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FUNCTION SPACES OF REES MATRIX SEMIGROUPS

H. RAHIMI

Communicated by Gholam hossein Esslamzadeh

ABSTRACT. We characterize function spaces of Rees matrix semi-
groups. Then we study these spaces by using the topological tensor
product technique.

1. Introduction

Let S be a semitopological semigroup. A semigroup compactifica-
tion of S is a compact right topological semigroup containing a dense
homomorphic image of S. The theory of semigroup compactifications
has already received extensive treatment, including two major topics of
existence of semigroup compactifications of a semigroup and the struc-
ture of its compactifications. Semigroup extensions are extremely useful
tools in characterizing function spaces on topological semigroups and in
particular those spaces associated with semigroup compactifications; See
[1] for instance. A large class of semigroups which has been studied ex-
tensively from various points of view, is the class of completely 0-simple
and completely simple semigroups. Following Munn [11], Esslamzadeh
in [3, 4, 5] studied structure of regular semigroups with a finite number of
idempotents and in particular completely 0-simple semigroups, by using
their underlying groups. In this paper we study function spaces on these
semigroups, by using the techniques of /'-Munn algebras. To our best
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knowledge this approach is new. Topological tensor products of topolog-
ical semigroups were introduced for the first time in the PhD thesis of
the author [7]. See [8, 9] for the structure of topological tensor products
of topological semigroups, their function spaces and compactifications.
This paper is organized as follows: In Section 2, we introduce our no-
tations. In Sections 3 and 4, we use extension techniques to characterize
spaces of functions on a completely O-simple semigroup. In the last
section we study these spaces by using the topological tensor product.

2. Preliminaries

Throughout we use the notations of [1]. For the terms which are
not introduced here, the reader may be referred to one of [1, 4, 8, 9].
Suppose S is a semitopological semigroup and (¢, X) is a semigroup
compactification of S, that is, X is a compact Hausdorff right topological
semigroup and let ¢ : § — X is a continuous homomorphism such that
P(S) =X and ¢(5) C A(X) where

AX)={te X:s—ts: X — X, is continuous}

is the topological center of X. We say that (¢, X) has the left [right]
joint continuity property if the mapping (s, x) — ¥(s)x [(z,s) — x(s)]
is continuous.

Let B(S) be the C*-algebra of all bounded complex valued functions
on S, F a unital C*-subalgebra of B(S), S the set of all multiplicative
means on F and € : S — S7 be the evaluation mapping. We say that F
is m-admissible if T),(F) C F for all u € S, where T,(f)(s) = u(Ls(f)),
se S, feF. If we equip S¥ with the Gelfand topology then S7 with
multiplication pv(f) = u(T,(f)), u,v € S is a compact Hausdorff right
topological semigroup. Moreover, the evaluation mapping is a continu-
ous homomorphism into a dense subsemigroup of S which is contained
in the topological center of S¥. Now if (1, X) is a compactification of
S, then ¢*(C'(X)) is an m-admissible subalgebra of C(S). Conversely, if
F is an m-admissible subalgebra of C(S), then there exists a unique (up
to isomorphism) compactification (¢, X') of S such that ¢*(C(X)) = F.
In other words, the compactification corresponding to the m-admissible
subalgebra F is (g,57). Moreover, £*(C(S7)) = F.

Let S and T be semitopological semigroups with semigroup compact-
ifications S” and T’. A continuous function ¢’ : S’ — T” is an extension
of the continuous function ¢ : S — T if ¢’ocg = erop and ¢’ is uniquely
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determined by ¢. Such an extension exists if and only if ¢*(B) C A,
where A and B are the associated function spaces of the compactifica-
tions. Let S’ and S” be compactifications of S. Then S’ is a factor of
S” if the identity map on S has an extension ¢ : S” — S’. A com-
pactification with a given property P is called a P-compactification.
A universal P-compactification of S is a P-compactification of which,
every P-compactification of S'is a factor. Universal P-compactifications,
if they exist, are unique (up to isomorphism). We denote the universal
P-compactification of S by S7.

Let GO = G U {0} [respectively G] be a group with zero [respectively
group|, I and J be arbitrary nonempty sets. Let P be a J x I matrix over
GY [respectively G]. Theset S = G x I x JU{0} [respectively S = G x I x
J] is a semigroup under the composition (a, i, 7)o (b, 1, k) = (aPjb,i, k) if
Pj; # 0 and zero otherwise, [respectively (a,i,7) o (b, 1, k) = (aPjb, i, k)]
that we denote by M%(G, P) [respectively M(G, P)] and we call it the
Rees I x J matrix semigroup over G [respectively G] with the sandwich
matrix P.

