Bulletin of the Iranian Mathematical Society Vol. 38 No. 1 (2012), pp 55-84.

ON SKEW ARMENDARIZ AND SKEW QUASI-ARMENDARIZ MODULES

A. ALHEVAZ AND A. MOUSSAVI*

Communicated by Omid Ali Shehni Karamzadeh

ABSTRACT. Let α be an endomorphism and δ an α -derivation of a ring R. In this paper we study the relationship between an R-module M_R and the general polynomial module M[x] over the skew polynomial ring $R[x; \alpha, \delta]$. We introduce the notions of skew-Armendariz modules and skew quasi-Armendariz modules which are generalizations of α -Armendariz modules and extend the classes of non-reduced skew-Armendariz modules. An equivalent characterization of an α -skew Armendariz module is given. Some properties of this generalization are established, and connections of properties of a skew-Armendariz module M_R with those of $M[x]_{R[x;\alpha,\delta]}$ are investigated. As a consequence we extend and unify several known results related to Armendariz modules.

1. Introduction

Throughout this paper R denotes an associative ring with unity, α is a ring endomorphism and δ an α -derivation of R, that is, δ is an additive map such that $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$, for all $a, b \in R$. We denote $R[x; \alpha, \delta]$ the Ore extension (skew polynomial ring) whose elements are the polynomials over R, the addition is defined as usual and the multiplication subject to the relation $xa = \alpha(a)x + \delta(a)$ for any $a \in R$.

MSC(2010): Primary: 16S36; Secondary: 16E50.

Keywords: Skew polynomial ring, Baer module, Quasi-Baer module, Skew-Armendariz module, Skew quasi-Armendariz module.

Received: 20 June 2009, Accepted: 23 August 2010.

^{*}Corresponding author

^{© 2012} Iranian Mathematical Society.

⁵⁵

A ring R is called *Baer* (respectively, *quasi-Baer*) if the right annihilator of every nonempty subset (respectively, right ideal) of R is generated, as a right ideal, by an idempotent of R. Kaplansky [23], introduced the Baer rings to abstract various properties of rings of operators on a Hilbert space. Clark [13] introduced the quasi-Baer rings and used them to characterize a finite dimensional twisted matrix units semigroup algebra over an algebraically closed field. All modules are assumed to be unitary right modules. Let $ann_R(X) = \{r \in R \mid Xr = 0\}$, where X is a subset of a module M_R .

In [29], Lee and Zhou introduced Baer, quasi-Baer and p.p.-modules as follows:

(1) M_R is called *Baer* (respectively, *quasi-Baer*) if, for any subset (respectively, submodule) X of M, $ann_R(X) = eR$ where $e^2 = e \in R$.

(2) M_R is called *principally projective* (or simply *p.p.*) module (respectively, *principally quasi-Baer* (or simply *p.q.-Baer*) module) if, for any element $m \in M$, $ann_R(m) = eR$ (respectively, $ann_R(mR) = eR$) where $e^2 = e \in R$.

Clearly, a ring R is Baer (respectively, p.p. or quasi-Baer) if and only if R_R is Baer (respectively, p.p. or quasi-Baer) module. If R is a Baer (respectively, p.p. or quasi-Baer) ring, then for any right ideal I of R, I_R is Baer (respectively, p.p. or quasi- Baer) module. It is clear that Ris a right p.q.-Baer ring if and only if R_R is a p.q.-Baer module. Every submodule of a p.q.-Baer module is p.q.-Baer and every Baer module is quasi-Baer.

A ring is called *reduced* if it has no nonzero nilpotent elements and M_R is called *reduced* by Lee and Zhou [29] if, for any $m \in M$ and $a \in R$, ma = 0 implies $mR \cap Ma = 0$. Lee and Zhou have extended various results of reduced rings to reduced modules and Agayev et al. [1] introduced and studied abelian modules as a generalization of abelian rings.

Zhang and Chen [43] introduced the notion of α -skew Armendariz modules. Namely, an *R*-module M_R is called α -skew Armendariz, if for polynomials $m(x) = m_0 + m_1 x + \cdots + m_k x^k \in M[x]$ and f(x) = $b_0 + b_1 x + \cdots + b_n x^n \in R[x; \alpha], m(x)f(x) = 0$ implies $m_i \alpha^i(b_j) = 0$ for each $0 \leq i \leq k$ and $0 \leq j \leq n$. According to Lee and Zhou [29], a module M_R is called α -Armendariz if M_R is α -compatible and α -skew-Armendariz. If α is equal to the identity, then the above definition boils down to the standard notion of Armendariz module. Moreover, they proved that R is an α -skew Armendariz ring if and only if every flat right *R*-module is α -skew Armendariz. By [29], a module M_R is α -reduced if M_R is α -compatible and reduced.

The polynomial extensions of Baer, quasi-Baer, right p.q.-Baer and p.p.-rings and modules have been investigated by many authors [5-10, 15-21, 34-43]. Most of these have worked either with the case $\delta = 0$ and α an automorphism or the case where α is the identity. With the impetus of quantized derivations, renewed interest in the general Ore extension $R[x; \alpha, \delta]$ has arisen during the last few years.

In this paper, we study the relationship between an R-module M_R and the general polynomial module M[x] over the skew polynomial ring $R[x; \alpha, \delta]$. We introduce the notions of skew-Armendariz modules and skew quasi-Armendariz modules which are generalizations of α -skew Armendariz modules [43] and α -reduced modules [29]. An equivalent characterization of an α -skew-Armendariz module is given, which is useful to simplify the proofs. Also new families of non-reduced skew-Armendariz modules are presented. Among other results, we show that there is a strong connection of the Baer, quasi-Baer and the p.p.-property of the two modules, respectively.

Furthermore, we show that for an endomorphism α and an α -derivation δ of a ring R, (1) A right R-module M_R is α -skew-Armendariz if and only if for polynomials $m(x) = m_0 + m_1 x + \cdots + m_k x^k \in M[x]$ and $f(x) = a_0 + a_1 x + \dots + a_n x^n$ in $R[x; \alpha], m(x)f(x) = 0$ implies $m_0 b_i = 0$ for each $0 \leq j \leq n$; (2) An α -compatible module M_R is reduced if and only if $M[x]/M[x](x^n)$ is an α -skew Armendariz module over $R[x]/(x^n)$ for any integer $n \geq 2$. This result shows that α -compatible reduced modules play so important roles in the study of skew-Armendariz modules (and hence skew-Armendariz rings) as that of reduced modules in the study of Armendariz modules. (3) An (α, δ) -compatible module M_R is quasi-Baer (respectively, p.q.-Baer) if and only if M[x] is a quasi-Baer (respectively, p.q.-Baer) module over $R[x; \alpha, \delta]$; (4) If M_R is skew-Armendariz with $R \subseteq M$, then M_R is Baer (respectively, p.p) if and only if M[x] is a Baer (respectively, p.p.-) module over $R[x; \alpha, \delta]$; (5) A necessary and sufficient condition for the trivial extension T(R, R) to be skew quasi-Armendariz is obtained. Examples to illustrate the concepts and results are included.

We also study the relations between the set of annihilators in M and the set of annihilators in $M[x]_{R[x;\alpha,\delta]}$. We give a sufficient condition for a module to be skew quasi-Armendariz and study the structure of the skew quasi-Armendariz modules. This work extends and unifies several known results related to Armendariz rings and modules, in particular the landmark results of Hong et al. [20, 21], parallels results of the second author and A.R. Nasr-Isfahani [35] on Ore extensions, and complements later results of E. Hashemi [16] and Zhang and Chen [43] to general polynomial modules over Ore polynomial extension $R[x; \alpha, \delta]$.

2. Skew-Armendariz Modules

In this section the notion of an skew-Armendariz module is introduced as a generalization of skew-Armendariz rings to modules and its properties are studied. We prove that many results of skew-Armendariz rings can be extended to modules with this general settings. We show that the notion of skew-Armendariz module generalizes that of α -skew Armendariz modules of Zhang and Chen [43] as well as α -Armendariz modules and α -reduced modules of Lee and Zhou [29]. Moreover we extend the classes of skew-Armendariz modules.

We will be working here with general right modules M_R rather than just R_R , and the restrictions on α and δ we require are best phrased as conditions on the module M_R that arise from the use of general α and δ . Let us formally define these conditions here:

From the Ore commutation law, an inductive argument can be made to calculate an expression for $x^j a$, for all $j \in \mathbb{N}$ and $a \in R$. To record this result, we shall use some convenient notation introduced in [3, 27]: **Notation**. Given α and δ as above and integers $j \ge i \ge 0$, let us write f_i^j for the sum of all "words" in α and δ in which there are ifactors of α and j - i factors of δ . For instance, $f_j^j = \alpha^j$, $f_0^j = \delta^j$, and $f_{j-1}^j = \alpha^{j-1}\delta + \alpha^{j-2}\delta\alpha + \cdots + \delta\alpha^{j-1}$.

Using recursive formulas for the f_i^j 's and induction, as done in [27], one can show with a routine computation that

(2.1)
$$x^{j}a = \sum_{i=0}^{j} f_{i}^{j}(a)x^{i},$$

for all $a \in R$, where $j \ge i \ge 0$. This formula uniquely determines a general product of (left) polynomials in $S = R[x; \alpha, \delta]$ and will be used freely in what follows. More generally, given a right *R*-module M_R , we

can form the polynomial module $M[x]_S$ over S as follows. Elements of M[x] have the form $\sum m_i x^i$ $(m_i \in M)$, and the action of S on such elements is basically dictated by (2.1), since it suffices to define the action of monomials of S on monomials in $M[x]_S$ via

$$(mx^{j})(ax^{l}) = m\sum_{i=0}^{j} f_{i}^{j}(a)x^{i+l}$$

for all $a \in R$ and $j, l \in \mathbb{N}$. It is readily verified that this makes M[x] into an S-module.

A ring R is called Armendariz if whenever polynomials $f(x) = a_0 + a_1x + \dots + a_nx^n$, $g(x) = b_0 + b_1x + \dots + b_mx^m \in R[x]$ satisfy f(x)g(x) = 0, then $a_ib_j = 0$ for each i, j. Following Anderson and Camillo [2], a module M_R is called Armendariz if, whenever m(x)f(x) = 0, where $m(x) = \sum_{i=0}^s m_i x^i \in M[x]$ and $f(x) = \sum_{j=0}^t a_j x^j \in R[x]$, we have $m_ia_j = 0$ for all i, j.

The term Armendariz was introduced by Rege and Chhawchharia [41]. This nomenclature was used by them since it was Armendariz [5], who initially showed that a reduced ring always satisfies this condition.

The more comprehensive study of Armendariz rings was carried out recently (see, e.g., [1-2, 5-6, 11-12, 15-22, 28-29]. The interest of this notion lies in its natural and useful role in understanding the relation between the annihilators of the ring R and the annihilators of the polynomial ring R[x]. The reason behind these is the fact that there is a natural bijection between the set of annihilators of R and the set of annihilators of R[x] (see Hirano, [19]).

In [21], C.Y. Hong, N.K. Kim and T.K. Kwak extended the Armendariz property of rings to skew polynomial rings $R[x; \alpha]$: For an endomorphism α of a ring R, R is called an α -skew Armendariz ring (or, a skew-Armendariz ring with the endomorphism α) if for polynomials $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ and $g(x) = b_0 + b_1 x + \cdots + b_m x^m$ in $R[x; \alpha]$, f(x)g(x) = 0 implies $a_i \alpha^i(b_j) = 0$ for each $0 \le i \le n$ and $0 \le j \le m$.

