ON SKEW ARMENDARIZ AND SKEW QUASI-ARMENDARIZ MODULES

A. ALHEVAZ AND A. MOUSSAVI*

Communicated by Omid Ali Shehni Karamzadeh

Abstract

Let α be an endomorphism and δ an α-derivation of a ring R. In this paper we study the relationship between an R-module M_{R} and the general polynomial module $M[x]$ over the skew polynomial ring $R[x ; \alpha, \delta]$. We introduce the notions of skewArmendariz modules and skew quasi-Armendariz modules which are generalizations of α-Armendariz modules and extend the classes of non-reduced skew-Armendariz modules. An equivalent characterization of an α-skew Armendariz module is given. Some properties of this generalization are established, and connections of properties of a skew-Armendariz module M_{R} with those of $M[x]_{R[x ; \alpha, \delta]}$ are investigated. As a consequence we extend and unify several known results related to Armendariz modules.

1. Introduction

Throughout this paper R denotes an associative ring with unity, α is a ring endomorphism and δ an α-derivation of R, that is, δ is an additive map such that $\delta(a b)=\delta(a) b+\alpha(a) \delta(b)$, for all $a, b \in R$. We denote $R[x ; \alpha, \delta]$ the Ore extension (skew polynomial ring) whose elements are the polynomials over R, the addition is defined as usual and the multiplication subject to the relation $x a=\alpha(a) x+\delta(a)$ for any $a \in R$.

[^0]A ring R is called Baer (respectively, quasi-Baer) if the right annihilator of every nonempty subset (respectively, right ideal) of R is generated, as a right ideal, by an idempotent of R. Kaplansky [23], introduced the Baer rings to abstract various properties of rings of operators on a Hilbert space. Clark [13] introduced the quasi-Baer rings and used them to characterize a finite dimensional twisted matrix units semigroup algebra over an algebraically closed field. All modules are assumed to be unitary right modules. Let $a n n_{R}(X)=\{r \in R \mid X r=0\}$, where X is a subset of a module M_{R}.

In [29], Lee and Zhou introduced Baer, quasi-Baer and p.p.-modules as follows:
(1) M_{R} is called Baer (respectively, quasi-Baer) if, for any subset (respectively, submodule) X of $M, a n n_{R}(X)=e R$ where $e^{2}=e \in R$.
(2) M_{R} is called principally projective (or simply p.p.) module (respectively, principally quasi-Baer (or simply p.q.-Baer) module) if, for any element $m \in M, a n n_{R}(m)=e R$ (respectively, $a n n_{R}(m R)=e R$) where $e^{2}=e \in R$.
Clearly, a ring R is Baer (respectively, p.p. or quasi-Baer) if and only if R_{R} is Baer (respectively, p.p. or quasi-Baer) module. If R is a Baer (respectively, p.p. or quasi-Baer) ring, then for any right ideal I of R, I_{R} is Baer (respectively, p.p. or quasi- Baer) module. It is clear that R is a right p.q.-Baer ring if and only if R_{R} is a p.q.-Baer module. Every submodule of a p.q.-Baer module is p.q.-Baer and every Baer module is quasi-Baer.

A ring is called reduced if it has no nonzero nilpotent elements and M_{R} is called reduced by Lee and Zhou [29] if, for any $m \in M$ and $a \in R, m a=0$ implies $m R \cap M a=0$. Lee and Zhou have extended various results of reduced rings to reduced modules and Agayev et al. [1] introduced and studied abelian modules as a generalization of abelian rings.

Zhang and Chen [43] introduced the notion of α-skew Armendariz modules. Namely, an R-module M_{R} is called α-skew Armendariz, if for polynomials $m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k} \in M[x]$ and $f(x)=$ $b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x ; \alpha], m(x) f(x)=0$ implies $m_{i} \alpha^{i}\left(b_{j}\right)=0$ for each $0 \leq i \leq k$ and $0 \leq j \leq n$. According to Lee and Zhou [29], a module M_{R} is called α-Armendariz if M_{R} is α-compatible and α-skewArmendariz. If α is equal to the identity, then the above definition boils down to the standard notion of Armendariz module. Moreover, they proved that R is an α-skew Armendariz ring if and only if every
flat right R-module is α-skew Armendariz. By [29], a module M_{R} is α-reduced if M_{R} is α-compatible and reduced.

The polynomial extensions of Baer, quasi-Baer, right p.q.-Baer and p.p.-rings and modules have been investigated by many authors [5-10, 15-21, 34-43]. Most of these have worked either with the case $\delta=0$ and α an automorphism or the case where α is the identity. With the impetus of quantized derivations, renewed interest in the general Ore extension $R[x ; \alpha, \delta]$ has arisen during the last few years.

In this paper, we study the relationship between an R-module M_{R} and the general polynomial module $M[x]$ over the skew polynomial ring $R[x ; \alpha, \delta]$. We introduce the notions of skew-Armendariz modules and skew quasi-Armendariz modules which are generalizations of α-skew Armendariz modules [43] and α-reduced modules [29]. An equivalent characterization of an α-skew-Armendariz module is given, which is useful to simplify the proofs. Also new families of non-reduced skew-Armendariz modules are presented. Among other results, we show that there is a strong connection of the Baer, quasi-Baer and the p.p.-property of the two modules, respectively.

Furthermore, we show that for an endomorphism α and an α-derivation δ of a ring R, (1) A right R-module M_{R} is α-skew-Armendariz if and only if for polynomials $m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k} \in M[x]$ and $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ in $R[x ; \alpha], m(x) f(x)=0$ implies $m_{0} b_{j}=0$ for each $0 \leq j \leq n$; (2) An α-compatible module M_{R} is reduced if and only if $M[x] / M[x]\left(x^{n}\right)$ is an α-skew Armendariz module over $R[x] /\left(x^{n}\right)$ for any integer $n \geq 2$. This result shows that α-compatible reduced modules play so important roles in the study of skew-Armendariz modules (and hence skew-Armendariz rings) as that of reduced modules in the study of Armendariz modules. (3) An (α, δ)-compatible module M_{R} is quasi-Baer (respectively, p.q.-Baer) if and only if $M[x]$ is a quasiBaer (respectively, p.q.-Baer) module over $R[x ; \alpha, \delta] ;(4)$ If M_{R} is skewArmendariz with $R \subseteq M$, then M_{R} is Baer (respectively, p.p) if and only if $M[x]$ is a Baer (respectively, p.p.-) module over $R[x ; \alpha, \delta] ;(5) \mathrm{A}$ necessary and sufficient condition for the trivial extension $T(R, R)$ to be skew quasi-Armendariz is obtained. Examples to illustrate the concepts and results are included.

We also study the relations between the set of annihilators in M and the set of annihilators in $M[x]_{R[x ; \alpha, \delta]}$. We give a sufficient condition for a module to be skew quasi-Armendariz and study the structure of the skew quasi-Armendariz modules. This work extends and unifies several
known results related to Armendariz rings and modules, in particular the landmark results of Hong et al. [20, 21], parallels results of the second author and A.R. Nasr-Isfahani [35] on Ore extensions, and complements later results of E. Hashemi [16] and Zhang and Chen [43] to general polynomial modules over Ore polynomial extension $R[x ; \alpha, \delta]$.

2. Skew-Armendariz Modules

In this section the notion of an skew-Armendariz module is introduced as a generalization of skew-Armendariz rings to modules and its properties are studied. We prove that many results of skew-Armendariz rings can be extended to modules with this general settings. We show that the notion of skew-Armendariz module generalizes that of α-skew Armendariz modules of Zhang and Chen [43] as well as α-Armendariz modules and α-reduced modules of Lee and Zhou [29]. Moreover we extend the classes of skew-Armendariz modules.

We will be working here with general right modules M_{R} rather than just R_{R}, and the restrictions on α and δ we require are best phrased as conditions on the module M_{R} that arise from the use of general α and δ. Let us formally define these conditions here:

From the Ore commutation law, an inductive argument can be made to calculate an expression for $x^{j} a$, for all $j \in \mathbb{N}$ and $a \in R$. To record this result, we shall use some convenient notation introduced in [3, 27]: Notation. Given α and δ as above and integers $j \geq i \geq 0$, let us write f_{i}^{j} for the sum of all "words" in α and δ in which there are i factors of α and $j-i$ factors of δ. For instance, $f_{j}^{j}=\alpha^{j}$, $f_{0}^{j}=\delta^{j}$, and $f_{j-1}^{j}=\alpha^{j-1} \delta+\alpha^{j-2} \delta \alpha+\cdots+\delta \alpha^{j-1}$.

Using recursive formulas for the f_{i}^{j},s and induction, as done in [27], one can show with a routine computation that

$$
\begin{equation*}
x^{j} a=\sum_{i=0}^{j} f_{i}^{j}(a) x^{i}, \tag{2.1}
\end{equation*}
$$

for all $a \in R$, where $j \geq i \geq 0$. This formula uniquely determines a general product of (left) polynomials in $S=R[x ; \alpha, \delta]$ and will be used freely in what follows. More generally, given a right R-module M_{R}, we
can form the polynomial module $M[x]_{S}$ over S as follows. Elements of $M[x]$ have the form $\sum m_{i} x^{i}\left(m_{i} \in M\right)$, and the action of S on such elements is basically dictated by (2.1), since it suffices to define the action of monomials of S on monomials in $M[x]_{S}$ via

$$
\left(m x^{j}\right)\left(a x^{l}\right)=m \sum_{i=0}^{j} f_{i}^{j}(a) x^{i+l}
$$

for all $a \in R$ and $j, l \in \mathbb{N}$. It is readily verified that this makes $M[x]$ into an S-module.

A ring R is called Armendariz if whenever polynomials $f(x)=a_{0}+$ $a_{1} x+\cdots+a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for each i, j. Following Anderson and Camillo [2], a module M_{R} is called Armendariz if, whenever $m(x) f(x)=0$, where $m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in M[x]$ and $f(x)=\sum_{j=0}^{t} a_{j} x^{j} \in R[x]$, we have $m_{i} a_{j}=0$ for all i, j.

