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CONSTRUCTION OF A CLASS OF TRIVARIATE
NONSEPARABLE COMPACTLY SUPPORTED

WAVELETS WITH SPECIAL DILATION MATRIX

L. LAN∗, C. ZHENGXING AND H. YONGDONG

Communicated by Mehdi Radjabalipour

Abstract. We present a method for the construction of com-

pactly supported

0
@

1 0 −1
1 1 0
1 0 1

1
A-wavelets under a mild condition.

Wavelets inherit the symmetry of the corresponding scaling func-
tion and satisfies the vanishing moment condition originating in the
symbols of the scaling function. As an application, an example is
provided.

1. Introduction

Multivariate nonseparable wavelets have attracted the interest of many
researchers. Although separable wavelet bases have a lot of advantages,
they have a number of drawbacks. They are so special that they have
very little design freedom. Furthermore, separability imposes an un-
necessary product structure on the plane which is artificial for natural
images. One way to avoid this is through the construction of nonsep-
arable wavelets. Nonseparable wavelet basis offers the hope of a more
isotropic analysis, see [1]- [6]. Numerical experiment with decomposition
and reconstruction procedure using nonseparable wavelets reveals more
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feature in the high-frequency band than does by a separable wavelet,
see [7]. Therefore, nonseparable wavelets were used in pattern recog-
nition, texture analysis and edge detection. Note that the design of
nonseparable orthogonal wavelets is still a challenging problem and only
a few references have dealt with this subject, see [1–4] and [8–14]. In one
dimension, it is well known that, there exists no compactly supported,
symmetric or antisymmetric and orthogonal real-valued wavelet except
for the Haar wavelet, see [3]. But it is not the case if orthogonality is
replaced by Riesz basis. Chui and Wang present a method to construct
a compactly supported Riesz basis and wavelets with symmetric or an-
tisymmetric, see [15]. Their method depends on the determination of
zeros of polynomials, which is not easy in higher dimension. Based on [5]
and [8], it is a natural and interesting problem to construct a nonsepa-
rable compactly supported Riesz basis and wavelets with symmetry or
antisymmetry in L2(R3).

The structure of this paper is as follows. In section 2, the basic
concept is introduced. In section 3, we give the construction of trivariate
nonseparable compactly supported orthogonal wavelets, and discuss the
symmetry and vanishing moment of wavelets. Finally, an example is
also given to demonstrate the general theory.

2. Basic Concept

Throughout this paper, let Z and R be the set of integers and real
numbers, respectively. Furthermore, R3 will be the Euclidean three-
dimensional space and Z3 the set of 3-tuple integers. Also M is always

referred to the matrix M =

 1 0 −1
1 1 0
1 0 1

, M−T denotes the transpose

of the matrix M−1. The Fourier transform of f is defined by f̂(ξ) =∫
R3 f(x)e−ix·ξdx for f ∈ L2(R3). Let L2(R3) and `2(Z3) denote {f :∫
R3 |f(x)|2dx <∞} and {sm :

∑
m∈Z3 |sm|2 <∞} and respectively.

Definition 2.1. Let {Vk}k∈Z be a sequence of the closed subspaces in
L2(R3) satisfying

(1) Vk ⊂ Vk+1, k ∈ Z;
(2) closL2(R3)(

⋃
k∈Z Vk) = L2(R3);

(3)
⋂

k∈Z Vk = {0};
(4) f(·) ∈ Vj if and only if f(M ·) ∈ Vj+1, j ∈ Z;
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(5) There exists a function φ(·) ∈ V0 such that {φ(· − n) : n ∈ Z3} is
a Riesz basis of V0.
Then {{Vk}k∈Z, φ(·)} is said to be a multiresolution analysis (MRA)
related to M of L2(R3), φ(·) is a corresponding scaling function. Since
V0 ⊂ V1, φ satisfies some M -refinement equation

φ(·) =
√

2
∑
n∈Z3

hnφ(M · −n),(2.1)

where {hn}n∈Z3 is called the mask. Implementing of the Fourier trans-
form (2.1), we have

φ̂(·) = H0(M−T ·)φ̂(M−T ·).
and

H0(·) =
√

2
2

∑
n∈Z3

hne
−in·(2.2)

which is said to be a symbol of φ.

