Bulletin of the Iranian Mathematical Society Vol. 38 No. 1 (2012), pp 27-38.

FUNCTION SPACES OF REES MATRIX SEMIGROUPS

H. RAHIMI

Communicated by Gholam hossein Esslamzadeh

ABSTRACT. We characterize function spaces of Rees matrix semigroups. Then we study these spaces by using the topological tensor product technique.

1. Introduction

Let S be a semitopological semigroup. A semigroup compactification of S is a compact right topological semigroup containing a dense homomorphic image of S. The theory of semigroup compactifications has already received extensive treatment, including two major topics of existence of semigroup compactifications of a semigroup and the structure of its compactifications. Semigroup extensions are extremely useful tools in characterizing function spaces on topological semigroups and in particular those spaces associated with semigroup compactifications; See [1] for instance. A large class of semigroups which has been studied extensively from various points of view, is the class of completely 0-simple and completely simple semigroups. Following Munn [11], Esslamzadeh in [3, 4, 5] studied structure of regular semigroups with a finite number of idempotents and in particular completely 0-simple semigroups, by using their underlying groups. In this paper we study function spaces on these semigroups, by using the techniques of ℓ^1 -Munn algebras. To our best

MSC(2010): Primary: 43A15; Secondary 43A60

Keywords: Semigroup compactification, completely 0-simple semigroup, topological tensor product.

Received: 30 April 2009, Accepted: 21 June 2010.

^{© 2012} Iranian Mathematical Society.

²⁷

knowledge this approach is new. Topological tensor products of topological semigroups were introduced for the first time in the PhD thesis of the author [7]. See [8, 9] for the structure of topological tensor products of topological semigroups, their function spaces and compactifications.

This paper is organized as follows: In Section 2, we introduce our notations. In Sections 3 and 4, we use extension techniques to characterize spaces of functions on a completely 0-simple semigroup. In the last section we study these spaces by using the topological tensor product.

2. Preliminaries

Throughout we use the notations of [1]. For the terms which are not introduced here, the reader may be referred to one of [1, 4, 8, 9]. Suppose S is a semitopological semigroup and (ψ, X) is a semigroup compactification of S, that is, X is a compact Hausdorff right topological semigroup and let $\psi: S \to X$ is a continuous homomorphism such that $\overline{\psi(S)} = X$ and $\psi(S) \subseteq \Lambda(X)$ where

$$\Lambda(X) = \{t \in X : s \to ts : X \to X, \text{ is continuous}\}\$$

is the topological center of X. We say that (ψ, X) has the left [right] joint continuity property if the mapping $(s, x) \to \psi(s)x$ $[(x, s) \to x\psi(s)]$ is continuous.

Let $\mathcal{B}(S)$ be the C^* -algebra of all bounded complex valued functions on S, \mathcal{F} a unital C^* -subalgebra of $\mathcal{B}(S)$, $S^{\mathcal{F}}$ the set of all multiplicative means on \mathcal{F} and $\varepsilon : S \to S^{\mathcal{F}}$ be the evaluation mapping. We say that \mathcal{F} is *m*-admissible if $T_{\mu}(\mathcal{F}) \subseteq \mathcal{F}$ for all $\mu \in S^{\mathcal{F}}$, where $T_{\mu}(f)(s) = \mu(L_s(f))$, $s \in S$, $f \in \mathcal{F}$. If we equip $S^{\mathcal{F}}$ with the Gelfand topology then $S^{\mathcal{F}}$ with multiplication $\mu\nu(f) = \mu(T_{\nu}(f))$, $\mu, \nu \in S^{\mathcal{F}}$ is a compact Hausdorff right topological semigroup. Moreover, the evaluation mapping is a continuous homomorphism into a dense subsemigroup of $S^{\mathcal{F}}$ which is contained in the topological center of $S^{\mathcal{F}}$. Now if (ψ, X) is a compactification of S, then $\psi^*(C(X))$ is an *m*-admissible subalgebra of C(S). Conversely, if \mathcal{F} is an *m*-admissible subalgebra of C(S), then there exists a unique (up to isomorphism) compactification (ψ, X) of S such that $\psi^*(C(X)) = \mathcal{F}$. In other words, the compactification corresponding to the *m*-admissible subalgebra \mathcal{F} is $(\varepsilon, S^{\mathcal{F}})$. Moreover, $\varepsilon^*(C(S^{\mathcal{F}})) = \mathcal{F}$.