M. Başer in [6] studied relations between the set of annihilators in M_R and the set of annihilators in M[x]. In [43], Zhang and Chen extended a result of [42] and they showed that, a ring R is α -skew Armendariz if and only if every flat right R-module is α -skew Armendariz. Some other properties of Armendariz rings and modules have been studied in Armendariz [5], Rege and Chhawchharia [41], Rege and Buhphang [42], Anderson and Camillo [2], Hong et al. [20, 21], Kim and Lee [25], Chen and Tong [12], Hashemi and Moussavi [17, 18], Huh, Lee and Smoktunowicz [22], Lee and Zhou [29], Nasr-Isfahani and Moussavi [35-39] and some other authors.

According to Krempa [26], an endomorphism α of a ring R is called to be *rigid* if $a\alpha(a) = 0$ implies a = 0 for $a \in R$. A ring R is said to be α -rigid if there exists a rigid endomorphism α of R. Hong et al. [20], studied Ore extensions of Baer rings over α -rigid rings, and show that a ring R is α -rigid if and only if $R[x; \alpha, \delta]$ is reduced. Clearly a reduced ring is Baer if and only if it is quasi-Baer.

In [35], the second author and A.R. Nasr-Isfahani, introduced the concept of a skew-Armendariz ring and studied its properties. Our focus in this section is to introduce the concept of a skew-Armendariz module and study its properties. We prove that the notion of skew-Armendariz module generalizes that of α -skew Armendariz rings of Hong et al. [21] and Krempa's α -rigid rings [26] as well as that of the second author and A.R. Nasr-Isfahani's skew-Armendariz rings [35] to general polynomial modules over Ore polynomial extension $R[x; \alpha, \delta]$.

Definition 2.1. (Zhang and Chen [43]) Let R be a ring with an endomorphism α and M_R an R-module. A module M_R is called an α -skew Armendariz module, if for polynomials $m(x) = m_0 + m_1 x + \dots + m_k x^k \in$ M[x] and $f(x) = b_0 + b_1 x + \dots + b_n x^n \in R[x; \alpha], m(x)f(x) = 0$ implies $m_i \alpha^i(b_j) = 0$ for each $0 \le i \le k$ and $0 \le j \le n$.

Definition 2.2. Let R be a ring with an endomorphism α and α derivation δ . Let M_R be an R-module. We say that M_R is an (α, δ) -skew Armendariz module if, for polynomials $m(x) = m_0 + m_1 x + \cdots + m_k x^k \in$ M[x] and $f(x) = b_0 + b_1 x + \cdots + b_n x^n \in R[x; \alpha, \delta], m(x)f(x) = 0$ implies $m_i x^i b_j x^j = 0$ for each $0 \le i \le k$ and $0 \le j \le n$.

Notice that in the case when $\delta = 0$, the above definition boils down to the notion of α -skew Armendariz of Zhang and Chen [43].

Definition 2.3. Let R be a ring with an endomorphism α and α derivation δ . Let M_R be an R-module. We say that M_R is a skew-Armendariz module, if for polynomials $m(x) = m_0 + m_1 x + \dots + m_k x^k \in$ M[x] and $f(x) = b_0 + b_1 x + \dots + b_n x^n \in R[x; \alpha, \delta], m(x)f(x) = 0$ implies $m_0 b_j = 0$ for each $0 \leq j \leq n$.

It is clear that (α, δ) -skew Armendariz modules are skew-Armendariz, and each Armendariz module is α -skew Armendariz, where $\alpha = id_R$, and every submodule of a skew-Armendariz module is skew-Armendariz. It is also clear that R is a skew-Armendariz ring if R_R is an skew-Armendariz module. In [35], the second author and A.R. Nasr-Isfahani provided numerous examples of non-semiprime (and hence non-reduced) skew-Armendariz rings.

The following equivalent characterization of an α -skew-Armendariz module is useful to simplify the proofs of results in the context of Armendariz rings and modules. It is shown that our definition of a skew-Armendariz module is a generalization of Hong et al.'s α -skew Armendariz ring [21] and Zhang and Chen's α -skew Armendariz module [43], for the more general setting.

The following result shows that our definition of a skew-Armendariz module is a generalization of the notion of an α -skew-Armendariz module for the more general setting:

Theorem 2.4. Let M_R be a module and α an endomorphism of R. Then M_R is α -skew Armendariz if and only if for every polynomials $m(x) = m_0 + m_1 x + \dots + m_k x^k \in M[x]$ and $f(x) = b_0 + b_1 x + \dots + b_n x^n \in R[x; \alpha]$, m(x)f(x) = 0 implies $m_0 b_j = 0$ for each $0 \le j \le n$.

Proof. The forward direction is clear that if M_R is an α -skew Armendariz, then for every polynomials $m(x) = m_0 + m_1 x + \dots + m_k x^k \in M[x]$ and $f(x) = b_0 + b_1 x + \dots + b_n x^n \in R[x; \alpha], \ m(x)f(x) = 0$ implies $m_0 b_j = 0$ for each $0 \leq j \leq n$. For the backward direction, suppose that for every polynomials $m(x) = m_0 + m_1 x + \dots + m_k x^k \in M[x]$ and $f(x) = b_0 + b_1 x + \dots + b_n x^n \in R[x; \alpha], \ m(x)f(x) = 0$ implies $m_0 b_j = 0$ for each $0 \leq j \leq n$. We show that M_R is α -skew Armendariz. We have, $0 = (m_0 + m_1 x + \dots + m_k x^k)(b_0 + b_1 x + \dots + b_n x^n) = m_0(b_0 + b_1 x + \dots + m_k x^{k-1})(m_1 + m_2 x + \dots + m_k x^{k-1})x(b_0 + b_1 x + \dots + b_n x^n)$. So $(m_1 + m_2 x + \dots + m_k x^{k-1})(\alpha(b_0)x + \alpha(b_1)x^2 + \dots + \alpha(b_n)x^{n+1}) = 0$. Hence $m_1\alpha(b_j) = 0$ for each $0 \leq j \leq n$. Inductively, we can see that $m_i\alpha^i(b_j) = 0$ for each $0 \leq i \leq k$ and $0 \leq j \leq n$ and the result follows.

Corollary 2.5. A ring R with an endomorphism α is α -skew Armendariz if and only if for every polynomials $f(x) = a_0 + a_1x + \cdots +$ $a_k x^k$, $g(x) = b_0 + b_1 x + \dots + b_n x^n \in R[x; \alpha]$, f(x)g(x) = 0 implies $a_0 b_j = 0$ for each $0 \le j \le n$.

If we take $\alpha = id_R$, we deduce the following equivalent condition for a module to be Armendariz.

Corollary 2.6. A module M_R is Armendariz if and only if for every polynomials $m(x) = m_0 + m_1 x + \dots + m_k x^k \in M[x]$ and $f(x) = b_0 + b_1 x + \dots + b_n x^n \in R[x]$, m(x)f(x) = 0 implies $m_0b_j = 0$ for each $0 \le j \le n$.

Corollary 2.7. A ring R is Armendariz if and only if for every polynomials $f(x) = a_0 + a_1x + \dots + a_nx^n$, $g(x) = b_0 + b_1x + \dots + b_mx^m \in R[x]$, f(x)g(x) = 0 implies $a_0b_j = 0$ for each $0 \le j \le m$.

Definition 2.8. Let R be a ring with an endomorphism α and an α derivation δ . We say that M_R is a linearly skew-Armendariz module, if for linear polynomials $m(x) = m_0 + m_1 x \in M[x]$ and $g(x) = b_0 + b_1 x \in$ $R[x; \alpha, \delta], m(x)g(x) = 0$ implies $m_0b_0 = m_0b_1 = 0$.

It is clear that each skew-Armendariz module is linearly skew-Armendariz and that every submodule of a linearly skew-Armendariz module is also linearly skew-Armendariz.

By [12, Example 2.2], there exists an α -skew Armendariz ring R such that α is not a monomorphism and R is not a reduced ring:

Example 2.9. Let D be a domain and $R_n(D)$ a subring of $M_n(D)$, where $n \ge 2$ and

$$R_n(D) := \left\{ \begin{pmatrix} a & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a & a_{22} & \cdots & a_{2n} \\ 0 & 0 & a & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in D \right\}.$$

Let α be an endomorphism of $R_n(D)$ such that

α	$\left(\right)$	$\begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}$	a_{12} a 0	$a_{13} \\ a_{22} \\ a$	 	$ \begin{array}{c} a_{1n} \\ a_{2n} \\ a_{3n} \\ \vdots \end{array} $	_	$\begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}$	$egin{array}{c} 0 \\ a \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ a \end{array}$	 	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	
		: 0	: 0	: 0	••. •••	$ \begin{array}{c} $	_	: 0	: 0	: 0	•••• ••••	$\left. \begin{array}{c} \vdots \\ a \end{array} \right)$	

Clearly, α is not a monomorphism and $R_n(D)$ is not a reduced ring. In [12, Example 2.2] it is proved that $R_n(D)$ is an α -skew Armendariz ring.

Let R be a subring of a ring S with $1_S \in R$ and $M_R \subseteq L_S$. Let α be an endomorphism and δ an α -derivation of S such that $\alpha(R) \subseteq R$ and $\delta(R) \subseteq R$. If L_S is (α, δ) -skew Armendariz, then M_R is also (α, δ) -skew Armendariz.

We can deduce the following result, using the definition of skew-Armendariz modules.

Proposition 2.10. Let α be an endomorphism and δ an α -derivation of a ring R. The class of skew-Armendariz modules is closed under submodules, direct products and direct sums.

Definition 2.11. (Annin, [3]) Given a module M_R , an endomorphism $\alpha : R \to R$ and an α -derivation $\delta : R \to R$, we say that M_R is α compatible if for each $m \in M$ and $r \in R$, we have $mr = 0 \Leftrightarrow m\alpha(r) = 0$. Moreover, we say M_R is δ -compatible if for each $m \in M$ and $r \in R$,
we have $mr = 0 \Rightarrow m\delta(r) = 0$. If M_R is both α -compatible and δ compatible, we say that M_R is (α, δ) -compatible.

The (α, δ) -compatibility condition on M_R is a natural, independently interesting condition from which we can derive a number of interesting properties, and it will be of invaluable service in the proof of our main results. After a few quick remarks about Definition 2.11, we will present some results on modules and annihilators in Ore extension rings that can be deduced for these (α, δ) -compatible modules. These fundamental properties of (α, δ) -compatible modules will lay the groundwork for our main results. **Remark 2.12.** (a) It is important to note that the α -compatibility assumption requires an "if and only if" while the δ -compatibility assumption is only a one-sided implication. The reason for the stronger assumption on α is that we will often need to consider the leading coefficient of an expression m(x)r, where $m(x) \in M[x]$ and $r \in R$, where by (2.1) will involve powers of α but will be free of δ . Finally, observe that in the classical case where $\delta = 0$, one never has the reverse implication to the δ -compatibility condition for a nonzero module M_R , so we certainly do not expect a two-sided implication for the condition on δ .

(b) If M_R is α -compatible (respectively, δ -compatible), then so is any submodule of M_R .

(c) If M_R is α -compatible (respectively, δ -compatible), then for all $i \geq 1$, M_R is α^i -compatible (respectively, δ^i -compatible).