Definition 2.2. A real-valued measurable function f defined on R3 is
said to be symmetric (antisymmetric) about x0

2 ∈ R3 if f(x) = f(x0 −
x)(f(x) = −f(x0 − x)).

Let Wj denote the orthogonal complement of Vj in Vj+1 for j ∈ Z. If
we can find a ψ such that {ψ(· − k) : k ∈ Z3} is a Riesz basis for W0,
then it is easy to check that {ψj,k : j ∈ Z : k ∈ Z3} is a Riesz basis
for L2(R3), where ψj,k(·) = 2

j
2ψ(M j · −k) for any function ψ defined on

R3 and j ∈ Z, k ∈ Z3. In particular, when {φ(· − k) : k ∈ Z3} is an
orthonormal basis for V0, and

ψ(·) =
√

2
∑
n∈Z3

(−1)n1+n2+n3h(1,0,0)T−nφ(M · −n).

It is easy to prove that {ψ(· − k) : k ∈ Z3} is an orthonormal basis for
W0, and that {ψj,k : j ∈ Z : k ∈ Z3} is an orthonormal basis for L2(R3).

3. Main Results

In this section, under the assumptions that some trivariate polynomial
has no zeros, we obtain a general approach to construct compactly sup-
ported M -wavelets, which inherits the symmetry of the corresponding
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scaling function and satisfies the vanishing moment condition originat-
ing in the symbols of the scaling function. Our main results can be
stated as follows.

Theorem 3.1. Assume that φ is a scaling function of an MRA {Vj}j∈Z

satisfying (2.1), its symbol H0 defined as in (2.2) is a Laurent polyno-
mial, and W0 is the orthogonal complement of V0 in V1. Define

gn = (−1)n1+n2+n3〈φ1,(1,0,0)T−n, φ〉

for n ∈ Z3, and
ψ(·) =

√
2
∑
n∈Z3

gnφ(M · −n).

Then
(1) ψ(·) ∈W0;
(2) {ψ(· − n) : n ∈ Z3} is a Riesz basis for W0 if and only if∑

n∈Z3

(∑
l∈Z3

(−1)l1+l2+l3hlgMn+(1,0,0)T−l

)
e−in·ξ

has no zeros in [−π, π]3.

Proof. First, we prove (1).
For m ∈ Z3, it is obvious that

〈ψ(·), φ(· −m)〉 =∑
n∈Z3

(−1)n1+n2+n3〈φ1,(1,0,0)T−n(·), φ(·)〉〈φ1,n−Mm(·), φ(·)〉.

Let n−Mm = (1, 0, 0)T − ñ. We have

〈ψ(·), φ(· −m)〉 =∑
en∈Z3

(−1)1+3m1+m2−en1−en2−en3

〈φ1,en−Mm(·), φ(·)〉〈φ1,(1,0,0)T−en(·), φ(·)〉

= −
∑
en∈Z3

(−1)en1+en2+en3

〈φ1,en−Mm(·), φ(·)〉〈φ1,(1,0,0)T−en(·), φ(·)〉
= −〈ψ(·), φ(· −m)〉.
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Hence, 〈ψ(·), φ(· −m)〉 = 0. So, ψ ∈W0.
Next, we divide the argument into three steps to prove (2).
(i) {ψ(· − n) : n ∈ Z3} is a Riesz basis for W0 if and only if

{ψ(· − n), φ(· − n) : n ∈ Z3} is a Riesz basis for V1.
The necessity is obvious, we only need to prove sufficiency. Suppose

{ψ(· − n), φ(· − n) : n ∈ Z3} is a Riesz basis for V1. Let

W̃0 = {
∑
n∈Z3

cnψ(· − n) : c ∈ `2(Z3)}.

In the following, we prove that W0 = W̃0. Since ψ ∈ W0, and W0

is invariant under integer shifts, then W̃0 ⊆ W0. Since W0 ⊂ V1, for
f ∈W0, we have

f(·) =
∑
n∈Z3

cnψ(· − n) +
∑
n∈Z3

dnφ(· − n), cn, dn ∈ l2(Z3).

