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ON SKEW ARMENDARIZ AND SKEW
QUASI-ARMENDARIZ MODULES

A. ALHEVAZ AND A. MOUSSAVI∗

Communicated by Omid Ali Shehni Karamzadeh

Abstract. Let α be an endomorphism and δ an α-derivation of
a ring R. In this paper we study the relationship between an
R-module MR and the general polynomial module M [x] over the
skew polynomial ring R[x; α, δ]. We introduce the notions of skew-
Armendariz modules and skew quasi-Armendariz modules which
are generalizations of α-Armendariz modules and extend the classes
of non-reduced skew-Armendariz modules. An equivalent charac-
terization of an α-skew Armendariz module is given. Some proper-
ties of this generalization are established, and connections of prop-
erties of a skew-Armendariz module MR with those of M [x]R[x;α,δ]

are investigated. As a consequence we extend and unify several
known results related to Armendariz modules.

1. Introduction

Throughout this paper R denotes an associative ring with unity, α
is a ring endomorphism and δ an α-derivation of R, that is, δ is an
additive map such that δ(ab) = δ(a)b+α(a)δ(b), for all a, b ∈ R. We de-
note R[x;α, δ] the Ore extension (skew polynomial ring) whose elements
are the polynomials over R, the addition is defined as usual and the
multiplication subject to the relation xa = α(a)x+ δ(a) for any a ∈ R.
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A ring R is called Baer (respectively, quasi-Baer) if the right an-
nihilator of every nonempty subset (respectively, right ideal) of R is
generated, as a right ideal, by an idempotent of R. Kaplansky [23],
introduced the Baer rings to abstract various properties of rings of op-
erators on a Hilbert space. Clark [13] introduced the quasi-Baer rings
and used them to characterize a finite dimensional twisted matrix units
semigroup algebra over an algebraically closed field. All modules are as-
sumed to be unitary right modules. Let annR(X) = {r ∈ R | Xr = 0},
where X is a subset of a module MR.

In [29], Lee and Zhou introduced Baer, quasi-Baer and p.p.-modules
as follows:
(1) MR is called Baer (respectively, quasi-Baer) if, for any subset (re-
spectively, submodule) X of M , annR(X) = eR where e2 = e ∈ R.
(2) MR is called principally projective (or simply p.p.) module (respec-
tively, principally quasi-Baer (or simply p.q.-Baer) module) if, for any
element m ∈M , annR(m) = eR (respectively, annR(mR) = eR) where
e2 = e ∈ R.
Clearly, a ring R is Baer (respectively, p.p. or quasi-Baer) if and only
if RR is Baer (respectively, p.p. or quasi-Baer) module. If R is a Baer
(respectively, p.p. or quasi-Baer) ring, then for any right ideal I of R,
IR is Baer (respectively, p.p. or quasi- Baer) module. It is clear that R
is a right p.q.-Baer ring if and only if RR is a p.q.-Baer module. Every
submodule of a p.q.-Baer module is p.q.-Baer and every Baer module is
quasi-Baer.

A ring is called reduced if it has no nonzero nilpotent elements and
MR is called reduced by Lee and Zhou [29] if, for any m ∈ M and
a ∈ R, ma = 0 implies mR ∩Ma = 0. Lee and Zhou have extended
various results of reduced rings to reduced modules and Agayev et al. [1]
introduced and studied abelian modules as a generalization of abelian
rings.

Zhang and Chen [43] introduced the notion of α-skew Armendariz
modules. Namely, an R-module MR is called α-skew Armendariz, if
for polynomials m(x) = m0 + m1x + · · · + mkx

k ∈ M [x] and f(x) =
b0 + b1x + · · · + bnx

n ∈ R[x;α], m(x)f(x) = 0 implies miα
i(bj) = 0 for

each 0 ≤ i ≤ k and 0 ≤ j ≤ n. According to Lee and Zhou [29], a
module MR is called α-Armendariz if MR is α-compatible and α-skew-
Armendariz. If α is equal to the identity, then the above definition
boils down to the standard notion of Armendariz module. Moreover,
they proved that R is an α-skew Armendariz ring if and only if every
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flat right R-module is α-skew Armendariz. By [29], a module MR is
α-reduced if MR is α-compatible and reduced.

The polynomial extensions of Baer, quasi-Baer, right p.q.-Baer and
p.p.-rings and modules have been investigated by many authors [5-10,
15-21, 34-43]. Most of these have worked either with the case δ = 0
and α an automorphism or the case where α is the identity. With the
impetus of quantized derivations, renewed interest in the general Ore
extension R[x;α, δ] has arisen during the last few years.

In this paper, we study the relationship between an R-module MR

and the general polynomial module M [x] over the skew polynomial ring
R[x;α, δ]. We introduce the notions of skew-Armendariz modules and
skew quasi-Armendariz modules which are generalizations of α-skew Ar-
mendariz modules [43] and α-reduced modules [29]. An equivalent char-
acterization of an α-skew-Armendariz module is given, which is useful to
simplify the proofs. Also new families of non-reduced skew-Armendariz
modules are presented. Among other results, we show that there is a
strong connection of the Baer, quasi-Baer and the p.p.-property of the
two modules, respectively.

Furthermore, we show that for an endomorphism α and an α-derivation
δ of a ring R, (1) A right R-module MR is α-skew-Armendariz if and
only if for polynomials m(x) = m0 + m1x + · · · + mkx

k ∈ M [x] and
f(x) = a0 + a1x+ · · ·+ anx

n in R[x;α], m(x)f(x) = 0 implies m0bj = 0
for each 0 ≤ j ≤ n; (2) An α-compatible module MR is reduced if and
only if M [x]/M [x](xn) is an α-skew Armendariz module over R[x]/(xn)
for any integer n ≥ 2. This result shows that α-compatible reduced
modules play so important roles in the study of skew-Armendariz mod-
ules (and hence skew-Armendariz rings) as that of reduced modules in
the study of Armendariz modules. (3) An (α, δ)-compatible module MR

is quasi-Baer (respectively, p.q.-Baer) if and only if M [x] is a quasi-
Baer (respectively, p.q.-Baer) module over R[x;α, δ]; (4) If MR is skew-
Armendariz with R ⊆ M , then MR is Baer (respectively, p.p) if and
only if M [x] is a Baer (respectively, p.p.-) module over R[x;α, δ]; (5) A
necessary and sufficient condition for the trivial extension T (R,R) to be
skew quasi-Armendariz is obtained. Examples to illustrate the concepts
and results are included.

We also study the relations between the set of annihilators in M and
the set of annihilators in M [x]R[x;α,δ]. We give a sufficient condition for
a module to be skew quasi-Armendariz and study the structure of the
skew quasi-Armendariz modules. This work extends and unifies several
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known results related to Armendariz rings and modules, in particular
the landmark results of Hong et al. [20, 21], parallels results of the
second author and A.R. Nasr-Isfahani [35] on Ore extensions, and com-
plements later results of E. Hashemi [16] and Zhang and Chen [43] to
general polynomial modules over Ore polynomial extension R[x;α, δ].

2. Skew-Armendariz Modules

In this section the notion of an skew-Armendariz module is intro-
duced as a generalization of skew-Armendariz rings to modules and its
properties are studied. We prove that many results of skew-Armendariz
rings can be extended to modules with this general settings. We show
that the notion of skew-Armendariz module generalizes that of α-skew
Armendariz modules of Zhang and Chen [43] as well as α-Armendariz
modules and α-reduced modules of Lee and Zhou [29]. Moreover we
extend the classes of skew-Armendariz modules.

We will be working here with general right modules MR rather than
just RR, and the restrictions on α and δ we require are best phrased as
conditions on the module MR that arise from the use of general α and
δ. Let us formally define these conditions here:

From the Ore commutation law, an inductive argument can be made
to calculate an expression for xja, for all j ∈ N and a ∈ R. To record
this result, we shall use some convenient notation introduced in [3, 27]:
Notation. Given α and δ as above and integers j ≥ i ≥ 0, let us
write f j

i for the sum of all “words” in α and δ in which there are i
factors of α and j − i factors of δ. For instance, f j

j = αj , f j
0 = δj , and

f j
j−1 = αj−1δ + αj−2δα+ · · ·+ δαj−1.
Using recursive formulas for the f j

i ’s and induction, as done in [27],
one can show with a routine computation that

xja =
j∑

i=0

f j
i (a)xi,(2.1)

for all a ∈ R, where j ≥ i ≥ 0. This formula uniquely determines a
general product of (left) polynomials in S = R[x;α, δ] and will be used
freely in what follows. More generally, given a right R-module MR, we
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can form the polynomial module M [x]S over S as follows. Elements of
M [x] have the form

∑
mix

i (mi ∈ M), and the action of S on such
elements is basically dictated by (2.1), since it suffices to define the
action of monomials of S on monomials in M [x]S via

(mxj)(axl) = m

j∑
i=0

f j
i (a)xi+l

for all a ∈ R and j, l ∈ N. It is readily verified that this makes M [x]
into an S-module.

