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FUNCTION SPACES OF REES MATRIX SEMIGROUPS

H. RAHIMI

Communicated by Gholam hossein Esslamzadeh

Abstract. We characterize function spaces of Rees matrix semi-
groups. Then we study these spaces by using the topological tensor
product technique.

1. Introduction

Let S be a semitopological semigroup. A semigroup compactifica-
tion of S is a compact right topological semigroup containing a dense
homomorphic image of S. The theory of semigroup compactifications
has already received extensive treatment, including two major topics of
existence of semigroup compactifications of a semigroup and the struc-
ture of its compactifications. Semigroup extensions are extremely useful
tools in characterizing function spaces on topological semigroups and in
particular those spaces associated with semigroup compactifications; See
[1] for instance. A large class of semigroups which has been studied ex-
tensively from various points of view, is the class of completely 0-simple
and completely simple semigroups. Following Munn [11], Esslamzadeh
in [3, 4, 5] studied structure of regular semigroups with a finite number of
idempotents and in particular completely 0-simple semigroups, by using
their underlying groups. In this paper we study function spaces on these
semigroups, by using the techniques of `1-Munn algebras. To our best
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knowledge this approach is new. Topological tensor products of topolog-
ical semigroups were introduced for the first time in the PhD thesis of
the author [7]. See [8, 9] for the structure of topological tensor products
of topological semigroups, their function spaces and compactifications.

This paper is organized as follows: In Section 2, we introduce our no-
tations. In Sections 3 and 4, we use extension techniques to characterize
spaces of functions on a completely 0-simple semigroup. In the last
section we study these spaces by using the topological tensor product.

2. Preliminaries

Throughout we use the notations of [1]. For the terms which are
not introduced here, the reader may be referred to one of [1, 4, 8, 9].
Suppose S is a semitopological semigroup and (ψ,X) is a semigroup
compactification of S, that is, X is a compact Hausdorff right topological
semigroup and let ψ : S → X is a continuous homomorphism such that
ψ(S) = X and ψ(S) ⊆ Λ(X) where

Λ(X) = {t ∈ X : s→ ts : X → X, is continuous}

is the topological center of X. We say that (ψ,X) has the left [right]
joint continuity property if the mapping (s, x) → ψ(s)x [(x, s) → xψ(s)]
is continuous.

Let B(S) be the C∗-algebra of all bounded complex valued functions
on S, F a unital C∗-subalgebra of B(S), SF the set of all multiplicative
means on F and ε : S → SF be the evaluation mapping. We say that F
ism-admissible if Tµ(F) ⊆ F for all µ ∈ SF , where Tµ(f)(s) = µ(Ls(f)),
s ∈ S, f ∈ F . If we equip SF with the Gelfand topology then SF with
multiplication µν(f) = µ(Tν(f)), µ, ν ∈ SF is a compact Hausdorff right
topological semigroup. Moreover, the evaluation mapping is a continu-
ous homomorphism into a dense subsemigroup of SF which is contained
in the topological center of SF . Now if (ψ,X) is a compactification of
S, then ψ∗(C(X)) is an m-admissible subalgebra of C(S). Conversely, if
F is an m-admissible subalgebra of C(S), then there exists a unique (up
to isomorphism) compactification (ψ,X) of S such that ψ∗(C(X)) = F .
In other words, the compactification corresponding to the m-admissible
subalgebra F is (ε, SF ). Moreover, ε∗(C(SF )) = F .

Let S and T be semitopological semigroups with semigroup compact-
ifications S′ and T ′. A continuous function ϕ′ : S′ → T ′ is an extension
of the continuous function ϕ : S → T if ϕ′◦εS = εT ◦ϕ and ϕ′ is uniquely
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determined by ϕ. Such an extension exists if and only if ϕ∗(B) ⊆ A,
where A and B are the associated function spaces of the compactifica-
tions. Let S′ and S′′ be compactifications of S. Then S′ is a factor of
S′′ if the identity map on S has an extension ϕ : S′′ → S′. A com-
pactification with a given property P is called a P-compactification.
A universal P-compactification of S is a P-compactification of which,
every P-compactification of S is a factor. Universal P-compactifications,
if they exist, are unique (up to isomorphism). We denote the universal
P-compactification of S by SP .