Define ̂̃φ(·) =
bφ(·)P

n∈Z3
|bφ(·+2nπ)|2

. It is easy to check that {φ̃(· − n) : n ∈

Z3} is the dual of {φ(· − n) : n ∈ Z3}. It follows that

0 = 〈f, φ̃(· −m)〉 = dm, for m ∈ Z3.

Thus
f(·) =

∑
n∈Z3

cnψ(· − n) ∈ W̃0

and W0 ⊂ W̃0. Combining above results, we obtain

W0 = W̃0 = {
∑
n∈Z3

cnψ(· − n) : c ∈ `2(Z3)}.

Then {ψ(· − n) : n ∈ Z3} is a Riesz basis for W0.
(ii) Let ψ̃(·) =

√
2
∑

n∈Z3

(−1)n1+n2+n3h(1,0,0)T−nφ(M · −n). Then

{φ(· − n), ψ̃(· − n) : n ∈ Z3} is a Riesz basis for V1.
Define φ0(·) = φ(M ·), φ1(·) = φ(M · −(1, 0, 0)T ). Since {φ(· − n) : n ∈

Z3} is a Riesz basis for V0, {φ(M · −n) : n ∈ Z3} is a Riesz basis for V1.
Hence, {φ0(· − n), φ1(· − n) : n ∈ Z3} is a Riesz basis for V1. It is easy
to check that

φ(·) =
√

2
∑
n∈Z3

hMnφ0(· − n) +
√

2
∑
n∈Z3

hMn+(1,0,0)T φ1(· − n),
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ψ̃(·) =
√

2
∑
n∈Z3

h(1,0,0)T−Mnφ0(· − n)−
√

2
∑
n∈Z3

h−Mnφ1(· − n),

and

det


√

2
∑

n∈Z3

hMne
−in·ξ √

2
∑

n∈Z3

hMn+(1,0,0)T e−in·ξ

√
2
∑

n∈Z3

h(1,0,0)T−Mne
−in·ξ −

√
2
∑

n∈Z3

h−Mne
−in·ξ


= −2[|H0(M−T ξ)|2 + |H0(M−T ξ + (π,−π,−π)T )|2] 6= 0

for ξ ∈ R3, where the last inequality is due to the fact that {φ(· − n) :
n ∈ Z3} is a Riesz basis for V0. Therefore, {φ(· − n), ψ̃(· − n) : n ∈ Z3}
is a Riesz basis for V1.

(iii) {φ(· − n), ψ(· − n) : n ∈ Z3} is a Riesz basis for V1 if and only if∑
n∈Z3

(
∑
l∈Z3

(−1)l1+l2+l3hlgMn+(1,0,0)T−l)e
−in·ξ

has no zeros in [−π, π]3.
Since {φ(· −n) : n ∈ Z3} is a Riesz basis for V0 for ξ ∈ R3, we obtain

that∑
n∈Z3

( ∑
l∈Z3

hl+Mnhl

)
e−in·ξ

= |H0(M−T ξ)|2 + |H0(M−T ξ + (π,−π,−π)T )|2 6= 0.
Let

A(ξ) =

∑
n∈Z3

(
∑

l∈Z3

gl+Mnhl)e−in·ξ

∑
n∈Z3

(
∑

l∈Z3

hl+Mnhl)e−in·ξ ,

B(ξ) = −

∑
n∈Z3

(
∑

l∈Z3

(−1)l1+l2+l3g(1,0,0)T−l+Mnhl)e−in·ξ

∑
n∈Z3

(
∑

l∈Z3

hl+Mnhl)e−in·ξ ,

H̃1(ξ) = −e−iξ1H0(ξ + (π,−π,−π)T ), H1(ξ) =
1√
2

∑
n∈Z3

gne
−in·ξ.

It is easy to check that

H1(M−T ξ) = A(ξ)H0(M−T ξ) +B(ξ)H̃1(M−T ξ).