The term Armendariz was introduced by Rege and Chhawchharia [41]. This nomenclature was used by them since it was Armendariz [5], who initially showed that a reduced ring always satisfies this condition.

The more comprehensive study of Armendariz rings was carried out recently (see, e.g., $[1-2,5-6,11-12,15-22,28-29]$. The interest of this notion lies in its natural and useful role in understanding the relation between the annihilators of the ring R and the annihilators of the polynomial ring $R[x]$. The reason behind these is the fact that there is a natural bijection between the set of annihilators of R and the set of annihilators of $R[x]$ (see Hirano, [19]).

In [21], C.Y. Hong, N.K. Kim and T.K. Kwak extended the Armendariz property of rings to skew polynomial rings $R[x ; \alpha]$: For an endomorphism α of a ring R, R is called an α-skew Armendariz ring (or, a skew-Armendariz ring with the endomorphism α) if for polynomials $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and $g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ in $R[x ; \alpha]$, $f(x) g(x)=0$ implies $a_{i} \alpha^{i}\left(b_{j}\right)=0$ for each $0 \leq i \leq n$ and $0 \leq j \leq m$.
M. Başer in [6] studied relations between the set of annihilators in M_{R} and the set of annihilators in $M[x]$. In [43], Zhang and Chen extended a result of [42] and they showed that, a ring R is α-skew Armendariz if and only if every flat right R-module is α-skew Armendariz. Some other properties of Armendariz rings and modules have been studied in Armendariz [5], Rege and Chhawchharia [41], Rege and Buhphang [42], Anderson and Camillo [2], Hong et al. [20, 21], Kim and Lee
[25], Chen and Tong [12], Hashemi and Moussavi [17, 18], Huh, Lee and Smoktunowicz [22], Lee and Zhou [29], Nasr-Isfahani and Moussavi [35-39] and some other authors.

According to Krempa [26], an endomorphism α of a ring R is called to be rigid if $a \alpha(a)=0$ implies $a=0$ for $a \in R$. A ring R is said to be α-rigid if there exists a rigid endomorphism α of R. Hong et al. [20], studied Ore extensions of Baer rings over α-rigid rings, and show that a ring R is α-rigid if and only if $R[x ; \alpha, \delta]$ is reduced. Clearly a reduced ring is Baer if and only if it is quasi-Baer.

In [35], the second author and A.R. Nasr-Isfahani, introduced the concept of a skew-Armendariz ring and studied its properties. Our focus in this section is to introduce the concept of a skew-Armendariz module and study its properties. We prove that the notion of skew-Armendariz module generalizes that of α-skew Armendariz rings of Hong et al. [21] and Krempa's α-rigid rings [26] as well as that of the second author and A.R. Nasr-Isfahani's skew-Armendariz rings [35] to general polynomial modules over Ore polynomial extension $R[x ; \alpha, \delta]$.

Definition 2.1. (Zhang and Chen [43]) Let R be a ring with an endomorphism α and M_{R} an R-module. A module M_{R} is called an α-skew Armendariz module, if for polynomials $m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k} \in$ $M[x]$ and $f(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x ; \alpha], m(x) f(x)=0$ implies $m_{i} \alpha^{i}\left(b_{j}\right)=0$ for each $0 \leq i \leq k$ and $0 \leq j \leq n$.

Definition 2.2. Let R be a ring with an endomorphism α and α derivation δ. Let M_{R} be an R-module. We say that M_{R} is an (α, δ)-skew Armendariz module if, for polynomials $m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k} \in$ $M[x]$ and $f(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x ; \alpha, \delta], m(x) f(x)=0$ implies $m_{i} x^{i} b_{j} x^{j}=0$ for each $0 \leq i \leq k$ and $0 \leq j \leq n$.

Notice that in the case when $\delta=0$, the above definition boils down to the notion of α-skew Armendariz of Zhang and Chen [43].

Definition 2.3. Let R be a ring with an endomorphism α and α derivation δ. Let M_{R} be an R-module. We say that M_{R} is a skewArmendariz module, if for polynomials $m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k} \in$ $M[x]$ and $f(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x ; \alpha, \delta], m(x) f(x)=0$ implies $m_{0} b_{j}=0$ for each $0 \leq j \leq n$.

It is clear that (α, δ)-skew Armendariz modules are skew-Armendariz, and each Armendariz module is α-skew Armendariz, where $\alpha=i d_{R}$, and every submodule of a skew-Armendariz module is skew-Armendariz. It is also clear that R is a skew-Armendariz ring if R_{R} is an skew-Armendariz module. In [35], the second author and A.R. Nasr-Isfahani provided numerous examples of non-semiprime (and hence non-reduced) skewArmendariz rings.

The following equivalent characterization of an α-skew-Armendariz module is useful to simplify the proofs of results in the context of Armendariz rings and modules. It is shown that our definition of a skewArmendariz module is a generalization of Hong et al.'s α-skew Armendariz ring [21] and Zhang and Chen's α-skew Armendariz module [43], for the more general setting.

The following result shows that our definition of a skew-Armendariz module is a generalization of the notion of an α-skew-Armendariz module for the more general setting:

Theorem 2.4. Let M_{R} be a module and α an endomorphism of R. Then M_{R} is α-skew Armendariz if and only if for every polynomials $m(x)=$ $m_{0}+m_{1} x+\cdots+m_{k} x^{k} \in M[x]$ and $f(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x ; \alpha]$, $m(x) f(x)=0$ implies $m_{0} b_{j}=0$ for each $0 \leq j \leq n$.

Proof. The forward direction is clear that if M_{R} is an α-skew Armendariz, then for every polynomials $m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k} \in M[x]$ and $f(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x ; \alpha], m(x) f(x)=0$ implies $m_{0} b_{j}=0$ for each $0 \leq j \leq n$. For the backward direction, suppose that for every polynomials $m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k} \in M[x]$ and $f(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x ; \alpha], m(x) f(x)=0$ implies $m_{0} b_{j}=0$ for each $0 \leq j \leq n$. We show that M_{R} is α-skew Armendariz. We have, $0=\left(m_{0}+m_{1} x+\cdots+m_{k} x^{k}\right)\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)=$
$m_{0}\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)+\left(m_{1}+m_{2} x+\cdots+m_{k} x^{k-1}\right) x\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)$. So $\left(m_{1}+m_{2} x+\cdots+m_{k} x^{k-1}\right)\left(\alpha\left(b_{0}\right) x+\alpha\left(b_{1}\right) x^{2}+\cdots+\alpha\left(b_{n}\right) x^{n+1}\right)=0$. Hence $m_{1} \alpha\left(b_{j}\right)=0$ for each $0 \leq j \leq n$. Inductively, we can see that $m_{i} \alpha^{i}\left(b_{j}\right)=0$ for each $0 \leq i \leq k$ and $0 \leq j \leq n$ and the result follows.

Corollary 2.5. A ring R with an endomorphism α is α-skew Armendariz if and only if for every polynomials $f(x)=a_{0}+a_{1} x+\cdots+$
$a_{k} x^{k}, g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x ; \alpha], f(x) g(x)=0$ implies $a_{0} b_{j}=0$ for each $0 \leq j \leq n$.

If we take $\alpha=i d_{R}$, we deduce the following equivalent condition for a module to be Armendariz.

Corollary 2.6. A module M_{R} is Armendariz if and only if for every polynomials $m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k} \in M[x]$ and $f(x)=b_{0}+b_{1} x+$ $\cdots+b_{n} x^{n} \in R[x], m(x) f(x)=0$ implies $m_{0} b_{j}=0$ for each $0 \leq j \leq n$.

Corollary 2.7. A ring R is Armendariz if and only if for every polynomials $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x]$, $f(x) g(x)=0$ implies $a_{0} b_{j}=0$ for each $0 \leq j \leq m$.

Definition 2.8. Let R be a ring with an endomorphism α and an α derivation δ. We say that M_{R} is a linearly skew-Armendariz module, if for linear polynomials $m(x)=m_{0}+m_{1} x \in M[x]$ and $g(x)=b_{0}+b_{1} x \in$ $R[x ; \alpha, \delta], m(x) g(x)=0$ implies $m_{0} b_{0}=m_{0} b_{1}=0$.

It is clear that each skew-Armendariz module is linearly skew-Armendariz and that every submodule of a linearly skew-Armendariz module is also linearly skew-Armendariz.

By [12, Example 2.2], there exists an α-skew Armendariz ring R such that α is not a monomorphism and R is not a reduced ring:

Example 2.9. Let D be a domain and $R_{n}(D)$ a subring of $M_{n}(D)$, where $n \geq 2$ and

$$
R_{n}(D):=\left\{\left.\left(\begin{array}{ccccc}
a & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a & a_{22} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right) \right\rvert\, a, a_{i j} \in D\right\} .
$$

Let α be an endomorphism of $R_{n}(D)$ such that

$$
\alpha\left(\left(\begin{array}{ccccc}
a & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a & a_{22} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right)\right)=\left(\begin{array}{ccccc}
a & 0 & 0 & \cdots & 0 \\
0 & a & 0 & \cdots & 0 \\
0 & 0 & a & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right)
$$

Clearly, α is not a monomorphism and $R_{n}(D)$ is not a reduced ring. In [12, Example 2.2] it is proved that $R_{n}(D)$ is an α-skew Armendariz ring.

Let R be a subring of a ring S with $1_{S} \in R$ and $M_{R} \subseteq L_{S}$. Let α be an endomorphism and δ an α-derivation of S such that $\alpha(R) \subseteq R$ and $\delta(R) \subseteq R$. If L_{S} is (α, δ)-skew Armendariz, then M_{R} is also (α, δ)-skew Armendariz.

We can deduce the following result, using the definition of skewArmendariz modules.

Proposition 2.10. Let α be an endomorphism and δ an α-derivation of a ring R. The class of skew-Armendariz modules is closed under submodules, direct products and direct sums.