As it was observed in [4] the reduced semigroup algebra of a com-
pletely 0 -simple semigroup S is isometrically isomorphic to an appro-
priate ¢'-Munn algebra over the group algebra of the underlying group
of S. This fact is one of the authors motivations to study function spaces
of completely 0-simple semigroups with a new approach.

3. Compactifications of a completely 0-simple semigroup

In this section first we introduce an extension of a completely 0-simple

semigroup S = M%(G, P). Then we characterize compactifications of a
completely 0-simple semigroup.
Following Clifford and Preston [2], let S and T be disjoint semigroups,
and let T have a zero element 0. A semigroup 2 is called an extension
of S by T if it contains S as an ideal and if the Rees factor semigroup %
is isomorphic to T. A mapping A +— A of T* = T'\ {0} into S is a partial
homomorphism if and only if AB = A B, whenever AB # 0. On the
other hand by [2, 4.19], a partial homomorphism A — A of the partial
groupoid T into S determines an extension €2 of S by T as follows: For
A, BeT and s,t €8S,

AB ifAB #0

(P1) AOB:{ AD ifAB=0
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(P2) Aos=As, (P3) soA=sA, (P4) sot = st.
Let G a be a topological group, I and J arbitrary nonempty sets and
P = (pj;) a J x I matrix with entries in G° = GU{0}. The Rees matrix
semigroup S = M°(G, P) where G x I x .J is equipped with the product
topology and {0}, considered as an isolated point of S, is a topological
semigroup. Suppose ¢ — u; and j — v; are mappings of I and J into G,
respectively. Let W be a continuous homomorphism of G into G such
that W (pj;i) = vju; whenever pj; # 0. Then the map 6 : S — G defined
by 0(g,4,j) = ui(W(g))v; is a continuous partial homomorphism of S
into G [2, Theorem 4.22]. Hence we have an extension 2 of G by S. In
this case we define the relation p on 2 by o1pos if and only if o1 = goo
for some g € G. We fix these notations for the rest of this paper.

Lemma 3.1. The relation p is an equivalence relation on €.
Proof. Straightforward. O
Lemma 3.2. For every o € ) we have Go = o(G.

Proof. Let 0 € Q and g € G. Then go € Go. If 0 =s € G , then
go=gs=s(s"tgs)=sg =og € oG
where ¢/ = s lgs€ G. If o = A€ S , then
go = gA = g(B(A)) = O(A)(0(A) " g6(A)) € oG
Thus Go C oG. Similarly, cG C Go. U
Corollary 3.3. The relation p is a congruence on €.

Remark 3.4. The identity [e] = {c € Q@ | Jg € G,0 = ge} =G
implies that & = % ~ 5.

Now assume that G is a compact topological group, S = M%(G, P)
as above is considered with product topology and €2 is a topological
groupoid. The notions of topological groupoid and topologial groupoid
compactifications are defined similar to their semigroup analogs.

Lemma 3.5. Let (¢, X) be a topological groupoid compactification of
topological groupoid Q, (G) = G, and p = {(z1,22) € X x X | Jg €
G, 1 = qiza}. Then p is a closed congruence on X.

Proof. Clearly p is an equivalence relation on X. Let x € X, ¢¥(04) — x
and ¢¥(g) = ¢g. By lemma 2.2, 0,9 = ¢'04 for some ¢’ € G. Thus,
limy, ¥(00)¥(g) = limy (9 )¢(0a). So g = ¢’z and hence G C Gu.
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Similarly Gz C zG. Thus Gx = G, = € X. This implies that p is
a congruence on X. To show that p is closed, let {2,} and {y,} be
nets in X such that ¥, — 2, Yo — ¢ and ¥, py,. There exists g, € G
such that ¥, = ga¥n. We may choose g, € G such that ¥(g.) = ga-
Compactness of G allows us to assume that g, converges to some g € G.
So ¥(ga) — ¥(g), and by joint continuity of product of X, goya — 97.
Therefore & = gy, that is, 2py. O

Theorem 3.6. Let (10, X) be a topological groupoid compactification of
topological groupoid €2, where € is an extension of G by S. Then % 18
a topological groupoid compactification of S.

