=a_{0}^{(n-2)} \mathcal{B}^{(n)}$ [respectively, $\left.\mathcal{B}^{(n)}=\mathcal{B}^{(n)} a_{0}^{(n-2)}\right]$ for some $a_{0}^{(n-2)} \in \mathcal{A}^{(n-2)}$ and $a_{0}^{(n-2)}$ has $R w^{*} w-$ property [respectively $L w^{*} w$ - property] with respect to $\mathcal{B}^{(n)}$, then $Z_{\mathcal{A}^{(n)}}\left(\mathcal{B}^{(n)}\right)=\mathcal{B}^{(n)}$.

2. Topological Centers of Module Actions

Suppose that \mathcal{A} is a Banach algebra and \mathcal{B} is a Banach \mathcal{A}-bimodule. According to $[5, \mathrm{p} .27-28] \mathcal{B}^{* *}$ is a Banach $\mathcal{A}^{* *}$-bimodule, where $\mathcal{A}^{* *}$ is equipped with the first Arens product. We recall the topological centers of module actions of $\mathcal{A}^{* *}$ on $\mathcal{B}^{* *}$ as follows.

$$
\begin{aligned}
Z_{\mathcal{A}^{* *}}\left(\mathcal{B}^{* *}\right)= & \left\{b^{\prime \prime} \in \mathcal{B}^{* *}: \text { the map } a^{\prime \prime} \rightarrow b^{\prime \prime} a^{\prime \prime}: \mathcal{A}^{* *} \rightarrow \mathcal{B}^{* *}\right. \\
& \text { is weak} \left.k^{*} \text {-to-weak } k^{*} \text { continuous }\right\} \\
Z_{\mathcal{B}^{* *}}^{\ell}\left(\mathcal{A}^{* *}\right)= & \left\{a^{\prime \prime} \in \mathcal{A}^{* *}: \text { the map } b^{\prime \prime} \rightarrow a^{\prime \prime} b^{\prime \prime}: \mathcal{B}^{* *} \rightarrow \mathcal{B}^{* *}\right. \\
& \text { is weak } \left.k^{*} \text {-to-weak } k^{*} \text { continuous }\right\}
\end{aligned}
$$

Let $\mathcal{A}^{(n)}$ and $\mathcal{B}^{(n)}$ be $n t h d u a l$ of \mathcal{A} and \mathcal{B}, respectively. By [25, p. 41324134] if $n \geq 0$ is an even number, then $\mathcal{B}^{(n)}$ is a Banach $\mathcal{A}^{(n)}$-bimodule. Then for $n \geq 2$, we define $\mathcal{B}^{(n)} \mathcal{B}^{(n-1)}$ as a subspace of $\mathcal{A}^{(n-1)}$, that is, for all $b^{(n)} \in \mathcal{B}^{(n)}, b^{(n-1)} \in \mathcal{B}^{(n-1)}$ and $a^{(n-2)} \in \mathcal{A}^{(n-2)}$ we define

$$
\left\langle b^{(n)} b^{(n-1)}, a^{(n-2)}\right\rangle=\left\langle b^{(n)}, b^{(n-1)} a^{(n-2)}\right\rangle
$$

If n is odd number, we define $\mathcal{B}^{(n)} \mathcal{B}^{(n-1)}$ as a subspace of $\mathcal{A}^{(n)}$, that is, for all $b^{(n)} \in \mathcal{B}^{(n)}, b^{(n-1)} \in \mathcal{B}^{(n-1)}$ and $a^{(n-1)} \in \mathcal{A}^{(n-1)}$, we define

$$
\left\langle b^{(n)} b^{(n-1)}, a^{(n-1)}\right\rangle=\left\langle b^{(n)}, b^{(n-1)} a^{(n-1)}\right\rangle
$$

If $n=0$, we take $\mathcal{A}^{(0)}=\mathcal{A}$ and $\mathcal{B}^{(0)}=\mathcal{B}$.
We also define the topological centers of module actions of $\mathcal{A}^{(n)}$ on $\mathcal{B}^{(n)}$ as follows

$$
\begin{aligned}
& Z_{\mathcal{A}^{(n)}}^{\ell}\left(\mathcal{B}^{(n)}\right)=\left\{b^{(n)} \in \mathcal{B}^{(n)}: \text { the map } a^{(n)} \rightarrow b^{(n)} a^{(n)}: \mathcal{A}^{(n)} \rightarrow \mathcal{B}^{(n)}\right. \\
&\text { is weak } \left.{ }^{*} \text {-to-weak* continuous }\right\} \\
& Z_{\mathcal{B}^{(n)}}^{\ell}\left(\mathcal{A}^{(n)}\right)=\left\{a^{(n)} \in \mathcal{A}^{(n)}: \text { the map } b^{(n)} \rightarrow a^{(n)} b^{(n)}: \mathcal{B}^{(n)} \rightarrow \mathcal{B}^{(n)}\right. \\
&\text { is weak*-to-weak } \left.k^{*} \text { continuous }\right\} .
\end{aligned}
$$

Let \mathcal{A} be a Banach algebra with a (BAI) and suppose that $\mathcal{A}^{(n)}$ and $\mathcal{A}^{(m)}$ are the $n t h d u a l$ and $m t h d u a l$ of \mathcal{A}, respectively. Suppose that at least one of the integers n or m is an even number. Then we define the set $\mathcal{A}^{(n)} \mathcal{A}^{(m)}$ as a linear space that is generated by the following set

$$
\left\{a^{(n)} a^{(m)}: a^{(n)} \in \mathcal{A}^{(n)} \text { and } a^{(m)} \in \mathcal{A}^{(m)}\right\}
$$

where the multiplication $a^{(n)} a^{(m)}$ is defined with respect to the first Arens product. If $n \geq m$, then $\mathcal{A}^{(n)} \mathcal{A}^{(m)}$ is a subspace of $\mathcal{A}^{(n)}$. Observe that $\mathcal{A}^{(n)} \mathcal{A}^{(m)}$ is Banach algebra whenever n and m are even numbers, but if one of them is an odd number, then $\mathcal{A}^{(n)} \mathcal{A}^{(m)}$ is not in general a Banach algebra.

Let $n \geq 0$ be an even number and $0 \leq r \leq \frac{n}{2}$. For a Banach algebra \mathcal{A}, we define a new Banach algebra $U_{n, r}$ with respect to the first Arens product as follows.