Multiplying with φ̂(M−T ξ), we have

ψ̂(ξ) = A(ξ)φ̂(ξ) +B(ξ)̂̃ψ(ξ),
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where ψ̃ is defined as in (ii). Using (ii), we deduce that {φ(·−n), ψ(·−n) :
n ∈ Z3} is a Riesz basis for V1 if and only if B(ξ) 6= 0 for ξ ∈ R3, and
equivalently,∑

n∈Z3

(
∑
l∈Z3

(−1)l1+l2+l3hlgMn+(1,0,0)T−l)e
−in·ξ 6= 0

for ξ ∈ [−π, π]3. Hence, (iii) holds.
Combining (iii) with (i), we deduce (2). �

Remark 3.2. It is obvious that {gn} is finitely supported, and thus, ψ
is compactly supported.

Theorem 3.3. Under the assumptions of Theorem 3.1, suppose φ is a
real-valued, and hn ∈ R for n ∈ Z3.

(1) If φ is symmetric about x = (0, 0, 0)T , then ψ is symmetric about
x = (1

2 , 0,
1
2)T ;

(2) If φ is symmetric about x = (1
2 , 0, 0)T , then ψ is symmetric about

x = (1
2 , 0, 0)T ;

(3) If φ is symmetric about x = (0, 1
2 , 0)T , then ψ is symmetric about

x = (1
2 , 0,−

1
2)T ;

(4) If φ is symmetric about x = (0, 0, 1
2)T , then ψ is antisymmetric

about x = (1,−1,−1
2)T ;

(5) If φ is symmetric about x = (1
2 ,

1
2 , 0)T , then ψ is symmetric about

x = (1
2 ,−1,−1)T ;

(6) If φ is symmetric about x = (1
2 , 0,

1
2)T , then ψ is antisymmetric

about x = (1,−3
2 ,−1)T ;

(7) If φ is symmetric about x = (0, 1
2 ,

1
2)T , then ψ is antisymmetric

about x = (1,−1
2 ,−

1
2)T ;

(8) If φ is symmetric about x = (1
2 ,

1
2 ,

1
2)T , then ψ is antisymmetric

about x = (1,−1,−1)T .

Proof. We only need to prove (1) under the condition that φ is symmetric
about x = (0, 0, 0)T , and the other parts can be proved analogously.
Suppose φ is symmetric about x = (0, 0, 0)T , then

〈φ1,n−(1,0,0)T , φ〉 = 〈φ1,(1,0,0)T−n, φ〉, n ∈ Z3.

It follows that

gn = g(2,0,0)T−n, n ∈ Z3,
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which is equivalent to H1(ξ) = e−i2ξ1H1(−ξ), where H1(ξ) = 1√
2

∑
n∈Z3

gn

e−in·ξ. So we have

ψ̂(−ξ) = ei(ξ1+ξ3)ψ̂(ξ),

which implies that ψ is symmetric about x = (1
2 , 0,

1
2 , )

T . �

Remark 3.4. A compactly supported M -refinable function φ must be a
M -refinable function (i.e., 2-refinable), and satisfy φ̂(ξ) 6= 0 for a.e. ξ ∈
R3. If φ is real-valued and symmetric about c

2 , then c ∈ Z3. For any φ
compactly supported, M -refinable, real-valued and symmetric about some
c ∈ Z3, one may take a reasonable integer shift so that the shifted version
is symmetric about x = (0, 0, 0)T , or x = (1

2 , 0, 0)T , or x = (0, 1
2 , 0)T , or

x = (0, 0, 1
2)T , or x = (1

2 ,
1
2 , 0)T , or x = (1

2 , 0,
1
2)T , or x = (0, 1

2 ,
1
2)T ,

or x = (1
2 ,

1
2 ,

1
2)T , and preserve other properties. So the assumption of

Theorem 3.3 on φ is reasonable.