Let S and T be semitopological semigroups with semigroup compactifications S' and T'. A continuous function $\varphi': S' \to T'$ is an extension of the continuous function $\varphi: S \to T$ if $\varphi' \circ \varepsilon_S = \varepsilon_T \circ \varphi$ and φ' is uniquely determined by φ . Such an extension exists if and only if $\varphi^*(B) \subseteq A$, where A and B are the associated function spaces of the compactifications. Let S' and S'' be compactifications of S. Then S' is a factor of S'' if the identity map on S has an extension $\varphi : S'' \to S'$. A compactification with a given property \mathcal{P} is called a \mathcal{P} -compactification. A universal \mathcal{P} -compactification of S is a factor. Universal \mathcal{P} -compactifications, if they exist, are unique (up to isomorphism). We denote the universal \mathcal{P} -compactification of S by $S^{\mathcal{P}}$.

Let $G^0 = G \cup \{0\}$ [respectively G] be a group with zero [respectively group], I and J be arbitrary nonempty sets. Let P be a $J \times I$ matrix over G^0 [respectively G]. The set $S = G \times I \times J \cup \{0\}$ [respectively $S = G \times I \times$ J] is a semigroup under the composition $(a, i, j) \circ (b, l, k) = (aP_{jl}b, i, k)$ if $P_{jl} \neq 0$ and zero otherwise, [respectively $(a, i, j) \circ (b, l, k) = (aP_{jl}b, i, k)$] that we denote by $\mathcal{M}^0(G, P)$ [respectively $\mathcal{M}(G, P)$] and we call it the Rees $I \times J$ matrix semigroup over G^0 [respectively G] with the sandwich matrix P.

As it was observed in [4] the reduced semigroup algebra of a completely 0 -simple semigroup S is isometrically isomorphic to an appropriate ℓ^1 -Munn algebra over the group algebra of the underlying group of S. This fact is one of the authors motivations to study function spaces of completely 0-simple semigroups with a new approach.

3. Compactifications of a completely 0-simple semigroup

In this section first we introduce an extension of a completely 0-simple semigroup $S = \mathcal{M}^0(G, P)$. Then we characterize compactifications of a completely 0-simple semigroup.

Following Clifford and Preston [2], let S and T be disjoint semigroups, and let T have a zero element 0. A semigroup Ω is called an extension of S by T if it contains S as an ideal and if the Rees factor semigroup $\frac{\Omega}{S}$ is isomorphic to T. A mapping $A \mapsto \overline{A}$ of $T^* = T \setminus \{0\}$ into S is a partial homomorphism if and only if $\overline{AB} = \overline{AB}$, whenever $AB \neq 0$. On the other hand by [2, 4.19], a partial homomorphism $A \to \overline{A}$ of the partial groupoid T^* into S determines an extension Ω of S by T as follows: For $A, B \in T$ and $s, t \in S$,

$$(P1) \quad A \circ B = \begin{cases} \frac{AB}{AB} & if AB \neq 0\\ if AB & if AB = 0 \end{cases}$$

(P2)
$$A \circ s = \overline{A}s$$
, (P3) $s \circ A = s\overline{A}$, (P4) $s \circ t = st$.
Let G a be a topological group, I and J arbitrary nonempty sets and $P = (p_{ji})$ a $J \times I$ matrix with entries in $G^0 = G \cup \{0\}$. The Rees matrix semigroup $S = \mathcal{M}^0(G, P)$ where $G \times I \times J$ is equipped with the product topology and $\{0\}$, considered as an isolated point of S , is a topological semigroup. Suppose $i \to u_i$ and $j \to v_j$ are mappings of I and J into G , respectively. Let W be a continuous homomorphism of G into G such that $W(p_{ji}) = v_j u_i$ whenever $p_{ji} \neq 0$. Then the map $\theta : S \to G$ defined by $\theta(g, i, j) = u_i(W(g))v_j$ is a continuous partial homomorphism of S into G into G by S . In this case we define the relation ρ on Ω by $\sigma_1 \rho \sigma_2$ if and only if $\sigma_1 = g \sigma_2$ for some $g \in G$. We fix these notations for the rest of this paper.

Lemma 3.1. The relation ρ is an equivalence relation on Ω .

Proof. Straightforward.

Lemma 3.2. For every $\sigma \in \Omega$ we have $G\sigma = \sigma G$.