Proof. First note that if o1poy (01,02 € ), then ¢(01)py(02). Thus

1) preserves congruence and hence there exists a continuous homomor-

phism ) : % — % such that the following diagram commutes.

0 v x
W{ Jfr
Q — " X

) P p

Clearly % is a compact Hausdorff topological groupoid [1. Proposition
1.3.8]. We have

0C) = Gom(®) = Fou(@) 2 #(F(E) = #(X) = 5.
Also
z&(f) — Jor(Q) = 7ow(Q) C #(A(X)) = AGF(X)) = A@f).

Therefore % is a compactification of % and hence is a compactification
of S. O
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4. Function spaces of S = M°(G, P)

Theorem 4.1. Let G be a compact group, S = MY(G,P) and Q an

extension of G by S. Let (5,5%) and (eq, Q) be the almost periodic
compactifications of S and €2, respectively. Then S ~ % , where,

G =eq(Q).

Proof. By Theorem 3.6, (¢, %) is a compactification of & ~ S, where

G= £,(G). The universal property of the ap-compactification (g, S*)
of S [1, Theorem 1.4.10] provides a continuous homomorphism ¢ :
S?P —s % such that the following diagram commutes.

S £s (%)ap — gap

e;J/sol

On the other hand, the homomorphism

n:Q —" s Qg ES, gw

provides a continuous homomorphism o : Q% — S such that the
following diagram commutes.

0 £Q Qapr
n J /902
S

Now let g1poa ( 01,02 € Q%) and choose nets {uq}, {va} in Q such
that lim, €, (uq) = 01, and lim, €, (vo) = d2. We have 01 = §da, where
g =¢,(g) for some g € G . Thus

p2(01) = 92(902) = pa(ea(g) lima ea(va))
= lim,, p20eq(gvs) = limy n(gvy)
= lim, 7(g)n(ve) = lim,, p20eq(vy)
= 2(02).
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So o preserves congruence. Thus there exists continuous homomor-

phism ) : Qgp — 5% guch that the following diagram commutes.
Qap ©2 Sap
7§/ { / "
Qor
G

Now, we show that p10¢) = ideaw . If (7)(t) € %, then we can find a
G
net {04} in 2 such that lim, ¢, (0,) = t. Now
prop('(t)) = propa(t) = limg p1092(2, (o))
= lim, p10n(04) = limAa proegom(oy)
= lim,, €, 0m(04) limy 7 (g, (04))

= 7'(limg &, (04)) = 7(t).
Therefore S ~ % O

Theorem 4.2. Let G be a compact group, S = M°(P,G) and Q an
extension of G by S. Let (5, 5%°P) and (eqQ°*P) be the strongly almost
periodic compactifications of S and §2, respectively. Then S ~ % ,

where, G = eq(Q).

Proof. Since (g5, 5%P) is the universal topological group compactifi-

cation of S, an argument similar to that of Theorem 4.1 shows that
§sap ~ Qoep 0
~ S

Note that the above results are true for similar spaces of functions.
In fact:

Theorem 4.3. With the assumptions of the preceding theorem,
let (g5,S7) and (eoQ7) be the universal P-compactifications of S and

Q, respectively. Then ST ~ % where G = eq(Q), provided that P has
joint continuity property.

5. Function spaces of S = M’(G, P) and topological tensor
product

Let S and T be two topological semigroups with identity and let X
be a non-empty topological space. Then X is called a topological left
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S-system if there is an action (s,x) — sz of S x X into X which is
jointly continuous and si(sez) = (s182)x, sz = = (s1,82 € S,z € X).
Similarly a topological right S-system is defined. A topological left S-
system and a topological right T-system is called a topological (S, T)-
bisystem if (sz)t = s(xt), (s€ S,t € T,z € X).

Let X, Y be two topological left S-systems and let ¢ : X — Y
be a continuous map. We say that ¢ is a topological left S-map if
o(sx) = sp(z), (r € X,s € §). Similarly we can define a topological
right T-map.

Now let X be a topological left S-system and Y be a topological
right T-system. Then XxY equipped with the product topology, is a
topological (S,T')-bisystem (that is, sis2(z,y) = si(s2x,y) , ls(x,y) =
(z,y), (z,y)tite = (z,yt1)t2, (z,y)lr = (x,y), for all s;,s9 € S and
ti,to € T). Let Z be a topological (S,T)-bisystem. We say that [ :
X xY — Z is a topological (S, T)-map if 3 is a topological left S-map
and a topological right T-map.