If r is an even (respectively odd) number, then we write $U_{n, r}=\left(\mathcal{A}^{(n-r)} \mathcal{A}^{(r)}\right)^{(r)}$ (respectively $\left.U_{n, r}=\left(\mathcal{A}^{(n-r)} \mathcal{A}^{(r-1)}\right)^{(r)}\right)$. It is clear that $U_{n, r}$ is a subalgebra of $\mathcal{A}^{(n)}$. For example, if we take $n=2$ and $r=1$, then $U_{2,1}=\left(\mathcal{A}^{*} \mathcal{A}\right)^{*}$ is a subalgebra of $\mathcal{A}^{* *}$ with respect to the first Arens product.

Now if \mathcal{B} is a Banach \mathcal{A}-bimodule, then it is clear that $\mathcal{B}^{(n)}$ is a Banach $U_{n, r}$ - bimodule with respect to the first Arens product, for detail see [25]. Thus we can define the topological centers of module actions $U_{n, r}$ on $\mathcal{B}^{(n)}$ as $Z_{\mathcal{B}^{(n)}}^{\ell}\left(U_{n, r}\right)$ and $Z_{U_{n, r}}^{\ell}\left(\mathcal{B}^{(n)}\right)$ similar to the preceding definitions. In every parts of this paper, $n \geq 0$ is even number.

Theorem 2.1. Let \mathcal{B} be a Banach \mathcal{A}-bimodule and $\phi \in U_{n, r}$. Then $\phi \in Z^{\ell}{ }_{\mathcal{B}^{(n)}}\left(U_{n, r}\right)$ if and only if $b^{(n-1)} \phi \in \mathcal{B}^{(n-1)}$ for all $b^{(n-1)} \in \mathcal{B}^{(n-1)}$.

Proof. Let $\phi \in Z_{\mathcal{B}^{(n)}}^{\ell}\left(U_{n, r}\right)$. Suppose that $\left(b_{\alpha}^{(n)}\right)_{\alpha} \subseteq \mathcal{B}^{(n)}$ such that $b_{\alpha}^{(n)} \xrightarrow{w^{*}} b^{(n)}$ in $\mathcal{B}^{(n)}$. Then, for every $b^{(n-1)} \in \mathcal{B}^{(n-1)}$, we have

$$
\left\langle b^{(n-1)} \phi, b_{\alpha}^{(n)}\right\rangle=\left\langle b^{(n-1)}, \phi b_{\alpha}^{(n)}\right\rangle=\left\langle\phi b_{\alpha}^{(n)}, b^{(n-1)}\right\rangle \rightarrow\left\langle\phi b^{(n)}, b^{(n-1)}\right\rangle
$$

$$
=\left\langle b^{(n-1)} \phi, b^{(n)}\right\rangle
$$

It follows that $b^{(n-1)} \phi \in\left(\mathcal{B}^{(n)}, w e a k^{*}\right)^{*}=\mathcal{B}^{(n-1)}$.
Conversely, let $b^{(n-1)} \phi \in \mathcal{B}^{(n-1)}$ for every $b^{(n-1)} \in \mathcal{B}^{(n-1)}$ and suppose that $\left(b_{\alpha}^{(n)}\right)_{\alpha} \subseteq \mathcal{B}^{(n)}$ such that $b_{\alpha}^{(n)} \xrightarrow{w^{*}} b^{(n)}$ in $\mathcal{B}^{(n)}$. Then

$$
\begin{aligned}
\left\langle\phi b_{\alpha}^{(n)}, b^{(n-1)}\right\rangle & =\left\langle\phi, b_{\alpha}^{(n)} b^{(n-1)}\right\rangle=\left\langle b_{\alpha}^{(n)} b^{(n-1)}, \phi\right\rangle=\left\langle b_{\alpha}^{(n)}, b^{(n-1)} \phi\right\rangle \\
& \rightarrow\left\langle b^{(n)}, b^{(n-1)} \phi\right\rangle=\left\langle\phi b^{(n)}, b^{(n-1)}\right\rangle
\end{aligned}
$$

It follows that $\phi b_{\alpha}^{(n)} \xrightarrow{w^{*}} \phi b^{(n)}$, and so $\phi \in Z^{\ell}{ }_{\mathcal{B}^{(n)}}\left(U_{n, r}\right)$.
In the preceding theorem if we take $\mathcal{B}=\mathcal{A}, n=2$ and $r=1$, we obtain Lemma 3.1 (b) of [14].
Theorem 2.2. Let \mathcal{B} be a Banach \mathcal{A}-bimodule and $b^{(n)} \in \mathcal{B}^{(n)}$. Then we have the following assertions:
(1) $b^{(n)} \in Z^{\ell}{ }_{\mathcal{A}^{(n)}}\left(\mathcal{B}^{(n)}\right)$ if and only if $b^{(n-1)} b^{(n)} \in \mathcal{A}^{(n-1)}$ for all $b^{(n-1)} \in \mathcal{B}^{(n-1)}$.
(2) If $\phi \in Z^{\ell}{ }_{\mathcal{B}^{(n)}}\left(U_{n, r}\right)$, then $a^{(n-2)} \phi \in Z^{\ell}{ }_{\mathcal{B}^{(n)}}\left(\mathcal{A}^{(n)}\right)$ for all $a^{(n-2)} \in$ $\mathcal{A}^{(n-2)}$.