A ring R is called Armendariz if whenever polynomials f(x) = a0 +
a1x+· · ·+anx

n, g(x) = b0+b1x+· · ·+bmxm ∈ R[x] satisfy f(x)g(x) = 0,
then aibj = 0 for each i, j. Following Anderson and Camillo [2], a
module MR is called Armendariz if, whenever m(x)f(x) = 0, where
m(x) =

∑s
i=0mix

i ∈ M [x] and f(x) =
∑t

j=0 ajx
j ∈ R[x], we have

miaj = 0 for all i, j.
The term Armendariz was introduced by Rege and Chhawchharia [41].

This nomenclature was used by them since it was Armendariz [5], who
initially showed that a reduced ring always satisfies this condition.

The more comprehensive study of Armendariz rings was carried out
recently (see, e.g., [1-2, 5-6, 11-12, 15-22, 28-29]. The interest of this
notion lies in its natural and useful role in understanding the relation
between the annihilators of the ring R and the annihilators of the poly-
nomial ring R[x]. The reason behind these is the fact that there is a
natural bijection between the set of annihilators of R and the set of
annihilators of R[x] (see Hirano, [19]).

In [21], C.Y. Hong, N.K. Kim and T.K. Kwak extended the Armen-
dariz property of rings to skew polynomial rings R[x;α]: For an endo-
morphism α of a ring R, R is called an α-skew Armendariz ring (or,
a skew-Armendariz ring with the endomorphism α) if for polynomials
f(x) = a0 +a1x+ · · ·+anx

n and g(x) = b0 +b1x+ · · ·+bmx
m in R[x;α],

f(x)g(x) = 0 implies aiα
i(bj) = 0 for each 0 ≤ i ≤ n and 0 ≤ j ≤ m.

M. Başer in [6] studied relations between the set of annihilators in MR

and the set of annihilators in M [x]. In [43], Zhang and Chen extended
a result of [42] and they showed that, a ring R is α-skew Armendariz
if and only if every flat right R-module is α-skew Armendariz. Some
other properties of Armendariz rings and modules have been studied
in Armendariz [5], Rege and Chhawchharia [41], Rege and Buhphang
[42], Anderson and Camillo [2], Hong et al. [20, 21], Kim and Lee
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[25], Chen and Tong [12], Hashemi and Moussavi [17, 18], Huh, Lee
and Smoktunowicz [22], Lee and Zhou [29], Nasr-Isfahani and Moussavi
[35-39] and some other authors.

According to Krempa [26], an endomorphism α of a ring R is called
to be rigid if aα(a) = 0 implies a = 0 for a ∈ R. A ring R is said to be
α-rigid if there exists a rigid endomorphism α of R. Hong et al. [20],
studied Ore extensions of Baer rings over α-rigid rings, and show that
a ring R is α-rigid if and only if R[x;α, δ] is reduced. Clearly a reduced
ring is Baer if and only if it is quasi-Baer.

In [35], the second author and A.R. Nasr-Isfahani, introduced the con-
cept of a skew-Armendariz ring and studied its properties. Our focus in
this section is to introduce the concept of a skew-Armendariz module
and study its properties. We prove that the notion of skew-Armendariz
module generalizes that of α-skew Armendariz rings of Hong et al. [21]
and Krempa’s α-rigid rings [26] as well as that of the second author and
A.R. Nasr-Isfahani’s skew-Armendariz rings [35] to general polynomial
modules over Ore polynomial extension R[x;α, δ].

Definition 2.1. (Zhang and Chen [43]) Let R be a ring with an endo-
morphism α and MR an R-module. A module MR is called an α-skew
Armendariz module, if for polynomials m(x) = m0 +m1x+ · · ·+mkx

k ∈
M [x] and f(x) = b0 + b1x+ · · ·+ bnx

n ∈ R[x;α], m(x)f(x) = 0 implies
miα

i(bj) = 0 for each 0 ≤ i ≤ k and 0 ≤ j ≤ n.

Definition 2.2. Let R be a ring with an endomorphism α and α-
derivation δ. Let MR be an R-module. We say that MR is an (α, δ)-skew
Armendariz module if, for polynomials m(x) = m0 +m1x+ · · ·+mkx

k ∈
M [x] and f(x) = b0 +b1x+ · · ·+bnxn ∈ R[x;α, δ], m(x)f(x) = 0 implies
mix

ibjx
j = 0 for each 0 ≤ i ≤ k and 0 ≤ j ≤ n.

Notice that in the case when δ = 0, the above definition boils down
to the notion of α-skew Armendariz of Zhang and Chen [43].

Definition 2.3. Let R be a ring with an endomorphism α and α-
derivation δ. Let MR be an R-module. We say that MR is a skew-
Armendariz module, if for polynomials m(x) = m0 +m1x+ · · ·+mkx

k ∈
M [x] and f(x) = b0+b1x+ · · ·+bnxn ∈ R[x;α, δ], m(x)f(x) = 0 implies
m0bj = 0 for each 0 ≤ j ≤ n.
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It is clear that (α, δ)-skew Armendariz modules are skew-Armendariz,
and each Armendariz module is α-skew Armendariz, where α = idR, and
every submodule of a skew-Armendariz module is skew-Armendariz. It is
also clear that R is a skew-Armendariz ring if RR is an skew-Armendariz
module. In [35], the second author and A.R. Nasr-Isfahani provided
numerous examples of non-semiprime (and hence non-reduced) skew-
Armendariz rings.

The following equivalent characterization of an α-skew-Armendariz
module is useful to simplify the proofs of results in the context of Ar-
mendariz rings and modules. It is shown that our definition of a skew-
Armendariz module is a generalization of Hong et al.’s α-skew Armen-
dariz ring [21] and Zhang and Chen’s α-skew Armendariz module [43],
for the more general setting.

The following result shows that our definition of a skew-Armendariz
module is a generalization of the notion of an α-skew-Armendariz mod-
ule for the more general setting:

Theorem 2.4. Let MR be a module and α an endomorphism of R. Then
MR is α-skew Armendariz if and only if for every polynomials m(x) =
m0+m1x+· · ·+mkx

k ∈M [x] and f(x) = b0+b1x+· · ·+bnxn ∈ R[x;α],
m(x)f(x) = 0 implies m0bj = 0 for each 0 ≤ j ≤ n.

Proof. The forward direction is clear that if MR is an α-skew Armen-
dariz, then for every polynomials m(x) = m0+m1x+ · · ·+mkx

k ∈M [x]
and f(x) = b0 + b1x + · · · + bnx

n ∈ R[x;α], m(x)f(x) = 0 implies
m0bj = 0 for each 0 ≤ j ≤ n. For the backward direction, suppose
that for every polynomials m(x) = m0 +m1x+ · · ·+mkx

k ∈M [x] and
f(x) = b0 + b1x+ · · ·+ bnx

n ∈ R[x;α], m(x)f(x) = 0 implies m0bj = 0
for each 0 ≤ j ≤ n. We show that MR is α-skew Armendariz. We have,
0 = (m0 +m1x+ · · ·+mkx

k)(b0 + b1x+ · · ·+ bnx
n) =

m0(b0+b1x+· · ·+bnxn)+(m1+m2x+· · ·+mkx
k−1)x(b0+b1x+· · ·+bnxn).

So (m1 +m2x+ · · ·+mkx
k−1)(α(b0)x+α(b1)x2 + · · ·+α(bn)xn+1) = 0.

Hence m1α(bj) = 0 for each 0 ≤ j ≤ n. Inductively, we can see that
miα

i(bj) = 0 for each 0 ≤ i ≤ k and 0 ≤ j ≤ n and the result follows.
�

Corollary 2.5. A ring R with an endomorphism α is α-skew Armen-
dariz if and only if for every polynomials f(x) = a0 + a1x + · · · +
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akx
k , g(x) = b0 + b1x + · · · + bnx

n ∈ R[x;α], f(x)g(x) = 0 implies
a0bj = 0 for each 0 ≤ j ≤ n.

If we take α = idR, we deduce the following equivalent condition for
a module to be Armendariz.

Corollary 2.6. A module MR is Armendariz if and only if for every
polynomials m(x) = m0+m1x+· · ·+mkx

k ∈M [x] and f(x) = b0+b1x+
· · ·+ bnx

n ∈ R[x], m(x)f(x) = 0 implies m0bj = 0 for each 0 ≤ j ≤ n.

Corollary 2.7. A ring R is Armendariz if and only if for every polyno-
mials f(x) = a0 +a1x+ · · ·+anx

n , g(x) = b0 +b1x+ · · ·+bmxm ∈ R[x],
f(x)g(x) = 0 implies a0bj = 0 for each 0 ≤ j ≤ m.

Definition 2.8. Let R be a ring with an endomorphism α and an α-
derivation δ. We say that MR is a linearly skew-Armendariz module, if
for linear polynomials m(x) = m0 +m1x ∈M [x] and g(x) = b0 + b1x ∈
R[x;α, δ], m(x)g(x) = 0 implies m0b0 = m0b1 = 0.

It is clear that each skew-Armendariz module is linearly skew-Armen-
dariz and that every submodule of a linearly skew-Armendariz module
is also linearly skew-Armendariz.