Proof. Let $\sigma \in \Omega$ and $g \in G$. Then $g\sigma \in G\sigma$. If $\sigma = s \in G$, then $g\sigma = qs = s(s^{-1}qs) = sq' = \sigma q' \in \sigma G$

where $g' = s^{-1}gs \in G$. If $\sigma = A \in S$, then

$$g\sigma = gA = g(\theta(A)) = \theta(A)(\theta(A)^{-1}g\theta(A)) \in \sigma G.$$

Thus $G\sigma \subseteq \sigma G$. Similarly, $\sigma G \subseteq G\sigma$.

Corollary 3.3. The relation ρ is a congruence on Ω .

Remark 3.4. The identity $[e] = \{\sigma \in \Omega \mid \exists g \in G, \sigma = ge\} = G$ implies that $\frac{\Omega}{G} = \frac{\Omega}{\rho} \simeq S$.

Now assume that G is a compact topological group, $S = \mathcal{M}^0(G, P)$ as above is considered with product topology and Ω is a topological groupoid. The notions of topological groupoid and topologial groupoid compactifications are defined similar to their semigroup analogs.

Lemma 3.5. Let (ψ, X) be a topological groupoid compactification of topological groupoid Ω , $\psi(G) = \hat{G}$, and $\hat{\rho} = \{(x_1, x_2) \in X \times X \mid \exists \hat{g} \in \hat{G}, x_1 = \hat{g}_1 x_2\}$. Then $\hat{\rho}$ is a closed congruence on X.

Proof. Clearly $\hat{\rho}$ is an equivalence relation on X. Let $x \in X$, $\psi(\sigma_{\alpha}) \to x$ and $\psi(g) = \hat{g}$. By lemma 2.2, $\sigma_{\alpha}g = g'\sigma_{\alpha}$ for some $g' \in G$. Thus, $\lim_{\alpha} \psi(\sigma_{\alpha})\psi(g) = \lim_{\alpha} \psi(g')\psi(\sigma_{\alpha})$. So $x\hat{g} = \hat{g'}x$ and hence $x\hat{G} \subseteq \hat{G}x$.

Function spaces of Rees matrix semigroups

Similarly $\hat{G}x \subseteq x\hat{G}$. Thus $\hat{G}x = x\hat{G}$, $x \in X$. This implies that $\hat{\rho}$ is a congruence on X. To show that $\hat{\rho}$ is closed, let $\{\hat{x}_{\alpha}\}$ and $\{\hat{y}_{\alpha}\}$ be nets in X such that $\hat{x}_{\alpha} \to \hat{x}$, $\hat{y}_{\alpha} \to \hat{y}$ and $\hat{x}_{\alpha}\hat{\rho}\hat{y}_{\alpha}$. There exists $\hat{g}_{\alpha} \in \hat{G}$ such that $\hat{x}_{\alpha} = \hat{g}_{\alpha}\hat{y}_{\alpha}$. We may choose $g_{\alpha} \in G$ such that $\psi(g_{\alpha}) = \hat{g}_{\alpha}$. Compactness of G allows us to assume that g_{α} converges to some $g \in G$. So $\psi(g_{\alpha}) \to \psi(g)$, and by joint continuity of product of X, $\hat{g}_{\alpha}y_{\alpha} \to \hat{g}\hat{y}$. Therefore $\hat{x} = \hat{g}\hat{y}$, that is, $\hat{x}\hat{\rho}\hat{y}$.

Theorem 3.6. Let (ψ, X) be a topological groupoid compactification of topological groupoid Ω , where Ω is an extension of G by S. Then $\frac{X}{\hat{\rho}}$ is a topological groupoid compactification of S.

Proof. First note that if $\sigma_1 \rho \sigma_2$ ($\sigma_1, \sigma_2 \in \Omega$), then $\psi(\sigma_1) \hat{\rho} \psi(\sigma_2)$. Thus ψ preserves congruence and hence there exists a continuous homomorphism $\hat{\psi} : \frac{\Omega}{\rho} \to \frac{X}{\hat{\rho}}$ such that the following diagram commutes.

Clearly $\frac{X}{\hat{\rho}}$ is a compact Hausdorff topological groupoid [1. Proposition 1.3.8]. We have

$$\overline{\hat{\psi}(\frac{\Omega}{\rho})} = \overline{\hat{\psi}o\pi(\Omega)} = \overline{\hat{\pi}o\psi(\Omega)} \supseteq \hat{\pi}(\overline{\psi(\Omega)}) = \hat{\pi}(X) = \frac{X}{\hat{\rho}}.$$

Also

$$\hat{\psi}(\frac{\Omega}{\rho}) = \hat{\psi}o\pi(\Omega) = \hat{\pi}o\psi(\Omega) \subseteq \hat{\pi}(\Lambda(X)) = \Lambda(\hat{\pi}(X)) = \Lambda(\frac{X}{\hat{\rho}}).$$

Therefore $\frac{X}{\hat{\rho}}$ is a compactification of $\frac{\Omega}{\rho}$ and hence is a compactification of S.