Proof. (1) Let $b^{(n)} \in Z^{\ell}{ }_{\mathcal{A}^{(n)}}\left(\mathcal{B}^{(n)}\right)$. We show that $b^{(n-1)} b^{(n)} \in \mathcal{A}^{(n-1)}$ where $b^{(n-1)} \in \mathcal{B}^{(n-1)}$. Suppose that $\left(a_{\alpha}^{(n)}\right)_{\alpha} \subseteq \mathcal{A}^{(n)}$ and $a_{\alpha}^{(n)} \xrightarrow{w^{*}}$ $a^{(n)}$ in $\mathcal{A}^{(n)}$. Then we have

$$
\begin{gathered}
\left\langle b^{(n-1)} b^{(n)}, a_{\alpha}^{(n)}\right\rangle=\left\langle b^{(n-1)}, b^{(n)} a_{\alpha}^{(n)}\right\rangle=\left\langle b^{(n)} a_{\alpha}^{(n)}, b^{(n-1)}\right\rangle \\
\rightarrow\left\langle b^{(n)} a^{(n)}, b^{(n-1)}\right\rangle=\left\langle b^{(n-1)} b^{(n)}, a^{(n)}\right\rangle
\end{gathered}
$$

Consequently, $b^{(n-1)} b^{(n)} \in\left(\mathcal{A}^{(n)}, w e a k^{*}\right)^{*}=\mathcal{A}^{(n-1)}$. It follows that $b^{(n-1)} b^{(n)} \in \mathcal{A}^{(n-1)}$.
Conversely, let $b^{(n-1)} b^{(n)} \in \mathcal{A}^{(n-1)}$ for each $b^{(n-1)} \in \mathcal{B}^{(n-1)}$. Suppose that $\left(a_{\alpha}^{(n)}\right)_{\alpha} \subseteq \mathcal{A}^{(n)}$ and $a_{\alpha}^{(n)} \xrightarrow{w^{*}} a^{(n)}$ in $\mathcal{A}^{(n)}$. Then we have

$$
\begin{aligned}
& \left\langle b^{(n)} a_{\alpha}^{(n)}, b^{(n-1)}\right\rangle=\left\langle b^{(n)}, a_{\alpha}^{(n)} b^{(n-1)}\right\rangle=\left\langle a_{\alpha}^{(n)} b^{(n-1)}, b^{(n)}\right\rangle \\
= & \left\langle a_{\alpha}^{(n)}, b^{(n-1)} b^{(n)}\right\rangle \rightarrow\left\langle a^{(n)}, b^{(n-1)} b^{(n)}\right\rangle=\left\langle b^{(n)} a^{(n)}, b^{(n-1)}\right\rangle .
\end{aligned}
$$

It follows that $b^{(n)} a_{\alpha}^{(n)} \xrightarrow{w^{*}} b^{(n)} a^{(n)}$, and hence $b^{(n)} \in Z^{\ell}{ }_{\mathcal{A}^{(n)}}\left(\mathcal{B}^{(n)}\right)$.
(2) Let $\phi \in Z_{\mathcal{B}^{(n)}}\left(U_{n, r}\right)$ and $a^{(n-2)} \in \mathcal{A}^{(n-2)}$. Assume that $\left(b_{\alpha}^{(n)}\right)_{\alpha} \subseteq$ $\mathcal{B}^{(n)}$ such that $b_{\alpha}^{(n)} \xrightarrow{w^{*}} b^{(n)}$ in $\mathcal{B}^{(n)}$. Then for all $b^{(n-1)} \in \mathcal{B}^{(n-1)}$, we have

$$
\left\langle\left(a^{(n-2)} \phi\right) b_{\alpha}^{(n)}, b^{(n-1)}\right\rangle=\left\langle\phi b_{\alpha}^{(n)}, b^{(n-1)} a^{(n-2)}\right\rangle \rightarrow
$$

$$
\left\langle\phi b^{(n)}, b^{(n-1)} a^{(n-2)}\right\rangle=\left\langle\left(a^{(n-2)} \phi\right) b^{(n)}, b^{(n-1)}\right\rangle
$$

It follows that $\left(a^{(n-2)} \phi\right) b_{\alpha}^{(n)} \xrightarrow{w^{*}}\left(a^{(n-2)} \phi\right) b^{(n)}$, and hence

$$
a^{(n-2)} \phi \in Z_{\mathcal{B}^{(n)}}^{\ell}\left(\mathcal{A}^{(n)}\right) .
$$

In the preceding theorem, part (1), if we take $\mathcal{B}=\mathcal{A}$ and $n=2$, we conclude Lemma 3.1 (a) of [14]. In part (2) of this theorem, if we take $\mathcal{B}=\mathcal{A}, n=2$ and $r=1$, we also obtain Lemma 3.1 (c) from [14].

Definition 2.3. Let \mathcal{B} be a Banach \mathcal{A}-bimodule and suppose that $a^{\prime \prime} \in$ $\mathcal{A}^{* *}$. Assume that $\left(a_{\alpha}^{\prime \prime}\right)_{\alpha} \subseteq \mathcal{A}^{* *}$ such that $a_{\alpha}^{\prime \prime} \xrightarrow{w^{*}} a^{\prime \prime}$. If for every $b^{\prime \prime} \in \mathcal{B}^{* *}$, $b^{\prime \prime} a_{\alpha}^{\prime \prime} \xrightarrow{w^{*}} b^{\prime \prime} a^{\prime \prime}$, then we say that $a^{\prime \prime} \rightarrow b^{\prime \prime} a^{\prime \prime}$ is weak ${ }^{*}$-to-weak* point continuous.
Suppose that \mathcal{B} is a Banach \mathcal{A}-bimodule. Assume that $a^{\prime \prime} \in \mathcal{A}^{* *}$. Then we define the locally topological center of $a^{\prime \prime}$ on $\mathcal{B}^{* *}$ as follows

$$
Z_{a^{\prime \prime}}^{\ell}\left(\mathcal{B}^{* *}\right)=\left\{b^{\prime \prime} \in \mathcal{B}^{* *}: a^{\prime \prime} \rightarrow b^{\prime \prime} a^{\prime \prime} \text { is weak } k^{*} \text {-to-weak }{ }^{*}\right. \text { point }
$$ continuous $\}$.