The following lemma shows that the (α, δ) -compatibility property on a module M_R is inherited by the polynomial module M[x].

Lemma 2.13. [3, Lemma 2.16] A module M_R is (α, δ) -compatible if and only if the polynomial extension $M[x]_R$ is (α, δ) -compatible.

Lemma 2.14. The following are equivalent for a module M_R .

(i) M_R is reduced and (α, δ) -compatible;

(ii) The following conditions hold. For any $m \in M$ and $a \in R$,

- (a) ma = 0 implies mRa = 0,
- (b) ma = 0 implies $m\delta(a) = 0$,
- (c) ma = 0 if and only if $m\alpha(a) = 0$,
- (d) $ma^2 = 0$ implies ma = 0.

Proof. The proof is straightforward.

Lemma 2.15. Let M_R be an (α, δ) -compatible module. Let $m \in M$ and $a, b \in R$. Then we have the following:

(i) If ma = 0, then $m\alpha^{j}(a) = 0 = m\delta^{j}(a)$ for any positive integer j; (ii) If mab = 0, then $m\alpha(\delta^{j}(a))\delta(b) = 0 = m\alpha^{i}(\delta(a))\delta^{j}(b)$, and hence $ma\delta^{j}(b) = 0 = m\delta^{j}(a)b$ for any positive integer i, j; (iii) $ann_{R}(ma) = ann_{R}(m\alpha(a)) \subseteq ann_{R}(m\delta(a))$.

Proof. (i) This follows from section (c) of Remark 2.12. (ii) Suppose that mab = 0. Since M_R is δ -compatible, $ma\delta^j(b) = 0$ for each j.

Using α -compatibility of M_R , $m\alpha(ab) = 0$, so $m\alpha(a)b = 0$. Since M_R is δ -compatible, $m\alpha(a)\delta(b) = 0$.

Since M_R is δ -compatible, mab = 0 implies $0 = m\delta(a)b + m\alpha(a)\delta(b)$. By above, we deduce $m\delta(a)b = 0$.

Using α -compatibility of M_R , $m\alpha(\delta(a)b) = 0$ if and only if $m\alpha(\delta(a))\alpha(b) = 0$ if and only if $m\alpha(\delta(a))b = 0$. By δ -compatibility of M_R , we have $m\alpha(\delta(a))\delta(b) = 0$.

By above calculations, $m\delta(a)b = 0$ and by δ -compatibility of M_R , $0 = m\delta(\delta(a)b) = m\delta^2(a)b + m\alpha(\delta(a))\delta(b)$. So, $m\delta^2(a)b = 0$.

Therefore, inductively we get $m\delta^j(a)b = 0$ for each j. So, $ma\delta^j(b) = 0 = m\delta^j(a)b$. Also, we can similarly deduce that $m\alpha(\delta^j(a))\delta(b) = 0$. Now we show that mab = 0 implies that $m\alpha^i(\delta(a))\delta^j(b) = 0$. By above, $m\delta(a)b = 0$, and then α^i -compatibility of M_R implies $m\alpha^i(\delta(a)b) = 0$ and hence $m\alpha^i(\delta(a))\alpha^i(b) = 0$. Also using α^i -compatibility of M_R , it implies $m\alpha^i(\delta(a))b = 0$. Since M_R is δ^j -compatible, $m\alpha^i(\delta(a))\delta^j(b) = 0$. These computations imply the result.

(*iii*) Note that α -compatibility of M_R yields $m\alpha(a)b = 0 \Leftrightarrow m\alpha(a)\alpha(b) = 0 \Leftrightarrow m\alpha(ab) = 0 \Leftrightarrow mab = 0$ for all $a, b \in R$. It remains only to show that $ann_R(ma) \subseteq ann_R(m\delta(a))$. To see this, let mab = 0 for some $b \in R$. Using δ -compatibility, we get $0 = m\delta(ab) = m(\delta(a)b + \alpha(a)\delta(b)) = 0$. Since we have already concluded that $m\alpha(a)b = 0$, δ -compatibility implies that $m\alpha(a)\delta(b) = 0$, and hence $m\delta(a)b = 0$, as desired.

Lemma 2.16. Let M_R be an (α, δ) -compatible module and $m(x) = m_0 + \cdots + m_k x^k \in M[x]$ and $r \in R$. Then m(x)r = 0 if and only if $m_i r = 0$ for all $0 \le i \le k$.

Proof. Assume $m_i r = 0$ for all $0 \le i \le k$. An easy calculation using (2.1) shows that

(2.2)
$$m(x)r = \sum_{i=0}^{k} \left(\sum_{j=i}^{k} m_j f_i^j(r)\right) x^i.$$

By (α, δ) -compatibility of M_R , we have $m_j f_i^j(r) = 0$, for all i, j. Thus (2.2) yields m(x)r = 0. Conversely, assume that m(x)r = 0. We deduce from (2.2) that,

Alhevaz and Moussavi

(2.3)
$$\sum_{j=i}^{k} m_j f_i^j(r) = 0,$$

for each $i \leq k$.

Starting with i = k, Eq. (2.3) yields $m_k \alpha^k(r) = 0$ and hence $m_j f_i^{\mathcal{I}}(r) = 0$, for each j > i, by (α, δ) -compatibility of M_R . Using (2.3) again, we deduce that $m_i \alpha^i(r) = 0$, and that $m_i r = 0$ as desired.

Proposition 2.17. A module M_R is α -reduced if and only if the polynomial extension $M[x]_R$ is an α -reduced module.

Proof. It is enough to prove the forward direction. By Lemma 2.13, M_R is α -compatible if and only if $M[x]_R$ is α -compatible. Now assume that, M_R is reduced, to show that $M[x]_R$ is reduced, using Lemma 2.14, we only need to show that m(x)a = 0 implies m(x)Ra = 0 and $m(x)a^2 = 0$ implies m(x)a = 0, where $m(x) = \sum_{i=0}^{k} m_i x^i \in M[x]$ and $a \in R$. First let m(x)a = 0. Since M_R is reduced and $m_i a = 0$ for each i, $m_i Ra = 0$ for each i and hence m(x)Ra = 0. Now suppose $m(x)a^2 = 0$. Since M_R is reduced and $m_i a = 0$ for each i and hence m(x)Ra = 0. Thus $M[x]_R$ is reduced and the result follows by Lemma 2.14.

Notice that, the concept of α -reduced for the regular module R_R coincides with that of reduced and α -compatible ring R, which in this case R is indeed an α -rigid ring; and note also that, a ring R is α -rigid if and only if R is reduced and (α, δ) -compatible. So we deduce the following:

Corollary 2.18. A ring R is α -rigid if and only if $R[x]_R$ ($R[x; \alpha]$ or $R[x; \alpha, \delta]$) is an α -reduced R-module.

Theorem 2.19. Every (α, δ) -compatible and reduced module is skew-Armendariz.

Proof. Let $m(x) = m_0 + \cdots + m_k x^k \in M[x]$, $f(x) = a_0 + \cdots + a_n x^n \in R[x; \alpha, \delta]$ and m(x)f(x) = 0. So $m_k \alpha^k(a_n) = 0$, because it is the leading coefficient of m(x)f(x). By α -compatibility of M_R , we have $m_k a_n = 0$. By Lemma 2.14, $m_k Ra_n = 0$, and by (α, δ) -compatibility of M_R , $m_k f_i^j(a_n) = 0$. Thus the coefficient of x^{k+n-1} in the equation m(x)f(x) = 0 is $m_k \alpha^k(a_{n-1}) + m_{k-1} \alpha^{k-1}(a_n) = 0$. Multiplying by a_n from right we

get $m_{k-1}\alpha^{k-1}(a_n)a_n = 0$. Using α -compatibility repeatedly we obtain $m_{k-1}a_n^2 = 0$. Hence $m_{k-1}a_n = 0$, by Lemma 2.14. So $m_{k-1}Ra_n = 0$, by Lemma 2.14 and by (α, δ) -compatibility of M_R , $m_{k-1}f_i^j(a_n) = 0$. Therefore $m_k a_{n-1} = 0$. Continuing this process and using (α, δ) -compatibility of M_R , we obtain $m_i x^i a_j x^j = 0$ for each $0 \le i \le k$ and $0 \le j \le n$. Since (α, δ) -skew Armendariz modules are skew Armendariz, the result follows.

Zhang and Chen [43] proved that, for an endomorphism α of a ring R and $\alpha^{\ell} = id_R$ for some positive integer ℓ , M_R is α -reduced if and only if $M[x]/M[x](x^n)$ is an α -skew Armendariz module over $R[x]/(x^n)$ for integer $n \geq 2$. They also asked if the condition $\alpha^{\ell} = id_R$ superfluous.

For a right *R*-module M_R and $A = (a_{ij}) \in M_n(R)$, let $MA = \{(ma_{ij}) \mid m \in M\}$. For $n \geq 2$, let $V = \sum_{i=1}^{n-1} E_{i,i+1}$ where $\{E_{i,j} \mid 1 \leq i, j \leq n\}$ are the matrix units, and set $T(R,n) = RI_n + RV + \cdots + RV^{n-1}$, $T(M,n) = MI_n + MV + \cdots + MV^{n-1}$. Then T(R,n) is a ring and T(M,n) becomes a right module over T(R,n) under usual addition and multiplication of matrices. There is a ring isomorphism $\psi: T(R,n) \to R[x]/(x^n)$ given by $\psi(r_0I_n + r_1V + \cdots + r_{n-1}V^{n-1}) = r_0 + r_1x + \cdots + r_{n-1}x^{n-1} + (x^n)$ and an Abelian group isomorphism $\phi: T(M,n) \to M[x]/M[x](x^n)$ given by $\phi(m_0I_n + m_1V + \cdots + m_{n-1}V^{n-1}) = m_0 + m_1x + \cdots + m_{n-1}x^{n-1} + M[x](x^n)$ such that $\phi(WA) = \phi(W)\psi(A)$ for all $W \in T(M, n)$ and $A \in T(R, n)$.

Notice that

$$T(R,n) := \left\{ \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \\ 0 & a_0 & a_1 & \cdots & a_{n-2} \\ 0 & 0 & a_0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & a_1 \\ 0 & 0 & \cdots & 0 & a_0 \end{pmatrix} \mid a_i \in R \right\},$$

with $n \ge 2$, is a ring with point-wise addition and usual matrix multiplication. We can denote elements of T(R, n) by $(a_0, a_1, \ldots, a_{n-1})$.

Lee and Zhou [29] proved that for each integer $n \ge 2$, $M[x]/M[x](x^n)$ is an Armendariz right module over $R[x]/(x^n)$ if and only if M_R is reduced. In the following we generalize this to α -reduced modules.

Let α be an endomorphism of a ring R. Then the map $T(R, n) \rightarrow T(R, n)$ defined by $a_0I_n + a_1V + \cdots + a_{n-1}V^{n-1} \rightarrow \alpha(a_0)I_n + \alpha(a_1)V + \cdots + \alpha(a_{n-1})V^{n-1}$ is an endomorphism of T(R, n). Similarly it is easy to see that the map $R[x]/(x^n) \rightarrow R[x]/(x^n)$ defined by $a_0 + a_1x + \cdots + a_n + \cdots$

 $a_{n-1}x^{n-1} + (x^n) \to \alpha(a_0) + \alpha(a_1)x + \dots + \alpha(a_{n-1})x^{n-1} + (x^n)$ is an endomorphism of $R[x]/(x^n)$. We will also denote the two maps above by α .