Let G0 = G ∪ {0} [respectively G] be a group with zero [respectively
group], I and J be arbitrary nonempty sets. Let P be a J×I matrix over
G0 [respectively G]. The set S = G×I×J∪{0} [respectively S = G×I×
J ] is a semigroup under the composition (a, i, j)◦(b, l, k) = (aPjlb, i, k) if
Pjl 6= 0 and zero otherwise, [respectively (a, i, j) ◦ (b, l, k) = (aPjlb, i, k)]
that we denote by M0(G,P ) [respectively M(G,P )] and we call it the
Rees I×J matrix semigroup over G0 [respectively G] with the sandwich
matrix P .

As it was observed in [4] the reduced semigroup algebra of a com-
pletely 0 -simple semigroup S is isometrically isomorphic to an appro-
priate `1-Munn algebra over the group algebra of the underlying group
of S. This fact is one of the authors motivations to study function spaces
of completely 0-simple semigroups with a new approach.

3. Compactifications of a completely 0-simple semigroup

In this section first we introduce an extension of a completely 0-simple
semigroup S = M0(G,P ). Then we characterize compactifications of a
completely 0-simple semigroup.
Following Clifford and Preston [2], let S and T be disjoint semigroups,
and let T have a zero element 0. A semigroup Ω is called an extension
of S by T if it contains S as an ideal and if the Rees factor semigroup Ω

S
is isomorphic to T. A mapping A 7→ Ā of T ∗ = T \{0} into S is a partial
homomorphism if and only if AB = AB, whenever AB 6= 0. On the
other hand by [2, 4.19], a partial homomorphism A → A of the partial
groupoid T ∗ into S determines an extension Ω of S by T as follows: For
A,B ∈ T and s, t ∈ S,

(P1) A ◦B =
{
AB ifAB 6= 0
AB ifAB = 0
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(P2) A ◦ s = As, (P3) s ◦A = sA, (P4) s ◦ t = st.

Let G a be a topological group, I and J arbitrary nonempty sets and
P = (pji) a J × I matrix with entries in G0 = G∪{0}. The Rees matrix
semigroup S = M0(G,P ) where G× I×J is equipped with the product
topology and {0}, considered as an isolated point of S, is a topological
semigroup. Suppose i→ ui and j → vj are mappings of I and J into G,
respectively. Let W be a continuous homomorphism of G into G such
that W (pji) = vjui whenever pji 6= 0. Then the map θ : S → G defined
by θ(g, i, j) = ui(W (g))vj is a continuous partial homomorphism of S
into G [2, Theorem 4.22]. Hence we have an extension Ω of G by S. In
this case we define the relation ρ on Ω by σ1ρσ2 if and only if σ1 = gσ2

for some g ∈ G. We fix these notations for the rest of this paper.

Lemma 3.1. The relation ρ is an equivalence relation on Ω.

Proof. Straightforward. �

Lemma 3.2. For every σ ∈ Ω we have Gσ = σG.

Proof. Let σ ∈ Ω and g ∈ G. Then gσ ∈ Gσ. If σ = s ∈ G , then

gσ = gs = s(s−1gs) = sg′ = σg′ ∈ σG
where g′ = s−1gs ∈ G. If σ = A ∈ S , then

gσ = gA = g(θ(A)) = θ(A)(θ(A)−1gθ(A)) ∈ σG.
Thus Gσ ⊆ σG. Similarly, σG ⊆ Gσ. �

Corollary 3.3. The relation ρ is a congruence on Ω.