The definition of $Z_{b^{\prime \prime}}^{\ell}\left(\mathcal{A}^{* *}\right)$ where $b^{\prime \prime} \in \mathcal{B}^{* *}$ is similar. It is clear that

$$
\begin{aligned}
& \bigcap_{a^{\prime \prime} \in \mathcal{A}^{* *}} Z_{a^{\prime \prime}}^{\ell}\left(\mathcal{B}^{* *}\right)=Z_{\mathcal{A}^{* *}}^{\ell}\left(\mathcal{B}^{* *}\right), \\
& \bigcap_{b^{\prime \prime} \in \mathcal{B}^{* *}} Z_{b^{\prime \prime}}^{\ell}\left(\mathcal{A}^{* *}\right)=Z_{\mathcal{B}^{* *}}^{\ell}\left(\mathcal{A}^{* *}\right) .
\end{aligned}
$$

Let \mathcal{B} be a Banach space. Then $K \subseteq B$ is called weakly compact, if K is compact with respect to weak topology on \mathcal{B}. By [7], we know that K is weakly compact if and only if K is weakly limit point compact.
Theorem 2.4. Assume that \mathcal{B} is a Banach \mathcal{A}-bimodule such that $\mathcal{B}^{(n)}$ is weakly compact. Then we have the following assertions:
(1) Suppose that $\left(e_{\alpha}^{(n)}\right)_{\alpha} \subseteq \mathcal{A}^{(n)}$ is a BLAI for $\mathcal{B}^{(n)}$ such that

$$
e_{\alpha}^{(n)} \mathcal{B}^{(n+2)} \subseteq \mathcal{B}^{(n)}
$$

for every α. Then \mathcal{B} is reflexive.
(2) Suppose that $\left(e_{\alpha}^{(n)}\right)_{\alpha} \subseteq \mathcal{A}^{(n)}$ is a BRAI for $\mathcal{B}^{(n)}$ and

$$
Z_{e^{(n+2)}}^{\ell}\left(\mathcal{B}^{(n+2)}\right)=\mathcal{B}^{(n+2)},
$$

where $e_{\alpha}^{(n)} \xrightarrow{w^{*}} e^{(n+2)}$ in $\mathcal{A}^{(n)}$. If $\mathcal{B}^{(n+2)} e_{\alpha}^{(n)} \subseteq \mathcal{B}^{(n)}$ for every α, then $Z_{\mathcal{A}^{(n+2)}}^{\ell}\left(\mathcal{B}^{(n+2)}\right)=\mathcal{B}^{(n+2)}$.

Proof. (1) Let $b^{n+2} \in \mathcal{B}^{(n+2)}$. Since $\left(e_{\alpha}^{(n)}\right)_{\alpha}$ is a $B L A I$ for $\mathcal{B}^{(n)}$, without loss generality, there is a left unit $e^{(n+2)} \in \mathcal{A}^{n+2}$ for $\mathcal{B}^{(n+2)}$ such that $e_{\alpha}^{(n)} \xrightarrow{w^{*}} e^{(n+2)}$ in $\mathcal{A}^{(n+2)}$, see [10]. Then we have $e_{\alpha}^{(n)} b^{(n+2)} \xrightarrow{w^{*}} b^{(n+2)}$ in $\mathcal{B}^{(n+2)}$. Since $e_{\alpha}^{(n)} b^{(n+2)} \in \mathcal{B}^{(n)}$, we have $e_{\alpha}^{(n)} b^{(n+2)} \xrightarrow{w} b^{(n+2)}$ in $\mathcal{B}^{(n)}$. We conclude that $b^{n+2} \in \mathcal{B}^{(n)}$, because $\mathcal{B}^{(n)}$ is weakly compact.
(2) Suppose that $b^{(n+2)} \in Z_{\mathcal{A}^{(n+2)}}^{\ell}\left(\mathcal{B}^{(n+2)}\right)$ and $e_{\alpha}^{(n)} \xrightarrow{w^{*}} e^{(n+2)}$ in $\mathcal{A}^{(n)}$ such that $e^{(n+2)}$ is a right unit for $\mathcal{B}^{(n+2)}$, see [10]. Then we have $b^{(n+2)} e_{\alpha}^{(n)} \xrightarrow{w^{*}} b^{(n+2)}$ in $\mathcal{B}^{(n+2)}$. Since $\mathcal{B}^{(n+2)} e_{\alpha}^{(n)} \subseteq \mathcal{B}^{(n)}$ for every $\alpha, b^{(n+2)} e_{\alpha}^{(n)} \xrightarrow{w} b^{(n+2)}$ in $\mathcal{B}^{(n)}$ and since $\mathcal{B}^{(n)}$ is weakly compact, $b^{(n+2)} \in \mathcal{B}^{(n)}$. It follows that $Z_{\mathcal{A}^{(n+2)}}^{\ell}\left(\mathcal{B}^{(n+2)}\right)=\mathcal{B}^{(n+2)}$.

Definition 2.5. Let \mathcal{B} be a Banach \mathcal{A}-bimodule and $n \geq 0$. Then $b^{(n+2)} \in \mathcal{B}^{(n+2)}$ is said to be weakly left almost periodic functional if the set

$$
\left\{b^{(n+1)} a^{(n)}: a^{(n)} \in \mathcal{A}^{(n)},\left\|a^{(n)}\right\| \leq 1\right\}
$$

is relatively weakly compact, and $b^{(n+2)} \in \mathcal{B}^{(n+2)}$ is said to be weakly right almost periodic functional if the set

$$
\left\{a^{(n)} b^{(n+1)}: a^{(n)} \in \mathcal{A}^{(n)},\left\|a^{(n)}\right\| \leq 1\right\}
$$

is relatively weakly compact. We denote by wap $\mathcal{R}_{\ell}\left(\mathcal{B}^{(n)}\right)$ [respectively $\operatorname{wap}_{r}\left(\mathcal{B}^{(n)}\right)$] the closed subspace of $\mathcal{B}^{(n+1)}$ consisting of all weakly left [respectively right] almost periodic functionals in $\mathcal{B}^{(n+1)}$.

By $[6,14,18]$, the definition of $\operatorname{wap}_{\ell}\left(\mathcal{B}^{(n)}\right)$ and $\operatorname{wap}_{r}\left(\mathcal{B}^{(n)}\right)$, respectively, are equivalent to the following:

$$
\begin{gathered}
\operatorname{wap}_{\ell}\left(\mathcal{B}^{(n)}\right)=\left\{b^{(n+1)} \in \mathcal{B}^{(n+1)}:\left\langle b^{(n+2)} a_{\alpha}^{(n+2)}, b^{(n+1)}\right\rangle \rightarrow\right. \\
\left.\left\langle b^{(n+2)} a^{(n+2)}, b^{(n+1)}\right\rangle \text { where } a_{\alpha}^{(n+2)} \xrightarrow{w^{*}} a^{(n+2)}\right\}
\end{gathered}
$$

and

$$
\begin{gathered}
\operatorname{wap}_{r}\left(\mathcal{B}^{(n)}\right)=\left\{b^{(n+1)} \in \mathcal{B}^{(n+1)}:\left\langle a^{(n+2)} b_{\alpha}^{(n+2)}, b^{(n+1)}\right\rangle \rightarrow\right. \\
\left.\left\langle a^{(n+2)} b^{(n+2)}, b^{(n+1)}\right\rangle \text { where } b_{\alpha}^{(n+2)} \xrightarrow{w^{*}} b^{(n+2)}\right\}
\end{gathered}
$$

If we take $\mathcal{A}=\mathcal{B}$ and $n=0$, then $\operatorname{wap}_{\ell}(\mathcal{A})=\operatorname{wap}_{r}(\mathcal{A})=\operatorname{wap}(\mathcal{A})$.