By [12, Example 2.2], there exists an α-skew Armendariz ring R such
that α is not a monomorphism and R is not a reduced ring:

Example 2.9. Let D be a domain and Rn(D) a subring of Mn(D),
where n ≥ 2 and

Rn(D) :=




a a12 a13 · · · a1n

0 a a22 · · · a2n

0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a

 | a, aij ∈ D


.

Let α be an endomorphism of Rn(D) such that
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α




a a12 a13 · · · a1n

0 a a22 · · · a2n

0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a



 =


a 0 0 · · · 0
0 a 0 · · · 0
0 0 a · · · 0
...

...
...

. . .
...

0 0 0 · · · a

 .

Clearly, α is not a monomorphism and Rn(D) is not a reduced ring. In
[12, Example 2.2] it is proved that Rn(D) is an α-skew Armendariz ring.

Let R be a subring of a ring S with 1S ∈ R and MR ⊆ LS . Let α be
an endomorphism and δ an α-derivation of S such that α(R) ⊆ R and
δ(R) ⊆ R. If LS is (α, δ)-skew Armendariz, then MR is also (α, δ)-skew
Armendariz.

We can deduce the following result, using the definition of skew-
Armendariz modules.

Proposition 2.10. Let α be an endomorphism and δ an α-derivation
of a ring R. The class of skew-Armendariz modules is closed under sub-
modules, direct products and direct sums.

Definition 2.11. (Annin, [3]) Given a module MR, an endomorphism
α : R → R and an α-derivation δ : R → R, we say that MR is α-
compatible if for each m ∈M and r ∈ R, we have mr = 0 ⇔ mα(r) = 0.
Moreover, we say MR is δ-compatible if for each m ∈ M and r ∈ R,
we have mr = 0 ⇒ mδ(r) = 0. If MR is both α-compatible and δ-
compatible, we say that MR is (α, δ)-compatible.

The (α, δ)-compatibility condition on MR is a natural, independently
interesting condition from which we can derive a number of interesting
properties, and it will be of invaluable service in the proof of our main
results. After a few quick remarks about Definition 2.11, we will present
some results on modules and annihilators in Ore extension rings that
can be deduced for these (α, δ)-compatible modules. These fundamental
properties of (α, δ)-compatible modules will lay the groundwork for our
main results.
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Remark 2.12. (a) It is important to note that the α-compatibility as-
sumption requires an “if and only if” while the δ-compatibility assump-
tion is only a one-sided implication. The reason for the stronger assump-
tion on α is that we will often need to consider the leading coefficient
of an expression m(x)r, where m(x) ∈ M [x] and r ∈ R, where by (2.1)
will involve powers of α but will be free of δ. Finally, observe that in the
classical case where δ = 0, one never has the reverse implication to the
δ-compatibility condition for a nonzero module MR, so we certainly do
not expect a two-sided implication for the condition on δ.

(b) If MR is α-compatible (respectively, δ-compatible), then so is any
submodule of MR.

(c) If MR is α-compatible (respectively, δ-compatible), then for all
i ≥ 1, MR is αi-compatible (respectively, δi-compatible).

The following lemma shows that the (α, δ)-compatibility property on
a module MR is inherited by the polynomial module M [x].

Lemma 2.13. [3, Lemma 2.16] A module MR is (α, δ)-compatible if and
only if the polynomial extension M [x]R is (α, δ)-compatible.

Lemma 2.14. The following are equivalent for a module MR.
(i) MR is reduced and (α, δ)-compatible;
(ii) The following conditions hold. For any m ∈M and a ∈ R,

(a) ma = 0 implies mRa = 0,
(b) ma = 0 implies mδ(a) = 0,
(c) ma = 0 if and only if mα(a) = 0,
(d) ma2 = 0 implies ma = 0.

Proof. The proof is straightforward.
�

Lemma 2.15. Let MR be an (α, δ)-compatible module. Let m ∈M and
a, b ∈ R. Then we have the following:

(i) If ma = 0, then mαj(a) = 0 = mδj(a) for any positive integer j;
(ii) If mab = 0, then mα(δj(a))δ(b) = 0 = mαi(δ(a))δj(b), and hence

maδj(b) = 0 = mδj(a)b for any positive integer i, j;
(iii) annR(ma) = annR(mα(a)) ⊆ annR(mδ(a)).

Proof. (i) This follows from section (c) of Remark 2.12.
(ii) Suppose that mab = 0. Since MR is δ-compatible, maδj(b) = 0 for
each j.
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Using α-compatibility of MR, mα(ab) = 0, so mα(a)b = 0. Since MR is
δ-compatible, mα(a)δ(b) = 0.
Since MR is δ-compatible, mab = 0 implies 0 = mδ(a)b + mα(a)δ(b).
By above, we deduce mδ(a)b = 0.
Using α-compatibility of MR, mα(δ(a)b) = 0 if and only if mα(δ(a))α(b)
= 0 if and only if mα(δ(a))b = 0. By δ-compatibility of MR, we have
mα(δ(a))δ(b) = 0.
By above calculations, mδ(a)b = 0 and by δ-compatibility of MR, 0 =
mδ(δ(a)b) = mδ2(a)b+mα(δ(a))δ(b). So, mδ2(a)b = 0.
Therefore, inductively we get mδj(a)b = 0 for each j. So, maδj(b) =
0 = mδj(a)b. Also, we can similarly deduce that mα(δj(a))δ(b) = 0.
Now we show that mab = 0 implies that mαi(δ(a))δj(b) = 0. By above,
mδ(a)b = 0, and then αi-compatibility of MR implies mαi(δ(a)b) = 0
and hence mαi(δ(a))αi(b) = 0. Also using αi-compatibility of MR, it
implies mαi(δ(a))b = 0. Since MR is δj-compatible, mαi(δ(a))δj(b) = 0.
These computations impliy the result.
(iii) Note that α-compatibility ofMR yieldsmα(a)b = 0 ⇔ mα(a)α(b) =
0 ⇔ mα(ab) = 0 ⇔ mab = 0 for all a, b ∈ R. It remains only to show
that annR(ma) ⊆ annR(mδ(a)). To see this, letmab = 0 for some b ∈ R.
Using δ-compatibility, we get 0 = mδ(ab) = m (δ(a)b+ α(a)δ(b)) = 0.
Since we have already concluded that mα(a)b = 0, δ-compatibility im-
plies that mα(a)δ(b) = 0, and hence mδ(a)b = 0, as desired.

�

Lemma 2.16. Let MR be an (α, δ)-compatible module and m(x) = m0+
· · ·+mkx

k ∈ M [x] and r ∈ R. Then m(x)r = 0 if and only if mir = 0
for all 0 ≤ i ≤ k.

Proof. Assume mir = 0 for all 0 ≤ i ≤ k. An easy calculation using
(2.1) shows that

m(x)r =
k∑

i=0

 k∑
j=i

mjf
j
i (r)

xi.(2.2)

By (α, δ)-compatibility of MR, we have mjf
j
i (r) = 0, for all i, j. Thus

(2.2) yields m(x)r = 0. Conversely, assume that m(x)r = 0. We deduce
from (2.2) that,
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k∑
j=i

mjf
j
i (r) = 0,(2.3)

for each i ≤ k.
Starting with i = k, Eq. (2.3) yields mkα

k(r) = 0 and hence mjf
j
i (r) =

0, for each j > i, by (α, δ)-compatibility of MR. Using (2.3) again, we
deduce that miα

i(r) = 0, and that mir = 0 as desired. �

Proposition 2.17. A module MR is α-reduced if and only if the poly-
nomial extension M [x]R is an α-reduced module.

Proof. It is enough to prove the forward direction. By Lemma 2.13, MR

is α-compatible if and only if M [x]R is α-compatible. Now assume that,
MR is reduced, to show that M [x]R is reduced, using Lemma 2.14, we
only need to show that m(x)a = 0 implies m(x)Ra = 0 and m(x)a2 = 0
implies m(x)a = 0, where m(x) =

∑k
i=0mix

i ∈ M [x] and a ∈ R. First
let m(x)a = 0. Since MR is reduced and mia = 0 for each i, miRa = 0
for each i and hence m(x)Ra = 0. Now suppose m(x)a2 = 0. Since
MR is reduced and mia

2 = 0 for each i, mia = 0 for each i and hence
m(x)a = 0. Thus M [x]R is reduced and the result follows by Lemma
2.14. �

Notice that, the concept of α-reduced for the regular module RR co-
incides with that of reduced and α-compatible ring R, which in this case
R is indeed an α-rigid ring; and note also that, a ring R is α-rigid if and
only if R is reduced and (α, δ)-compatible. So we deduce the following:

Corollary 2.18. A ring R is α-rigid if and only if R[x]R (R[x;α] or
R[x;α, δ]) is an α-reduced R-module.

Theorem 2.19. Every (α, δ)-compatible and reduced module is skew-
Armendariz.