Definition 2.11. (Annin, [3]) Given a module M_{R}, an endomorphism $\alpha: R \rightarrow R$ and an α-derivation $\delta: R \rightarrow R$, we say that M_{R} is α compatible if for each $m \in M$ and $r \in R$, we have $m r=0 \Leftrightarrow m \alpha(r)=0$. Moreover, we say M_{R} is δ-compatible if for each $m \in M$ and $r \in R$, we have $m r=0 \Rightarrow m \delta(r)=0$. If M_{R} is both α-compatible and δ compatible, we say that M_{R} is (α, δ)-compatible.

The (α, δ)-compatibility condition on M_{R} is a natural, independently interesting condition from which we can derive a number of interesting properties, and it will be of invaluable service in the proof of our main results. After a few quick remarks about Definition 2.11, we will present some results on modules and annihilators in Ore extension rings that can be deduced for these (α, δ)-compatible modules. These fundamental properties of (α, δ)-compatible modules will lay the groundwork for our main results.

Remark 2.12. (a) It is important to note that the α-compatibility assumption requires an "if and only if" while the δ-compatibility assumption is only a one-sided implication. The reason for the stronger assumption on α is that we will often need to consider the leading coefficient of an expression $m(x) r$, where $m(x) \in M[x]$ and $r \in R$, where by (2.1) will involve powers of α but will be free of δ. Finally, observe that in the classical case where $\delta=0$, one never has the reverse implication to the δ-compatibility condition for a nonzero module M_{R}, so we certainly do not expect a two-sided implication for the condition on δ.
(b) If M_{R} is α-compatible (respectively, δ-compatible), then so is any submodule of M_{R}.
(c) If M_{R} is α-compatible (respectively, δ-compatible), then for all $i \geq 1, M_{R}$ is α^{i}-compatible (respectively, δ^{i}-compatible).

The following lemma shows that the (α, δ)-compatibility property on a module M_{R} is inherited by the polynomial module $M[x]$.

Lemma 2.13. [3, Lemma 2.16] A module M_{R} is (α, δ)-compatible if and only if the polynomial extension $M[x]_{R}$ is (α, δ)-compatible.

Lemma 2.14. The following are equivalent for a module M_{R}.
(i) M_{R} is reduced and (α, δ)-compatible;
(ii) The following conditions hold. For any $m \in M$ and $a \in R$,
(a) $m a=0$ implies $m R a=0$,
(b) $m a=0$ implies $m \delta(a)=0$,
(c) $m a=0$ if and only if $m \alpha(a)=0$,
(d) $m a^{2}=0$ implies $m a=0$.

Proof. The proof is straightforward.

Lemma 2.15. Let M_{R} be an (α, δ)-compatible module. Let $m \in M$ and $a, b \in R$. Then we have the following:
(i) If $m a=0$, then $m \alpha^{j}(a)=0=m \delta^{j}(a)$ for any positive integer j;
(ii) If $m a b=0$, then $m \alpha\left(\delta^{j}(a)\right) \delta(b)=0=m \alpha^{i}(\delta(a)) \delta^{j}(b)$, and hence $m a \delta^{j}(b)=0=m \delta^{j}(a) b$ for any positive integer i, j;
$(i i i) a n n_{R}(m a)=a n n_{R}(m \alpha(a)) \subseteq a n n_{R}(m \delta(a))$.
Proof. (i) This follows from section (c) of Remark 2.12.
(ii) Suppose that $m a b=0$. Since M_{R} is δ-compatible, $m a \delta^{j}(b)=0$ for each j.

Using α-compatibility of $M_{R}, m \alpha(a b)=0$, so $m \alpha(a) b=0$. Since M_{R} is δ-compatible, $m \alpha(a) \delta(b)=0$.
Since M_{R} is δ-compatible, $m a b=0$ implies $0=m \delta(a) b+m \alpha(a) \delta(b)$. By above, we deduce $m \delta(a) b=0$.
Using α-compatibility of $M_{R}, m \alpha(\delta(a) b)=0$ if and only if $m \alpha(\delta(a)) \alpha(b)$ $=0$ if and only if $m \alpha(\delta(a)) b=0$. By δ-compatibility of M_{R}, we have $m \alpha(\delta(a)) \delta(b)=0$.
By above calculations, $m \delta(a) b=0$ and by δ-compatibility of $M_{R}, 0=$ $m \delta(\delta(a) b)=m \delta^{2}(a) b+m \alpha(\delta(a)) \delta(b)$. So, $m \delta^{2}(a) b=0$.
Therefore, inductively we get $m \delta^{j}(a) b=0$ for each j. So, $m a \delta^{j}(b)=$ $0=m \delta^{j}(a) b$. Also, we can similarly deduce that $m \alpha\left(\delta^{j}(a)\right) \delta(b)=0$. Now we show that $m a b=0$ implies that $m \alpha^{i}(\delta(a)) \delta^{j}(b)=0$. By above, $m \delta(a) b=0$, and then α^{i}-compatibility of M_{R} implies $m \alpha^{i}(\delta(a) b)=0$ and hence $m \alpha^{i}(\delta(a)) \alpha^{i}(b)=0$. Also using α^{i}-compatibility of M_{R}, it implies $m \alpha^{i}(\delta(a)) b=0$. Since M_{R} is δ^{j}-compatible, $m \alpha^{i}(\delta(a)) \delta^{j}(b)=0$. These computations impliy the result.
(iii) Note that α-compatibility of M_{R} yields $m \alpha(a) b=0 \Leftrightarrow m \alpha(a) \alpha(b)=$ $0 \Leftrightarrow m \alpha(a b)=0 \Leftrightarrow m a b=0$ for all $a, b \in R$. It remains only to show that $a n n_{R}(m a) \subseteq a n n_{R}(m \delta(a))$. To see this, let $m a b=0$ for some $b \in R$. Using δ-compatibility, we get $0=m \delta(a b)=m(\delta(a) b+\alpha(a) \delta(b))=0$. Since we have already concluded that $m \alpha(a) b=0, \delta$-compatibility implies that $m \alpha(a) \delta(b)=0$, and hence $m \delta(a) b=0$, as desired.

Lemma 2.16. Let M_{R} be an (α, δ)-compatible module and $m(x)=m_{0}+$ $\cdots+m_{k} x^{k} \in M[x]$ and $r \in R$. Then $m(x) r=0$ if and only if $m_{i} r=0$ for all $0 \leq i \leq k$.

Proof. Assume $m_{i} r=0$ for all $0 \leq i \leq k$. An easy calculation using (2.1) shows that

$$
\begin{equation*}
m(x) r=\sum_{i=0}^{k}\left(\sum_{j=i}^{k} m_{j} f_{i}^{j}(r)\right) x^{i} . \tag{2.2}
\end{equation*}
$$

By (α, δ)-compatibility of M_{R}, we have $m_{j} f_{i}^{j}(r)=0$, for all i, j. Thus (2.2) yields $m(x) r=0$. Conversely, assume that $m(x) r=0$. We deduce from (2.2) that,

$$
\begin{equation*}
\sum_{j=i}^{k} m_{j} f_{i}^{j}(r)=0 \tag{2.3}
\end{equation*}
$$

for each $i \leq k$.
Starting with $i=k$, Eq. (2.3) yields $m_{k} \alpha^{k}(r)=0$ and hence $m_{j} f_{i}^{j}(r)=$ 0 , for each $j>i$, by (α, δ)-compatibility of M_{R}. Using (2.3) again, we deduce that $m_{i} \alpha^{i}(r)=0$, and that $m_{i} r=0$ as desired.

Proposition 2.17. A module M_{R} is α-reduced if and only if the polynomial extension $M[x]_{R}$ is an α-reduced module.

Proof. It is enough to prove the forward direction. By Lemma 2.13, M_{R} is α-compatible if and only if $M[x]_{R}$ is α-compatible. Now assume that, M_{R} is reduced, to show that $M[x]_{R}$ is reduced, using Lemma 2.14, we only need to show that $m(x) a=0$ implies $m(x) R a=0$ and $m(x) a^{2}=0$ implies $m(x) a=0$, where $m(x)=\sum_{i=0}^{k} m_{i} x^{i} \in M[x]$ and $a \in R$. First let $m(x) a=0$. Since M_{R} is reduced and $m_{i} a=0$ for each $i, m_{i} R a=0$ for each i and hence $m(x) R a=0$. Now suppose $m(x) a^{2}=0$. Since M_{R} is reduced and $m_{i} a^{2}=0$ for each $i, m_{i} a=0$ for each i and hence $m(x) a=0$. Thus $M[x]_{R}$ is reduced and the result follows by Lemma 2.14.

Notice that, the concept of α-reduced for the regular module R_{R} coincides with that of reduced and α-compatible ring R, which in this case R is indeed an α-rigid ring; and note also that, a ring R is α-rigid if and only if R is reduced and (α, δ)-compatible. So we deduce the following:

Corollary 2.18. A ring R is α-rigid if and only if $R[x]_{R}(R[x ; \alpha]$ or $R[x ; \alpha, \delta])$ is an α-reduced R-module.

Theorem 2.19. Every (α, δ)-compatible and reduced module is skewArmendariz.
Proof. Let $m(x)=m_{0}+\cdots+m_{k} x^{k} \in M[x], f(x)=a_{0}+\cdots+a_{n} x^{n} \in$ $R[x ; \alpha, \delta]$ and $m(x) f(x)=0$. So $m_{k} \alpha^{k}\left(a_{n}\right)=0$, because it is the leading coefficient of $m(x) f(x)$. By α-compatibility of M_{R}, we have $m_{k} a_{n}=$ 0 . By Lemma 2.14, $m_{k} R a_{n}=0$, and by (α, δ)-compatibility of M_{R}, $m_{k} f_{i}^{j}\left(a_{n}\right)=0$. Thus the coefficient of x^{k+n-1} in the equation $m(x) f(x)=$ 0 is $m_{k} \alpha^{k}\left(a_{n-1}\right)+m_{k-1} \alpha^{k-1}\left(a_{n}\right)=0$. Multiplying by a_{n} from right we
get $m_{k-1} \alpha^{k-1}\left(a_{n}\right) a_{n}=0$. Using α-compatibility repeatedly we obtain $m_{k-1} a_{n}^{2}=0$. Hence $m_{k-1} a_{n}=0$, by Lemma 2.14. So $m_{k-1} R a_{n}=0$, by Lemma 2.14 and by (α, δ)-compatibility of $M_{R}, m_{k-1} f_{i}^{j}\left(a_{n}\right)=0$. Therefore $m_{k} a_{n-1}=0$. Continuing this process and using (α, δ)-compatibility of M_{R}, we obtain $m_{i} x^{i} a_{j} x^{j}=0$ for each $0 \leq i \leq k$ and $0 \leq j \leq n$. Since (α, δ)-skew Armendariz modules are skew Armendariz, the result follows.