Remark 3.4. The identity [e] = {σ ∈ Ω | ∃g ∈ G, σ = ge} = G
implies that Ω

G = Ω
ρ ' S.

Now assume that G is a compact topological group, S = M0(G,P )
as above is considered with product topology and Ω is a topological
groupoid. The notions of topological groupoid and topologial groupoid
compactifications are defined similar to their semigroup analogs.

Lemma 3.5. Let (ψ,X) be a topological groupoid compactification of
topological groupoid Ω, ψ(G) = Ĝ, and ρ̂ = {(x1, x2) ∈ X × X | ∃ĝ ∈
Ĝ, x1 = ĝ1x2}. Then ρ̂ is a closed congruence on X.

Proof. Clearly ρ̂ is an equivalence relation on X. Let x ∈ X, ψ(σα) → x
and ψ(g) = ĝ. By lemma 2.2, σαg = g′σα for some g′ ∈ G. Thus,
limα ψ(σα)ψ(g) = limα ψ(g′)ψ(σα). So xĝ = ĝ′x and hence xĜ ⊆ Ĝx.
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Similarly Ĝx ⊆ xĜ. Thus Ĝx = xĜ, x ∈ X. This implies that ρ̂ is
a congruence on X. To show that ρ̂ is closed, let {x̂α} and {ŷα} be
nets in X such that x̂α → x̂, ŷα → ŷ and x̂αρ̂ŷα. There exists ĝα ∈ Ĝ
such that x̂α = ĝαŷα. We may choose gα ∈ G such that ψ(gα) = ĝα.
Compactness of G allows us to assume that gα converges to some g ∈ G.
So ψ(gα) → ψ(g), and by joint continuity of product of X, ĝαyα → ĝŷ.
Therefore x̂ = ĝŷ, that is, x̂ρ̂ŷ. �

Theorem 3.6. Let (ψ,X) be a topological groupoid compactification of
topological groupoid Ω, where Ω is an extension of G by S. Then X

ρ̂ is
a topological groupoid compactification of S.

Proof. First note that if σ1ρσ2 ( σ1, σ2 ∈ Ω ), then ψ(σ1)ρ̂ψ(σ2). Thus
ψ preserves congruence and hence there exists a continuous homomor-
phism ψ̂ : Ω

ρ →
X
ρ̂ such that the following diagram commutes.

Ω X

?

-

?
-

X
ρ̂

Ω
ρ

π π̂

ψ

ψ̂

Clearly X
ρ̂ is a compact Hausdorff topological groupoid [1. Proposition

1.3.8]. We have

ψ̂(
Ω
ρ

) = ψ̂oπ(Ω) = π̂oψ(Ω) ⊇ π̂(ψ(Ω)) = π̂(X) =
X

ρ̂
.

Also

ψ̂(
Ω
ρ

) = ψ̂oπ(Ω) = π̂oψ(Ω) ⊆ π̂(Λ(X)) = Λ(π̂(X)) = Λ(
X

ρ̂
).

Therefore X
ρ̂ is a compactification of Ω

ρ and hence is a compactification
of S. �
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4. Function spaces of S = M0(G,P )

Theorem 4.1. Let G be a compact group, S = M0(G,P ) and Ω an
extension of G by S. Let (εS , Sap) and (εΩ,Ωap) be the almost periodic
compactifications of S and Ω, respectively. Then Sap ' Ωap

Ĝ
, where,

Ĝ = εΩ(G).

Proof. By Theorem 3.6, (ε̂Ω ,
Ωap

Ĝ
) is a compactification of Ω

G ' S, where

Ĝ = εΩ(G). The universal property of the ap-compactification (εS , Sap)
of S [1, Theorem 1.4.10] provides a continuous homomorphism φ1 :
Sap −→ Ωap

Ĝ
such that the following diagram commutes.

S (Ω
G)ap = Sap

?