Let S and T be two topological semigroups with identities 1g and 17

respectively. Then S can be regarded as a topological (.5, S)-bisystem
where the action of S on S is just its multiplication. Let 0 : S — T be
a continuous homomorphism. Then 7" can be regarded as a topological
(S, T)-bisystem by st = o(s)t, (s € S,t € T). Let C be a topological
(S, T)-bisystem which is also a semigroup with identity, and let 3 :
S xT — C be a topological (S,T)-map. We say that g is a topological
o-bimap if 5(ss',t) = B(s,0(s")t), (5,8 € S,t €T).
By a topological tensor product of S and T' we mean a pair (P,1)) where
P is a topological (S, T)-bisystem and ¢ : S x T — P is a topological
o-bimap such that for every topological (S,T)-bisystem C and every
topological o-bimap 3 : S x T' — C, there exists a unique topological
(S,T)-map (3 : P — C such that the diagram

sxT_ Y _p

e

commutes. In [9] Medghalchi and the author proved the existence of
topological tensor product of S and T" with respect to o which is denoted
by S®,T. Moreover in [9, 10] a characterization of the space of functions

B
C
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of them was proved and it was shown that S x T can be considered as
an extension of the topological tensor product of S and 1" .
We recall the following results from [9] and [10].

Theorem 5.1. [9, Theorem 3.3 ] Let S and T be two topological semi-
groups with identities, and let o : S — T be a continuous homomor-
phism. Then there is a unique topological tensor product of S and T

Theorem 5.2. [9, Theorem 4.2 ] Let S and T be two topological semi-
groups with identities, and let o : S — T be a continuous homomor-
phism. Then (S @y T)*P ~ S%%P @, TP where n is an appropriate
homomorphism from S** into T5

Lemma 5.3. [10, Lemma 5,2 | Let G1 and G be two topological groups
and let 0 : G1 — Gg be a continuous homomorphism. Then N =
{(m,n) € G1 x Gy : (m,n)p(lg,,1la,)} is a closed normal subgroup of
G1 X Gg.

Theorem 5.4. [10, Theorem 5.3 | Let G and Ga be two topologi-
cal groups and let o : G1 — Go be a continuous homomorphism.
Then G1 ®, G2 = (G1 X G2)/N, where N = {(m,n) € G1 x Gs :
(m,n)p(lgl,lc2)}.

Theorem 5.5. Let G be a compact group and S = M°(G, P). Then
(S ®p G)*%P ~ %, for some closed normal subgroup N of S x G.

Proof. Define § : S — G by 0(g,%,j) = ui(W(g))vj. Observe that 6
is a continuous partial homomorphism of S into G. So by Theorem
5.1, S ®y G exists. On the other hand by Theorem 5.2 (S ®g G)** ~
S5 @, G*P ~ %% @, G . Finally, by Lemma 5.2 and Theorem 5.3,
(S ®9 G)*%P =~ %, where
N == {(m,n) E Ssap X G‘m@n n = 1SSap ®77 1G}

is a closed normal subgroup of 5°% x G. O
Theorem 5.6. Let G be a compact group and S = MY(G, P). Let
(S ®9 G)F and ST be the universal topological group compactifications
of S®¢ G and S, respectively. Then (S®yG)” ~ ST @, G if P has joint

continuity property.

Proof. Let (esg,a, (S ®9 G)7), (¢5,57) and (e, GT) be the universal
topological group P-compactifications of S ®g G, S and G, respectively.
By [9, 3.7], (dsg,c, ST ®, GT) is a topological group compactification of
S®¢G. The universal property of P-compactification (egg,a, (S®¢G)")
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gives a continuous homomorphism ¢ : (S ®y G)” — S* ®, G such
that the following diagram commutes.

Sy G 2 (S@,Q)P
dsgec | @

SP @, GP

Also, since (5 x g, (S x G)T) is a universal topological group compact-
ification of S x G, via the homomorphism

C:SxGIh Sy G 2 (S@yG)P,
then there is a continuous homomorphism ¢; : (S x G)? — (S ®y G)P
such that the following diagram commutes.