Zhang and Chen [43] proved that, for an endomorphism α of a ring R and $\alpha^{\ell}=i d_{R}$ for some positive integer ℓ, M_{R} is α-reduced if and only if $M[x] / M[x]\left(x^{n}\right)$ is an α-skew Armendariz module over $R[x] /\left(x^{n}\right)$ for integer $n \geq 2$. They also asked if the condition $\alpha^{\ell}=i d_{R}$ superfluous.

For a right R-module M_{R} and $A=\left(a_{i j}\right) \in M_{n}(R)$, let $M A=$ $\left\{\left(m a_{i j}\right) \mid m \in M\right\}$. For $n \geq 2$, let $V=\sum_{i=1}^{n-1} E_{i, i+1}$ where $\left\{E_{i, j} \mid\right.$ $1 \leq i, j \leq n\}$ are the matrix units, and set $T(R, n)=R I_{n}+R V+$ $\cdots+R V^{n-1}, T(M, n)=M I_{n}+M V+\cdots+M V^{n-1}$. Then $T(R, n)$ is a ring and $T(M, n)$ becomes a right module over $T(R, n)$ under usual addition and multiplication of matrices. There is a ring isomorphism $\psi: T(R, n) \rightarrow R[x] /\left(x^{n}\right)$ given by $\psi\left(r_{0} I_{n}+r_{1} V+\cdots+r_{n-1} V^{n-1}\right)=$ $r_{0}+r_{1} x+\cdots+r_{n-1} x^{n-1}+\left(x^{n}\right)$ and an Abelian group isomorphism ϕ : $T(M, n) \rightarrow M[x] / M[x]\left(x^{n}\right)$ given by $\phi\left(m_{0} I_{n}+m_{1} V+\cdots+m_{n-1} V^{n-1}\right)=$ $m_{0}+m_{1} x+\cdots+m_{n-1} x^{n-1}+M[x]\left(x^{n}\right)$ such that $\phi(W A)=\phi(W) \psi(A)$ for all $W \in T(M, n)$ and $A \in T(R, n)$.

Notice that

$$
T(R, n):=\left\{\left.\left(\begin{array}{ccccc}
a_{0} & a_{1} & \cdots & a_{n-2} & a_{n-1} \\
0 & a_{0} & a_{1} & \cdots & a_{n-2} \\
0 & 0 & a_{0} & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & a_{1} \\
0 & 0 & \cdots & 0 & a_{0}
\end{array}\right) \right\rvert\, a_{i} \in R\right\},
$$

with $n \geq 2$, is a ring with point-wise addition and usual matrix multiplication. We can denote elements of $T(R, n)$ by $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$.

Lee and Zhou [29] proved that for each integer $n \geq 2, M[x] / M[x]\left(x^{n}\right)$ is an Armendariz right module over $R[x] /\left(x^{n}\right)$ if and only if M_{R} is reduced. In the following we generalize this to α-reduced modules.

Let α be an endomorphism of a ring R. Then the map $T(R, n) \rightarrow$ $T(R, n)$ defined by $a_{0} I_{n}+a_{1} V+\cdots+a_{n-1} V^{n-1} \rightarrow \alpha\left(a_{0}\right) I_{n}+\alpha\left(a_{1}\right) V+$ $\cdots+\alpha\left(a_{n-1}\right) V^{n-1}$ is an endomorphism of $T(R, n)$. Similarly it is easy to see that the map $R[x] /\left(x^{n}\right) \rightarrow R[x] /\left(x^{n}\right)$ defined by $a_{0}+a_{1} x+\cdots+$
$a_{n-1} x^{n-1}+\left(x^{n}\right) \rightarrow \alpha\left(a_{0}\right)+\alpha\left(a_{1}\right) x+\cdots+\alpha\left(a_{n-1}\right) x^{n-1}+\left(x^{n}\right)$ is an endomorphism of $R[x] /\left(x^{n}\right)$. We will also denote the two maps above by α.

The following result shows that α-compatible reduced modules play so important roles in the study of skew-Armendariz modules (and hence skew-Armendariz rings) as that of reduced rings in the study of Armendariz rings.

Theorem 2.20. An α-compatible module M_{R} is reduced if and only if $M[x] / M[x]\left(x^{n}\right)$ is an α-skew Armendariz module over $R[x] /\left(x^{n}\right)$ for integer $n \geq 2$.
Proof. First assume that $T(M, n)$ is an α-skew Armendariz module over $T(R, n)$ and let $m a=0$ for $a \in R$ and $m \in M$. Let $p(x)=(m, 0, \ldots, 0)+$ $(0,0, \ldots, m r) x \in T(M, n)[x ; \alpha], q(x)=(a, 0, \ldots, 0)-(0,0, \ldots, r \alpha(a)) x \in$ $T(R, n)[x ; \alpha]$ with $p(x) q(x)=0$. Since $T(M, n)$ is α-skew Armendariz, $(m, 0, \ldots, 0)(0,0, \ldots, r \alpha(a))=0$ implies $\operatorname{mr} \alpha(a)=0$ for each $r \in R$. Hence $m R \alpha(a)=0$ yields $m R a=0$, because M_{R} is α-compatible. Thus M_{R} is reduced. Conversely, assume that M_{R} is reduced. Consider the following mapping
$\varphi_{1}: T(M, n)[x ; \alpha] \rightarrow T(M[x ; \alpha], n)$, be given by $\varphi_{1}\left(A_{0}+A_{1} x+\cdots+\right.$ $\left.A_{k} x^{k}\right)=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$, where $A_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right) \in T(M, n), f_{i}^{\prime}=$ $a_{0 i^{\prime}}+a_{1 i^{\prime}} x+\cdots+a_{k i^{\prime}} x^{k} \in M[x], 0 \leq i \leq k$ and $1 \leq i^{\prime} \leq n$. Let $\varphi_{2}: T(R, n)[x ; \alpha] \rightarrow T(R[x ; \alpha], n)$, given by $\varphi_{2}\left(B_{0}+B_{1} x+\cdots+B_{l} x^{l}\right)=$ $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$, where $B_{j}=\left(b_{j 1}, b_{j 2}, \ldots, b_{j n}\right) \in T(R, n), g_{j^{\prime}}=b_{0 j^{\prime}}+$ $b_{1 j^{\prime}} x+\cdots+b_{l j^{\prime}} x^{l} \in R[x ; \alpha], 0 \leq j \leq l$ and $1 \leq j^{\prime} \leq n$. It is easy to see that φ_{1}, φ_{2} are isomorphisms. Suppose that $p=A_{0}+$ $A_{1} x+\cdots+A_{t} x^{t} \in T(M, n)[x ; \alpha]$ and $q=B_{0}+B_{1} x+\cdots+B_{m} x^{m} \in$ $T(R, n)[x ; \alpha]$, where $A_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right) \in T(M, n)$, for each $0 \leq i \leq t$ and $B_{j}=\left(b_{j 1}, b_{j 2}, \ldots, b_{j n}\right) \in T(R, n)$ for each $0 \leq j \leq m$ and let $p(x) q(x)=0$. Suppose that $p_{i}=a_{0 i}+a_{1 i} x+\cdots+a_{t i} x^{t} \in M[x ; \alpha]$ and $q_{j}=b_{0 j}+b_{1 j} x+\cdots+b_{m j} x^{m} \in R[x ; \alpha]$, then $p_{i} q_{j}=0$ for $1 \leq i \leq n$ and $1 \leq j \leq n-i+1$. We then have the system of equations
$\left(A_{0}\right) \quad a_{0 i} b_{0 j}=0$,
$\left(A_{1}\right) \quad a_{0 i} b_{1 j}+a_{1 i} \alpha\left(b_{0 j}\right)=0$,
$\left(A_{2}\right) \quad a_{0 i} b_{2 j}+a_{1 i} \alpha\left(b_{1 j}\right)+a_{2 i} \alpha^{2}\left(b_{2 j}\right)=0$,
\vdots
$\left(A_{t+m-1}\right) \quad a_{(t-1) i} b_{m j}+a_{t i} \alpha^{t}\left(b_{(m-1) j}\right)=0$,
$\left(A_{t+m}\right) \quad a_{t i} \alpha^{t}\left(b_{m j}\right)=0$.

By $\left(A_{t+m}\right)$, we have $a_{t i} \alpha^{t}\left(b_{m j}\right)=0$, which implies $a_{t i} b_{m j}=0$, by α compatibility of M_{R}. Hence $a_{t i} R b_{m j}=0$. Multiplying $\left(A_{t+m-1}\right)$ by $b_{m j}$ from the right, $\left(A_{t+m-1}\right)$ becomes $a_{(t-1) i} b_{m j}^{2}+a_{t i} \alpha^{t}\left(b_{(m-1) j}\right) b_{m j}=0$. Since $a_{t i} R b_{m j}=0$, we get $a_{(t-1) i} b_{m j}^{2}=0$. But M_{R} is reduced, so $a_{(t-1) i} b_{m j}=0$. Continuing this process, we have $a_{0 i} b_{l j}=0$, where $0 \leq l \leq m, 1 \leq i \leq n$ and $1 \leq j \leq n-i+1$. This shows that $A_{0} B_{s}=0$ for $0 \leq s \leq m$, proving that $T(M, n)$ is α-skew Armendariz module over $T(R, n)$.