Proof. Let m(x) = m0 + · · · +mkx
k ∈ M [x], f(x) = a0 + · · · + anx

n ∈
R[x;α, δ] and m(x)f(x) = 0. So mkα

k(an) = 0, because it is the leading
coefficient of m(x)f(x). By α-compatibility of MR, we have mkan =
0. By Lemma 2.14, mkRan = 0, and by (α, δ)-compatibility of MR,
mkf

j
i (an) = 0. Thus the coefficient of xk+n−1 in the equationm(x)f(x) =

0 is mkα
k(an−1) +mk−1α

k−1(an) = 0. Multiplying by an from right we
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get mk−1α
k−1(an)an = 0. Using α-compatibility repeatedly we obtain

mk−1a
2
n = 0. Hence mk−1an = 0, by Lemma 2.14. So mk−1Ran = 0, by

Lemma 2.14 and by (α, δ)-compatibility of MR, mk−1f
j
i (an) = 0. There-

fore mkan−1 = 0. Continuing this process and using (α, δ)-compatibility
of MR, we obtain mix

iajx
j = 0 for each 0 ≤ i ≤ k and 0 ≤ j ≤ n. Since

(α, δ)-skew Armendariz modules are skew Armendariz, the result fol-
lows. �

Zhang and Chen [43] proved that, for an endomorphism α of a ring
R and α` = idR for some positive integer `, MR is α-reduced if and only
if M [x]/M [x](xn) is an α-skew Armendariz module over R[x]/(xn) for
integer n ≥ 2. They also asked if the condition α` = idR superfluous.

For a right R-module MR and A = (aij) ∈ Mn(R), let MA =
{(maij) | m ∈ M}. For n ≥ 2, let V =

∑n−1
i=1 Ei,i+1 where {Ei,j |

1 ≤ i, j ≤ n} are the matrix units, and set T (R,n) = RIn + RV +
· · · + RV n−1, T (M,n) = MIn +MV + · · · +MV n−1. Then T (R,n) is
a ring and T (M,n) becomes a right module over T (R,n) under usual
addition and multiplication of matrices. There is a ring isomorphism
ψ : T (R,n) → R[x]/(xn) given by ψ(r0In + r1V + · · · + rn−1V

n−1) =
r0 + r1x+ · · ·+ rn−1x

n−1 + (xn) and an Abelian group isomorphism φ :
T (M,n) →M [x]/M [x](xn) given by φ(m0In+m1V +· · ·+mn−1V

n−1) =
m0 +m1x+ · · ·+mn−1x

n−1 +M [x](xn) such that φ(WA) = φ(W )ψ(A)
for all W ∈ T (M,n) and A ∈ T (R,n).

Notice that

T (R,n) :=




a0 a1 · · · an−2 an−1

0 a0 a1 · · · an−2

0 0 a0
. . .

...
...

...
. . . . . . a1

0 0 · · · 0 a0

 | ai ∈ R


,

with n ≥ 2, is a ring with point-wise addition and usual matrix multi-
plication. We can denote elements of T (R,n) by (a0, a1, . . . , an−1).

Lee and Zhou [29] proved that for each integer n ≥ 2, M [x]/M [x](xn)
is an Armendariz right module over R[x]/(xn) if and only if MR is re-
duced. In the following we generalize this to α-reduced modules.

Let α be an endomorphism of a ring R. Then the map T (R,n) →
T (R,n) defined by a0In + a1V + · · ·+ an−1V

n−1 → α(a0)In +α(a1)V +
· · · + α(an−1)V n−1 is an endomorphism of T (R,n). Similarly it is easy
to see that the map R[x]/(xn) → R[x]/(xn) defined by a0 + a1x+ · · ·+
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an−1x
n−1 + (xn) → α(a0) +α(a1)x+ · · ·+α(an−1)xn−1 + (xn) is an en-

domorphism of R[x]/(xn). We will also denote the two maps above by α.

The following result shows that α-compatible reduced modules play
so important roles in the study of skew-Armendariz modules (and hence
skew-Armendariz rings) as that of reduced rings in the study of Armen-
dariz rings.

Theorem 2.20. An α-compatible module MR is reduced if and only
if M [x]/M [x](xn) is an α-skew Armendariz module over R[x]/(xn) for
integer n ≥ 2.

Proof. First assume that T (M,n) is an α-skew Armendariz module over
T (R,n) and letma = 0 for a ∈ R andm ∈M . Let p(x) = (m, 0, . . . , 0)+
(0, 0, . . . ,mr)x ∈ T (M,n)[x;α] , q(x) = (a, 0, . . . , 0)−(0, 0, . . . , rα(a))x ∈
T (R,n)[x;α] with p(x)q(x) = 0. Since T (M,n) is α-skew Armendariz,
(m, 0, . . . , 0)(0, 0, . . . , rα(a)) = 0 implies mrα(a) = 0 for each r ∈ R.
Hence mRα(a) = 0 yields mRa = 0, because MR is α-compatible. Thus
MR is reduced. Conversely, assume that MR is reduced. Consider the
following mapping
ϕ1 : T (M,n)[x;α] → T (M [x;α], n), be given by ϕ1(A0 + A1x + · · · +
Akx

k) = (f1, f2, . . . , fn), where Ai = (ai1, ai2, . . . , ain) ∈ T (M,n), f ′i =
a0i′ + a1i′x + · · · + aki′x

k ∈ M [x], 0 ≤ i ≤ k and 1 ≤ i′ ≤ n. Let
ϕ2 : T (R,n)[x;α] → T (R[x;α], n), given by ϕ2(B0 +B1x+ · · ·+Blx

l) =
(g1, g2, . . . , gn), where Bj = (bj1, bj2, . . . , bjn) ∈ T (R,n), gj′ = b0j′ +
b1j′x + · · · + blj′x

l ∈ R[x;α], 0 ≤ j ≤ l and 1 ≤ j′ ≤ n. It is
easy to see that ϕ1, ϕ2 are isomorphisms. Suppose that p = A0 +
A1x + · · · + Atx

t ∈ T (M,n)[x;α] and q = B0 + B1x + · · · + Bmx
m ∈

T (R,n)[x;α], whereAi = (ai1, ai2, . . . , ain) ∈ T (M,n), for each 0 ≤ i ≤ t
and Bj = (bj1, bj2, . . . , bjn) ∈ T (R,n) for each 0 ≤ j ≤ m and let
p(x)q(x) = 0. Suppose that pi = a0i + a1ix + · · · + atix

t ∈ M [x;α] and
qj = b0j + b1jx+ · · ·+ bmjx

m ∈ R[x;α], then piqj = 0 for 1 ≤ i ≤ n and
1 ≤ j ≤ n− i+ 1. We then have the system of equations

(A0) a0ib0j = 0,
(A1) a0ib1j + a1iα(b0j) = 0,
(A2) a0ib2j + a1iα(b1j) + a2iα

2(b2j) = 0,
...
(At+m−1) a(t−1)ibmj + atiα

t(b(m−1)j) = 0,
(At+m) atiα

t(bmj) = 0.
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By (At+m), we have atiα
t(bmj) = 0, which implies atibmj = 0, by α-

compatibility of MR. Hence atiRbmj = 0. Multiplying (At+m−1) by bmj

from the right, (At+m−1) becomes a(t−1)ib
2
mj + atiα

t(b(m−1)j)bmj = 0.
Since atiRbmj = 0, we get a(t−1)ib

2
mj = 0. But MR is reduced, so

a(t−1)ibmj = 0. Continuing this process, we have a0iblj = 0, where
0 ≤ l ≤ m, 1 ≤ i ≤ n and 1 ≤ j ≤ n − i + 1. This shows that
A0Bs = 0 for 0 ≤ s ≤ m, proving that T (M,n) is α-skew Armendariz
module over T (R,n). �

Corollary 2.21. [29, Theorem 1.9] A module MR is reduced if and
only if M [x]/M [x](xn) is an Armendariz module over R[x]/(xn) for an
integer n ≥ 2.

Next we recall a well-known result.

Proposition 2.22. Suppose that M is a flat right R-module. Then for
every exact sequence 0 → K → F → M → 0, where F is R-free, we
have (FI) ∩ K = KI for each left ideal I of R; in particular, we have
Fa ∩ K = Ka for each element a of R.

Proposition 2.23. Let α be an endomorphism of a ring R and δ an
α-derivation. Then R is a skew-Armendariz ring if and only if every
flat R module M is skew-Armendariz.

Proof. Let M be a flat R-module. Suppose 0 → K → F → M → 0
is an exact sequence with F free over R. For an element y ∈ F , we
denote ȳ = y + K in M . Suppose that f(x) =

∑t
i=0 ȳix

i ∈ M [x]
and g(x) =

∑n
j=0 ajx

j ∈ R[x;α, δ] with f(x)g(x) = 0. We show that
ȳ0aj = 0 for 0 ≤ j ≤ n. We have f(x)g(x) = 0, so we get,
The constant term: ȳ0a0 + ȳ1δ(a0) + ȳ2δ

2(a0) + · · · = 0;
The coefficient of x: ȳ0a1 + ȳ1α(a0) + ȳ1δ(a1) + · · · = 0;
...
The coefficient of xt+n, ȳtα

t(an) = 0.