Theorem 2.6. Assume that \mathcal{B} is a Banach \mathcal{A}-bimodule and $n \geq 0$. Then we have the following assertions:
(1) $\mathcal{B}^{(n+1)} \mathcal{A}^{(n)} \subseteq$ wap $_{\ell}\left(\mathcal{B}^{(n)}\right)$ if and only if

$$
\mathcal{A}^{(n)} \mathcal{A}^{(n+2)} \subseteq Z_{\mathcal{B}^{(n+2)}}^{\ell}\left(\mathcal{A}^{(n+2)}\right)
$$

(2) If $\mathcal{A}^{(n)} \mathcal{A}^{(n+2)} \subseteq \mathcal{A}^{(n)} Z^{\ell} \mathcal{B}^{(n+2)}\left(\mathcal{A}^{(n+2)}\right)$, then

$$
\mathcal{A}^{(n)} \mathcal{A}^{(n+2)} \subseteq Z_{\mathcal{B}^{(n+2)}}^{\ell}\left(\mathcal{A}^{(n+2)}\right)
$$

Proof. (1) Suppose that $\mathcal{B}^{(n+1)} \mathcal{A}^{(n)} \subseteq \operatorname{wap}_{\ell}\left(\mathcal{B}^{(n)}\right)$. Let $a^{(n)} \in \mathcal{A}^{(n)}$, $a^{(n+2)} \in \mathcal{A}^{(n+2)}$ and let $\left(b_{\alpha}^{(n+2)}\right)_{\alpha} \subseteq \mathcal{B}^{(n+2)}$ such that $b_{\alpha}^{(n+2)} \xrightarrow{w^{*}}$ $b^{(n+2)}$. Then for every $b^{(n+1)} \in \mathcal{B}^{(n+1)}$, we have

$$
\begin{aligned}
& \left\langle\left(a^{(n)} a^{(n+2)}\right) b_{\alpha}^{(n+2)}, b^{(n+1)}\right\rangle=\left\langle a^{(n+2)} b_{\alpha}^{(n+2)}, b^{(n+1)} a^{(n)}\right\rangle \\
\rightarrow & \left\langle a^{(n+2)} b^{(n+2)}, b^{(n+1)} a^{(n)}\right\rangle=\left\langle\left(a^{(n)} a^{(n+2)}\right) b^{(n+2)}, b^{(n+1)}\right\rangle .
\end{aligned}
$$

It follows that $a^{(n)} a^{(n+2)} \in Z_{\mathcal{B}^{(n+2)}}^{\ell}\left(\mathcal{A}^{(n+2)}\right)$.
Conversely, let $a^{(n)} a^{(n+2)} \in Z_{\mathcal{B}^{(n+2)}}^{\ell}\left(\mathcal{A}^{(n+2)}\right)$ for every $a^{(n)} \in$ $\mathcal{A}^{(n)}, a^{(n+2)} \in \mathcal{A}^{(n+2)}$. Suppose that $\left(b_{\alpha}^{(n+2)}\right)_{\alpha} \subseteq \mathcal{B}^{(n+2)}$ such that $b_{\alpha}^{(n+2)} \xrightarrow{w^{*}} b^{(n+2)}$. Then for every $b^{(n+1)} \in \mathcal{B}^{(n+1)}$, we have

$$
\begin{gathered}
\left\langle a^{(n+2)} b_{\alpha}^{(n+2)}, b^{(n+1)} a^{(n)}\right\rangle=\left\langle\left(a^{(n)} a^{(n+2)}\right) b_{\alpha}^{(n+2)}, b^{(n+1)}\right\rangle \\
\rightarrow \\
\rightarrow\left\langle\left(a^{(n)} a^{(n+2)}\right) b^{(n+2)}, b^{(n+1)}\right\rangle=\left\langle a^{(n+2)} b_{\alpha}^{(n+2)}, b^{(n+1)} a^{(n)}\right\rangle .
\end{gathered}
$$

It follows that $\mathcal{B}^{(n+1)} \mathcal{A}^{(n)} \subseteq$ wap $_{\ell}\left(\mathcal{B}^{(n)}\right)$.
(2) Since $\mathcal{A}^{(n)} \mathcal{A}^{(n+2)} \subseteq \mathcal{A}^{(n)} Z^{\ell}{ }_{\mathcal{B}}{ }^{(n)}\left(\left(\mathcal{A}^{(n+2)}\right)\right.$, for every $a^{(n)} \in \mathcal{A}^{(n)}$ and $a^{(n+2)} \in \mathcal{A}^{(n+2)}$, we have $a^{(n)} a^{(n+2)} \in \mathcal{A}^{(n)} Z^{\ell} \mathcal{B}^{(n+2)}\left(\mathcal{A}^{(n+2)}\right)$. Then there are $x^{(n)} \in \mathcal{A}^{(n)}$ and $\phi \in Z_{\mathcal{B}(n+2)}^{\ell}\left(\mathcal{A}^{(n+2)}\right)$ such that $a^{(n)} a^{(n+2)}=x^{(n)} \phi$. Suppose that $\left(b_{\alpha}^{(n+2)}\right)_{\alpha} \subseteq \mathcal{B}^{(n+2)}$ such that $b_{\alpha}^{(n+2)} \xrightarrow{w^{*}} b^{(n+2)}$. Then for every $b^{(n+1)} \in \mathcal{B}^{(n+1)}$, we have

$$
\begin{gathered}
\left\langle\left(a^{(n)} a^{(n+2)}\right) b_{\alpha}^{(n+2)}, b^{(n+1)}\right\rangle=\left\langle\left(x^{(n)} \phi\right) b_{\alpha}^{(n+2)}, b^{(n+1)}\right\rangle \\
=\left\langle\phi b_{\alpha}^{(n+2)}, b^{(n+1)} x^{(n)}\right\rangle \rightarrow\left\langle\phi b^{(n+2)}, b^{(n+1)} x^{(n)}\right\rangle \\
=\left\langle\left(a^{(n)} a^{(n+2)}\right) b^{(n+2)}, b^{(n+1)}\right\rangle .
\end{gathered}
$$

In the preceding theorem, if we take $\mathcal{B}=\mathcal{A}$ and $n=0$, we conclude Theorem 3.6 (a) of [14].
Theorem 2.7. Assume that \mathcal{B} is a Banach \mathcal{A}-bimodule and $n \geq 0$. If $\mathcal{A}^{(n)}$ is a left ideal in $\mathcal{A}^{(n+2)}$, then $\mathcal{B}^{(n+1)} \mathcal{A}^{(n)} \subseteq$ wap $_{\ell}\left(\mathcal{B}^{(n)}\right)$.