Corollary 2.21. [29, Theorem 1.9] A module M_{R} is reduced if and only if $M[x] / M[x]\left(x^{n}\right)$ is an Armendariz module over $R[x] /\left(x^{n}\right)$ for an integer $n \geq 2$.

Next we recall a well-known result.
Proposition 2.22. Suppose that M is a flat right R-module. Then for every exact sequence $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$, where F is R-free, we have $(F I) \cap K=K I$ for each left ideal I of R; in particular, we have $F a \cap K=$ Ka for each element a of R.

Proposition 2.23. Let α be an endomorphism of $a \operatorname{ring} R$ and δ an α-derivation. Then R is a skew-Armendariz ring if and only if every flat R module M is skew-Armendariz.

Proof. Let M be a flat R-module. Suppose $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$ is an exact sequence with F free over R. For an element $y \in F$, we denote $\bar{y}=y+K$ in M. Suppose that $f(x)=\sum_{i=0}^{t} \overline{y_{i}} x^{i} \in M[x]$ and $g(x)=\sum_{j=0}^{n} a_{j} x^{j} \in R[x ; \alpha, \delta]$ with $f(x) g(x)=0$. We show that $\overline{y_{0}} a_{j}=0$ for $0 \leq j \leq n$. We have $f(x) g(x)=0$, so we get, The constant term: $\quad \overline{y_{0}} a_{0}+\overline{y_{1}} \delta\left(a_{0}\right)+\overline{y_{2}} \delta^{2}\left(a_{0}\right)+\cdots=0$; The coefficient of $x: \quad \overline{y_{0}} a_{1}+\overline{y_{1}} \alpha\left(a_{0}\right)+\overline{y_{1}} \delta\left(a_{1}\right)+\cdots=0$; !
The coefficient of $x^{t+n}, \quad \overline{y_{t}} \alpha^{t}\left(a_{n}\right)=0$.
Since M is a flat R-module, there exists an R-module homomorphism β : $F \rightarrow K$ such that β fixes these coefficients. Write $w_{i}:=\beta\left(y_{i}\right)-y_{i}$ for $i=$ $0,1, \ldots, t$. Each w_{i} is an element of F, therefore the polynomial $h(x)=$ $\sum_{j=0}^{t} w_{i} x^{i} \in F[x]$ and $h(x) g(x)=0$. Since R is skew-Armendariz and F is a free R-module, F is skew-Armendariz by Proposition 2.10. Thus, we have $w_{0} a_{j}=0$ for all j. It follows that $y_{0} a_{j} \in K$ for all j, so $\overline{y_{0}} a_{j}=0$
in M, proving that M is skew-Armendariz.

Put $A n n_{R}\left(2^{M_{R}}\right)=\left\{a n n_{R}(U) \mid U \subseteq M_{R}\right\}$, where M_{R} is an R-module.

Theorem 2.24. Let M_{R} be an (α, δ)-compatible module and $S=R[x ; \alpha, \delta]$. Then the following statements are equivalent:
(1) M_{R} is a skew-Armendariz module;
(2) The map $\psi: A n n_{R}\left(2^{M_{R}}\right) \rightarrow A n n_{S}\left(2^{M[x]_{S}}\right)$, defined by $A \rightarrow A S$ for all $A \in A n n_{R}\left(2^{M_{R}}\right)$, is bijective.

Proof. (1) \Rightarrow (2). Consider the maps $\psi:\left\{a n n_{R}(U) \mid U \subseteq M_{R}\right\} \rightarrow$ $\left\{a n n_{S}(U) \mid U \subseteq M[x]_{S}\right\}$ defined by $A \mapsto A S$ for every $A \in\left\{a n n_{R}(U) \mid\right.$ $\left.U \subseteq M_{R}\right\}$, and $\psi^{\prime}:\left\{\operatorname{ann}_{S}(U) \mid U \subseteq M[x]_{S}\right\} \rightarrow\left\{a n n_{R}(U) \mid U \subseteq M_{R}\right\}$ defined by $B \mapsto B \cap R$. It is clear that ψ is well defined, because $a n n_{R}(U) S=a n n_{S}(U)$ for each $U \subseteq M_{R}$. Since M_{R} is (α, δ)-compatible, we see that $a n n_{S}(V) \cap R=a n n_{R}\left(V_{0}\right)$ for each $V \subseteq M[x]_{S}$, where V_{0} is the set of coefficients of all elements of V. Hence ψ^{\prime} is also well defined. Since $\psi^{\prime} \psi=i d, \psi$ is injective. Assume that $B \in\left\{a n n_{S}(U) \mid U \subseteq\right.$ $\left.M[x]_{S}\right\}$, then $B=a n n_{S}(J)$ for some $J \subseteq M[x]_{S}$. Let B_{1} and J_{1} denote the set of coefficients of elements of B and J, respectively. We claim that $\operatorname{ann}_{R}\left(J_{1}\right)=B_{1} R$. Let $m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k} \in J$ and $f(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in B$. Then $m(x) f(x)=0$. Since M_{R} is skew-Armendariz and (α, δ)-compatible, $m_{i} b_{j}=0$ for all m_{i} and b_{j}. Thus $J_{1} B_{1}=0$, hence $B_{1} R \subseteq a n n_{R}\left(J_{1}\right)$. Since M_{R} is (α, δ)-compatible, $\operatorname{ann}_{R}\left(J_{1}\right) \subseteq B_{1} R$. Thus $\operatorname{ann}_{R}\left(J_{1}\right)=B_{1} R$, and hence $\operatorname{ann}_{S}(J)=B_{1} R S$. Therefore ψ is surjective.
$(2) \Rightarrow(1)$. Let $m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k} \in M[x]_{S}$ and $f(x)=$ $b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in S=R[x ; \alpha, \delta]$ satisfy $m(x) f(x)=0$. Then $f(x) \in \operatorname{ann}_{S}(m(x))=A S$, where $A=a n n_{R}(U)$ and $U \subseteq M_{R}$. Hence $b_{0}, \ldots, b_{n} \in A$ and so $m(x) b_{j}=0$ for $0 \leq j \leq n$. Hence $m_{0} b_{j}=0$ for each $0 \leq j \leq n$, and the result follows.

Theorem 2.25. If M_{R} is a linearly skew-Armendariz module with $R \subseteq$ M, then for each idempotent $e \in R, \alpha(e)=e$ and $\delta(e)=0$.

Proof. Since M_{R} is a linearly skew-Armendariz module with $R \subseteq M_{R}$, then R_{R} is also linearly skew-Armendariz. Hence by [35, Theorem 3.1], the result follows.
N. Agayev et al. [1] introduced and studied the notion of abelian modules:
A module M_{R} is called abelian if, for any $m \in M$ and any $a \in R$, any idempotent $e \in R$, mae $=m e a$. It is proved in [1] that every Armendariz module and hence every reduced module is abelian. The class of abelian modules is closed under direct sums, and a ring R is abelian if and only if every flat R-module M_{R} is abelian.

Theorem 2.26. If M_{R} is a linearly skew-Armendariz module with $R \subseteq$ M, then M_{R} is an abelian module.

Proof. Let M_{R} be a linearly skew-Armendariz module. Consider the polynomials $m_{1}(x)=m e-m e r(1-e) x$ and $m_{2}(x)=m(1-e)-m(1-$ e)rex $\in M[x]_{R[x ; \alpha, \delta]}$ and $f_{1}(x)=(1-e)+e r(1-e) x$ and $f_{2}(x)=$ $e+(1-e)$ rex $\in R[x ; \alpha, \delta]$, where e is an idempotent in $R, r \in R$ and $m \in M$. Since $\alpha(e)=e$ and $\delta(e)=0$, we have $m_{1}(x) f_{1}(x)=0$ and $m_{2}(x) f_{2}(x)=0$. Since M_{R} is linearly skew-Armendariz, we get mere $=$ mer and mere $=m r e$. Thus mer $=m r e$ for each $r \in R$, and hence M_{R} is an abelian module.

Corollary 2.27. If M_{R} is a skew-Armendariz module with $R \subseteq M$, then M_{R} is an abelian module.

Theorem 2.28. Let M_{R} be a reduced module. Then M_{R} is a p.p.-module if and only if M_{R} is a p.q.-Baer module.

Proof. Since M_{R} is reduced, by Lemma 2.14, for each $m \in M$ and $a \in R, m a=0$ implies $m R a=0$. So $a n n_{R}(m) \subseteq a n n_{R}(m R)$ and hence $a n n_{R}(m)=a n n_{R}(m R)$.

Theorem 2.29. Let M_{R} be an (α, δ)-compatible and skew-Armendariz module with $R \subseteq M$. Then M_{R} is $p . p$. if and only if $M[x]_{R[x ; \alpha, \delta]}$ is $p . p$.
Proof. Suppose that M_{R} is a p.p.-module and $m(x)=m_{0}+m_{1} x+$ $\cdots+m_{k} x^{k} \in M[x]$. So $a n n_{R}\left(m_{i}\right)=e_{i} R$ for idempotents $e_{i} \in R$ with $0 \leq i \leq k$. Set $e=e_{0} e_{1} \cdots e_{k}$, then e is an idempotent, this is because M_{R} is abelian by Corollary 2.27. Hence $e R=\cap_{i=0}^{k} a n n_{R}\left(m_{i}\right)$. By Theorem 2.25, $\alpha(e)=e$ and $\delta(e)=0$. Thus $m(x) e=0$ and hence $e S \subseteq a n n_{S}(m(x))$, where $S=R[x ; \alpha, \delta]$. Next, assume that $q(x)=$
$\sum_{j=0}^{n} b_{j} x^{j} \in \operatorname{ann} n_{S}(m(x))$. Since M_{R} is skew-Armendariz, $m_{0} b_{j}=0$ for $0 \leq j \leq n$. So $b_{j} \in e R$ and hence $q(x) \in e S$, so $a n n_{S}(m(x))=e S$. This shows that $M[x]$ is a p.p.-module over $R[x ; \alpha, \delta]$.