Theorem 3.5. Under the assumptions of Theorem 3.1, suppose

H0(ξ) =
(
1− θ1 sin2 ξ1

2
− θ2 sin2 ξ2

2
− (1− θ1 − θ2) sin2 ξ3

2

)N
L(ξ)

for some positive integer N and some Laurent polynomial
L(ξ), 0 ≤ θ1, θ2, θ1 + θ2 ≤ 1. Then

∫
R3

xαψ(x)dx = 0

for |α| ≤ N − 1, where |α| = |α1| + |α2| + |α3| for α = (α1, α2, α3) ∈
Z3, αi ≥ 0, xα = xα1

1 xα2
2 xα3

3 for x ∈ R3.
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Proof. Since ψ⊥V0, we have

0 =
∑
n∈Z3

ψ̂(·+ 2πn)φ̂(·+ 2πn)

=
∑

k=MT l,l∈Z3

H1(M−T (·+ 2πk))H0(M−T (·+ 2πk))|φ̂(M−T (·+ 2πk))|2

+
∑

k=MT l+(1,0,0)T ,l∈Z3

{H1(M−T (·+ 2πk))H0(M−T (·+ 2πk))

·|φ̂(M−T (·+ 2πk))|2}
=

∑
l∈Z3

H1(M−T ·+2πl)H0(M−T ·+2πl)|φ̂(M−T ·+2πl)|2

+
∑
l∈Z3

{
H1(M−T ·+2πl + (π,−π,−π)T )

H0(M−T·+2πl + (π,−π,−π)T ) · |φ̂(M−T·+2πl +(π,−π,−π)T )|2
}

=
∑
l∈Z3

H1(M−T ·)H0(M−T ·)|φ̂(M−T ·+2πl)|2

+
∑
l∈Z3

{H1(M−T ·+(π,−π,−π)T )zH0(M−T ·+(π,−π,−π)T )

·|φ̂(M−T ·+2πl + (π,−π,−π)T )|2}
= H1(M−T ·)F (M−T ·)

+H1(M−T ·+(π,−π,−π)T )F (M−T ·+(π,−π,−π)T ),

where H1(·) = 1√
2

∑
n∈Z3

gne
−in·, F (·) = H0(·)

∑
l∈Z3

|φ̂(·+ 2πl)|2.

It follows that

H1(·)F (·) = −H1(·+ (π,−π,−π)T )F (·+ (π,−π,−π)T )

and consequently,

∑
0≤l≤α

(
α

l

)
DlH1(0)Dα−lF (0) =

−
∑

0≤l≤α

(
α

l

)
DlH1((π,−π,−π)T )Dα−lF ((π,−π,−π)T )(3.1)
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for |α| ≤ N−1, where 0 ≤ l ≤ αmeans that 0 ≤ li ≤ αi, i = 1, 2, 3,
(
α
l

)
=(

α1

l1

)(
α2

l2

)(
α3

l3

)
, and Dlf(x1, x2, x3) = ∂lf(x1,x2,x3)

∂x
l1
1 ∂x

l2
2 ∂x

l3
3

for l = (l1, l2, l3), α =

(α1, α2, α3) ∈ Z3.
When |α| = 0, α = (0, 0, 0). It follows from (3.1) that

H1(0)F (0) = −H1((π,−π,−π)T )F ((π,−π,−π)T ) = 0.

Since φ has stable integer shifts, which leads to |H0(ξ)|2 + |H0(ξ +
(π,−π,−π)T )|2 6= 0, and H0((π,−π,−π)T ) = 0, we have F (0) 6= 0.
Hence

H1(0) = 0.

When |α| = 1, α = (1, 0, 0), or α = (0, 1, 0), or α = (0, 0, 1). For
α = (0, 0, 1), it follows (3.1) that D(0,0,1)H1(0)F (0) = 0, which implies

D(0,0,1)H1(0) = 0.

Analogously,
D(0,1,0)H1(0) = 0,

and
D(1,0,0)H1(0) = 0.

Assume that DαH1(0) = 0 for |α| ≤ s < N − 1, then, for any α with
|α| = s+ 1 ≤ N − 1, using (3.1), we have

DαH1(0)F (0) =−
∑

0≤l≤α

(
α

l

)
DlH1((π,−π,−π)T )Dα−lF ((π,−π,−π)T ).