-

�
�

�	

Ωap

Ĝ

ε̂Ω ϕ1

εS

On the other hand, the homomorphism

η : Ω -π Ω
G ' S -εS Sap

provides a continuous homomorphism ϕ2 : Ωap −→ Sap such that the
following diagram commutes.

Ω Ωap

?

-

�
�

�	

Sap

η ϕ2

εΩ

Now let σ̂1ρ̂σ̂2 ( σ̂1, σ̂2 ∈ Ωap) and choose nets {uα}, {vα} in Ω such
that limα εΩ(uα) = σ̂1 , and limα εΩ(vα) = σ̂2. We have σ̂1 = ĝσ̂2, where
ĝ = εΩ(g) for some g ∈ G . Thus

ϕ2(σ̂1) = ϕ2(ĝσ̂2) = ϕ2(εΩ(g) limα εΩ(vα))
= limα ϕ2oεΩ(gvα) = limα η(gvα)
= limα η(g)η(vα) = limα ϕ2oεΩ(vα)
= ϕ2(σ̂2).
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So ϕ2 preserves congruence. Thus there exists continuous homomor-
phism ψ : Ωap

Ĝ
−→ Sap such that the following diagram commutes.

Ωap Sap

?

-

�
�

��

Ωap

Ĝ

π̂′ ψ

ϕ2

Now, we show that ϕ1oψ = idΩap

Ĝ

. If (π̂)′(t) ∈ Ωap

Ĝ
, then we can find a

net {σα} in Ω such that limα εΩ(σα) = t. Now

ϕ1oψ(π̂′(t)) = ϕ1oϕ2(t) = limα ϕ1oϕ2(εΩ(σα))
= limα ϕ1oη(σα) = limα ϕ1oεSoπ(σα)
= limα ε̂Ωoπ(σα) limα π̂′(εΩ(σα))
= π̂′(limα εΩ(σα)) = π̂′(t).

Therefore Sap ' Ωap

Ĝ
. �

Theorem 4.2. Let G be a compact group, S = M0(P,G) and Ω an
extension of G by S. Let (εs, Ssap) and (εΩΩsap) be the strongly almost
periodic compactifications of S and Ω, respectively. Then Ssap ' Ωsap

Ĝ
,

where, Ĝ = εΩ(G).

Proof. Since (εs, Ssap) is the universal topological group compactifi-
cation of S, an argument similar to that of Theorem 4.1 shows that
Ssap ' Ωsap

Ĝ
. �

Note that the above results are true for similar spaces of functions.
In fact:

Theorem 4.3. With the assumptions of the preceding theorem,
let (εs, SP) and (εΩΩP) be the universal P-compactifications of S and
Ω, respectively. Then SP ' ΩP

Ĝ
where Ĝ = εΩ(G), provided that P has

joint continuity property.

5. Function spaces of S = M0(G,P ) and topological tensor
product

Let S and T be two topological semigroups with identity and let X
be a non-empty topological space. Then X is called a topological left
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S-system if there is an action (s, x) −→ sx of S × X into X which is
jointly continuous and s1(s2x) = (s1s2)x, 1sx = x (s1, s2 ∈ S, x ∈ X).
Similarly a topological right S-system is defined. A topological left S-
system and a topological right T -system is called a topological (S, T )-
bisystem if (sx)t = s(xt), (s ∈ S, t ∈ T, x ∈ X).

Let X, Y be two topological left S-systems and let ϕ : X −→ Y
be a continuous map. We say that ϕ is a topological left S-map if
ϕ(sx) = sϕ(x), (x ∈ X, s ∈ S). Similarly we can define a topological
right T -map.