Proof. The proof is clear.
Theorem 2.8. Let \mathcal{B} be a left Banach \mathcal{A}-bimodule and $n \geq 0$ be an even number. Suppose that $b_{0}^{(n+1)} \in \mathcal{B}^{(n+1)}$. Then $b_{0}^{(n+1)} \in$ wap $_{\ell}\left(\mathcal{B}^{(n)}\right)$ if and only if the mapping $T: b^{(n+2)} \rightarrow b^{(n+2)} b_{0}^{(n+1)}$ form $\mathcal{B}^{(n+2)}$ into $\mathcal{A}^{(n+1)}$ is weak*-to-weak continuous.
Proof. Let $b_{0}^{(n+1)} \in \mathcal{B}^{(n+1)}$ and suppose that $b_{\alpha}^{(n+2)} \xrightarrow{w^{*}} b^{(n+2)}$ in $\mathcal{B}^{(n+2)}$. Then for every $a^{(n+2)} \in \mathcal{A}^{(n+2)}$, we have

$$
\begin{aligned}
\left\langle a^{(n+2)}, b_{\alpha}^{(n+2)} b_{0}^{(n+1)}\right\rangle= & \left\langle a^{(n+2)} b_{\alpha}^{(n+2)}, b_{0}^{(n+1)}\right\rangle \rightarrow\left\langle a^{(n+2)} b^{(n+2)}, b_{0}^{(n+1)}\right\rangle \\
& =\left\langle a^{(n+2)}, b^{(n+2)} b_{0}^{(n+1)}\right\rangle .
\end{aligned}
$$

It follows that $b_{\alpha}^{(n+2)} b_{0}^{(n+1)} \xrightarrow{w} b^{(n+2)} b_{0}^{(n+1)}$ in $\mathcal{A}^{(n+1)}$. The proof of the converse is similar to the preceding proof.
Corollary 2.9. Assume that \mathcal{B} is a Banach \mathcal{A}-bimodule. Then $Z_{\mathcal{A}^{(n+2)}}^{\ell}\left(\mathcal{B}^{(n+2)}\right)=\mathcal{B}^{(n+2)}$ if and only if the mapping $T: b^{(n+2)} \rightarrow$ $b^{(n+2)} b_{0}^{(n+1)}$ form $\mathcal{B}^{(n+2)}$ into $\mathcal{A}^{(n+1)}$ is weak*-to-weak continuous for every $b_{0}^{(n+1)} \in \mathcal{B}^{(n+1)}$.
Corollary 2.10. Let \mathcal{A} be a Banach algebra. Assume that $a^{\prime} \in \mathcal{A}^{*}$ and $T_{a^{\prime}}$ is a linear operator from \mathcal{A} into \mathcal{A}^{*} defined by $T_{a^{\prime}} a=a^{\prime} a$. Then, $a^{\prime} \in \operatorname{wap}(\mathcal{A})$ if and only if the adjoint of $T_{a^{\prime}}$ is weak ${ }^{*}$-to-weak continuous. So \mathcal{A} is Arens regular if and only if the adjoint of the mapping $T_{a^{\prime}} a=a^{\prime} a$ is weak*-to-weak continuous for every $a^{\prime} \in \mathcal{A}^{*}$.
Definition 2.11. Let \mathcal{B} be a left Banach \mathcal{A}-bimodule and $a^{(n)} \in \mathcal{A}^{(n)}$. Let $\left(b_{\alpha}^{(n+1)}\right)_{\alpha} \subseteq \mathcal{B}^{(n+1)}$ such that $a^{(n)} b_{\alpha}^{(n+1)} \xrightarrow{w^{*}} 0$. We say that $a^{(n)}$ has Left - weak ${ }^{*}$-weak property $\left(=L w^{*} w-\right.$ property $)$ with respect to $\mathcal{B}^{(n)}$ when $a^{(n)} b_{\alpha}^{(n+1)} \xrightarrow{w} 0$. If every $a^{(n)} \in \mathcal{A}$ has $L w^{*} w-$ property with respect to $\mathcal{B}^{(n)}$, then we say that $\mathcal{A}^{(n)}$ has $L w^{*} w$ - property with respect to $\mathcal{B}^{(n)}$. The definition of the Right-weak*-weak property $\left(=R w^{*} w-\right.$ property $)$ is the same.
We say that $a^{(n)} \in \mathcal{A}^{(n)}$ has weak*-weak property $\left(=w^{*} w-\right.$ property $)$ with respect to $\mathcal{B}^{(n)}$ if it has $L w^{*} w-$ property and R $w^{*} w-$ property with respect to $\mathcal{B}^{(n)}$.
If $a^{(n)} \in \mathcal{A}^{(n)}$ has $L w^{*} w$ - property with respect to itself, then we say that $a^{(n)} \in \mathcal{A}^{(n)}$ has $L w^{*} w-$ property.
Example 2.12. (1) If \mathcal{B} is Banach \mathcal{A}-bimodule and reflexive, then \mathcal{A} has $w^{*} w$-property with respect to \mathcal{B}.
(2) $L^{1}(G), M(G)$ and $A(G)$ have $w^{*} w$-property when G is finite.
(3) Let G be locally compact group. Then $L^{1}(G)$ [respectively $\left.M(G)\right]$ has $w^{*} w$ - property [respectively $L w^{*} w$ - property] with respect to $L^{p}(G)$ whenever $p>1$.
(4) Suppose that \mathcal{B} is a left Banach \mathcal{A}-module and e is a left unit element of \mathcal{A} such that $e b=b$ for all $b \in B$. If e has $L w^{*} w$ property, then \mathcal{B} is reflexive.
(5) If S is a compact semigroup, then $C^{+}(S)=\{f \in C(S): f>0\}$ has $w^{*} w$-property.