Rahimi

4. Function spaces of $S = \mathcal{M}^0(G, P)$

Theorem 4.1. Let G be a compact group, $S = \mathcal{M}^0(G, P)$ and Ω an extension of G by S. Let (ε_S, S^{ap}) and $(\varepsilon_\Omega, \Omega^{ap})$ be the almost periodic compactifications of S and Ω , respectively. Then $S^{ap} \simeq \frac{\Omega^{ap}}{\hat{G}}$, where, $\hat{G} = \varepsilon_\Omega(G)$.

Proof. By Theorem 3.6, $(\hat{\varepsilon}_{\Omega}, \frac{\Omega^{ap}}{\hat{G}})$ is a compactification of $\frac{\Omega}{G} \simeq S$, where $\hat{G} = \varepsilon_{\Omega}(G)$. The universal property of the *ap*-compactification (ε_S, S^{ap}) of S [1, Theorem 1.4.10] provides a continuous homomorphism ϕ_1 : $S^{ap} \longrightarrow \frac{\Omega^{ap}}{\hat{G}}$ such that the following diagram commutes.

$$S \xrightarrow{\varepsilon_S} (\frac{\Omega}{G})^{ap} = S^{ap}$$

$$\hat{\varepsilon_{\Omega}} \downarrow \swarrow \varphi_1$$

$$\frac{\Omega^{ap}}{\hat{G}}$$

On the other hand, the homomorphism

$$\eta: \Omega \xrightarrow{\pi} \underline{\Omega} \simeq S \xrightarrow{\varepsilon_S} S^{ap}$$

provides a continuous homomorphism $\varphi_2 : \Omega^{ap} \longrightarrow S^{ap}$ such that the following diagram commutes.

$$\begin{array}{c|c} \Omega & \xrightarrow{\varepsilon_{\Omega}} & \Omega^{ap} \\ \eta & & & & \\ \eta & & & & \\ S^{ap} \end{array}$$

Now let $\hat{\sigma}_1 \hat{\rho} \hat{\sigma}_2$ ($\hat{\sigma}_1, \hat{\sigma}_2 \in \Omega^{ap}$) and choose nets $\{u_\alpha\}$, $\{v_\alpha\}$ in Ω such that $\lim_{\alpha} \varepsilon_{\Omega}(u_{\alpha}) = \hat{\sigma}_1$, and $\lim_{\alpha} \varepsilon_{\Omega}(v_{\alpha}) = \hat{\sigma}_2$. We have $\hat{\sigma}_1 = \hat{g}\hat{\sigma}_2$, where $\hat{g} = \varepsilon_{\Omega}(g)$ for some $g \in G$. Thus

$$\begin{aligned} \varphi_2(\hat{\sigma_1}) &= \varphi_2(\hat{g}\hat{\sigma_2}) &= \varphi_2(\varepsilon_{\Omega}(g) \lim_{\alpha} \varepsilon_{\Omega}(v_{\alpha})) \\ &= \lim_{\alpha} \varphi_2 o \varepsilon_{\Omega}(g v_{\alpha}) = \lim_{\alpha} \eta(g v_{\alpha}) \\ &= \lim_{\alpha} \eta(g) \eta(v_{\alpha}) = \lim_{\alpha} \varphi_2 o \varepsilon_{\Omega}(v_{\alpha}) \\ &= \varphi_2(\hat{\sigma_2}). \end{aligned}$$

Function spaces of Rees matrix semigroups

So φ_2 preserves congruence. Thus there exists continuous homomorphism $\psi: \frac{\Omega^{ap}}{\hat{G}} \longrightarrow S^{ap}$ such that the following diagram commutes.