SxG S (S2pG)P

esxeal ¢
(S x )P

By [1, 3.3.4] (S xG)? = ST x GP. Thus we can assume that ¢ is a map
from S” x G¥ into (S®yG)F. Observe that ¢; preserves congruence, for,
if v’ @y = v @y, n(v)u, where v,v' € ST, € GP, we can get the nets
{sa}, {83} in S and {t,} in G such that lim, e5(sq) = v, limgeg(sj) = v’
and limy eg(t,) = p. Therefore,

d1(vv' @y 1) = ¢1( héﬂ € X EG(SOéslﬁvtv))

a7 77
= lim ¢1(eg X 5G(3a357t’y))
a,B,y
= lim €S®9G(ﬂ'1 (Sasﬁvtv))
B,y
= lim 6S®9G(7T1(50u0(5,ﬂ)t’7))'
a,B,y

On the other hand we have

$1(v @y n(v )p) = <751(0%i§f1V s X £G(Sa,0(s}5)ty)

= lim e55,6(m1(5a, 0(s5)ty)).
a0,y

Now, by the structure of topological tensor product [9, 3.3], ¢1 preserves
congruence. Thus there exists a continuous homomorphism ¢g : S¥ ®n
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GP — (S ®y G)P such that the following diagram commutes.

SPxGP L (S G)P
Ty | /" 2
5P @, G

Now, ¢ o ¢2 is identity on S ®, GT for, if v®, u € ST ®, G”, then we
can find a net {s,} in S and a net {tg} in G such that eg(so) — v and
ea(ty) — p. Now

P o pa(v @y p) = ¢ o pa(ma(v, 1)) = G(d1(v, 1))
= lirg P(1(es x eG(3a,tp))

i

= 1;12 ?(¢(sasts)) = grg P(es0yG(T1(5a,t5)))
= 101}2 052yG(Sa ®atg) = v @y pt

thus, (S ®p T)" ~ ST ®, GT. Finally, since G is compact then (S ®g
G ~SP®,G. O

Corollary 5.7. Let G be a compact group and S = M°(G, P). Let
(S ®¢ G)F and ST be universal topological group compactifications of

S ®¢ G and S, respectively. Then (S ®p G)F ~ SPTXG, for some closed
normal subgroup N of ST x G, provided that P has joint continuity

property.

Acknowledgments

The author would like to sincerely thank the referee for his/her valuable
comments and useful suggestions

REFERENCES

[1] J. F. Berglund, H. D. Junhenn and P. Milnes, Analysis on Semigroups: Functions
spaces, Compactifications, Representations, John Wiley & Sons, New York,1989.

[2] A.H. Clifford and J. B. Preston, The Algebraic Theory of Semigroups I, American
Mathematical Society Surveys, 7, 1961.

[3] J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.

[4] G.H. Esslamzadeh, Banach algebra structure and amenability of a class of matrix
algebras with applications, J. Funct. Anal. 161 (1999), no. 2, 364-383.

[5] G. H. Esslamzadeh, Ideals and representations of certain semigroup algebras,
Semigroup Forum 69 (2004), no. 1, 51-62.



38 Rahimi

[6] G. H. Esslamzadeh, Double centralizer algebras of certain Banach algebras,
Monatsh. Math. 142 (2004), no. 3, 193-203.

[7] A.R Medghalchi and H. R. Rahimi, The ideal structure on the topological tensor
product of topological semigroups, Int. J. Appl. Math. 15 (2004), no. 2, 165-177.

[8] A. R. Medghalchi and H. R. Rahimi, Topological tensor products of topological
semigroups and its compactifications, Sci. Math. Jpn. 62 (2005), no. 1, 57-64.

[9] W. D. Munn, On semigroup algebras, Proc. Cambridge Philos. Soc. 51 (1955)
1-15.

[10] H. R. Rahimi, Topological tensor product of topological semigroups , PhD Thesis,
Islamic Azad University, Science and Research Branch, Tehran, 2003.

[11] H. R. Rahimi, Function sapaces on tensor products of semigroups, Iran. J. Sci.
Technol. Trans. A Sci. 35 (2011), no. 3, 223-228.

HamidReza Rahimi

Department of Mathematics, Faculty of Science, Islamic Azad University, Centeral
Tehran Branch, P.O. Box 13185/768, Tehran, Iran

Email: rahimi@iauctb.ac.ir



	1. Introduction
	2. Preliminaries
	3. Compactifications of a completely 0-simple semigroup
	4. Function spaces of S = M0(G,P) 
	5. Function spaces of  S = M0(G,P)  and topological tensor product
	References