Theorem 2.13. Let \mathcal{B} be a left Banach \mathcal{A}-bimodule and $n \geq 2$. Then we have the following assertions:
(1) If $\mathcal{A}^{(n)}=a_{0}^{(n-2)} \mathcal{A}^{(n)}\left[\right.$ respectively $\left.\mathcal{A}^{(n)}=\mathcal{A}^{(n)} a_{0}^{(n-2)}\right]$ for some $a_{0}^{(n-2)} \in \mathcal{A}^{(n-2)}$ and $a_{0}^{(n-2)}$ has $R w^{*} w$ - property [respectively $L w^{*} w$ - property] with respect to $\mathcal{B}^{(n)}$, then $Z_{\mathcal{B}^{(n)}}\left(\mathcal{A}^{(n)}\right)=\mathcal{A}^{(n)}$.
(2) If $\mathcal{B}^{(n)}=a_{0}^{(n-2)} \mathcal{B}^{(n)}\left[\right.$ respectively $\left.\mathcal{B}^{(n)}=\mathcal{B}^{(n)} a_{0}^{(n-2)}\right]$ ‘ for some $a_{0}^{(n-2)} \in \mathcal{A}^{(n-2)}$ and $a_{0}^{(n-2)}$ has $R w^{*} w$ - property [respectively Lw* w-property] with respect to $\mathcal{B}^{(n)}$, then $Z_{\mathcal{A}^{(n)}}\left(\mathcal{B}^{(n)}\right)=\mathcal{B}^{(n)}$.
Proof. (1) Suppose that $\mathcal{A}^{(n)}=a_{0}^{(n-2)} \mathcal{A}^{(n)}$ for some $a_{0}^{(n-2)} \in \mathcal{A}^{(n-2)}$ and $a_{0}^{(n-2)}$ has $R w^{*} w$ - property. Let $\left(b_{\alpha}^{(n)}\right)_{\alpha} \subseteq \mathcal{B}^{(n)}$ such that $b_{\alpha}^{(n)} \xrightarrow{w^{*}} b^{(n)}$. Then for every $a^{(n-2)} \in \mathcal{A}^{(n-2)}$ and $b^{(n-1)} \in \mathcal{B}^{(n-1)}$, we have

$$
\begin{aligned}
\left\langle b_{\alpha}^{(n)} b^{(n-1)}, a^{(n-2)}\right\rangle & =\left\langle b_{\alpha}^{(n)}, b^{(n-1)} a^{(n-2)}\right\rangle \rightarrow\left\langle b^{(n)}, b^{(n-1)} a^{(n-2)}\right\rangle \\
& =\left\langle b^{(n)} b^{(n-1)}, a^{(n-2)}\right\rangle .
\end{aligned}
$$

It follows that $b_{\alpha}^{(n)} b^{(n-1)} \xrightarrow{w^{*}} b^{(n)} b^{(n-1)}$. It also is clear that $\left(b_{\alpha}^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)} \xrightarrow{w^{*}}\left(b^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}$. Since $a_{0}^{(n-2)}$ has $R w^{*} w$ property, $\left(b_{\alpha}^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)} \xrightarrow{w}\left(b^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}$. Now, let $a^{(n)} \in$ $\mathcal{A}^{(n)}$. Since $\mathcal{A}^{(n)}=a_{0}^{(n-2)} \mathcal{A}^{(n)}$, there is $x^{(n)} \in \mathcal{A}^{(n)}$ such that $a^{(n)}=a_{0}^{(n-2)} x^{(n)}$. Thus we have

$$
\begin{gathered}
\left\langle a^{(n)} b_{\alpha}^{(n)}, b^{(n-1)}\right\rangle=\left\langle a^{(n)}, b_{\alpha}^{(n)} b^{(n-1)}\right\rangle=\left\langle a_{0}^{(n-2)} x^{(n)}, b_{\alpha}^{(n)} b^{(n-1)}\right\rangle \\
=\left\langle x^{(n)},\left(b_{\alpha}^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}\right\rangle \rightarrow\left\langle x^{(n)},\left(b^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}\right\rangle \\
=\left\langle a^{(n)} b, b^{(n-1)}\right\rangle .
\end{gathered}
$$

It follows that $a^{(n)} \in Z_{\mathcal{A}^{(n)}}\left(\mathcal{B}^{(n)}\right)$.
The proof of the next part is similar to the preceding proof.
(2) Let $\mathcal{B}^{(n)}=a_{0}^{(n-2)} \mathcal{B}^{(n)}$ for some $a_{0}^{(n-2)} \in \mathcal{A}^{(n-2)}$ and let $a_{0}^{(n-2)}$ has $R w^{*} w$-property with respect to $\mathcal{B}^{(n)}$. Assume that $\left(a_{\alpha}^{(n)}\right)_{\alpha} \subseteq$ $\mathcal{A}^{(n)}$ such that $a_{\alpha}^{(n)} \xrightarrow{w^{*}} a^{(n)}$. Then for every $b^{(n-1)} \in \mathcal{B}^{(n-1)}$, we have

$$
\begin{aligned}
\left\langle a_{\alpha}^{(n)} b^{(n-1)}, b^{(n-2)}\right\rangle & =\left\langle a_{\alpha}^{(n)}, b^{(n-1)} b^{(n-2)}\right\rangle \rightarrow\left\langle a^{(n)}, b^{(n-1)} b^{(n-2)}\right\rangle \\
& =\left\langle a^{(n)} b^{(n-1)}, b^{(n-2)}\right\rangle
\end{aligned}
$$

We conclude that $a_{\alpha}^{(n)} b^{(n-1)} \xrightarrow{w^{*}} a^{(n)} b^{(n-1)}$. It is clear that

$$
\left(a_{\alpha}^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)} \xrightarrow{w^{*}}\left(a^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)} .
$$

Since $a_{0}^{(n-2)}$ has $R w^{*} w$ - property,

$$
\left(a_{\alpha}^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)} \xrightarrow{w}\left(a^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}
$$