The following result shows that α -compatible reduced modules play so important roles in the study of skew-Armendariz modules (and hence skew-Armendariz rings) as that of reduced rings in the study of Armendariz rings.

Theorem 2.20. An α -compatible module M_R is reduced if and only if $M[x]/M[x](x^n)$ is an α -skew Armendariz module over $R[x]/(x^n)$ for integer $n \geq 2$.

Proof. First assume that T(M, n) is an α -skew Armendariz module over T(R, n) and let ma = 0 for $a \in R$ and $m \in M$. Let $p(x) = (m, 0, \ldots, 0) + (0, 0, \ldots, mr)x \in T(M, n)[x; \alpha], q(x) = (a, 0, \ldots, 0) - (0, 0, \ldots, r\alpha(a))x \in T(R, n)[x; \alpha]$ with p(x)q(x) = 0. Since T(M, n) is α -skew Armendariz, $(m, 0, \ldots, 0)(0, 0, \ldots, r\alpha(a)) = 0$ implies $mr\alpha(a) = 0$ for each $r \in R$. Hence $mR\alpha(a) = 0$ yields mRa = 0, because M_R is α -compatible. Thus M_R is reduced. Conversely, assume that M_R is reduced. Consider the following mapping

$$\begin{split} \varphi_1: T(M,n)[x;\alpha] &\to T(M[x;\alpha],n), \text{ be given by } \varphi_1(A_0+A_1x+\dots+A_kx^k) = (f_1,f_2,\dots,f_n), \text{ where } A_i = (a_{i1},a_{i2},\dots,a_{in}) \in T(M,n), f_i' = a_{0i'}+a_{1i'}x+\dots+a_{ki'}x^k \in M[x], \ 0 \leq i \leq k \text{ and } 1 \leq i' \leq n. \text{ Let } \\ \varphi_2: T(R,n)[x;\alpha] &\to T(R[x;\alpha],n), \text{ given by } \varphi_2(B_0+B_1x+\dots+B_lx^l) = (g_1,g_2,\dots,g_n), \text{ where } B_j = (b_{j1},b_{j2},\dots,b_{jn}) \in T(R,n), \ g_{j'} = b_{0j'}+b_{1j'}x+\dots+b_{lj'}x^l \in R[x;\alpha], \ 0 \leq j \leq l \text{ and } 1 \leq j' \leq n. \text{ It is } \\ \text{easy to see that } \varphi_1,\varphi_2 \text{ are isomorphisms. Suppose that } p = A_0+A_1x+\dots+A_tx^t \in T(M,n)[x;\alpha] \text{ and } q = B_0+B_1x+\dots+B_mx^m \in T(R,n)[x;\alpha], \text{ where } A_i = (a_{i1},a_{i2},\dots,a_{in}) \in T(M,n), \text{ for each } 0 \leq i \leq t \\ \text{ and } B_j = (b_{j1},b_{j2},\dots,b_{jn}) \in T(R,n) \text{ for each } 0 \leq j \leq m \text{ and let } p(x)q(x) = 0. \text{ Suppose that } p_i = a_{0i} + a_{1i}x + \dots + a_{ti}x^t \in M[x;\alpha] \text{ and } \\ q_j = b_{0j} + b_{1j}x + \dots + b_{mj}x^m \in R[x;\alpha], \text{ then } p_iq_j = 0 \text{ for } 1 \leq i \leq n \text{ and } 1 \leq j \leq n - i + 1. \text{ We then have the system of equations} \end{split}$$

$$\begin{array}{ll} (A_0) & a_{0i}b_{0j} = 0, \\ (A_1) & a_{0i}b_{1j} + a_{1i}\alpha(b_{0j}) = 0, \\ (A_2) & a_{0i}b_{2j} + a_{1i}\alpha(b_{1j}) + a_{2i}\alpha^2(b_{2j}) = 0, \\ \vdots \\ (A_{t+m-1}) & a_{(t-1)i}b_{mj} + a_{ti}\alpha^t(b_{(m-1)j}) = 0, \end{array}$$

$$(A_{t+m}) \quad a_{ti}\alpha^t(b_{mj}) = 0.$$

By (A_{t+m}) , we have $a_{ti}\alpha^t(b_{mj}) = 0$, which implies $a_{ti}b_{mj} = 0$, by α compatibility of M_R . Hence $a_{ti}Rb_{mj} = 0$. Multiplying (A_{t+m-1}) by b_{mj} from the right, (A_{t+m-1}) becomes $a_{(t-1)i}b_{mj}^2 + a_{ti}\alpha^t(b_{(m-1)j})b_{mj} = 0$. Since $a_{ti}Rb_{mj} = 0$, we get $a_{(t-1)i}b_{mj}^2 = 0$. But M_R is reduced, so $a_{(t-1)i}b_{mj} = 0$. Continuing this process, we have $a_{0i}b_{lj} = 0$, where $0 \leq l \leq m, 1 \leq i \leq n$ and $1 \leq j \leq n - i + 1$. This shows that $A_0B_s = 0$ for $0 \leq s \leq m$, proving that T(M, n) is α -skew Armendariz
module over T(R, n).

Corollary 2.21. [29, Theorem 1.9] A module M_R is reduced if and only if $M[x]/M[x](x^n)$ is an Armendariz module over $R[x]/(x^n)$ for an integer $n \ge 2$.

Next we recall a well-known result.

Proposition 2.22. Suppose that M is a flat right R-module. Then for every exact sequence $0 \to K \to F \to M \to 0$, where F is R-free, we have $(FI) \cap K = KI$ for each left ideal I of R; in particular, we have $Fa \cap K = Ka$ for each element a of R.

Proposition 2.23. Let α be an endomorphism of a ring R and δ an α -derivation. Then R is a skew-Armendariz ring if and only if every flat R module M is skew-Armendariz.

Proof. Let M be a flat R-module. Suppose $0 \to K \to F \to M \to 0$ is an exact sequence with F free over R. For an element $y \in F$, we denote $\bar{y} = y + K$ in M. Suppose that $f(x) = \sum_{i=0}^{t} \bar{y}_i x^i \in M[x]$ and $g(x) = \sum_{j=0}^{n} a_j x^j \in R[x; \alpha, \delta]$ with f(x)g(x) = 0. We show that $\bar{y}_0 a_j = 0$ for $0 \le j \le n$. We have f(x)g(x) = 0, so we get, The constant term: $\bar{y}_0 a_0 + \bar{y}_1 \delta(a_0) + \bar{y}_2 \delta^2(a_0) + \cdots = 0$; The coefficient of x: $\bar{y}_0 a_1 + \bar{y}_1 \alpha(a_0) + \bar{y}_1 \delta(a_1) + \cdots = 0$;

÷

The coefficient of x^{t+n} , $\bar{y}_t \alpha^t(a_n) = 0$.

Since *M* is a flat *R*-module, there exists an *R*-module homomorphism β : $F \to K$ such that β fixes these coefficients. Write $w_i := \beta(y_i) - y_i$ for $i = 0, 1, \ldots, t$. Each w_i is an element of *F*, therefore the polynomial $h(x) = \sum_{j=0}^{t} w_i x^i \in F[x]$ and h(x)g(x) = 0. Since *R* is skew-Armendariz and *F* is a free *R*-module, *F* is skew-Armendariz by Proposition 2.10. Thus, we have $w_0 a_j = 0$ for all *j*. It follows that $y_0 a_j \in K$ for all *j*, so $\overline{y_0} a_j = 0$

in M, proving that M is skew-Armendariz.

Put $Ann_R(2^{M_R}) = \{ann_R(U) \mid U \subseteq M_R\}$, where M_R is an *R*-module.

Theorem 2.24. Let M_R be an (α, δ) -compatible module and $S = R[x; \alpha, \delta]$. Then the following statements are equivalent:

(1) M_R is a skew-Armendariz module;

(2) The map $\psi : Ann_R(2^{M_R}) \to Ann_S(2^{M[x]_S})$, defined by $A \to AS$ for all $A \in Ann_R(2^{M_R})$, is bijective.

Proof. (1) \Rightarrow (2). Consider the maps ψ : $\{ann_R(U) \mid U \subseteq M_R\} \rightarrow$ $\{ann_S(U) \mid U \subseteq M[x]_S\}$ defined by $A \mapsto AS$ for every $A \in \{ann_R(U) \mid A \mapsto AS\}$ $U \subseteq M_R$, and $\psi' : \{ann_S(U) \mid U \subseteq M[x]_S\} \to \{ann_R(U) \mid U \subseteq M_R\}$ defined by $B \mapsto B \cap R$. It is clear that ψ is well defined, because $ann_R(U)S = ann_S(U)$ for each $U \subseteq M_R$. Since M_R is (α, δ) -compatible, we see that $ann_S(V) \cap R = ann_R(V_0)$ for each $V \subseteq M[x]_S$, where V_0 is the set of coefficients of all elements of V. Hence ψ' is also well defined. Since $\psi'\psi = id$, ψ is injective. Assume that $B \in \{ann_S(U) \mid U \subseteq$ $M[x]_S$, then $B = ann_S(J)$ for some $J \subseteq M[x]_S$. Let B_1 and J_1 denote the set of coefficients of elements of B and J, respectively. We claim that $ann_R(J_1) = B_1R$. Let $m(x) = m_0 + m_1x + \cdots + m_kx^k \in J$ and $f(x) = b_0 + b_1 x + \dots + b_n x^n \in B$. Then m(x)f(x) = 0. Since M_R is skew-Armendariz and (α, δ) -compatible, $m_i b_i = 0$ for all m_i and b_i . Thus $J_1B_1 = 0$, hence $B_1R \subseteq ann_R(J_1)$. Since M_R is (α, δ) -compatible, $ann_R(J_1) \subseteq B_1R$. Thus $ann_R(J_1) = B_1R$, and hence $ann_S(J) = B_1RS$. Therefore ψ is surjective.

 $(2) \Rightarrow (1)$. Let $m(x) = m_0 + m_1 x + \dots + m_k x^k \in M[x]_S$ and $f(x) = b_0 + b_1 x + \dots + b_n x^n \in S = R[x; \alpha, \delta]$ satisfy m(x)f(x) = 0. Then $f(x) \in ann_S(m(x)) = AS$, where $A = ann_R(U)$ and $U \subseteq M_R$. Hence $b_0, \dots, b_n \in A$ and so $m(x)b_j = 0$ for $0 \le j \le n$. Hence $m_0b_j = 0$ for each $0 \le j \le n$, and the result follows.

Theorem 2.25. If M_R is a linearly skew-Armendariz module with $R \subseteq M$, then for each idempotent $e \in R$, $\alpha(e) = e$ and $\delta(e) = 0$.

Proof. Since M_R is a linearly skew-Armendariz module with $R \subseteq M_R$, then R_R is also linearly skew-Armendariz. Hence by [35, Theorem 3.1], the result follows.

N. Agayev et al. [1] introduced and studied the notion of abelian modules:

A module M_R is called *abelian* if, for any $m \in M$ and any $a \in R$, any idempotent $e \in R$, mae = mea. It is proved in [1] that every Armendariz module and hence every reduced module is abelian. The class of abelian modules is closed under direct sums, and a ring R is abelian if and only if every flat R-module M_R is abelian.