Since M is a flat R-module, there exists an R-module homomorphism β :
F → K such that β fixes these coefficients. Write wi := β(yi)−yi for i =
0, 1, . . . , t. Each wi is an element of F , therefore the polynomial h(x) =∑t

j=0wix
i ∈ F [x] and h(x)g(x) = 0. Since R is skew-Armendariz and

F is a free R-module, F is skew-Armendariz by Proposition 2.10. Thus,
we have w0aj = 0 for all j. It follows that y0aj ∈ K for all j, so ȳ0aj = 0
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in M , proving that M is skew-Armendariz.
�

Put AnnR(2MR) = {annR(U) | U ⊆MR}, where MR is an R-module.

Theorem 2.24. Let MR be an (α, δ)-compatible module and S = R[x;α, δ].
Then the following statements are equivalent:

(1) MR is a skew-Armendariz module;
(2) The map ψ : AnnR(2MR) → AnnS(2M [x]S ), defined by A → AS

for all A ∈ AnnR(2MR), is bijective.

Proof. (1) ⇒ (2). Consider the maps ψ : {annR(U) | U ⊆ MR} →
{annS(U) | U ⊆ M [x]S} defined by A 7→ AS for every A ∈ {annR(U) |
U ⊆ MR}, and ψ

′
: {annS(U) | U ⊆ M [x]S} → {annR(U) | U ⊆ MR}

defined by B 7→ B ∩ R. It is clear that ψ is well defined, because
annR(U)S = annS(U) for each U ⊆MR. Since MR is (α, δ)-compatible,
we see that annS(V ) ∩R = annR(V0) for each V ⊆ M [x]S , where V0 is
the set of coefficients of all elements of V . Hence ψ′ is also well defined.
Since ψ′ψ = id, ψ is injective. Assume that B ∈ {annS(U) | U ⊆
M [x]S}, then B = annS(J) for some J ⊆M [x]S . Let B1 and J1 denote
the set of coefficients of elements of B and J , respectively. We claim
that annR(J1) = B1R. Let m(x) = m0 + m1x + · · · + mkx

k ∈ J and
f(x) = b0 + b1x + · · · + bnx

n ∈ B. Then m(x)f(x) = 0. Since MR

is skew-Armendariz and (α, δ)-compatible, mibj = 0 for all mi and bj .
Thus J1B1 = 0, hence B1R ⊆ annR(J1). Since MR is (α, δ)-compatible,
annR(J1) ⊆ B1R. Thus annR(J1) = B1R, and hence annS(J) = B1RS.
Therefore ψ is surjective.

(2) ⇒ (1). Let m(x) = m0 +m1x+ · · ·+mkx
k ∈ M [x]S and f(x) =

b0 + b1x + · · · + bnx
n ∈ S = R[x;α, δ] satisfy m(x)f(x) = 0. Then

f(x) ∈ annS(m(x)) = AS, where A = annR(U) and U ⊆ MR. Hence
b0, . . . , bn ∈ A and so m(x)bj = 0 for 0 ≤ j ≤ n. Hence m0bj = 0 for
each 0 ≤ j ≤ n, and the result follows.

�

Theorem 2.25. If MR is a linearly skew-Armendariz module with R ⊆
M , then for each idempotent e ∈ R, α(e) = e and δ(e) = 0.

Proof. Since MR is a linearly skew-Armendariz module with R ⊆ MR,
then RR is also linearly skew-Armendariz. Hence by [35, Theorem 3.1],
the result follows. �
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N. Agayev et al. [1] introduced and studied the notion of abelian
modules:
A module MR is called abelian if, for any m ∈ M and any a ∈ R, any
idempotent e ∈ R, mae = mea. It is proved in [1] that every Armen-
dariz module and hence every reduced module is abelian. The class of
abelian modules is closed under direct sums, and a ring R is abelian if
and only if every flat R-module MR is abelian.

Theorem 2.26. If MR is a linearly skew-Armendariz module with R ⊆
M , then MR is an abelian module.

Proof. Let MR be a linearly skew-Armendariz module. Consider the
polynomials m1(x) = me−mer(1− e)x and m2(x) = m(1− e)−m(1−
e)rex ∈ M [x]R[x;α,δ] and f1(x) = (1 − e) + er(1 − e)x and f2(x) =
e + (1 − e)rex ∈ R[x;α, δ], where e is an idempotent in R, r ∈ R
and m ∈ M . Since α(e) = e and δ(e) = 0, we have m1(x)f1(x) = 0
and m2(x)f2(x) = 0. Since MR is linearly skew-Armendariz, we get
mere = mer and mere = mre. Thus mer = mre for each r ∈ R, and
hence MR is an abelian module.

�

Corollary 2.27. If MR is a skew-Armendariz module with R ⊆ M ,
then MR is an abelian module.

Theorem 2.28. Let MR be a reduced module. Then MR is a
p.p.-module if and only if MR is a p.q.-Baer module.

Proof. Since MR is reduced, by Lemma 2.14, for each m ∈ M and
a ∈ R, ma = 0 implies mRa = 0. So annR(m) ⊆ annR(mR) and hence
annR(m) = annR(mR).

�

Theorem 2.29. Let MR be an (α, δ)-compatible and skew-Armendariz
module with R ⊆M . Then MR is p.p. if and only if M [x]R[x;α,δ] is p.p.

Proof. Suppose that MR is a p.p.-module and m(x) = m0 + m1x +
· · · + mkx

k ∈ M [x]. So annR(mi) = eiR for idempotents ei ∈ R with
0 ≤ i ≤ k. Set e = e0e1 · · · ek, then e is an idempotent, this is be-
cause MR is abelian by Corollary 2.27. Hence eR = ∩k

i=0annR(mi). By
Theorem 2.25, α(e) = e and δ(e) = 0. Thus m(x)e = 0 and hence
eS ⊆ annS(m(x)), where S = R[x;α, δ]. Next, assume that q(x) =
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j=0 bjx

j ∈ annS(m(x)). Since MR is skew-Armendariz, m0bj = 0 for
0 ≤ j ≤ n. So bj ∈ eR and hence q(x) ∈ eS, so annS(m(x)) = eS. This
shows that M [x] is a p.p.-module over R[x;α, δ].

Conversely, suppose that M [x] is a p.p.-module over R[x;α, δ] and
m ∈M . Let e(x) = e0 + e1x+ · · ·+ enx

n be an idempotent in R[x;α, δ].
Then from e(1−e) = 0 = (1−e)e, we get (e0 +e1x+ · · ·+enxn)(1−e0−
e1x−· · ·−enxn) = 0 and (1−e0−e1x−· · ·−enxn)(e0+e1x+· · ·+enxn) =
0. Since MR is skew-Armendariz, e0(1 − e0) = 0, (1 − e0)ei = 0. So
e0ei = 0, ei = e0ei, and hence ei = 0. Thus e(x) = e20 = e0 ∈ R, and
annS(m) = eS, which yields annR(m) = eR and the result follows.

�

Theorem 2.30. Let MR be an (α, δ)-compatible skew-Armendariz mod-
ule with R ⊆M . Then MR is Baer if and only if M [x]R[x;α,δ] is Baer.

Proof. Assume that MR is a Baer module and J ⊆M [x]. First suppose
J0 = {m ∈M |m is a leading coefficient of some non-zero element of J}.
Clearly, J0 is a subset of M. Since MR is Baer, there exists e2 = e ∈ R
such that annR(J0) = eR. Hence eS ⊆ annS(J) by Lemma 2.15. Let
f(x) = b0 + b1x + · · · + bnx

n ∈ annS(J). Then J0bj = 0 for each
j = 0, . . . , n, because MR is skew-Armendariz. Hence bj = ebj for each
j = 0, . . . , n and f(x) = ef(x) ∈ eS. Thus annS(J) = eS and M [x]S
is a Baer module. Conversely, assume that M [x]S is a Baer module
and A ⊆ M . Then A[x] ⊆ M [x]. Since M [x] is Baer, there exists an
idempotent e(x) = e0 + · · · + enx

n ∈ S such that annS(A[x]) = e(x)S.
Hence Ae0 = 0 and e0R ⊆ annR(A). Next, let t ∈ annR(A). Then
A[x]t = 0 by Lemma 2.16. Hence t = e(x)t and so t = e0t ∈ e0R. Thus
annR(A) = e0R and MR is a Baer module.

�

Example 2.31. Let F be a filed and R =
(
F 0
0 F

)
and let MR =(

F 0
F 0

)
be a right R-module. Let α : R → R be the automorphism

given by α
((

a 0
0 b

))
=
(
b 0
0 a

)
, for each a, b ∈ F . Note that R is

an abelian ring and MR is an abelian module. But we see that MR is not

α-skew Armendariz. For this let m(x) =
(

1 0
0 0

)
+
(
−2 0
0 0

)
x ∈
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M [x] and f(x) =
(

0 0
0 1

)
+
(

2 0
0 0

)
x ∈ R[x;α]. Then, we can eas-

ily see that m(x)f(x) = 0. But we have, m0a1 =
(

1 0
0 0

)(
2 0
0 0

)
=(

2 0
0 0

)
6= 0.

McCoy [31, Theorem 2] proved that if R is a commutative ring, then
whenever g(x) is a zero-divisor in R[x] there exists a nonzero c ∈ R such
that cg(x) = 0. We shall extend this result as follows.