Now, we show that $\varphi_1 o \psi = id_{\frac{\Omega^{ap}}{\hat{G}}}$. If $(\hat{\pi})'(t) \in \frac{\Omega^{ap}}{\hat{G}}$, then we can find a net $\{\sigma_{\alpha}\}$ in Ω such that $\lim_{\alpha} \varepsilon_{\Omega}(\sigma_{\alpha}) = t$. Now

$$\begin{aligned} \varphi_1 o\psi(\hat{\pi}'(t)) &= \varphi_1 o\varphi_2(t) = \lim_{\alpha} \varphi_1 o\varphi_2(\varepsilon_{\Omega}(\sigma_{\alpha})) \\ &= \lim_{\alpha} \varphi_1 o\eta(\sigma_{\alpha}) = \lim_{\alpha} \varphi_1 o\varepsilon_S o\pi(\sigma_{\alpha}) \\ &= \lim_{\alpha} \hat{\varepsilon_{\Omega}} o\pi(\sigma_{\alpha}) \lim_{\alpha} \hat{\pi}'(\varepsilon_{\Omega}(\sigma_{\alpha})) \\ &= \hat{\pi}'(\lim_{\alpha} \varepsilon_{\Omega}(\sigma_{\alpha})) = \hat{\pi}'(t). \end{aligned}$$

Therefore $S^{ap} \simeq \frac{\Omega^{ap}}{\hat{G}}$.

Theorem 4.2. Let G be a compact group, $S = \mathcal{M}^0(P,G)$ and Ω an extension of G by S. Let (ε_s, S^{sap}) and $(\varepsilon_\Omega \Omega^{sap})$ be the strongly almost periodic compactifications of S and Ω , respectively. Then $S^{sap} \simeq \frac{\Omega^{sap}}{\hat{G}}$, where, $\hat{G} = \varepsilon_\Omega(G)$.

Proof. Since (ε_s, S^{sap}) is the universal topological group compactification of S, an argument similar to that of Theorem 4.1 shows that $S^{sap} \simeq \frac{\Omega^{sap}}{\hat{G}}$.

Note that the above results are true for similar spaces of functions. In fact:

Theorem 4.3. With the assumptions of the preceding theorem, let $(\varepsilon_s, S^{\mathcal{P}})$ and $(\varepsilon_\Omega \Omega^{\mathcal{P}})$ be the universal \mathcal{P} -compactifications of S and Ω , respectively. Then $S^{\mathcal{P}} \simeq \frac{\Omega^{\mathcal{P}}}{\hat{G}}$ where $\hat{G} = \varepsilon_\Omega(G)$, provided that \mathcal{P} has joint continuity property.

5. Function spaces of $S = \mathcal{M}^0(G, P)$ and topological tensor product

Let S and T be two topological semigroups with identity and let X be a non-empty topological space. Then X is called a topological left

S-system if there is an action $(s, x) \longrightarrow sx$ of $S \times X$ into X which is jointly continuous and $s_1(s_2x) = (s_1s_2)x$, $1_sx = x$ $(s_1, s_2 \in S, x \in X)$. Similarly a topological right S-system is defined. A topological left Ssystem and a topological right T-system is called a topological (S, T)bisystem if (sx)t = s(xt), $(s \in S, t \in T, x \in X)$.

Let X, Y be two topological left S-systems and let $\varphi : X \longrightarrow Y$ be a continuous map. We say that φ is a topological left S-map if $\varphi(sx) = s\varphi(x), (x \in X, s \in S)$. Similarly we can define a topological right T-map.

Now let X be a topological left S-system and Y be a topological right T-system. Then X×Y equipped with the product topology, is a topological (S,T)-bisystem (that is, $s_1s_2(x,y) = s_1(s_2x,y)$, $1_s(x,y) = (x,y)$, $(x,y)t_1t_2 = (x,yt_1)t_2$, $(x,y)t_T = (x,y)$, for all $s_1, s_2 \in S$ and $t_1, t_2 \in T$). Let Z be a topological (S,T)-bisystem. We say that β : $X \times Y \longrightarrow Z$ is a topological (S,T)-map if β is a topological left S-map and a topological right T-map.

Let S and T be two topological semigroups with identities 1_S and 1_T respectively. Then S can be regarded as a topological (S, S)-bisystem where the action of S on S is just its multiplication. Let $\sigma : S \longrightarrow T$ be a continuous homomorphism. Then T can be regarded as a topological (S, T)-bisystem by $st = \sigma(s)t$, $(s \in S, t \in T)$. Let C be a topological (S, T)-bisystem which is also a semigroup with identity, and let $\beta : S \times T \longrightarrow C$ be a topological (S, T)-map. We say that β is a topological σ -bimap if $\beta(ss', t) = \beta(s, \sigma(s')t)$, $(s, s' \in S, t \in T)$.