Therefore,

DαH1(0) = 0, |α| ≤ N − 1.(3.2)

Since ψ̂(ξ) = H1(M−T ξ)φ̂(M−T ξ), define

η = (η1, η2, η3)T = (
ξ1 − ξ2 − ξ3

2
, ξ2,

−ξ1 − ξ2 + ξ3
2

)T ,

H2(ξ) = H1(M−T ξ), G(ξ) = φ̂(M−T ξ).

Then ψ̂(ξ) = H1(η)G(ξ) = H2(ξ)G(ξ). Hence, for |α| ≤ N − 1, we have

Dαψ̂(ξ) =
∑

0≤l≤α

(
α

l

)
DlH2(ξ)Dα−lG(ξ).(3.3)
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It is easy to check that, for any l with |l| ≤ N − 1, DlH2(ξ) can be
represented as a linear combination of DsH1(η) with |s| = |l|. Since
η = 0 for ξ = 0, it follows from (3.2) and (3.3), we have

DlH2(0) = 0, |l| ≤ N − 1.

This together with (3.3) yields that

Dαψ̂(0) = 0, |α| ≤ N − 1.

Therefore,∫
R3 xαψ(x)dx = 0, |α| ≤ N − 1. �

Analogously, we have

Theorem 3.6. Under the assumptions of Theorem 3.1, suppose

H0(ξ) =
(1 + θ1e

−iξ1 + θ2e
−iξ2 + (1− θ1 − θ2)e−iξ3

2

)N
L(ξ)

for some positive integer N and Laurent polynomial L(ξ), 0 ≤ θ1, θ2, θ1+
θ2 ≤ 1. Then ∫

R3

xαψ(x)dx = 0, |α| ≤ N − 1,

where α = (α1, α2, α3) ∈ Z3, α ≥ 0.

Remark 3.7. For Theorem 3.5 and 3.6, the parameters θ1 and θ2 can
be choose adaptively in [0,1] according to the actual needs.

Corollary 3.8. Under the assumptions of Theorem 3.1, suppose

H0(ξ) =
[
1− 1

3
(sin2 ξ1

2
+ sin2 ξ2

2
+ sin2 ξ3

2
)
]N
L(ξ)

for some positive integer N and some Laurent polynomial L(ξ). Then∫
R3

xαψ(x)dx = 0

for |α| ≤ N − 1, where |α| = |α1| + |α2| + |α3| for α = (α1, α2, α3) ∈
Z3, αi ≥ 0, xα = xα1

1 xα2
2 xα3

3 for x ∈ R3.

Corollary 3.9. Under the assumptions of Theorem 3.1, for j = 1, 2, 3,
suppose that

H0(ξ) = (
1 + e−iξj

2
)NLj(ξ)

for some positive integer N and some Laurent polynomial Lj(ξ). Then∫
R3

xα
j ψ(x)dx = 0,



50 Lan, Zhengxing and Yongdong

for 0 ≤ α ≤ N − 1.

Remark 3.10. The assumptions on H0 in Corollary 3.8 and 3.9 is
reasonable, which can be seen in [6].

Theorem 3.11. Suppose P1 =

 1 0 0
k1 1 0
l1 2m1 1

 , P2 =

 1 2m2 k2

0 1 l2
0 0 1

,
P3 = P (l, k), where ki+li are even numbers, ki, li,mi ∈ Z, i=1, 2, P(l,k)
is the elementary matrix obtained from the identity matrix by interchang-
ing the lth and kth rows. Let

M̃ = (P1P2P3)−1MP1P2P3.

Then
(1) M̃3 = 2I;

(2)
3∑

i=1
M̃ij is even numbers, j = 1, 2, 3.

Furthermore, trivariate nonseparable compactly supported wavelets with
dilation matrix M̃ can be constructed by our method, and wavelets in-
herits the symmetry of the corresponding scaling function and satisfies
the vanishing moment condition originating in the symbols of the scaling
function.

Remark 3.12. Using matrix multiplication and matrix properties and
the proof of Theorem 3.1, 3.3 and 3.5, it is easy to prove Theorem 3.11.

4. Numerical example

In this section, we give an example to demonstrate the general theory
of section 3.