Proposition 2.32. Let MR be an (α, δ)-compatible and reduced module.
If m(x) is a torsion element in M [x] (i.e., m(x)h(x) = 0 for some
0 6= h(x) ∈ R[x;α, δ] ), then there exists a non-zero element c of R such
that m(x)c = 0.

Proof. Letm(x) =
∑n

i=0mix
i ∈M [x] and h(x) =

∑s
j=0 hjx

j ∈ R[x;α, δ]
and m(x)h(x) = 0. Then mnα

n(hs) = 0, and since M is α-compatible,
we have mnhs = 0. By Lemma 2.14, we get mnRhs = 0. Since MR

is (α, δ)-compatible, it is (αi, δj)-compatible for each i, j and hence
mnf

j
i (hs) = 0 for each j ≥ i ≥ 0. Hence the coefficient of xn+s−1

in m(x)h(x) = 0 is mnα
n(hs−1) +mn−1α

n−1(hs) = 0.
Multiply the above equation from right by hs, we get mn−1α

n−1(hs)hs =
0. Using α-compatibility repeatedly, we obtain mn−1h

2
s = 0, and then

by Lemma 2.14, we have mn−1hs = 0. Using Lemma 2.14 again, we
have mn−1Rhs = 0, and by (α, δ)-compatibility of MR, mn−1f

j
i (hs) = 0

for each j ≥ i ≥ 0. Hence the coefficient of xn+s−2 in m(x)h(x) = 0 is
mnα

n(hs−2) +mn−1α
n−1(hs−1) +mnf

n
n−1(hs−1) +mn−2α

n−2(hs) = 0.
Multiplying the above equation from right by hs, we getmn−2α

n−2(hs)hs =
0. Using α-compatibility repeatedly we obtain mn−2h

2
s = 0, and then

by Lemma 2.14, we have mn−2hs = 0. Continuing this process we de-
duce that mjhs = 0 for each j. Since h(x) 6= 0 we may assume that
c = hs 6= 0. Then by Lemma 2.16, we get m(x)c = 0.

�

Corollary 2.33. Let MR be an (α, δ)-compatible and reduced module.
Then MR is Baer (respectively, p.p.) if and only if so is M [x]R[x;α,δ].

Proof. This follows from Theorems 2.19, 2.29 and 2.30.
�
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Corollary 2.34. Let R be an α-compatible and reduced ring. Then R
is Baer (respectively, p.p.) if and only if R[x;α, δ] is Baer (respectively,
p.p.).

Proof. Since RR is α-compatible and reduced, by definition, R is an α-
rigid ring. Hence the result follows by Theorems 11 and 14 of [20].

�

Example 2.35. Let R0 be a domain with characteristic 0 and let R be
the polynomial ring R0[t]. Let α be the automorphism of R which is
invariant on R0 and α(t) = −t. For each fixed element a ∈ R0, let δ be

the derivation on R given by δ(atn) =
{
atn−1 if n is odd,

0 if n is even.
Assume that M := R0 ⊕ R0 ⊕ · · · . Then M is a right R module given
by (m0,m1, · · · )r = (0,m0k0,m1k1, · · · ) for each (m0,m1, · · · ) ∈M and
r ∈ R and fixed non-zero integers k0, k1, k2, · · · . First we show that MR

is (α, δ)-compatible. It is enough to show that for each 0 6= m ∈ M ,
ann(m) = 0. Suppose that (a0, a1, a2, · · · )(brtr + br+1t

r+1 + · · · ) = 0,
where ai, bi ∈ R0 for each i ∈ N0 and br 6= 0. So we have
(0, 0, · · · , 0, a0k0k1 · · · kr−1, a1k1k2 · · · kr, · · · )(br + br+1t+ · · · ) = 0.
This implies that a0k0k1 · · · kr−1br = 0. Since R0 is of characteristic
0, R is a domain. Since br 6= 0 and hence k0k1 · · · kr−1br 6= 0, we
get a0 = 0. By induction we can see that ai = 0 for each i. Now
we show that MR is (α, δ)-skew Armendariz. To see this let m(x) =
m0+m1x+· · ·+mkx

k ∈M [x] and f(x) = b0+b1x+· · ·+bnxn ∈ R[x;α, δ]

with 0 = m(x)f(x) =
k+n∑
p=0

( ∑
i+l=p

k∑
j=i

mjf
j
i (bl)

)
xp. So mkα

k(an) =

0. By α-compatibility of MR, we have mkan = 0. Since MR is re-
duced module, mkRan = 0. On the other hand, by (α, δ)-compatibility
of MR, mkf

j
i (an) = 0. Thus the coefficient of xk+n−1 in equation

m(x)f(x) = 0 is mkα
k(an−1) + mk−1α

k−1(an) = 0. Multiplying by
an from right we get mk−1α

k−1(an)an = 0. Using α-compatibility re-
peatedly we obtain mk−1a

2
n = 0. Hence mk−1an = 0. Since MR is re-

duced, mk−1Ran = 0, and by (α, δ)-compatibility of MR, mk−1f
j
i (an) =

0. Therefore mkan−1 = 0. Continuing this process and using (α, δ)-
compatibility of MR, we obtain mix

iajx
j = 0 for each 0 ≤ i ≤ k and

0 ≤ j ≤ n, as desired.

In the following, we show by an example that the “(α, δ)-compatibility
condition” in Lemma 2.16, is not superfluous.
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Example 2.36. Let R0 be a domain and R = R0[t1, t2], where t1, t2 are
commuting indeterminates. Let α be the R0-automorphism defined by
α(t1) = t2 and α(t2) = t1. Let M be the polynomial ring R0[t1]. Con-
sider M to be a right R-module given by ordinary polynomial multiplica-
tion subject to the condition Mt2 = 0. Then it is easy to see that MR is
not α-compatible. Now take 0 6= m(x) = g0(t1)+g1(t1)x+· · ·+gr(t1)xr ∈
M [x] and t2 ∈ R. Then 0 = m(x)t2 = g0(t1)t2 + g1(t1)xt2 + · · · +
gr(t1)xrt2 = g1(t1)t1x + g3(t1)t1x3 + · · · . Thus for odd integers i,
gi(t1)t1 = 0 which implies that gi(t1) = 0, as R0 is a domain. But
0 6= m(x), so for some even number j, 0 6= gj(t1) and hence gj(t1)t2 6= 0
for some j.

3. Skew Quasi-Armendariz Modules

Following Hirano [19], a module MR is called quasi-Armendariz if,
whenever m(x)R[x]f(x) = 0, where m(x) =

∑s
i=0mix

i ∈ M [x] and
f(x) =

∑t
j=0 ajx

j ∈ R[x], we have miRaj = 0 for all i, j.
In this section, we generalize the notions of quasi-Armendariz rings

and quasi-Armendariz modules and consider the relations between the
set of annihilators in MR and the set of annihilators in M [x]R[x;α,δ].

We give a sufficient condition for a module to be skew quasi-Armendariz
and study the structure of the skew quasi-Armendariz modules.

By Hirano in [19], a ring R is called a quasi-Armendariz ring if, when-
ever f(x)R[x]g(x) = 0 where f(x) = a0 + a1x+ · · ·+ amx

m ∈ R[x] and
g(x) = b0 + b1x + · · · + bnx

n ∈ R[x], it implies that aiRbj = 0 for all i
and j. Every semiprime ring is a quasi-Armendariz ring, by [19].

In [19], a module MR is called a quasi-Armendariz module if whenever
m(x)R[x]f(x) = 0, where m(x) = m0 +m1x + · · · +mkx

k ∈ M [x] and
f(x) = b0 + b1x+ · · ·+ bnx

n ∈ R[x], it implies that miRbj = 0 for all i
and j.

Definition 3.1. Let MR be a module, α an endomorphism of R and
δ an α-derivation. We say MR is skew quasi-Armendariz, if when-
ever m(x) =

∑k
i=0mix

i ∈ M [x], f(x) =
∑n

j=0 bjx
j ∈ R[x;α, δ] sat-

isfy m(x)R[x;α, δ]f(x) = 0, we have mix
iRxtbjx

j = 0 for t ≥ 0,
i = 0, 1, . . . , k and j = 0, 1, . . . , n.
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Theorem 3.2. Let MR be an α-compatible module and S = R[x;α].
Then,
(1) The following statements are equivalent:

(a) for any m(x) ∈M [x]S, (annS(m(x)S)∩R)[x;α] = annS(m(x)S).
(b) for any m(x) =

∑k
i=0mix

i ∈M [x]S and f(x) =
∑t

j=0 ajx
j ∈ S,

m(x)Sf(x) = 0 implies miRaj = 0, for each i, j.
(2) Let MR be an skew quasi-Armendariz module and m(x) ∈M [x]S. If
annS(m(x)S) 6= 0, then annS(m(x)S) ∩R 6= 0.

Proof. (1). (a) ⇒ (b) Letm(x) =
∑k

i=0mix
i ∈M [x]S , f(x) =

∑t
j=0 ajx

j

∈ S and assume that m(x)Sf(x) = 0. By (a), f(x) ∈ (annS(m(x)S) ∩
R)[x;α], and we deduce that aj ∈ annS(m(x)S)∩R for each 0 ≤ j ≤ t.
So m(x)Saj = 0 and then by α-compatibility of MR, we obtain miRaj =
0 for each i, j.