Theorem 2.26. If M_R is a linearly skew-Armendariz module with $R \subseteq M$, then M_R is an abelian module.

Proof. Let M_R be a linearly skew-Armendariz module. Consider the polynomials $m_1(x) = me - mer(1-e)x$ and $m_2(x) = m(1-e) - m(1-e)rex \in M[x]_{R[x;\alpha,\delta]}$ and $f_1(x) = (1-e) + er(1-e)x$ and $f_2(x) = e + (1-e)rex \in R[x;\alpha,\delta]$, where e is an idempotent in $R, r \in R$ and $m \in M$. Since $\alpha(e) = e$ and $\delta(e) = 0$, we have $m_1(x)f_1(x) = 0$ and $m_2(x)f_2(x) = 0$. Since M_R is linearly skew-Armendariz, we get mere = mer and mere = mre. Thus mer = mre for each $r \in R$, and hence M_R is an abelian module.

Corollary 2.27. If M_R is a skew-Armendariz module with $R \subseteq M$, then M_R is an abelian module.

Theorem 2.28. Let M_R be a reduced module. Then M_R is a *p.p.-module if and only if* M_R *is a p.q.-Baer module.*

Proof. Since M_R is reduced, by Lemma 2.14, for each $m \in M$ and $a \in R$, ma = 0 implies mRa = 0. So $ann_R(m) \subseteq ann_R(mR)$ and hence $ann_R(m) = ann_R(mR)$.

Theorem 2.29. Let M_R be an (α, δ) -compatible and skew-Armendariz module with $R \subseteq M$. Then M_R is p.p. if and only if $M[x]_{R[x;\alpha,\delta]}$ is p.p.

Proof. Suppose that M_R is a p.p.-module and $m(x) = m_0 + m_1 x + \cdots + m_k x^k \in M[x]$. So $ann_R(m_i) = e_i R$ for idempotents $e_i \in R$ with $0 \leq i \leq k$. Set $e = e_0 e_1 \cdots e_k$, then e is an idempotent, this is because M_R is abelian by Corollary 2.27. Hence $eR = \bigcap_{i=0}^k ann_R(m_i)$. By Theorem 2.25, $\alpha(e) = e$ and $\delta(e) = 0$. Thus m(x)e = 0 and hence $eS \subseteq ann_S(m(x))$, where $S = R[x; \alpha, \delta]$. Next, assume that q(x) = 0

 $\sum_{j=0}^{n} b_j x^j \in ann_S(m(x))$. Since M_R is skew-Armendariz, $m_0 b_j = 0$ for $0 \leq j \leq n$. So $b_j \in eR$ and hence $q(x) \in eS$, so $ann_S(m(x)) = eS$. This shows that M[x] is a p.p.-module over $R[x; \alpha, \delta]$.

Conversely, suppose that M[x] is a p.p.-module over $R[x; \alpha, \delta]$ and $m \in M$. Let $e(x) = e_0 + e_1 x + \dots + e_n x^n$ be an idempotent in $R[x; \alpha, \delta]$. Then from e(1-e) = 0 = (1-e)e, we get $(e_0 + e_1 x + \dots + e_n x^n)(1-e_0 - e_1 x - \dots - e_n x^n) = 0$ and $(1-e_0 - e_1 x - \dots - e_n x^n)(e_0 + e_1 x + \dots + e_n x^n) = 0$. Since M_R is skew-Armendariz, $e_0(1-e_0) = 0$, $(1-e_0)e_i = 0$. So $e_0e_i = 0$, $e_i = e_0e_i$, and hence $e_i = 0$. Thus $e(x) = e_0^2 = e_0 \in R$, and $ann_S(m) = eS$, which yields $ann_R(m) = eR$ and the result follows.

Theorem 2.30. Let M_R be an (α, δ) -compatible skew-Armendariz module with $R \subseteq M$. Then M_R is Baer if and only if $M[x]_{R[x;\alpha,\delta]}$ is Baer.

Proof. Assume that M_R is a Baer module and $J \subseteq M[x]$. First suppose $J_0 = \{m \in M | m \text{ is a leading coefficient of some non-zero element of J}\}$. Clearly, J_0 is a subset of M. Since M_R is Baer, there exists $e^2 = e \in R$ such that $ann_R(J_0) = eR$. Hence $eS \subseteq ann_S(J)$ by Lemma 2.15. Let $f(x) = b_0 + b_1x + \cdots + b_nx^n \in ann_S(J)$. Then $J_0b_j = 0$ for each $j = 0, \ldots, n$, because M_R is skew-Armendariz. Hence $b_j = eb_j$ for each $j = 0, \ldots, n$ and $f(x) = ef(x) \in eS$. Thus $ann_S(J) = eS$ and $M[x]_S$ is a Baer module. Conversely, assume that $M[x]_S$ is a Baer module and $A \subseteq M$. Then $A[x] \subseteq M[x]$. Since M[x] is Baer, there exists an idempotent $e(x) = e_0 + \cdots + e_n x^n \in S$ such that $ann_S(A[x]) = e(x)S$. Hence $Ae_0 = 0$ and $e_0R \subseteq ann_R(A)$. Next, let $t \in ann_R(A)$. Then A[x]t = 0 by Lemma 2.16. Hence t = e(x)t and so $t = e_0t \in e_0R$. Thus $ann_R(A) = e_0R$ and M_R is a Baer module.

Example 2.31. Let F be a filed and $R = \begin{pmatrix} F & 0 \\ 0 & F \end{pmatrix}$ and let $M_R = \begin{pmatrix} F & 0 \\ 0 & F \end{pmatrix}$

 $\begin{pmatrix} F & 0 \\ F & 0 \end{pmatrix} be a right R-module. Let \alpha : R \to R be the automorphism given by \alpha \left(\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \right) = \begin{pmatrix} b & 0 \\ 0 & a \end{pmatrix}$, for each $a, b \in F$. Note that R is an abelian ring and M_R is an abelian module. But we see that M_R is not α -skew Armendariz. For this let $m(x) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} -2 & 0 \\ 0 & 0 \end{pmatrix} x \in$

$$M[x] and f(x) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} x \in R[x; \alpha]. Then, we can easily see that $m(x)f(x) = 0$. But we have, $m_0a_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \neq 0.$$$

McCoy [31, Theorem 2] proved that if R is a commutative ring, then whenever g(x) is a zero-divisor in R[x] there exists a nonzero $c \in R$ such that cg(x) = 0. We shall extend this result as follows.

Proposition 2.32. Let M_R be an (α, δ) -compatible and reduced module. If m(x) is a torsion element in M[x] (i.e., m(x)h(x) = 0 for some $0 \neq h(x) \in R[x; \alpha, \delta]$), then there exists a non-zero element c of R such that m(x)c = 0.

Proof. Let $m(x) = \sum_{i=0}^{n} m_i x^i \in M[x]$ and $h(x) = \sum_{j=0}^{s} h_j x^j \in R[x; \alpha, \delta]$ and m(x)h(x) = 0. Then $m_n \alpha^n(h_s) = 0$, and since M is α -compatible, we have $m_n h_s = 0$. By Lemma 2.14, we get $m_n R h_s = 0$. Since M_R is (α, δ) -compatible, it is (α^i, δ^j) -compatible for each i, j and hence $m_n f_i^j(h_s) = 0$ for each $j \ge i \ge 0$. Hence the coefficient of x^{n+s-1} in m(x)h(x) = 0 is $m_n \alpha^n(h_{s-1}) + m_{n-1} \alpha^{n-1}(h_s) = 0$.

Multiply the above equation from right by h_s , we get $m_{n-1}\alpha^{n-1}(h_s)h_s = 0$. Using α -compatibility repeatedly, we obtain $m_{n-1}h_s^2 = 0$, and then by Lemma 2.14, we have $m_{n-1}h_s = 0$. Using Lemma 2.14 again, we have $m_{n-1}Rh_s = 0$, and by (α, δ) -compatibility of M_R , $m_{n-1}f_i^j(h_s) = 0$ for each $j \ge i \ge 0$. Hence the coefficient of x^{n+s-2} in m(x)h(x) = 0 is $m_n\alpha^n(h_{s-2}) + m_{n-1}\alpha^{n-1}(h_{s-1}) + m_nf_{n-1}^n(h_{s-1}) + m_{n-2}\alpha^{n-2}(h_s) = 0$. Multiplying the above equation from right by h_s , we get $m_{n-2}\alpha^{n-2}(h_s)h_s = 0$. Using α -compatibility repeatedly we obtain $m_{n-2}h_s^2 = 0$, and then by Lemma 2.14, we have $m_{n-2}h_s = 0$. Continuing this process we deduce that $m_jh_s = 0$ for each j. Since $h(x) \ne 0$ we may assume that $c = h_s \ne 0$. Then by Lemma 2.16, we get m(x)c = 0.

Corollary 2.33. Let M_R be an (α, δ) -compatible and reduced module. Then M_R is Baer (respectively, p.p.) if and only if so is $M[x]_{R[x;\alpha,\delta]}$.

Proof. This follows from Theorems 2.19, 2.29 and 2.30.

Corollary 2.34. Let R be an α -compatible and reduced ring. Then R is Baer (respectively, p.p.) if and only if $R[x; \alpha, \delta]$ is Baer (respectively, p.p.).

Proof. Since R_R is α -compatible and reduced, by definition, R is an α -rigid ring. Hence the result follows by Theorems 11 and 14 of [20].

Example 2.35. Let R_0 be a domain with characteristic 0 and let R be the polynomial ring $R_0[t]$. Let α be the automorphism of R which is invariant on R_0 and $\alpha(t) = -t$. For each fixed element $a \in R_0$, let δ be the derivation on R given by $\delta(at^n) = \begin{cases} at^{n-1} & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even.} \end{cases}$

Assume that $M := R_0 \oplus R_0 \oplus \cdots$. Then M is a right R module given by $(m_0, m_1, \cdots)r = (0, m_0k_0, m_1k_1, \cdots)$ for each $(m_0, m_1, \cdots) \in M$ and $r \in R$ and fixed non-zero integers k_0, k_1, k_2, \cdots . First we show that M_R is (α, δ) -compatible. It is enough to show that for each $0 \neq m \in M$, ann(m) = 0. Suppose that $(a_0, a_1, a_2, \cdots)(b_r t^r + b_{r+1} t^{r+1} + \cdots) = 0$, where $a_i, b_i \in R_0$ for each $i \in \mathbb{N}_0$ and $b_r \neq 0$. So we have

 $(0, 0, \cdots, 0, a_0 k_0 k_1 \cdots k_{r-1}, a_1 k_1 k_2 \cdots k_r, \cdots)(b_r + b_{r+1} t + \cdots) = 0.$

This implies that $a_0k_0k_1\cdots k_{r-1}b_r = 0$. Since R_0 is of characteristic 0, R is a domain. Since $b_r \neq 0$ and hence $k_0k_1\cdots k_{r-1}b_r \neq 0$, we get $a_0 = 0$. By induction we can see that $a_i = 0$ for each i. Now we show that M_R is (α, δ) -skew Armendariz. To see this let $m(x) = m_0+m_1x+\cdots+m_kx^k \in M[x]$ and $f(x) = b_0+b_1x+\cdots+b_nx^n \in R[x;\alpha,\delta]$

with
$$0 = m(x)f(x) = \sum_{p=0}^{k+n} \left(\sum_{i+l=p} \sum_{j=i}^{k} m_j f_i^j(b_l) \right) x^p$$
. So $m_k \alpha^k(a_n) = 0$

0. By α -compatibility of M_R , we have $m_k a_n = 0$. Since M_R is reduced module, $m_k R a_n = 0$. On the other hand, by (α, δ) -compatibility of M_R , $m_k f_i^j(a_n) = 0$. Thus the coefficient of x^{k+n-1} in equation m(x)f(x) = 0 is $m_k \alpha^k(a_{n-1}) + m_{k-1}\alpha^{k-1}(a_n) = 0$. Multiplying by a_n from right we get $m_{k-1}\alpha^{k-1}(a_n)a_n = 0$. Using α -compatibility repeatedly we obtain $m_{k-1}a_n^2 = 0$. Hence $m_{k-1}a_n = 0$. Since M_R is reduced, $m_{k-1}Ra_n = 0$, and by (α, δ) -compatibility of M_R , $m_{k-1}f_i^j(a_n) = 0$. Therefore $m_k a_{n-1} = 0$. Continuing this process and using (α, δ) -compatibility of M_R , we obtain $m_i x^i a_j x^j = 0$ for each $0 \le i \le k$ and $0 \le j \le n$, as desired.