By a topological tensor product of S and T we mean a pair (P,ψ) where P is a topological (S,T)-bisystem and $\psi: S \times T \longrightarrow P$ is a topological σ -bimap such that for every topological (S,T)-bisystem C and every topological σ -bimap $\beta: S \times T \longrightarrow C$, there exists a unique topological (S,T)-map $\overline{\beta}: P \longrightarrow C$ such that the diagram

commutes. In [9] Medghalchi and the author proved the existence of topological tensor product of S and T with respect to σ which is denoted by $S \otimes_{\sigma} T$. Moreover in [9, 10] a characterization of the space of functions

of them was proved and it was shown that $S\times T$ can be considered as an extension of the topological tensor product of S and T .

We recall the following results from [9] and [10].

Theorem 5.1. [9, Theorem 3.3] Let S and T be two topological semigroups with identities, and let $\sigma : S \longrightarrow T$ be a continuous homomorphism. Then there is a unique topological tensor product of S and T.

Theorem 5.2. [9, Theorem 4.2] Let S and T be two topological semigroups with identities, and let $\sigma : S \longrightarrow T$ be a continuous homomorphism. Then $(S \otimes_{\sigma} T)^{sap} \simeq S^{sap} \otimes_{\eta} T^{sap}$ where η is an appropriate homomorphism from S^{sap} into T^{sap}

Lemma 5.3. [10, Lemma 5,2] Let G_1 and G_2 be two topological groups and let $\sigma : G_1 \longrightarrow G_2$ be a continuous homomorphism. Then $N = \{(m,n) \in G_1 \times G_2 : (m,n)\rho(1_{G_1}, 1_{G_2})\}$ is a closed normal subgroup of $G_1 \times G_2$.

Theorem 5.4. [10, Theorem 5.3] Let G_1 and G_2 be two topological groups and let $\sigma : G_1 \longrightarrow G_2$ be a continuous homomorphism. Then $G_1 \otimes_{\sigma} G_2 = (G_1 \times G_2)/N$, where $N = \{(m,n) \in G_1 \times G_2 : (m,n)\rho(1_{G_1}, 1_{G_2})\}.$

Theorem 5.5. Let G be a compact group and $S = \mathcal{M}^0(G, P)$. Then $(S \otimes_{\theta} G)^{sap} \simeq \frac{S^{sap} \times G}{N}$, for some closed normal subgroup N of $S^{sap} \times G$.

Proof. Define $\theta : S \to G$ by $\theta(g, i, j) = u_i(W(g))v_j$. Observe that θ is a continuous partial homomorphism of S into G. So by Theorem 5.1, $S \otimes_{\theta} G$ exists. On the other hand by Theorem 5.2 $(S \otimes_{\theta} G)^{sap} \simeq S^{sap} \otimes_{\eta} G$. Finally, by Lemma 5.2 and Theorem 5.3, $(S \otimes_{\theta} G)^{sap} \simeq \frac{S^{sap} \times G}{N}$, where

$$N = \{ (m, n) \in S^{sap} \times G \mid m \otimes_{\eta} n = 1_{S^{sap}} \otimes_{\eta} 1_G \}$$

is a closed normal subgroup of $S^{sap} \times G$.

Theorem 5.6. Let G be a compact group and $S = \mathcal{M}^0(G, P)$. Let $(S \otimes_{\theta} G)^{\mathcal{P}}$ and $S^{\mathcal{P}}$ be the universal topological group compactifications of $S \otimes_{\theta} G$ and S, respectively. Then $(S \otimes_{\theta} G)^{\mathcal{P}} \simeq S^{\mathcal{P}} \otimes_{\eta} G$ if \mathcal{P} has joint continuity property.

Proof. Let $(\varepsilon_{S\otimes_{\theta}G}, (S\otimes_{\theta}G)^{\mathcal{P}}), (\varepsilon_{S}, S^{\mathcal{P}})$ and $(\varepsilon_{G}, G^{\mathcal{P}})$ be the universal topological group \mathcal{P} -compactifications of $S\otimes_{\theta}G, S$ and G, respectively. By [9, 3.7], $(\delta_{S\otimes_{\theta}G}, S^{\mathcal{P}} \otimes_{\eta} G^{\mathcal{P}})$ is a topological group compactification of $S\otimes_{\theta}G$. The universal property of \mathcal{P} -compactification $(\varepsilon_{S\otimes_{\theta}G}, (S\otimes_{\theta}G)^{\mathcal{P}})$