Now let X be a topological left S-system and Y be a topological
right T -system. Then X×Y equipped with the product topology, is a
topological (S, T )-bisystem (that is, s1s2(x, y) = s1(s2x, y) , 1s(x, y) =
(x, y), (x, y)t1t2 = (x, yt1)t2, (x, y)1T = (x, y), for all s1, s2 ∈ S and
t1, t2 ∈ T ). Let Z be a topological (S, T )-bisystem. We say that β :
X ×Y −→ Z is a topological (S, T )-map if β is a topological left S-map
and a topological right T -map.

Let S and T be two topological semigroups with identities 1S and 1T

respectively. Then S can be regarded as a topological (S, S)-bisystem
where the action of S on S is just its multiplication. Let σ : S −→ T be
a continuous homomorphism. Then T can be regarded as a topological
(S, T )-bisystem by st = σ(s)t, (s ∈ S, t ∈ T ). Let C be a topological
(S, T )-bisystem which is also a semigroup with identity, and let β :
S×T −→ C be a topological (S, T )-map. We say that β is a topological
σ-bimap if β(ss′, t) = β(s, σ(s′)t), (s, s′ ∈ S, t ∈ T ).
By a topological tensor product of S and T we mean a pair (P ,ψ) where
P is a topological (S, T )-bisystem and ψ : S × T −→ P is a topological
σ-bimap such that for every topological (S, T )-bisystem C and every
topological σ-bimap β : S × T −→ C, there exists a unique topological
(S, T )-map β : P −→ C such that the diagram

S × T P

?

-

�
�

�	

C

β
β

ψ

commutes. In [9] Medghalchi and the author proved the existence of
topological tensor product of S and T with respect to σ which is denoted
by S⊗σT . Moreover in [9, 10] a characterization of the space of functions
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of them was proved and it was shown that S × T can be considered as
an extension of the topological tensor product of S and T .

We recall the following results from [9] and [10].

Theorem 5.1. [9, Theorem 3.3 ] Let S and T be two topological semi-
groups with identities, and let σ : S −→ T be a continuous homomor-
phism. Then there is a unique topological tensor product of S and T .

Theorem 5.2. [9, Theorem 4.2 ] Let S and T be two topological semi-
groups with identities, and let σ : S −→ T be a continuous homomor-
phism. Then (S ⊗σ T )sap ' Ssap ⊗η T

sap where η is an appropriate
homomorphism from Ssap into T sap

Lemma 5.3. [10, Lemma 5,2 ] Let G1 and G2 be two topological groups
and let σ : G1 −→ G2 be a continuous homomorphism. Then N =
{(m,n) ∈ G1 × G2 : (m,n)ρ(1G1 , 1G2)} is a closed normal subgroup of
G1 ×G2.

Theorem 5.4. [10, Theorem 5.3 ] Let G1 and G2 be two topologi-
cal groups and let σ : G1 −→ G2 be a continuous homomorphism.
Then G1 ⊗σ G2 = (G1 ×G2)/N , where N = {(m,n) ∈ G1 × G2 :
(m,n)ρ(1G1 , 1G2)}.

Theorem 5.5. Let G be a compact group and S = M0(G,P ). Then
(S ⊗θ G)sap ' Ssap×G

N , for some closed normal subgroup N of Ssap ×G.

Proof. Define θ : S → G by θ(g, i, j) = ui(W (g))vj . Observe that θ
is a continuous partial homomorphism of S into G. So by Theorem
5.1, S ⊗θ G exists. On the other hand by Theorem 5.2 (S ⊗θ G)sap '
Ssap ⊗η G

sap ' ssap ⊗η G . Finally, by Lemma 5.2 and Theorem 5.3,
(S ⊗θ G)sap ' Ssap×G

N , where

N = {(m,n) ∈ Ssap ×G |m⊗η n = 1Ssap ⊗η 1G}
is a closed normal subgroup of Ssap ×G. �

Theorem 5.6. Let G be a compact group and S = M0(G,P ). Let
(S ⊗θ G)P and SP be the universal topological group compactifications
of S⊗θG and S, respectively. Then (S⊗θG)P ' SP ⊗ηG if P has joint
continuity property.