In the following, we show by an example that the " (α, δ) -compatibility condition" in Lemma 2.16, is not superfluous.

Example 2.36. Let R_0 be a domain and $R = R_0[t_1, t_2]$, where t_1, t_2 are commuting indeterminates. Let α be the R_0 -automorphism defined by $\alpha(t_1) = t_2$ and $\alpha(t_2) = t_1$. Let M be the polynomial ring $R_0[t_1]$. Consider M to be a right R-module given by ordinary polynomial multiplication subject to the condition $Mt_2 = 0$. Then it is easy to see that M_R is not α -compatible. Now take $0 \neq m(x) = g_0(t_1) + g_1(t_1)x + \cdots + g_r(t_1)x^r \in$ M[x] and $t_2 \in R$. Then $0 = m(x)t_2 = g_0(t_1)t_2 + g_1(t_1)xt_2 + \cdots +$ $g_r(t_1)x^rt_2 = g_1(t_1)t_1x + g_3(t_1)t_1x^3 + \cdots$. Thus for odd integers i, $g_i(t_1)t_1 = 0$ which implies that $g_i(t_1) = 0$, as R_0 is a domain. But $0 \neq m(x)$, so for some even number j, $0 \neq g_j(t_1)$ and hence $g_j(t_1)t_2 \neq 0$ for some j.

3. Skew Quasi-Armendariz Modules

Following Hirano [19], a module M_R is called quasi-Armendariz if, whenever m(x)R[x]f(x) = 0, where $m(x) = \sum_{i=0}^{s} m_i x^i \in M[x]$ and $f(x) = \sum_{j=0}^{t} a_j x^j \in R[x]$, we have $m_i Ra_j = 0$ for all i, j.

In this section, we generalize the notions of quasi-Armendariz rings and quasi-Armendariz modules and consider the relations between the set of annihilators in M_R and the set of annihilators in $M[x]_{R[x;\alpha,\delta]}$.

We give a sufficient condition for a module to be skew quasi-Armendariz and study the structure of the skew quasi-Armendariz modules.

By Hirano in [19], a ring R is called a quasi-Armendariz ring if, whenever f(x)R[x]g(x) = 0 where $f(x) = a_0 + a_1x + \cdots + a_mx^m \in R[x]$ and $g(x) = b_0 + b_1x + \cdots + b_nx^n \in R[x]$, it implies that $a_iRb_j = 0$ for all iand j. Every semiprime ring is a quasi-Armendariz ring, by [19].

In [19], a module M_R is called a quasi-Armendariz module if whenever m(x)R[x]f(x) = 0, where $m(x) = m_0 + m_1x + \cdots + m_kx^k \in M[x]$ and $f(x) = b_0 + b_1x + \cdots + b_nx^n \in R[x]$, it implies that $m_iRb_j = 0$ for all i and j.

Definition 3.1. Let M_R be a module, α an endomorphism of R and δ an α -derivation. We say M_R is skew quasi-Armendariz, if whenever $m(x) = \sum_{i=0}^k m_i x^i \in M[x], f(x) = \sum_{j=0}^n b_j x^j \in R[x; \alpha, \delta]$ satisfy $m(x)R[x; \alpha, \delta]f(x) = 0$, we have $m_i x^i R x^t b_j x^j = 0$ for $t \geq 0$, $i = 0, 1, \ldots, k$ and $j = 0, 1, \ldots, n$.

Theorem 3.2. Let M_R be an α -compatible module and $S = R[x; \alpha]$. Then,

(1) The following statements are equivalent:

(a) for any $m(x) \in M[x]_S$, $(ann_S(m(x)S) \cap R)[x; \alpha] = ann_S(m(x)S)$.

(b) for any $m(x) = \sum_{i=0}^{k} m_i x^i \in M[x]_S$ and $f(x) = \sum_{j=0}^{t} a_j x^j \in S$,

m(x)Sf(x) = 0 implies $m_iRa_j = 0$, for each i, j.

(2) Let M_R be an skew quasi-Armendariz module and $m(x) \in M[x]_S$. If $ann_S(m(x)S) \neq 0$, then $ann_S(m(x)S) \cap R \neq 0$.

Proof. (1). (a) \Rightarrow (b) Let $m(x) = \sum_{i=0}^{k} m_i x^i \in M[x]_S$, $f(x) = \sum_{j=0}^{t} a_j x^j \in S$ and assume that m(x)Sf(x) = 0. By (a), $f(x) \in (ann_S(m(x)S) \cap R)[x;\alpha]$, and we deduce that $a_j \in ann_S(m(x)S) \cap R$ for each $0 \leq j \leq t$. So $m(x)Sa_j = 0$ and then by α -compatibility of M_R , we obtain $m_iRa_j = 0$ for each i, j.

(b) \Rightarrow (a) Let $g(x) = \sum_{j=0}^{s} b_j x^j \in (ann_S(m(x)S) \cap R)[x;\alpha]$, so $b_j \in ann_S(m(x)S) \cap R$. So $m(x)Sb_j = 0$ for each j and hence m(x)Sg(x) = 0. Thus $g(x) \in ann_S(m(x)S)$. Now assume that $h(x) = \sum_{j=0}^{k} c_j x^j \in ann_S(m(x)S)$. So m(x)Sh(x) = 0 and by (b) we get $m_iRc_j = 0$. By α -compatibility of M_R , $m(x)Rc_j = 0$. So $c_j \in ann_S(m(x)S) \cap R$ for each j and hence $h(x) \in (ann_S(m(x)S) \cap R)[x;\alpha]$. So $ann_S(m(x)S) = (ann_S(m(x)S \cap R))[x;\alpha]$.

(2). The proof follows by Lemma 2.15 and (1) $(b) \Rightarrow (a)$.

In the following result, we give relations between the set of annihilators in M_R and the set of annihilators in $M[x]_{R[x;\alpha]}$.

Theorem 3.3. Let M_R be an α -compatible module and $S = R[x; \alpha]$. Then the following statements are equivalent:

(1) M_R is a skew quasi-Armendariz module;

(2) The map ψ : $Ann_R(sub(M_R)) \rightarrow Ann_S(sub(M[x]_S))$, defined by $\psi(ann_R(N)) = ann_S(N) = ann_S(N[x])$ for all $N \in sub(M_R)$, is bijective, where $sub(M_R)$ and $sub(M[x]_S)$ denote the sets of submodules.

Proof. (1) \Rightarrow (2) Assume that M_R is skew quasi-Armendariz. Obviously ψ is injective. Therefore, it is enough to show ψ is surjective. Let $V \in sub(M[x]_S)$ and C_V denotes the set of all coefficients of elements of V. Then for $ann_R(C_VR) \in Ann_R(sub(M))$, we have $\psi(ann_R(C_VR)) = ann_S(C_VR) = ann_S(V)$. In fact, let $f(x) \in ann_S(C_VR)$. Then $C_VRf(x) = 0$ and hence Vf(x) = 0. So $f(x) \in ann_S(V)$. Conversely, let $g(x) = b_0 + \cdots + b_k x^k \in ann_S(V)$. Then Vg(x) = 0. Since V is a submodule of $M[x]_S$, VSg(x) = 0. So v(x)Sg(x) = 0 for all v(x) = 0.

 $v_0 + v_1 x + \cdots + v_l x^l \in V$. Since M_R is α -compatible and skew quasi-Armendariz, $v_i R b_j = 0$ for all i, j. Hence $C_V R g(x) = 0$ and therefore $g(x) \in ann_S(C_V R)$. Consequently ψ is surjective.

 $(2) \Rightarrow (1)$ Assume m(x)Sf(x) = 0, where $m(x) = m_0 + m_1x + \cdots + m_tx^t \in M[x]$ and $f(x) = a_0 + a_1x + \cdots + a_kx^k \in S$. By hypothesis, $ann_S(m(x)S) = ann_R(N)[x;\alpha]$ for some submodule N of M. Then $f(x) \in ann_R(N)[x;\alpha]$ and hence $a_j \in ann_R(N)$ for all j. So $a_j \in ann_R(N) \subseteq ann_R(N)[x;\alpha] = ann_S(m(x)S)$ and then $m(x)Sa_j = 0$. In particular $m(x)Ra_j = 0$ and hence $m_iRa_j = 0$ for all i, j. Since M_R is α -compatible, $m_ix^iRx^ta_jx^j = 0$, for $t \ge 0$, $i = 0, 1, \ldots, t$ and $j = 0, 1, \ldots, k$. Therefore M_R is skew quasi-Armendariz. \Box

Let *R* be a ring. The trivial extension of *R* is given by: $T(R,R) = \left\{ \begin{pmatrix} a & r \\ 0 & a \end{pmatrix} \mid a,r \in R \right\}.$ Clearly, T(R,R) is a subring of the ring of 2 × 2 matrices over *R*. The endomorphism α of *R* and the α -derivation δ on *R* are extended to $\bar{\alpha} : T(R,R) \to T(R,R)$ by $\bar{\alpha} \left(\begin{pmatrix} a & r \\ 0 & a \end{pmatrix} \right) = \begin{pmatrix} \alpha(a) & \alpha(r) \\ 0 & \alpha(a) \end{pmatrix}, \bar{\delta} \left(\begin{pmatrix} a & r \\ 0 & a \end{pmatrix} \right) = \begin{pmatrix} \delta(a) & \delta(r) \\ 0 & \delta(a) \end{pmatrix}.$ One can show that $\bar{\delta}$ is an $\bar{\alpha}$ -derivation on T(R,R) and also we can see $T(R,R)[x;\bar{\alpha},\bar{\delta}] \cong T(R[x;\alpha,\delta],R[x;\alpha,\delta]).$

Proposition 3.4. If the trivial extension of R, T(R, R), is skew-quasi Armendariz, then so is R.

Proof. Let $f(x) = a_0 + \cdots + a_n x^n$, $g(x) = b_0 + \cdots + b_m x^m \in R[x; \alpha, \delta]$ and $f(x)R[x; \alpha, \delta]g(x) = 0$. For each $a, r \in R$ and $t \ge 0$, we have the following equation:

 $0 = \begin{pmatrix} f(x) & 0 \\ 0 & f(x) \end{pmatrix} \begin{pmatrix} ax^t & rx^t \\ 0 & ax^t \end{pmatrix} \begin{pmatrix} 0 & g(x) \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & f(x)ax^tg(x) \\ 0 & 0 \end{pmatrix}.$ Since T(R, R) is skew quasi-Armendariz, it implies that $a_ix^iax^tb_jx^j = 0$, for each i, j, t. Therefore R is skew quasi-Armendariz. \Box

When the trivial extension T(R, R) is skew quasi-Armendariz?