Rahimi

gives a continuous homomorphism $\phi : (S \otimes_{\theta} G)^{\mathcal{P}} \longrightarrow S^{\mathcal{P}} \otimes_{\eta} G^{\mathcal{P}}$ such that the following diagram commutes.

$$\begin{array}{ccc} S \otimes_{\theta} G & \xrightarrow{\varepsilon_{S \otimes_{\theta} G}} & (S \otimes_{\theta} G)^{\mathcal{P}} \\ \delta_{S \otimes_{\theta} G} \downarrow & \swarrow \phi \\ S^{\mathcal{P}} \otimes_{n} G^{\mathcal{P}} \end{array}$$

Also, since $(\varepsilon_S \times \varepsilon_G, (S \times G)^{\mathcal{P}})$ is a universal topological group compactification of $S \times G$, via the homomorphism

$$\zeta: S \times G \xrightarrow{\pi_1} S \otimes_{\theta} G \xrightarrow{\varepsilon_{S \otimes_{\theta} G}} (S \otimes_{\theta} G)^{\mathcal{P}},$$

then there is a continuous homomorphism $\phi_1 : (S \times G)^{\mathcal{P}} \longrightarrow (S \otimes_{\theta} G)^{\mathcal{P}}$ such that the following diagram commutes.

$$\begin{array}{ccc} S \times G & \stackrel{\zeta}{\longrightarrow} & (S \otimes_{\theta} G)^{\mathcal{P}} \\ \varepsilon_S \times \varepsilon_G \downarrow & \swarrow \phi_1 \\ (S \times G)^{\mathcal{P}} \end{array}$$

By [1, 3.3.4] $(S \times G)^{\mathcal{P}} = S^{\mathcal{P}} \times G^{\mathcal{P}}$. Thus we can assume that ϕ_1 is a map from $S^{\mathcal{P}} \times G^{\mathcal{P}}$ into $(S \otimes_{\theta} G)^{\mathcal{P}}$. Observe that ϕ_1 preserves congruence, for, if $vv' \otimes_{\eta} \mu = v \otimes_{\eta} \eta(v')\mu$, where $v, v' \in S^{\mathcal{P}}, \mu \in G^{\mathcal{P}}$, we can get the nets $\{s_{\alpha}\}, \{s'_{\beta}\}$ in S and $\{t_{\gamma}\}$ in G such that $\lim_{\alpha} \varepsilon_S(s_{\alpha}) = v, \lim_{\beta} \varepsilon_S(s'_{\beta}) = v'$ and $\lim_{\gamma} \varepsilon_G(t_{\gamma}) = \mu$. Therefore,

$$\begin{split} \phi_1(vv' \otimes_\eta \mu) &= \phi_1(\lim_{\alpha,\beta,\gamma} \varepsilon_S \times \varepsilon_G(s_\alpha s'_\beta, t_\gamma)) \\ &= \lim_{\alpha,\beta,\gamma} \phi_1(\varepsilon_S \times \varepsilon_G(s_\alpha s_\beta, t_\gamma)) \\ &= \lim_{\alpha,\beta,\gamma} \varepsilon_{S \otimes_\theta G}(\pi_1(s_\alpha s_\beta, t_\gamma)) \\ &= \lim_{\alpha,\beta,\gamma} \varepsilon_{S \otimes_\theta G}(\pi_1(s_\alpha, \theta(s'_\beta) t_\gamma)). \end{split}$$

On the other hand we have

$$\phi_1(v \otimes_\eta \eta(v')\mu) = \phi_1(\lim_{\alpha,\beta,\gamma} \varepsilon_S \times \varepsilon_G(s_\alpha,\theta(s'_\beta)t_\gamma))$$
$$= \dots$$
$$= \lim_{\alpha,\beta,\gamma} \varepsilon_{S \otimes_\theta G}(\pi_1(s_\alpha,\theta(s'_\beta)t_\gamma)).$$

Now, by the structure of topological tensor product [9, 3.3], ϕ_1 preserves congruence. Thus there exists a continuous homomorphism $\phi_2 : S^P \otimes_{\eta}$

Function spaces of Rees matrix semigroups

 $G^{\mathcal{P}} \longrightarrow (S \otimes_{\theta} G)^{\mathcal{P}}$ such that the following diagram commutes.