Conversely, suppose that $M[x]$ is a p.p.-module over $R[x ; \alpha, \delta]$ and $m \in M$. Let $e(x)=e_{0}+e_{1} x+\cdots+e_{n} x^{n}$ be an idempotent in $R[x ; \alpha, \delta]$. Then from $e(1-e)=0=(1-e) e$, we get $\left(e_{0}+e_{1} x+\cdots+e_{n} x^{n}\right)\left(1-e_{0}-\right.$ $\left.e_{1} x-\cdots-e_{n} x^{n}\right)=0$ and $\left(1-e_{0}-e_{1} x-\cdots-e_{n} x^{n}\right)\left(e_{0}+e_{1} x+\cdots+e_{n} x^{n}\right)=$ 0 . Since M_{R} is skew-Armendariz, $e_{0}\left(1-e_{0}\right)=0,\left(1-e_{0}\right) e_{i}=0$. So $e_{0} e_{i}=0, e_{i}=e_{0} e_{i}$, and hence $e_{i}=0$. Thus $e(x)=e_{0}^{2}=e_{0} \in R$, and $a n n_{S}(m)=e S$, which yields $a n n_{R}(m)=e R$ and the result follows.

Theorem 2.30. Let M_{R} be an (α, δ)-compatible skew-Armendariz module with $R \subseteq M$. Then M_{R} is Baer if and only if $M[x]_{R[x ; \alpha, \delta]}$ is Baer.

Proof. Assume that M_{R} is a Baer module and $J \subseteq M[x]$. First suppose $J_{0}=\{m \in M \mid m$ is a leading coefficient of some non-zero element of $J\}$. Clearly, J_{0} is a subset of M. Since M_{R} is Baer, there exists $e^{2}=e \in R$ such that $\operatorname{ann}_{R}\left(J_{0}\right)=e R$. Hence $e S \subseteq a n n_{S}(J)$ by Lemma 2.15. Let $f(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in \operatorname{ann}_{S}(J)$. Then $J_{0} b_{j}=0$ for each $j=0, \ldots, n$, because M_{R} is skew-Armendariz. Hence $b_{j}=e b_{j}$ for each $j=0, \ldots, n$ and $f(x)=e f(x) \in e S$. Thus $a n n_{S}(J)=e S$ and $M[x]_{S}$ is a Baer module. Conversely, assume that $M[x]_{S}$ is a Baer module and $A \subseteq M$. Then $A[x] \subseteq M[x]$. Since $M[x]$ is Baer, there exists an idempotent $e(x)=e_{0}+\cdots+e_{n} x^{n} \in S$ such that ann $_{S}(A[x])=e(x) S$. Hence $A e_{0}=0$ and $e_{0} R \subseteq a n n_{R}(A)$. Next, let $t \in a n n_{R}(A)$. Then $A[x] t=0$ by Lemma 2.16. Hence $t=e(x) t$ and so $t=e_{0} t \in e_{0} R$. Thus $a n n_{R}(A)=e_{0} R$ and M_{R} is a Baer module.

Example 2.31. Let F be a filed and $R=\left(\begin{array}{cc}F & 0 \\ 0 & F\end{array}\right)$ and let $M_{R}=$ $\left(\begin{array}{ll}F & 0 \\ F & 0\end{array}\right)$ be a right R-module. Let $\alpha: R \rightarrow R$ be the automorphism given by $\alpha\left(\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\right)=\left(\begin{array}{cc}b & 0 \\ 0 & a\end{array}\right)$, for each $a, b \in F$. Note that R is an abelian ring and M_{R} is an abelian module. But we see that M_{R} is not α-skew Armendariz. For this let $m(x)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{cc}-2 & 0 \\ 0 & 0\end{array}\right) x \in$
$M[x]$ and $f(x)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right) x \in R[x ; \alpha]$. Then, we can easily see that $m(x) f(x)=0$. But we have, $m_{0} a_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)=$ $\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right) \neq 0$.

McCoy [31, Theorem 2] proved that if R is a commutative ring, then whenever $g(x)$ is a zero-divisor in $R[x]$ there exists a nonzero $c \in R$ such that $c g(x)=0$. We shall extend this result as follows.

Proposition 2.32. Let M_{R} be an (α, δ)-compatible and reduced module. If $m(x)$ is a torsion element in $M[x]$ (i.e., $m(x) h(x)=0$ for some $0 \neq h(x) \in R[x ; \alpha, \delta])$, then there exists a non-zero element c of R such that $m(x) c=0$.

Proof. Let $m(x)=\sum_{i=0}^{n} m_{i} x^{i} \in M[x]$ and $h(x)=\sum_{j=0}^{s} h_{j} x^{j} \in R[x ; \alpha, \delta]$ and $m(x) h(x)=0$. Then $m_{n} \alpha^{n}\left(h_{s}\right)=0$, and since M is α-compatible, we have $m_{n} h_{s}=0$. By Lemma 2.14, we get $m_{n} R h_{s}=0$. Since M_{R} is (α, δ)-compatible, it is $\left(\alpha^{i}, \delta^{j}\right)$-compatible for each i, j and hence $m_{n} f_{i}^{j}\left(h_{s}\right)=0$ for each $j \geq i \geq 0$. Hence the coefficient of x^{n+s-1} in $m(x) h(x)=0$ is $m_{n} \alpha^{n}\left(h_{s-1}\right)+m_{n-1} \alpha^{n-1}\left(h_{s}\right)=0$.
Multiply the above equation from right by h_{s}, we get $m_{n-1} \alpha^{n-1}\left(h_{s}\right) h_{s}=$ 0 . Using α-compatibility repeatedly, we obtain $m_{n-1} h_{s}^{2}=0$, and then by Lemma 2.14, we have $m_{n-1} h_{s}=0$. Using Lemma 2.14 again, we have $m_{n-1} R h_{s}=0$, and by (α, δ)-compatibility of $M_{R}, m_{n-1} f_{i}^{j}\left(h_{s}\right)=0$ for each $j \geq i \geq 0$. Hence the coefficient of x^{n+s-2} in $m(x) h(x)=0$ is $m_{n} \alpha^{n}\left(h_{s-2}\right)+m_{n-1} \alpha^{n-1}\left(h_{s-1}\right)+m_{n} f_{n-1}^{n}\left(h_{s-1}\right)+m_{n-2} \alpha^{n-2}\left(h_{s}\right)=0$. Multiplying the above equation from right by h_{s}, we get $m_{n-2} \alpha^{n-2}\left(h_{s}\right) h_{s}=$ 0 . Using α-compatibility repeatedly we obtain $m_{n-2} h_{s}^{2}=0$, and then by Lemma 2.14, we have $m_{n-2} h_{s}=0$. Continuing this process we deduce that $m_{j} h_{s}=0$ for each j. Since $h(x) \neq 0$ we may assume that $c=h_{s} \neq 0$. Then by Lemma 2.16, we get $m(x) c=0$.

Corollary 2.33. Let M_{R} be an (α, δ)-compatible and reduced module. Then M_{R} is Baer (respectively, p.p.) if and only if so is $M[x]_{R[x ; \alpha, \delta]}$.
Proof. This follows from Theorems 2.19, 2.29 and 2.30.

Corollary 2.34. Let R be an α-compatible and reduced ring. Then R is Baer (respectively, p.p.) if and only if $R[x ; \alpha, \delta]$ is Baer (respectively, p.p.).

Proof. Since R_{R} is α-compatible and reduced, by definition, R is an α rigid ring. Hence the result follows by Theorems 11 and 14 of [20].

Example 2.35. Let R_{0} be a domain with characteristic 0 and let R be the polynomial ring $R_{0}[t]$. Let α be the automorphism of R which is invariant on R_{0} and $\alpha(t)=-t$. For each fixed element $a \in R_{0}$, let δ be the derivation on R given by $\delta\left(a t^{n}\right)=\left\{\begin{array}{cl}a t^{n-1} & \text { if } n \text { is odd, } \\ 0 & \text { if } n \text { is even } .\end{array}\right.$
Assume that $M:=R_{0} \oplus R_{0} \oplus \cdots$. Then M is a right R module given by $\left(m_{0}, m_{1}, \cdots\right) r=\left(0, m_{0} k_{0}, m_{1} k_{1}, \cdots\right)$ for each $\left(m_{0}, m_{1}, \cdots\right) \in M$ and $r \in R$ and fixed non-zero integers $k_{0}, k_{1}, k_{2}, \cdots$. First we show that M_{R} is (α, δ)-compatible. It is enough to show that for each $0 \neq m \in M$, $\operatorname{ann}(m)=0$. Suppose that $\left(a_{0}, a_{1}, a_{2}, \cdots\right)\left(b_{r} t^{r}+b_{r+1} t^{r+1}+\cdots\right)=0$, where $a_{i}, b_{i} \in R_{0}$ for each $i \in \mathbb{N}_{0}$ and $b_{r} \neq 0$. So we have $\left(0,0, \cdots, 0, a_{0} k_{0} k_{1} \cdots k_{r-1}, a_{1} k_{1} k_{2} \cdots k_{r}, \cdots\right)\left(b_{r}+b_{r+1} t+\cdots\right)=0$.
This implies that $a_{0} k_{0} k_{1} \cdots k_{r-1} b_{r}=0$. Since R_{0} is of characteristic $0, R$ is a domain. Since $b_{r} \neq 0$ and hence $k_{0} k_{1} \cdots k_{r-1} b_{r} \neq 0$, we get $a_{0}=0$. By induction we can see that $a_{i}=0$ for each i. Now we show that M_{R} is (α, δ)-skew Armendariz. To see this let $m(x)=$ $m_{0}+m_{1} x+\cdots+m_{k} x^{k} \in M[x]$ and $f(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x ; \alpha, \delta]$ with $0=m(x) f(x)=\sum_{p=0}^{k+n}\left(\sum_{i+l=p} \sum_{j=i}^{k} m_{j} f_{i}^{j}\left(b_{l}\right)\right) x^{p}$. So $m_{k} \alpha^{k}\left(a_{n}\right)=$ 0 . By α-compatibility of M_{R}, we have $m_{k} a_{n}=0$. Since M_{R} is reduced module, $m_{k} R a_{n}=0$. On the other hand, by (α, δ)-compatibility of $M_{R}, m_{k} f_{i}^{j}\left(a_{n}\right)=0$. Thus the coefficient of x^{k+n-1} in equation $m(x) f(x)=0$ is $m_{k} \alpha^{k}\left(a_{n-1}\right)+m_{k-1} \alpha^{k-1}\left(a_{n}\right)=0$. Multiplying by a_{n} from right we get $m_{k-1} \alpha^{k-1}\left(a_{n}\right) a_{n}=0$. Using α-compatibility repeatedly we obtain $m_{k-1} a_{n}^{2}=0$. Hence $m_{k-1} a_{n}=0$. Since M_{R} is reduced, $m_{k-1} R a_{n}=0$, and by (α, δ)-compatibility of $M_{R}, m_{k-1} f_{i}^{j}\left(a_{n}\right)=$ 0 . Therefore $m_{k} a_{n-1}=0$. Continuing this process and using (α, δ) compatibility of M_{R}, we obtain $m_{i} x^{i} a_{j} x^{j}=0$ for each $0 \leq i \leq k$ and $0 \leq j \leq n$, as desired.