Suppose that $b^{(n)} \in \mathcal{B}^{(n)}$. Since $\mathcal{B}^{(n)}=a_{0}^{(n-2)} \mathcal{B}^{(n)}$, there is $y^{(n)} \in \mathcal{B}^{(n)}$ such that $b^{(n)}=a_{0}^{(n-2)} y^{(n)}$. Consequently, we have

$$
\begin{aligned}
\left\langle b^{(n)}\right. & \left.a_{\alpha}^{(n)}, b^{(n-1)}\right\rangle=\left\langle b^{(n)}, a_{\alpha}^{(n)} b^{(n-1)}\right\rangle=\left\langle a_{0}^{(n-2)} y^{(n)}, a_{\alpha}^{(n)} b^{(n-1)}\right\rangle \\
= & \left\langle y^{(n)},\left(a_{\alpha}^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}\right\rangle \rightarrow\left\langle y^{(n)},\left(a^{(n)} b^{(n-1)}\right) a_{0}^{(n-2)}\right\rangle \\
& =\left\langle a_{0}^{(n-2)} y^{(n)},\left(a^{(n)} b^{(n-1)}\right)\right\rangle=\left\langle b^{(n)} a^{(n)}, b^{(n-1)}\right\rangle
\end{aligned}
$$

Thus $b^{(n)} a_{\alpha}^{(n)} \xrightarrow{w} b^{(n)} a^{(n)}$. It follows that $b^{(n)} \in Z_{\mathcal{A}^{(n)}}\left(\mathcal{B}^{(n)}\right)$. The proof of the next part is similar to the preceding proof.

Example 2.14. i) Let G be a locally compact group. Since $M(G)$ is a Banach $L^{1}(G)$-bimodule and the unit element of $M(G)^{(n)}$ does not have $L w^{*} w$ - property or $R w^{*} w$ - property, by using the preceding theorem, we have

$$
Z_{L^{1}(G)^{(n)}}\left(M(G)^{(n)}\right) \neq M(G)^{(n)}
$$

ii) If G is finite, then by using the preceding theorem, we conclude that

$$
\begin{aligned}
& Z_{M(G)^{(n)}}\left(L^{1}(G)^{(n)}\right)=L^{1}(G)^{(n)} \\
& Z_{L^{1}(G)^{(n)}}\left(M(G)^{(n)}\right)=M(G)^{(n)}
\end{aligned}
$$

Acknowledgments

The authors thank the referee for his/her useful comments.

References

[1] R. E. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
[2] N. Arikan, A simple condition ensuring the Arens regularity of bilinear mappings, Proc. Amer. Math. Soc. 84 (1982), no.4, 525-532.
[3] J. Baker, A. T. Lau, J. S. Pym, Module homomorphisms and topological centres associated with weakly sequentially complete Banach algebras, J. Funct. Anal. 158 (1998), no. 1, 186-208.
[4] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, New York-Heidelberg, 1973.
[5] H. G. Dales, A. Rodrigues-Palacios, M. V. Velasco, The second transpose of a derivation, J. London Math. Soc. 64 (2001), no. 2, 707-721.
[6] H. G. Dales, Banach Algebra and Automatic Continuity, London Math. Soc. Monographs, New Ser. 24, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000.
[7] N. Dunford, J. T. Schwartz, Linear Operators I, John Wiley and Sons, Inc., New York, 1958.
[8] M. Eshaghi Gordji, M. Filali, Arens regularity of module actions, Studia Math. 181 (2007), no. 3, 237-254.
[9] M. Eshaghi Gordji, M. Filali, Weak amenability of the second dual of a Banach algebra, Studia Math. 182 (2007), no. 3, 205-213.
[10] K. Haghnejad Azar, A. Riazi, Arens regularity of bilinear forms and unital Banach module space, submitted.
[11] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis Vol I, Springer-Verlag, New York-Berlin, 1979.
[12] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis Vol II, Springer-Verlag, New York-Berlin, 1970.
[13] A. T. Lau, V. Losert, On the second conjugate algebra of $L_{1}(G)$ of a locally compact group, J. London Math. Soc. 37 (1988), no. 2, 464-480.
[14] A. T. Lau, A. Ülger, Topological center of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996), no. 3, 1191-1212.
[15] S. Mohamadzadih, H. R. E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bull. Aust. Math. Soc.. 77 (2008), no. 3, 465-476.
[16] M. Neufang, Solution to a conjecture by Hofmeier-Wittstock, J. Funct. Anal. 217 (2004), no. 1, 171-180.
[17] M. Neufang, On a conjecture by Ghahramani-Lau and related problems concerning topological centres, J. Funct. Anal. 224 (2005), no. 1, 217-229.
[18] J. S. Pym, The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc. 15 (1965), no. 3, 84-104.
[19] A. Ülger, Arens regularity of the algebra $A \hat{\otimes} B$, Trans. Amer. Math. Soc. 305 (1988), no. 2, 623-639.
[20] A. Ülger, Arens regularity sometimes implies the RNP, Pacific J. Math. $\mathbf{1 4 3}$ (1990), no. 2, 377-399.
[21] A. Ülger, Some stability properties of Arens regular bilinear operators, Proc. Amer. Math. Soc. 34 (1991), no. 3, 443-454.
[22] A. Ülger, Arens regularity of weakly sequentially complete Banach algebras, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3221-3227.
[23] P. K. Wong, The second conjugate algebras of Banach algebras, J. Math. Sci. 17 (1994), no. 1, 15-18.
[24] N. J. Young, The irregularity of multiplication in group algebra, Quart J. Math. Oxford Ser. 24 (2) (1973) 59-62.
[25] Y. Zhang, Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4131-4151.

K. Haghnejad Azar

Department of Mathematics, University of Mohghegh Ardabili, P.O. Box 5619911367, Ardabil, Iran
Email: haghnejad@aut.ac.ir

A. Riazi

Department of Mathematics, Amirkabir University of Technology, P.O. Box 15914, Tehran, Iran
Email: riazi@aut.ac.ir

[^0]: MSC(2010): Primary: 46L06; Secondary: 47L25, 47B47.
 Keywords: Arens regularity, bilinear mapping, topological center.
 Received: 26 January 2010, Accepted: 17 August 2010.
 *Corresponding author
 (c) 2012 Iranian Mathematical Society.