Proof. Let (εS⊗θG, (S ⊗θ G)P), (εS , SP) and (εG, GP) be the universal
topological group P-compactifications of S ⊗θ G,S and G, respectively.
By [9, 3.7], (δS⊗θG, S

P ⊗ηG
P) is a topological group compactification of

S⊗θG. The universal property of P-compactification (εS⊗θG, (S⊗θG)P)
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gives a continuous homomorphism φ : (S ⊗θ G)P −→ SP ⊗η G
P such

that the following diagram commutes.

S ⊗θ G
εS⊗θG−→ (S ⊗θ G)P

δS⊗θG ↓ ↙ φ
SP ⊗η G

P

Also, since (εS×εG, (S×G)P) is a universal topological group compact-
ification of S ×G, via the homomorphism

ζ : S ×G
π1−→ S ⊗θ G

εS⊗θG−→ (S ⊗θ G)P ,

then there is a continuous homomorphism φ1 : (S ×G)P −→ (S ⊗θ G)P

such that the following diagram commutes.

S ×G
ζ−→ (S ⊗θ G)P

εS × εG ↓ ↗ φ1

(S ×G)P

By [1, 3.3.4] (S×G)P = SP×GP . Thus we can assume that φ1 is a map
from SP×GP into (S⊗θG)P . Observe that φ1 preserves congruence, for,
if vv′⊗η µ = v⊗η η(v′)µ, where v, v′ ∈ SP , µ ∈ GP , we can get the nets
{sα}, {s′β} in S and {tγ} inG such that limα εS(sα) = v, limβ εS(s′β) = v′

and limγ εG(tγ) = µ. Therefore,

φ1(vv′ ⊗η µ) = φ1( lim
α,β,γ

εS × εG(sαs
′
β, tγ))

= lim
α,β,γ

φ1(εS × εG(sαsβ, tγ))

= lim
α,β,γ

εS⊗θG(π1(sαsβ , tγ))

= lim
α,β,γ

εS⊗θG(π1(sα, θ(s′β)tγ)).

On the other hand we have

φ1(v ⊗η η(v′)µ) = φ1( lim
α,β,γ

εS × εG(sα, θ(s′β)tγ)

= . . .

= lim
α,β,γ

εS⊗θG(π1(sα, θ(s′β)tγ)).

Now, by the structure of topological tensor product [9, 3.3], φ1 preserves
congruence. Thus there exists a continuous homomorphism φ2 : SP ⊗η
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GP −→ (S ⊗θ G)P such that the following diagram commutes.

SP ×GP
φ1−→ (S ⊗θ G)P

π2 ↓ ↗ φ2

SP ⊗η G
P

Now, φ ◦ φ2 is identity on SP ⊗η G
P for, if v⊗η µ ∈ SP ⊗η G

P , then we
can find a net {sα} in S and a net {tβ} in G such that εS(sα) −→ v and
εG(tβ) −→ µ. Now

φ ◦ φ2(v ⊗η µ) = φ ◦ φ2(π2(v, µ)) = φ(φ1(v, µ))

= lim
α,β

φ(φ1(εS × εG(sα, tβ))

= lim
α,β

φ(ζ(sα, tβ)) = lim
α,β

φ(εS⊗θG(π1(sα, tβ)))

= lim
α,β

δS⊗θG(sα ⊗θ tβ) = v ⊗η µ

thus, (S ⊗θ T )P ' SP ⊗η G
P . Finally, since G is compact then (S ⊗θ

G)P ' SP ⊗η G. �

Corollary 5.7. Let G be a compact group and S = M0(G,P ). Let
(S ⊗θ G)P and SP be universal topological group compactifications of
S ⊗θ G and S, respectively. Then (S ⊗θ G)P ' SP×G

N , for some closed
normal subgroup N of SP × G , provided that P has joint continuity
property.
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