Theorem 3.5. Let R be a ring such that

(i) R is skew quasi-Armendariz;

(ii) If $f(x)R[x; \alpha, \delta]g(x) = 0$, then $f(x)R[x; \alpha, \delta] \cap R[x; \alpha, \delta]g(x) = 0$. Then the trivial extension T = T(R, R) is skew quasi-Armendariz.

Proof. Suppose that $\alpha(x)T[x; \bar{\alpha}, \bar{\delta}]\beta(x) = 0$, where

Alhevaz and Moussavi

$$\begin{aligned} \alpha(x) &= \begin{pmatrix} a_0 & r_0 \\ 0 & a_0 \end{pmatrix} + \begin{pmatrix} a_1 & r_1 \\ 0 & a_1 \end{pmatrix} x + \dots + \begin{pmatrix} a_n & r_n \\ 0 & a_n \end{pmatrix} x^n \text{ and} \\ \beta(x) &= \begin{pmatrix} b_0 & s_0 \\ 0 & b_0 \end{pmatrix} + \begin{pmatrix} b_1 & s_1 \\ 0 & b_1 \end{pmatrix} x + \dots + \begin{pmatrix} b_m & s_m \\ 0 & b_m \end{pmatrix} x^m \in T[x; \bar{\alpha}, \bar{\delta}]. \\ \text{Let } f(x) &= a_0 + a_1 x + \dots + a_n x^n, r(x) = r_0 + r_1 x + \dots + r_n x^n, \\ g(x) &= b_0 + b_1 x + \dots + b_m x^m \text{ and } s(x) = s_0 + s_1 x + \dots + s_m x^m \in R[x; \alpha, \delta]. \\ \text{For each } \begin{pmatrix} a & r \\ 0 & a \end{pmatrix} x^t \in T[x; \bar{\alpha}, \bar{\delta}], \text{ it follows that} \\ 0 &= \begin{pmatrix} f(x) & r(x) \\ 0 & f(x) \end{pmatrix} \begin{pmatrix} ax^t & rx^t \\ 0 & ax^t \end{pmatrix} \begin{pmatrix} g(x) & s(x) \\ 0 & g(x) \end{pmatrix} = \\ \begin{pmatrix} f(x)ax^tg(x) & f(x)ax^ts(x) + f(x)rx^tg(x) + r(x)ax^tg(x) \\ 0 & f(x)ax^tg(x) \end{pmatrix}. \\ \text{Hence} \end{aligned}$$

(3.1)
$$f(x)ax^tg(x) = 0,$$

and

$$(3.2) f(x)ax^t s(x) + f(x)rx^t g(x) + r(x)ax^t g(x) = 0.$$

Since $\begin{pmatrix} a & r \\ 0 & a \end{pmatrix} x^t$ is an arbitrary element of $T(R, R)[x; \bar{\alpha}, \bar{\delta}]$ and $T(R, R)[x; \bar{\alpha}, \bar{\delta}] \cong T(R[x; \alpha, \delta], R[x; \alpha, \delta])$, by (3.1) we get

(3.3)
$$f(x)R[x;\alpha,\delta]g(x) = 0.$$

Since R is skew quasi-Armendariz, $a_i x^i R x^t b_j x^j = 0$, for all i, j, t. Thus by (3.2), $f(x)[ax^t s(x) + rx^t g(x)] + [r(x)ax^t]g(x) = 0$. Hence by (3.2) and (3.3), we have

$$\begin{split} &f(x)[ax^ts(x) + rx^tg(x)] = -[r(x)ax^t]g(x) \in f(x)R[x;\alpha,\delta] \cap R[x;\alpha,\delta]g(x) \\ &= 0. \quad \text{So} \ f(x)[ax^ts(x) + rx^tg(x)] = 0 = r(x)ax^tg(x), \text{ and hence we} \\ &\text{have} \ r(x)R[x;\alpha,\delta]g(x) = 0, \text{ since } ax^t \text{ is an arbitrary element. Thus} \\ &r_ix^iRx^tb_jx^j = 0 \text{ for all } i,j,t, \text{ since } R \text{ is skew quasi-Armendariz. Also we} \\ &\text{have} \ f(x)[ax^ts(x)] = -[f(x)rx^t]g(x) \in f(x)R[x;\alpha,\delta] \cap R[x;\alpha,\delta]g(x) = 0 \\ &0. \ \text{Thus} \ f(x)ax^ts(x) = 0. \text{ So we have} \ f(x)R[x;\alpha,\delta]s(x) = 0. \text{ Since } R \text{ is skew quasi-Armendariz, we deduce } a_ix^iRx^ts_jx^j = 0 \text{ for all } i,j,t. \text{ Hence} \\ & \left(\begin{array}{c} a_i & r_i \\ 0 & a_i \end{array}\right)x^i \left(\begin{array}{c} a & r \\ 0 & a \end{array}\right)x^t \left(\begin{array}{c} b_j & s_j \\ 0 & b_j \end{array}\right)x^j = \end{split}$$

$$\begin{pmatrix} a_i x^i a x^t b_j x^j & a_i x^i r x^t b_j x^j + a_i x^i r x^t b_j x^j + r_i x^i a x^t b_j x^j \\ 0 & a_i x^i a x^t b_j x^j \end{pmatrix} = 0 \text{ for all}$$

i, j and each $\begin{pmatrix} a & r \\ 0 & a \end{pmatrix} x^t \in T(R, R)$. Therefore the trivial extension T(R, R) is skew quasi-Armendariz.

Kerr [24] constructed an example of a commutative Goldie ring R whose polynomial ring R[x] has an infinite ascending chain of annihilator ideals.

Theorem 3.6. Let M_R be an skew quasi-Armendariz module. If M_R is (α, δ) -compatible, then M_R satisfies the ascending chain condition on annihilator of submodules if and only if so does $M[x]_S$, where $S = R[x; \alpha, \delta]$.

Proof. Assume that M_R satisfies the ascending chain condition on annihilator of submodules. Let $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$ be a chain of annihilator of submodules of $M[x]_S$. Then there exist submodules K_i of $M[x]_S$ such that $ann_S(K_i) = I_i$, for all $i \ge 1$ and $K_1 \supseteq K_2 \supseteq K_3 \supseteq \cdots$. Let $M_i = \{ \text{all coefficients of elements of } K_i \}$. Since M is skew quasi-Armendariz, M_i is submodule of M for all $i \geq 1$. Clearly $M_i \supseteq M_{i+1}$ for all $i \geq 1$. Thus $ann_R(M_1) \subseteq ann_R(M_2) \subseteq ann_R(M_3) \subseteq \cdots$. Since M_R satisfies the ascending chain condition on annihilator of submodules, there exists $n \geq 1$ such that $ann_R(M_i) = ann_R(M_n)$ for all $i \geq n$. We show that $ann_S(K_i) = ann_S(K_n)$ for all $i \geq n$. Let f(x) = $a_0 + a_1 x + \dots + a_m x^m \in ann_S(K_i)$. Then $M_i a_j = 0$ for $j = 0, \dots, m$, because M is skew quasi-Armendariz. Thus $M_n a_j = 0$ for $j = 0, \ldots, m$ and so $K_n f(x) = 0$ by Lemma 2.16. Therefore $ann_S(K_i) = ann_S(K_n)$ for all $i \geq n$ and $M[x]_S$ satisfies the ascending chain condition on annihilator of submodules. Now assume $M[x]_S$ satisfies the ascending chain condition on annihilator of submodules. Let $J_1 \subseteq J_2 \subseteq J_3 \subseteq \ldots$ be a chain of annihilator of submodules of M_R . Then there exist submodules M_i of M such that $ann_R(M_i) = J_i$ and $M_1 \supseteq M_2 \supseteq M_3 \supseteq \cdots$ for all $i \geq 1$. Hence $M_i[x]$ is a submodule of M[x] and $M_i[x] \supseteq M_{i+1}[x]$ and $ann_S(M_i[x]) \subseteq ann_S(M_{i+1}[x])$ for all $i \ge 1$. Since $M[x]_S$ satisfies the ascending chain condition on annihilator of submodules, there exists $n \geq 1$ such that $ann_S(M_i[x]) = ann_S(M_n[x])$ for all $i \geq n$. Since M is skew quasi-Armendariz, by a similar argument as used in the previous paragraph, one can show that $ann_R(M_i) = ann_R(M_n)$ for all $i \ge n$.

Following [3], the second author and E. Hashemi [17] introduced (α, δ) -compatible rings and studied its properties. A ring R is α -compatible if for each $a, b \in R$, ab = 0 if and only if $a\alpha(b) = 0$. Moreover, R is said to be δ -compatible if for each $a, b \in R$, ab = 0 implies $a\delta(b) = 0$. A ring R is (α, δ) -compatible if it is both α -compatible and δ -compatible. In this case, clearly the endomorphism α is injective. Also by [17, Lemma 2.2], a ring R is (α, δ) -compatible and reduced if and only if R is α -rigid in the sense of Krempa [26]. Thus the α -compatible ring is a generalization of α -rigid ring to the more general case where R is not assumed to be reduced.

Corollary 3.7. Let R be an (α, δ) -compatible and skew quasi-Armendariz ring. Then R satisfies the ascending chain condition on right annihilators if and only if so does $R[x; \alpha, \delta]$.

Corollary 3.8. [19, Corollary 3.3] Let R be an Armendariz ring. Then R satisfies the ascending chain condition on right annihilators if and only if so does R[x].

Theorem 3.9. Let M_R be an (α, δ) -compatible module. Then M_R is quasi-Baer (respectively, p.q.-Baer) if and only if $M[x]_{R[x;\alpha,\delta]}$ is quasi-Baer (respectively, p.q.-Baer). In this case M_R is skew quasi-Armendariz.