$$\begin{array}{ccc} S^{\mathcal{P}} \times G^{\mathcal{P}} & \xrightarrow{\phi_1} & (S \otimes_{\theta} G)^{\mathcal{P}} \\ \pi_2 \downarrow & \swarrow \phi_2 \\ S^{\mathcal{P}} \otimes_{\eta} G^{\mathcal{P}} \end{array}$$

Now, $\phi \circ \phi_2$ is identity on $S^{\mathcal{P}} \otimes_{\eta} G^{\mathcal{P}}$ for, if $v \otimes_{\eta} \mu \in S^{\mathcal{P}} \otimes_{\eta} G^{\mathcal{P}}$, then we can find a net $\{s_{\alpha}\}$ in S and a net $\{t_{\beta}\}$ in G such that $\varepsilon_S(s_{\alpha}) \longrightarrow v$ and $\varepsilon_G(t_{\beta}) \longrightarrow \mu$. Now

$$\phi \circ \phi_2(v \otimes_\eta \mu) = \phi \circ \phi_2(\pi_2(v,\mu)) = \phi(\phi_1(v,\mu))$$
$$= \lim_{\alpha,\beta} \phi(\phi_1(\varepsilon_S \times \varepsilon_G(s_\alpha, t_\beta)))$$
$$= \lim_{\alpha,\beta} \phi(\zeta(s_\alpha, t_\beta)) = \lim_{\alpha,\beta} \phi(\varepsilon_{S \otimes_\theta G}(\pi_1(s_\alpha, t_\beta)))$$
$$= \lim_{\alpha,\beta} \delta_{S \otimes_\theta G}(s_\alpha \otimes_\theta t_\beta) = v \otimes_\eta \mu$$

thus, $(S \otimes_{\theta} T)^{\mathcal{P}} \simeq S^{\mathcal{P}} \otimes_{\eta} G^{\mathcal{P}}$. Finally, since G is compact then $(S \otimes_{\theta} G)^{\mathcal{P}} \simeq S^{\mathcal{P}} \otimes_{\eta} G$.

Corollary 5.7. Let G be a compact group and $S = \mathcal{M}^0(G, P)$. Let $(S \otimes_{\theta} G)^{\mathcal{P}}$ and $S^{\mathcal{P}}$ be universal topological group compactifications of $S \otimes_{\theta} G$ and S, respectively. Then $(S \otimes_{\theta} G)^{\mathcal{P}} \simeq \frac{S^{\mathcal{P}} \times G}{N}$, for some closed normal subgroup N of $S^{\mathcal{P}} \times G$, provided that \mathcal{P} has joint continuity property.

Acknowledgments

The author would like to sincerely thank the referee for his/her valuable comments and useful suggestions

References

- J. F. Berglund, H. D. Junhenn and P. Milnes, Analysis on Semigroups: Functions spaces, Compactifications, Representations, John Wiley & Sons, New York, 1989.
- [2] A. H. Clifford and J. B. Preston, *The Algebraic Theory of Semigroups I*, American Mathematical Society Surveys, 7, 1961.
- [3] J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
- [4] G. H. Esslamzadeh, Banach algebra structure and amenability of a class of matrix algebras with applications, *J. Funct. Anal.* **161** (1999), no. 2, 364–383.
- [5] G. H. Esslamzadeh, Ideals and representations of certain semigroup algebras, Semigroup Forum 69 (2004), no. 1, 51–62.

- [6] G. H. Esslamzadeh, Double centralizer algebras of certain Banach algebras, Monatsh. Math. 142 (2004), no. 3, 193–203.
- [7] A. R Medghalchi and H. R. Rahimi, The ideal structure on the topological tensor product of topological semigroups, Int. J. Appl. Math. 15 (2004), no. 2, 165–177.
- [8] A. R. Medghalchi and H. R. Rahimi, Topological tensor products of topological semigroups and its compactifications, *Sci. Math. Jpn.* 62 (2005), no. 1, 57–64.
- [9] W. D. Munn, On semigroup algebras, Proc. Cambridge Philos. Soc. 51 (1955) 1–15.
- [10] H. R. Rahimi, Topological tensor product of topological semigroups, PhD Thesis, Islamic Azad University, Science and Research Branch, Tehran, 2003.
- [11] H. R. Rahimi, Function sapaces on tensor products of semigroups, Iran. J. Sci. Technol. Trans. A Sci. 35 (2011), no. 3, 223–228.

HamidReza Rahimi

Department of Mathematics, Faculty of Science, Islamic Azad University, Centeral Tehran Branch, P.O. Box 13185/768, Tehran, Iran Email: rahimi@iauctb.ac.ir