(b) ⇒ (a) Let g(x) =
∑s

j=0 bjx
j ∈ (annS(m(x)S) ∩ R)[x;α], so bj ∈

annS(m(x)S)∩R. So m(x)Sbj = 0 for each j and hence m(x)Sg(x) = 0.
Thus g(x) ∈ annS(m(x)S). Now assume that h(x) =

∑k
j=0 cjx

j ∈
annS(m(x)S). So m(x)Sh(x) = 0 and by (b) we get miRcj = 0. By
α-compatibility of MR, m(x)Rcj = 0. So cj ∈ annS(m(x)S) ∩ R for
each j and hence h(x) ∈ (annS(m(x)S) ∩ R)[x;α]. So annS(m(x)S) =
(annS(m(x)S ∩R))[x;α].
(2). The proof follows by Lemma 2.15 and (1) (b) ⇒ (a). �

In the following result, we give relations between the set of annihila-
tors in MR and the set of annihilators in M [x]R[x;α].

Theorem 3.3. Let MR be an α-compatible module and S = R[x;α].
Then the following statements are equivalent:

(1) MR is a skew quasi-Armendariz module;
(2) The map ψ : AnnR(sub(MR)) → AnnS(sub(M [x]S)), defined by

ψ(annR(N)) = annS(N) = annS(N [x]) for all N ∈ sub(MR), is bijec-
tive, where sub(MR) and sub(M [x]S) denote the sets of submodules.

Proof. (1) ⇒ (2) Assume that MR is skew quasi-Armendariz. Obvi-
ously ψ is injective. Therefore, it is enough to show ψ is surjective. Let
V ∈ sub(M [x]S) and CV denotes the set of all coefficients of elements of
V . Then for annR(CVR) ∈ AnnR(sub(M)), we have ψ(annR(CVR)) =
annS(CVR) = annS(V ). In fact, let f(x) ∈ annS(CVR). Then CVRf(x)
= 0 and hence V f(x) = 0. So f(x) ∈ annS(V ). Conversely, let
g(x) = b0 + · · · + bkx

k ∈ annS(V ). Then V g(x) = 0. Since V is a
submodule of M [x]S , V Sg(x) = 0. So v(x)Sg(x) = 0 for all v(x) =



On skew Armendariz and skew quasi-Armendariz modules 77

v0 + v1x + · · · + vlx
l ∈ V . Since MR is α-compatible and skew quasi-

Armendariz, viRbj = 0 for all i, j. Hence CVRg(x) = 0 and therefore
g(x) ∈ annS(CVR). Consequently ψ is surjective.

(2) ⇒ (1) Assume m(x)Sf(x) = 0, where m(x) = m0 +m1x + · · · +
mtx

t ∈ M [x] and f(x) = a0 + a1x + · · · + akx
k ∈ S. By hypothesis,

annS(m(x)S) = annR(N)[x;α] for some submodule N of M . Then
f(x) ∈ annR(N)[x;α] and hence aj ∈ annR(N) for all j. So aj ∈
annR(N) ⊆ annR(N)[x;α] = annS(m(x)S) and then m(x)Saj = 0.
In particular m(x)Raj = 0 and hence miRaj = 0 for all i, j. Since
MR is α-compatible, mix

iRxtajx
j = 0, for t ≥ 0, i = 0, 1, . . . , t and

j = 0, 1, . . . , k . Therefore MR is skew quasi-Armendariz . �

Let R be a ring. The trivial extension of R is given by:

T (R,R) =
{(

a r
0 a

)
| a, r ∈ R

}
. Clearly, T (R,R) is a subring of

the ring of 2 × 2 matrices over R. The endomorphism α of R and
the α-derivation δ on R are extended to ᾱ : T (R,R) → T (R,R) by

ᾱ

((
a r
0 a

))
=
(
α(a) α(r)

0 α(a)

)
, δ̄

((
a r
0 a

))
=
(
δ(a) δ(r)
0 δ(a)

)
.

One can show that δ̄ is an ᾱ-derivation on T (R,R) and also we can see
T (R,R)[x; ᾱ, δ̄] ∼= T (R[x;α, δ], R[x;α, δ]).

Proposition 3.4. If the trivial extension of R, T (R,R), is skew-quasi
Armendariz, then so is R.

Proof. Let f(x) = a0 + · · · + anx
n, g(x) = b0 + · · · + bmx

m ∈ R[x;α, δ]
and f(x)R[x;α, δ]g(x) = 0. For each a, r ∈ R and t ≥ 0, we have the
following equation:

0 =
(
f(x) 0

0 f(x)

)(
axt rxt

0 axt

)(
0 g(x)
0 0

)
=
(

0 f(x)axtg(x)
0 0

)
.

Since T (R,R) is skew quasi-Armendariz, it implies that aix
iaxtbjx

j = 0,
for each i, j, t. Therefore R is skew quasi-Armendariz. �

When the trivial extension T (R,R) is skew quasi-Armendariz?

Theorem 3.5. Let R be a ring such that
(i) R is skew quasi-Armendariz;
(ii) If f(x)R[x;α, δ]g(x) = 0, then f(x)R[x;α, δ]∩R[x;α, δ]g(x) = 0.

Then the trivial extension T = T (R,R) is skew quasi-Armendariz.

Proof. Suppose that α(x)T [x; ᾱ, δ̄]β(x) = 0, where
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α(x) =
(
a0 r0
0 a0

)
+
(
a1 r1
0 a1

)
x+ · · ·+

(
an rn
0 an

)
xn and

β(x) =
(
b0 s0
0 b0

)
+
(
b1 s1
0 b1

)
x+ · · ·+

(
bm sm

0 bm

)
xm ∈ T [x; ᾱ, δ̄].

Let f(x) = a0 + a1x+ · · ·+ anx
n, r(x) = r0 + r1x+ · · ·+ rnx

n,
g(x) = b0+b1x+· · ·+bmxm and s(x) = s0+s1x+· · ·+smx

m ∈ R[x;α, δ].

For each
(
a r
0 a

)
xt ∈ T [x; ᾱ, δ̄], it follows that

0 =
(
f(x) r(x)

0 f(x)

)(
axt rxt

0 axt

)(
g(x) s(x)

0 g(x)

)
=(

f(x)axtg(x) f(x)axts(x) + f(x)rxtg(x) + r(x)axtg(x)
0 f(x)axtg(x)

)
. Hence

f(x)axtg(x) = 0,(3.1)

and

f(x)axts(x) + f(x)rxtg(x) + r(x)axtg(x) = 0.(3.2)

Since
(
a r
0 a

)
xt is an arbitrary element of T (R,R)[x; ᾱ, δ̄] and

T (R,R)[x; ᾱ, δ̄] ∼= T (R[x;α, δ], R[x;α, δ]), by (3.1) we get

f(x)R[x;α, δ]g(x) = 0.(3.3)

Since R is skew quasi-Armendariz, aix
iRxtbjx

j = 0, for all i, j, t. Thus
by (3.2), f(x)[axts(x) + rxtg(x)] + [r(x)axt]g(x) = 0. Hence by (3.2)
and (3.3), we have
f(x)[axts(x)+rxtg(x)] = −[r(x)axt]g(x) ∈ f(x)R[x;α, δ]∩R[x;α, δ]g(x)
= 0. So f(x)[axts(x) + rxtg(x)] = 0 = r(x)axtg(x), and hence we
have r(x)R[x;α, δ]g(x) = 0, since axt is an arbitrary element. Thus
rix

iRxtbjx
j = 0 for all i, j, t, since R is skew quasi-Armendariz. Also we

have f(x)[axts(x)] = −[f(x)rxt]g(x) ∈ f(x)R[x;α, δ] ∩ R[x;α, δ]g(x) =
0. Thus f(x)axts(x) = 0. So we have f(x)R[x;α, δ]s(x) = 0. Since R is
skew quasi-Armendariz, we deduce aix

iRxtsjx
j = 0 for all i, j, t. Hence(

ai ri
0 ai

)
xi

(
a r
0 a

)
xt

(
bj sj

0 bj

)
xj =
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aix

iaxtbjx
j aix

irxtbjx
j + aix

irxtbjx
j + rix

iaxtbjx
j

0 aix
iaxtbjx

j

)
= 0 for all

i, j and each
(
a r
0 a

)
xt ∈ T (R,R). Therefore the trivial extension

T (R,R) is skew quasi-Armendariz. �

Kerr [24] constructed an example of a commutative Goldie ring R
whose polynomial ring R[x] has an infinite ascending chain of annihilator
ideals.

Theorem 3.6. Let MR be an skew quasi-Armendariz module. If MR is
(α, δ)-compatible, then MR satisfies the ascending chain condition on
annihilator of submodules if and only if so does M [x]S, where S =
R[x;α, δ].