Proof. Assume M_R is quasi-Baer. First we shall prove that M_R is skew quasi-Armendariz. Suppose that $(m_0 + m_1 x + \cdots + m_k x^k)R[x; \alpha, \delta](b_0 + b_1 x + \cdots + b_n x^n) = 0$, with $m_i \in M, b_j \in R$. In particular case we have

(3.4) $(m_0 + m_1 x + \dots + m_k x^k) R(b_0 + b_1 x + \dots + b_n x^n) = 0.$

Thus $m_k Rb_n = 0$ and $b_n \in ann_R(m_k R)$. Then $m_k x^k R x^t b_n x^n = 0$, by Lemma 2.15. Since M_R is quasi-Baer, there exists $e_k^2 = e_k \in R$ such that $ann_R(m_k R) = e_k R$ and so $b_n = e_k b_n$. Replacing R by Re_k in (3.4) and using Lemma 2.15, we obtain $(m_0 + m_1 x + \dots + m_{k-1} x^{k-1}) Re_k (b_0 + b_1 x + \dots + b_n x^n) = 0$. Hence $m_{k-1} Re_k b_n = m_{k-1} Rb_n = 0$ and $b_n \in ann_R(m_{k-1}R)$. Then $m_{k-1} x^{k-1} Rx^t b_n x^n = 0$, by Lemma 2.15. Hence $b_n \in ann_R(m_k R) \cap ann_R(m_{k-1}R)$. Since M_R is quasi-Baer, there exists $f^2 = f \in R$ such that $ann_R(m_k R) = fR$ and so $b_n = fb_n$. If we put $e_{k-1} = e_k f$, then $e_{k-1} b_n = e_k fb_n = e_k b_n = b_n$ and $e_{k-1} \in ann_R(m_k R) \cap ann_R(m_{k-1}R)$. Next, replacing R by Re_{k-1} in (3.4), and using Lemma 2.15, we obtain $(m_0 + m_1 x + \dots + m_{k-2} x^{k-2}) Re_{k-1}(b_0 + m_k x^{k-1} x^{k-1}) Re_k (b_k x^{k-1} x^{k-1}) Re_k (b_k x$

 $b_1x + \cdots + b_nx^n$ = 0. Hence we have $m_{k-2}Re_{k-1}b_n = m_{k-2}Rb_n = 0$ and that $b_n \in ann_R(m_{k-2}R)$ and so $m_{k-2}x^{k-2}Rx^tb_nx^n = 0$, by Lemma 2.15. Continuing this process, we get $m_i x^i R x^t b_n x^n = 0$ for i = 0, ..., k. Using induction on k+n, we obtain $m_i x^i R x^t b_j x^j = 0$ for all i, j, t. Therefore M_R is skew quasi-Armendariz. Let J be a S-submodule of M[x]. Let $N = \{m \in M \mid m \text{ is a leading coefficient of some non-zero element of J}\}$ $\cup \{0\}$. Clearly, N is a submodule of M. Since M_R is quasi-Baer, there exists $e^2 = e \in R$ such that $ann_R(N) = eR$. Hence $eS \subseteq ann_S(J)$ by Lemma 2.15. Let $f(x) = b_0 + b_1 x + \dots + b_n x^n \in ann_S(J)$. Then $Nb_j = 0$ for each j = 0, ..., n, because M_R is skew quasi-Armendariz. Hence $b_j = eb_j$ for each $j = 0, \ldots, n$ and $f(x) = ef(x) \in eS$. Thus $ann_S(J) =$ eS and $M[x]_S$ is quasi-Baer. Now assume that $M[x]_S$ is quasi-Baer and I is a submodule of M. Then I[x] is a submodule of M[x]. Since M[x]is quasi-Baer, there exists an idempotent $e(x) = e_0 + \cdots + e_n x^n \in S$ such that $ann_S(I[x]) = e(x)S$. Hence $Ie_0 = 0$ and $e_0R \subseteq ann_R(I)$. Let $t \in ann_R(I)$. Then I[x]t = 0, by Lemma 2.16. Hence t = e(x)t and so $t = e_0 t \in e_0 R$. Thus $ann_R(I) = e_0 R$ and M_R is quasi-Baer.

It is clear that R is a right p.q.-Baer ring if and only if R_R is a p.q.-Baer module. But, there exists a p.q.-Baer right R-module such that R is not right p.q.-Baer.

Example 3.10. Let $R = Z_2[x]/(x^2)$, where $Z_2[x]$ is the polynomial ring over the field Z_2 of two elements and (x^2) is the ideal of $Z_2[x]$ generated by x^2 . It is easy to see that R is a quasi-Armendariz ring. Since right annihilator of $x + (x^2)$ is not generated by any idempotent, R is not a right p.q.-Baer ring. Now let $e = 1 + (x^2)$ and I = ReR. Then $e^2 = e$, and for each $a \in R$, $ann_R((a + I)R) = eR$. Therefore R/I is p.q.-Baer right R-module.

Corollary 3.11. [17, Corollary 2.8] Let R be an (α, δ) -compatible ring. Then R is quasi-Baer (respectively, right p.q.-Baer) if and only if $R[x; \alpha, \delta]$ is quasi-Baer (respectively, right p.q.-Baer). In this case R is a skew quasi-Armendariz ring.

Corollary 3.12. [9, Corollary 2.8] A ring R is quasi-Baer (respectively, right p.q.-Baer) if and only if R[x] is quasi-Baer (respectively, right p.q.-Baer).

Corollary 3.13. [20, Theorems 12, 15] Let R be an α -rigid ring. Then R is quasi-Baer (respectively, right p.q.-Baer) if and only if $R[x; \alpha, \delta]$ is quasi-Baer (respectively, right p.q.-Baer).

The following example shows that " (α, δ) -compatibility condition" on M_R in Theorem 3.9 is not superfluous.

Example 3.14. [5, Example 11] There is a ring R and a derivation δ of R such that $R[x; \delta]$ is a Baer (hence quasi-Baer) ring, but R is not quasi-Baer. In fact let $R = \mathbb{Z}_2[t]/(t^2)$ with the derivation δ such that $\delta(\bar{t}) = 1$ where $\bar{t} = t + (t^2)$ in R and $\mathbb{Z}_2[t]$ is the polynomial ring over the field \mathbb{Z}_2 of two elements. Consider the Ore extension $R[x; \delta]$. If we set $e_{11} = \bar{t}x, e_{12} = \bar{t}, e_{21} = \bar{t}x^2 + x$, and $e_{22} = 1 + \bar{t}x$ in $R[x; \delta]$, then they form a system of matrix units in $R[x; \delta]$. Now the centralizer of these matrix units in $R[x; \delta]$ is $\mathbb{Z}_2[x^2]$. Therefore $R[x; \delta] \cong M_2(\mathbb{Z}_2[x^2]) \cong M_2(\mathbb{Z}_2)[y]$, where $M_2(\mathbb{Z}_2)[y]$ is the polynomial ring over $M_2(\mathbb{Z}_2)$. So the ring $R[x; \delta]$ is a Baer ring, but R is not quasi-Baer.

Acknowledgments

We thank the referee for a very careful reading of the paper and many helpful comments and suggestions, which improved the presentation of the paper.

References

- N. Agayev, G. Gungoroglu, A. Harmanci and S. Halicioglu, Abelian modules, Acta Math. Univ. Comenian. 78 (2009), no. 2, 235–244.
- [2] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265–2272.
- [3] S. Annin, Associated and Attached Primes Over Noncommutative Rings, PhD Thesis, University of California, Berkeley, 2002.
- [4] S. Annin, Associated primes over Ore extension rings, J. Algebra Appl. 3 (2004), no. 2, 193–205.
- [5] E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18 (1974), 470–473.
- [6] M. Başer, On Armendariz and quasi-Armendariz modules, Note Mat. 26 (2006), no. 1, 173–177.
- [7] G. F. Birkenmeier, J. Y. Kim and J. K. Park, On quasi-Baer rings, Contemp. Math. 259 (2000), 67–92.
- [8] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2001), no. 2, 639–660.

- [9] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), no. 1, 25–42.
- [10] G. F. Birkenmeier, J. Y. Kim, J. K. Park, On polynomial extensions of principally quasi-Baer rings, *Kyungpook Math. J.* **40** (2000), no. 2, 247–253.
- [11] A. M. Buhphang and M. B. Rege, Semi-commutative modules and Armendariz modules, Arab J. Math. Sci. 8 (2002), no. 1, 53–65.
- [12] W. Chen and W. Tong, On skew Armendariz rings and rigid rings, Houston J. Math. 33 (2007), no. 2, 341–353.
- [13] W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417–423.
- [14] K.R. Goodearl and R. B. Warfield, An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, Cambridge, 1989.
- [15] J. Han, Y. Hirano and H. Kim, Semiprime Ore extensions, Comm. Algebra 28 (2000), no. 8, 3795–3801.
- [16] E. Hashemi, On δ-quasi Armendariz modules, Bull. Iranian Math. Soc. 33 (2007), no. 2, 15–26.
- [17] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207–224.
- [18] E. Hashemi, A. Moussavi and H. Haj Seyyed Javadi, Polynomial Ore extensions of Baer and p.p.-rings, Bull. Iranian Math. Soc. 29 (2003), no. 2, 65–86.
- [19] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45–52.
- [20] C.Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215–226.
- [21] C. Y. Hong, N. K. Kim and T. K. Kwak, On skew Armendariz rings, *Comm. Algebra* **31** (2003), no. 1, 103–122.
- [22] C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semicommutative rings, *Comm. Algebra* **30** (2002), no. 2, 751–761.
- [23] I. Kaplansky, Rings of Operators, Benjamin, New York, 1965.
- [24] J.W. Kerr, The polynomial ring over a Goldie ring need not be a Goldie ring, J. Algebra 134 (1990), no. 2, 344–352.
- [25] N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477–488.
- [26] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289–300.
- [27] T. Y. Lam, A. Leroy and J. Matczuk, Primeness, semiprimeness, and prime radical of Ore extensions, *Comm. Algebra* 25 (1997), no. 8, 2459–2506.
- [28] T. K. Lee and Y. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004), no. 6, 2287–2299.
- [29] T. K. Lee and Y. Zhou, Reduced modules. Rings, modules, algebras, and abelian groups, *Lect. Notes Pure Appl. Math.*, Marcel Dekker, New York **236** (2004), 365–377.
- [30] R. Manaviyat, A. Moussavi and M. Habibi, Principally quasi-Baer skew power series rings, *Comm. Algebra* 38 (2010), no. 6, 2164–2176.
- [31] N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286–295.

- [32] A. Moussavi, On the semiprimitivity of skew polynomial rings, Proc. Edinburgh Math. Soc. 36 (1993), no. 2, 169–178.
- [33] A. Moussavi and E. Hashemi, On the semiprimitivity of skew polynomial rings, Mediterr. J. Math. 4 (2007), no. 3, 375–381.
- [34] A. Moussavi and E. Hashemi, On (α, δ) -skew Armendariz rings, J. Korean Math. Soc. 42 (2005), no. 2, 353–363.
- [35] A.R. Nasr-Isfahani and A. Moussavi, Ore extensions of skew Armendariz rings, Comm. Algebra 36 (2008), no. 2, 508–522.
- [36] A. R. Nasr-Isfahani, A. Moussavi, On Ore extensions of quasi-Baer rings, J. Algebra Appl. 7 (2008), no. 2, 211–224.
- [37] A. R. Nasr-Isfahani, A. Moussavi, Baer and quasi-Baer differential polynomial rings, *Comm. Algebra* 36 (2008), no. 9, 3533–3542.
- [38] A. R. Nasr-Isfahani, A. Moussavi, On classical quotient rings of skew Armendariz rings, Int. J. Math. Math. Sci. (2007) Art. ID 61549.
- [39] A. R. Nasr-Isfahani, A. Moussavi, On Goldie prime ideals of Ore extensions, *Comm. Algebra* 38 (2010), no. 1, 1–10.
- [40] P. Pollingher and A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37 (1970), 127–138.
- [41] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14–17.
- [42] M. B. Rege and M. Buhphang, On reduced modules and rings, Int. Electron. J. Algebra 3 (2008), 58–74.
- [43] C.P. Zhang and J. L. Chen, α-skew Armendariz modules and α-semicommutative modules, *Taiwanese J. Math.* **12** (2008), no. 2, 473–486.

Abdollah Alhevaz

Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O. Box 14115-134, Tehran, Iran Email: a.alhevaz@yahoo.com and a.alhevaz@gmail.com.

Ahmad Moussavi

Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O. Box 14115-134, Tehran, Iran Email: moussavi.a@modares.ac.ir and moussavi.a@gmail.com.