In the following, we show by an example that the " (α, δ)-compatibility condition" in Lemma 2.16, is not superfluous.

Example 2.36. Let R_{0} be a domain and $R=R_{0}\left[t_{1}, t_{2}\right]$, where t_{1}, t_{2} are commuting indeterminates. Let α be the R_{0}-automorphism defined by $\alpha\left(t_{1}\right)=t_{2}$ and $\alpha\left(t_{2}\right)=t_{1}$. Let M be the polynomial ring $R_{0}\left[t_{1}\right]$. Consider M to be a right R-module given by ordinary polynomial multiplication subject to the condition $M t_{2}=0$. Then it is easy to see that M_{R} is not α-compatible. Now take $0 \neq m(x)=g_{0}\left(t_{1}\right)+g_{1}\left(t_{1}\right) x+\cdots+g_{r}\left(t_{1}\right) x^{r} \in$ $M[x]$ and $t_{2} \in R$. Then $0=m(x) t_{2}=g_{0}\left(t_{1}\right) t_{2}+g_{1}\left(t_{1}\right) x t_{2}+\cdots+$ $g_{r}\left(t_{1}\right) x^{r} t_{2}=g_{1}\left(t_{1}\right) t_{1} x+g_{3}\left(t_{1}\right) t_{1} x^{3}+\cdots$. Thus for odd integers i, $g_{i}\left(t_{1}\right) t_{1}=0$ which implies that $g_{i}\left(t_{1}\right)=0$, as R_{0} is a domain. But $0 \neq m(x)$, so for some even number $j, 0 \neq g_{j}\left(t_{1}\right)$ and hence $g_{j}\left(t_{1}\right) t_{2} \neq 0$ for some j.

3. Skew Quasi-Armendariz Modules

Following Hirano [19], a module M_{R} is called quasi-Armendariz if, whenever $m(x) R[x] f(x)=0$, where $m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in M[x]$ and $f(x)=\sum_{j=0}^{t} a_{j} x^{j} \in R[x]$, we have $m_{i} R a_{j}=0$ for all i, j.

In this section, we generalize the notions of quasi-Armendariz rings and quasi-Armendariz modules and consider the relations between the set of annihilators in M_{R} and the set of annihilators in $M[x]_{R[x ; \alpha, \delta]}$.

We give a sufficient condition for a module to be skew quasi-Armendariz and study the structure of the skew quasi-Armendariz modules.

By Hirano in [19], a ring R is called a quasi-Armendariz ring if, whenever $f(x) R[x] g(x)=0$ where $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \in R[x]$ and $g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x]$, it implies that $a_{i} R b_{j}=0$ for all i and j. Every semiprime ring is a quasi-Armendariz ring, by [19].

In [19], a module M_{R} is called a quasi-Armendariz module if whenever $m(x) R[x] f(x)=0$, where $m(x)=m_{0}+m_{1} x+\cdots+m_{k} x^{k} \in M[x]$ and $f(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x]$, it implies that $m_{i} R b_{j}=0$ for all i and j.

Definition 3.1. Let M_{R} be a module, α an endomorphism of R and δ an α-derivation. We say M_{R} is skew quasi-Armendariz, if whenever $m(x)=\sum_{i=0}^{k} m_{i} x^{i} \in M[x], f(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \alpha, \delta]$ satisfy $m(x) R[x ; \alpha, \delta] f(x)=0$, we have $m_{i} x^{i} R x^{t} b_{j} x^{j}=0$ for $t \geq 0$, $i=0,1, \ldots, k$ and $j=0,1, \ldots, n$.

Theorem 3.2. Let M_{R} be an α-compatible module and $S=R[x ; \alpha]$. Then,
(1) The following statements are equivalent:
(a) for any $m(x) \in M[x]_{S},\left(a n n_{S}(m(x) S) \cap R\right)[x ; \alpha]=\operatorname{ann}_{S}(m(x) S)$.
(b) for any $m(x)=\sum_{i=0}^{k} m_{i} x^{i} \in M[x]_{S}$ and $f(x)=\sum_{j=0}^{t} a_{j} x^{j} \in S$, $m(x) S f(x)=0$ implies $m_{i} R a_{j}=0$, for each i, j.
(2) Let M_{R} be an skew quasi-Armendariz module and $m(x) \in M[x]_{S}$. If $\operatorname{ann}_{S}(m(x) S) \neq 0$, then $a n n_{S}(m(x) S) \cap R \neq 0$.
Proof. (1). $(a) \Rightarrow(b)$ Let $m(x)=\sum_{i=0}^{k} m_{i} x^{i} \in M[x]_{S}, f(x)=\sum_{j=0}^{t} a_{j} x^{j}$ $\in S$ and assume that $m(x) S f(x)=0$. By $(a), f(x) \in\left(a n n_{S}(m(x) S) \cap\right.$ $R)[x ; \alpha]$, and we deduce that $a_{j} \in \operatorname{ann}_{S}(m(x) S) \cap R$ for each $0 \leq j \leq t$. So $m(x) S a_{j}=0$ and then by α-compatibility of M_{R}, we obtain $m_{i} R a_{j}=$ 0 for each i, j.
$(b) \Rightarrow(a)$ Let $g(x)=\sum_{j=0}^{s} b_{j} x^{j} \in\left(a n n_{S}(m(x) S) \cap R\right)[x ; \alpha]$, so $b_{j} \in$ $a n n_{S}(m(x) S) \cap R$. So $m(x) S b_{j}=0$ for each j and hence $m(x) S g(x)=0$. Thus $g(x) \in \operatorname{ann}_{S}(m(x) S)$. Now assume that $h(x)=\sum_{j=0}^{k} c_{j} x^{j} \in$ $a n n_{S}(m(x) S)$. So $m(x) S h(x)=0$ and by (b) we get $m_{i} R c_{j}=0$. By α-compatibility of $M_{R}, m(x) R c_{j}=0$. So $c_{j} \in \operatorname{ann}_{S}(m(x) S) \cap R$ for each j and hence $h(x) \in\left(a n n_{S}(m(x) S) \cap R\right)[x ; \alpha]$. So $a n n_{S}(m(x) S)=$ $\left(a n n_{S}(m(x) S \cap R)\right)[x ; \alpha]$.
(2). The proof follows by Lemma 2.15 and (1) $(b) \Rightarrow(a)$.

In the following result, we give relations between the set of annihilators in M_{R} and the set of annihilators in $M[x]_{R[x ; \alpha]}$.
Theorem 3.3. Let M_{R} be an α-compatible module and $S=R[x ; \alpha]$. Then the following statements are equivalent:
(1) M_{R} is a skew quasi-Armendariz module;
(2) The map $\psi: A n n_{R}\left(\operatorname{sub}\left(M_{R}\right)\right) \rightarrow A n n_{S}\left(\operatorname{sub}\left(M[x]_{S}\right)\right)$, defined by $\psi\left(a n n_{R}(N)\right)=a n n_{S}(N)=a n n_{S}(N[x])$ for all $N \in \operatorname{sub}\left(M_{R}\right)$, is bijective, where $\operatorname{sub}\left(M_{R}\right)$ and $\operatorname{sub}\left(M[x]_{S}\right)$ denote the sets of submodules.