Proof. Assume that MR satisfies the ascending chain condition on anni-
hilator of submodules. Let I1 ⊆ I2 ⊆ I3 ⊆ . . . be a chain of annihilator
of submodules of M [x]S . Then there exist submodules Ki of M [x]S
such that annS(Ki) = Ii, for all i ≥ 1 and K1 ⊇ K2 ⊇ K3 ⊇ · · · .
Let Mi = {all coefficients of elements ofKi}. Since M is skew quasi-
Armendariz, Mi is submodule of M for all i ≥ 1. Clearly Mi ⊇ Mi+1

for all i ≥ 1. Thus annR(M1) ⊆ annR(M2) ⊆ annR(M3) ⊆ · · · .
Since MR satisfies the ascending chain condition on annihilator of sub-
modules, there exists n ≥ 1 such that annR(Mi) = annR(Mn) for all
i ≥ n. We show that annS(Ki) = annS(Kn) for all i ≥ n. Let f(x) =
a0 + a1x + · · · + amx

m ∈ annS(Ki). Then Miaj = 0 for j = 0, . . . ,m,
because M is skew quasi-Armendariz. Thus Mnaj = 0 for j = 0, . . . ,m
and so Knf(x) = 0 by Lemma 2.16. Therefore annS(Ki) = annS(Kn)
for all i ≥ n and M [x]S satisfies the ascending chain condition on anni-
hilator of submodules. Now assume M [x]S satisfies the ascending chain
condition on annihilator of submodules. Let J1 ⊆ J2 ⊆ J3 ⊆ . . . be a
chain of annihilator of submodules of MR. Then there exist submodules
Mi of M such that annR(Mi) = Ji and M1 ⊇ M2 ⊇ M3 ⊇ · · · for
all i ≥ 1. Hence Mi[x] is a submodule of M [x] and Mi[x] ⊇ Mi+1[x]
and annS(Mi[x]) ⊆ annS(Mi+1[x]) for all i ≥ 1. Since M [x]S satisfies
the ascending chain condition on annihilator of submodules, there exists
n ≥ 1 such that annS(Mi[x]) = annS(Mn[x]) for all i ≥ n. Since M is
skew quasi-Armendariz, by a similar argument as used in the previous
paragraph, one can show that annR(Mi) = annR(Mn) for all i ≥ n.

�
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Following [3], the second author and E. Hashemi [17] introduced
(α, δ)-compatible rings and studied its properties. A ringR is α-compatible
if for each a, b ∈ R, ab = 0 if and only if aα(b) = 0. Moreover, R is said
to be δ-compatible if for each a, b ∈ R, ab = 0 implies aδ(b) = 0. A ring
R is (α, δ)-compatible if it is both α-compatible and δ-compatible. In
this case, clearly the endomorphism α is injective. Also by [17, Lemma
2.2], a ring R is (α, δ)-compatible and reduced if and only if R is α-rigid
in the sense of Krempa [26]. Thus the α-compatible ring is a generaliza-
tion of α-rigid ring to the more general case where R is not assumed to
be reduced.

Corollary 3.7. Let R be an (α, δ)-compatible and skew quasi-Armendariz
ring. Then R satisfies the ascending chain condition on right annihila-
tors if and only if so does R[x;α, δ].

Corollary 3.8. [19, Corollary 3.3] Let R be an Armendariz ring. Then
R satisfies the ascending chain condition on right annihilators if and
only if so does R[x].

Theorem 3.9. Let MR be an (α, δ)-compatible module. Then MR is
quasi-Baer (respectively, p.q.-Baer) if and only if M [x]R[x;α,δ] is quasi-
Baer (respectively, p.q.-Baer). In this case MR is skew quasi-Armendariz.

Proof. Assume MR is quasi-Baer. First we shall prove that MR is skew
quasi-Armendariz. Suppose that (m0 +m1x+ · · ·+mkx

k)R[x;α, δ](b0 +
b1x+ · · ·+ bnx

n) = 0, with mi ∈M, bj ∈ R. In particular case we have

(m0 +m1x+ · · ·+mkx
k)R(b0 + b1x+ · · ·+ bnx

n) = 0.(3.4)

Thus mkRbn = 0 and bn ∈ annR(mkR). Then mkx
kRxtbnx

n = 0, by
Lemma 2.15. Since MR is quasi-Baer, there exists e2k = ek ∈ R such
that annR(mkR) = ekR and so bn = ekbn. Replacing R by Rek in (3.4)
and using Lemma 2.15, we obtain (m0 +m1x+ · · ·+mk−1x

k−1)Rek(b0 +
b1x + · · · + bnx

n) = 0. Hence mk−1Rekbn = mk−1Rbn = 0 and bn ∈
annR(mk−1R). Then mk−1x

k−1Rxtbnx
n = 0, by Lemma 2.15. Hence

bn ∈ annR(mkR) ∩ annR(mk−1R). Since MR is quasi-Baer, there ex-
ists f2 = f ∈ R such that annR(mkR) = fR and so bn = fbn. If
we put ek−1 = ekf, then ek−1bn = ekfbn = ekbn = bn and ek−1 ∈
annR(mkR) ∩ annR(mk−1R). Next, replacing R by Rek−1 in (3.4), and
using Lemma 2.15, we obtain (m0 +m1x+ · · ·+mk−2x

k−2)Rek−1(b0 +
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b1x + · · · + bnx
n) = 0. Hence we have mk−2Rek−1bn = mk−2Rbn = 0

and that bn ∈ annR(mk−2R) and so mk−2x
k−2Rxtbnx

n = 0, by Lemma
2.15. Continuing this process, we get mix

iRxtbnx
n = 0 for i = 0, . . . , k.

Using induction on k+n, we obtain mix
iRxtbjx

j = 0 for all i, j, t. There-
foreMR is skew quasi-Armendariz. Let J be a S-submodule ofM [x]. Let
N = {m ∈M | m is a leading coefficient of some non-zero element of J}
∪ {0}. Clearly, N is a submodule of M. Since MR is quasi-Baer, there
exists e2 = e ∈ R such that annR(N) = eR. Hence eS ⊆ annS(J) by
Lemma 2.15. Let f(x) = b0 +b1x+ · · ·+bnxn ∈ annS(J). Then Nbj = 0
for each j = 0, . . . , n, because MR is skew quasi-Armendariz. Hence
bj = ebj for each j = 0, . . . , n and f(x) = ef(x) ∈ eS. Thus annS(J) =
eS and M [x]S is quasi-Baer. Now assume that M [x]S is quasi-Baer and
I is a submodule of M. Then I[x] is a submodule of M [x]. Since M [x]
is quasi-Baer, there exists an idempotent e(x) = e0 + · · · + enx

n ∈ S
such that annS(I[x]) = e(x)S. Hence Ie0 = 0 and e0R ⊆ annR(I). Let
t ∈ annR(I). Then I[x]t = 0, by Lemma 2.16. Hence t = e(x)t and so
t = e0t ∈ e0R. Thus annR(I) = e0R and MR is quasi-Baer.

�

It is clear that R is a right p.q.-Baer ring if and only if RR is a p.q.-
Baer module. But, there exists a p.q.-Baer right R-module such that R
is not right p.q.-Baer.

Example 3.10. Let R = Z2[x]/(x2), where Z2[x] is the polynomial ring
over the field Z2 of two elements and (x2) is the ideal of Z2[x] generated
by x2. It is easy to see that R is a quasi-Armendariz ring. Since right
annihilator of x + (x2) is not generated by any idempotent, R is not a
right p.q.-Baer ring. Now let e = 1 + (x2) and I = ReR. Then e2 = e,
and for each a ∈ R, annR((a+ I)R) = eR. Therefore R/I is p.q.-Baer
right R-module.

Corollary 3.11. [17, Corollary 2.8] Let R be an (α, δ)-compatible ring.
Then R is quasi-Baer (respectively, right p.q.-Baer) if and only if R[x;α, δ]
is quasi-Baer (respectively, right p.q.-Baer). In this case R is a skew
quasi-Armendariz ring.

Corollary 3.12. [9, Corollary 2.8] A ring R is quasi-Baer (respectively,
right p.q.-Baer) if and only if R[x] is quasi-Baer (respectively, right p.q.-
Baer).
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Corollary 3.13. [20, Theorems 12, 15] Let R be an α-rigid ring. Then
R is quasi-Baer (respectively, right p.q.-Baer) if and only if R[x;α, δ] is
quasi-Baer (respectively, right p.q.-Baer).

The following example shows that “(α, δ)-compatibility condition” on
MR in Theorem 3.9 is not superfluous.

Example 3.14. [5, Example 11] There is a ring R and a derivation δ
of R such that R[x; δ] is a Baer (hence quasi-Baer) ring, but R is not
quasi-Baer. In fact let R = Z2[t]/(t2) with the derivation δ such that
δ(t̄) = 1 where t̄ = t+(t2) in R and Z2[t] is the polynomial ring over the
field Z2 of two elements. Consider the Ore extension R[x; δ]. If we set
e11 = t̄x, e12 = t̄, e21 = t̄x2+x, and e22 = 1+t̄x in R[x; δ], then they form
a system of matrix units in R[x; δ]. Now the centralizer of these matrix
units in R[x; δ] is Z2[x2]. Therefore R[x; δ] ∼= M2(Z2[x2]) ∼= M2(Z2)[y],
where M2(Z2)[y] is the polynomial ring over M2(Z2). So the ring R[x; δ]
is a Baer ring, but R is not quasi-Baer.
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