Example 4.1. Let

φ(·) =


(1− |x1 + x2 − x3|)(1− |x2 + x3|)(1− |x2|), |x2| ≤ 1,

|x2 + x3| ≤ 1,
|x1 − x3| ≤ 1,

0 otherwise.

Vj = span{φj,k : k ∈ Z3} for j ∈ Z.
Then

(1) {Vj}j∈Z is an MRA related to M with φ(x) being a corresponding
scaling function.
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(2) Let W0 be the orthogonal complement of V0 in V1. Define

ψ(·) =
√

2
∑
n∈Z3

(−1)n1+n2+n3〈φ1,(1,0,0)T−n, φ〉φ(M · −n).

Then {ψ(· − n) : n ∈ Z3} is a Riesz basis for W0, and ψ is symmetric
about x = (1

2 , 0,
1
2)T , and

∫
R3

ψ(x)dx =
∫
R3

x1ψ(x)dx = 0.

Proof. (1) By computation, we obtain that

φ̂(ξ) = −e
−i(4ξ1−ξ2+2ξ3)(ei(ξ1+ξ3) − 1)2(eiξ1 − 1)2(ei(2ξ1−ξ2+ξ3) − 1)2

ξ21(ξ1 + ξ3)2(2ξ1 − ξ2 + ξ3)2
,

φ̂(M−T ξ) = −e
−i(3ξ1−4ξ2−ξ3)(eiξ1 − 1)2(ei(

1
2
ξ1− 1

2
ξ2− 1

2
ξ3) − 1)2

1
16(ξ1 − ξ2 − ξ3)2(ξ1 − ξ2)2

·(e
i 1
2
(3ξ1−5ξ2−ξ3) − 1)2

(3ξ1 − 5ξ2 − ξ3)2
.

It is easy to check that φ̂(ξ) = H0(M−T ξ)φ̂(M−T ξ), where

H0(ω) =
1
2

+
1
4
eiξ3 +

1
4
e−iξ3 = eiξ3(

1 + e−iξ3

2
)2, ξ ∈ R3.(4.1)

So φ is M -refinable, and thus 2-refinable. It follow that

⋃
j∈Z

Vj =
⋃
j∈Z

V3j and
⋂
j∈Z

Vj =
⋂
j∈Z

V3j .

Then applying [2] and [14], we have

⋂
j∈Z

Vj = {0} and
⋃
j∈Z

Vj = L2(R3).
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By simple computation, for ξ ∈ R3, we have∑
k∈Z3

|φ̂(ξ + 2πk)|2

=
1

8π3

[∑
k∈Z

(
2

ξ3 + 2πk
sin

ξ3 + 2πk
2

)4]

·

[∑
k∈Z

(
2

ξ1 + ξ3 + 2πk
sin

ξ1 + ξ3 + 2πk
2

)4]

·

[∑
k∈Z

(
2

ξ1 − ξ2 + 2ξ3 + 2πk
sin

ξ1 − ξ2 + 2ξ3 + 2πk
2

)4]
> 0.

Since φ is compactly supported,
∑

k∈Z3

|φ̂(ξ+2πk)|2 is continuous. Hence,

A ≤
∑

k∈Z3

|φ̂(ξ + 2πk)|2 ≤ B for some 0 < A < B < ∞, and thus

{φ(· − n) : n ∈ Z3} is a Riesz basis for V0. Note that φ is M−refinable.
This together with (4.1) yield that {Vj}j∈Z3 is an MRA related to M .

(2) For n ∈ Z3, let gn be defined as in Theorem 3.1, we obtain that∣∣∣ ∑
n∈Z3

(∑
l∈Z3

(−1)l1+l2+l3hlgMn+(1,0,0)T−l

)
e−inξ

∣∣∣2
which is nonzero in [−π, π]3 by some estimation with the help of Matlab.
Therefore, using Theorem 3.1, Theorem 3.3 and Corollary 3.9, {ψ(·−n) :
n ∈ Z3} is a Riesz basis for W0, ψ is symmetric about x = (1

2 , 0,
1
2)T ,

and
∫
R3 ψ(x)dx =

∫
R3 x3ψ(x)dx = 0. �
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