Proof. (1) \Rightarrow (2) Assume that M_{R} is skew quasi-Armendariz. Obviously ψ is injective. Therefore, it is enough to show ψ is surjective. Let $V \in \operatorname{sub}\left(M[x]_{S}\right)$ and C_{V} denotes the set of all coefficients of elements of V. Then for $\operatorname{ann}_{R}\left(C_{V} R\right) \in \operatorname{Ann}_{R}(\operatorname{sub}(M))$, we have $\psi\left(\operatorname{ann}_{R}\left(C_{V} R\right)\right)=$ $\operatorname{ann}_{S}\left(C_{V} R\right)=\operatorname{ann}_{S}(V)$. In fact, let $f(x) \in \operatorname{ann}_{S}\left(C_{V} R\right)$. Then $C_{V} R f(x)$ $=0$ and hence $V f(x)=0$. So $f(x) \in a n n_{S}(V)$. Conversely, let $g(x)=b_{0}+\cdots+b_{k} x^{k} \in \operatorname{ann}_{S}(V)$. Then $V g(x)=0$. Since V is a submodule of $M[x]_{S}, V S g(x)=0$. So $v(x) S g(x)=0$ for all $v(x)=$
$v_{0}+v_{1} x+\cdots+v_{l} x^{l} \in V$. Since M_{R} is α-compatible and skew quasiArmendariz, $v_{i} R b_{j}=0$ for all i, j. Hence $C_{V} R g(x)=0$ and therefore $g(x) \in a n n_{S}\left(C_{V} R\right)$. Consequently ψ is surjective.
$(2) \Rightarrow$ (1) Assume $m(x) S f(x)=0$, where $m(x)=m_{0}+m_{1} x+\cdots+$ $m_{t} x^{t} \in M[x]$ and $f(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k} \in S$. By hypothesis, $a n n_{S}(m(x) S)=a n n_{R}(N)[x ; \alpha]$ for some submodule N of M. Then $f(x) \in \underset{\operatorname{ann}}{R}(N)[x ; \alpha]$ and hence $a_{j} \in a n n_{R}(N)$ for all j. So $a_{j} \in$ $a n n_{R}(N) \subseteq a n n_{R}(N)[x ; \alpha]=a n n_{S}(m(x) S)$ and then $m(x) S a_{j}=0$. In particular $m(x) R a_{j}=0$ and hence $m_{i} R a_{j}=0$ for all i, j. Since M_{R} is α-compatible, $m_{i} x^{i} R x^{t} a_{j} x^{j}=0$, for $t \geq 0, i=0,1, \ldots, t$ and $j=0,1, \ldots, k$. Therefore M_{R} is skew quasi-Armendariz .

Let R be a ring. The trivial extension of R is given by:
$T(R, R)=\left\{\left.\left(\begin{array}{cc}a & r \\ 0 & a\end{array}\right) \right\rvert\, a, r \in R\right\}$. Clearly, $T(R, R)$ is a subring of the ring of 2×2 matrices over R. The endomorphism α of R and the α-derivation δ on R are extended to $\bar{\alpha}: T(R, R) \rightarrow T(R, R)$ by $\bar{\alpha}\left(\left(\begin{array}{cc}a & r \\ 0 & a\end{array}\right)\right)=\left(\begin{array}{cc}\alpha(a) & \alpha(r) \\ 0 & \alpha(a)\end{array}\right), \bar{\delta}\left(\left(\begin{array}{cc}a & r \\ 0 & a\end{array}\right)\right)=\left(\begin{array}{cc}\delta(a) & \delta(r) \\ 0 & \delta(a)\end{array}\right)$. One can show that $\bar{\delta}$ is an $\bar{\alpha}$-derivation on $T(R, R)$ and also we can see $T(R, R)[x ; \bar{\alpha}, \bar{\delta}] \cong T(R[x ; \alpha, \delta], R[x ; \alpha, \delta])$.

Proposition 3.4. If the trivial extension of $R, T(R, R)$, is skew-quasi Armendariz, then so is R.
Proof. Let $f(x)=a_{0}+\cdots+a_{n} x^{n}, g(x)=b_{0}+\cdots+b_{m} x^{m} \in R[x ; \alpha, \delta]$ and $f(x) R[x ; \alpha, \delta] g(x)=0$. For each $a, r \in R$ and $t \geq 0$, we have the following equation: $0=\left(\begin{array}{cc}f(x) & 0 \\ 0 & f(x)\end{array}\right)\left(\begin{array}{cc}a x^{t} & r x^{t} \\ 0 & a x^{t}\end{array}\right)\left(\begin{array}{cc}0 & g(x) \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}0 & f(x) a x^{t} g(x) \\ 0 & 0\end{array}\right)$. Since $T(R, R)$ is skew quasi-Armendariz, it implies that $a_{i} x^{i} a x^{t} b_{j} x^{j}=0$, for each i, j, t. Therefore R is skew quasi-Armendariz.

When the trivial extension $T(R, R)$ is skew quasi-Armendariz?
Theorem 3.5. Let R be a ring such that
(i) R is skew quasi-Armendariz;
(ii) If $f(x) R[x ; \alpha, \delta] g(x)=0$, then $f(x) R[x ; \alpha, \delta] \cap R[x ; \alpha, \delta] g(x)=0$.

Then the trivial extension $T=T(R, R)$ is skew quasi-Armendariz.
Proof. Suppose that $\alpha(x) T[x ; \bar{\alpha}, \bar{\delta}] \beta(x)=0$, where
$\alpha(x)=\left(\begin{array}{cc}a_{0} & r_{0} \\ 0 & a_{0}\end{array}\right)+\left(\begin{array}{cc}a_{1} & r_{1} \\ 0 & a_{1}\end{array}\right) x+\cdots+\left(\begin{array}{cc}a_{n} & r_{n} \\ 0 & a_{n}\end{array}\right) x^{n}$ and
$\beta(x)=\left(\begin{array}{cc}b_{0} & s_{0} \\ 0 & b_{0}\end{array}\right)+\left(\begin{array}{cc}b_{1} & s_{1} \\ 0 & b_{1}\end{array}\right) x+\cdots+\left(\begin{array}{cc}b_{m} & s_{m} \\ 0 & b_{m}\end{array}\right) x^{m} \in T[x ; \bar{\alpha}, \bar{\delta}]$.
Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, r(x)=r_{0}+r_{1} x+\cdots+r_{n} x^{n}$, $g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ and $s(x)=s_{0}+s_{1} x+\cdots+s_{m} x^{m} \in R[x ; \alpha, \delta]$. For each $\left(\begin{array}{cc}a & r \\ 0 & a\end{array}\right) x^{t} \in T[x ; \bar{\alpha}, \bar{\delta}]$, it follows that

$$
\begin{gather*}
0=\left(\begin{array}{cc}
f(x) & r(x) \\
0 & f(x)
\end{array}\right)\left(\begin{array}{cc}
a x^{t} & r x^{t} \\
0 & a x^{t}
\end{array}\right)\left(\begin{array}{cc}
g(x) & s(x) \\
0 & g(x)
\end{array}\right)= \\
\left(\begin{array}{cc}
f(x) a x^{t} g(x) & f(x) a x^{t} s(x)+f(x) r x^{t} g(x)+r(x) a x^{t} g(x) \\
0 & f(x) a x^{t} g(x)
\end{array}\right) . \text { Hence } \\
\qquad(x) a x^{t} g(x)=0, \tag{3.1}
\end{gather*}
$$

and

$$
\begin{equation*}
f(x) a x^{t} s(x)+f(x) r x^{t} g(x)+r(x) a x^{t} g(x)=0 . \tag{3.2}
\end{equation*}
$$

Since $\left(\begin{array}{cc}a & r \\ 0 & a\end{array}\right) x^{t}$ is an arbitrary element of $T(R, R)[x ; \bar{\alpha}, \bar{\delta}]$ and $T(R, R)[x ; \bar{\alpha}, \bar{\delta}] \cong T(R[x ; \alpha, \delta], R[x ; \alpha, \delta])$, by (3.1) we get

$$
\begin{equation*}
f(x) R[x ; \alpha, \delta] g(x)=0 \tag{3.3}
\end{equation*}
$$

Since R is skew quasi-Armendariz, $a_{i} x^{i} R x^{t} b_{j} x^{j}=0$, for all i, j, t. Thus by (3.2), $f(x)\left[a x^{t} s(x)+r x^{t} g(x)\right]+\left[r(x) a x^{t}\right] g(x)=0$. Hence by (3.2) and (3.3), we have
$f(x)\left[a x^{t} s(x)+r x^{t} g(x)\right]=-\left[r(x) a x^{t}\right] g(x) \in f(x) R[x ; \alpha, \delta] \cap R[x ; \alpha, \delta] g(x)$ $=0$. So $f(x)\left[a x^{t} s(x)+r x^{t} g(x)\right]=0=r(x) a x^{t} g(x)$, and hence we have $r(x) R[x ; \alpha, \delta] g(x)=0$, since $a x^{t}$ is an arbitrary element. Thus $r_{i} x^{i} R x^{t} b_{j} x^{j}=0$ for all i, j, t, since R is skew quasi-Armendariz. Also we have $f(x)\left[a x^{t} s(x)\right]=-\left[f(x) r x^{t}\right] g(x) \in f(x) R[x ; \alpha, \delta] \cap R[x ; \alpha, \delta] g(x)=$ 0 . Thus $f(x) a x^{t} s(x)=0$. So we have $f(x) R[x ; \alpha, \delta] s(x)=0$. Since R is skew quasi-Armendariz, we deduce $a_{i} x^{i} R x^{t} s_{j} x^{j}=0$ for all i, j, t. Hence $\left(\begin{array}{cc}a_{i} & r_{i} \\ 0 & a_{i}\end{array}\right) x^{i}\left(\begin{array}{cc}a & r \\ 0 & a\end{array}\right) x^{t}\left(\begin{array}{cc}b_{j} & s_{j} \\ 0 & b_{j}\end{array}\right) x^{j}=$
$\left(\begin{array}{cc}a_{i} x^{i} a x^{t} b_{j} x^{j} & a_{i} x^{i} r x^{t} b_{j} x^{j}+a_{i} x^{i} r x^{t} b_{j} x^{j}+r_{i} x^{i} a x^{t} b_{j} x^{j} \\ 0 & a_{i} x^{i} a x^{t} b_{j} x^{j}\end{array}\right)=0$ for all i, j and each $\left(\begin{array}{cc}a & r \\ 0 & a\end{array}\right) x^{t} \in T(R, R)$. Therefore the trivial extension $T(R, R)$ is skew quasi-Armendariz.

Kerr [24] constructed an example of a commutative Goldie ring R whose polynomial ring $R[x]$ has an infinite ascending chain of annihilator ideals.

Theorem 3.6. Let M_{R} be an skew quasi-Armendariz module. If M_{R} is (α, δ)-compatible, then M_{R} satisfies the ascending chain condition on annihilator of submodules if and only if so does $M[x]_{S}$, where $S=$ $R[x ; \alpha, \delta]$.

Proof. Assume that M_{R} satisfies the ascending chain condition on annihilator of submodules. Let $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots$ be a chain of annihilator of submodules of $M[x]_{S}$. Then there exist submodules K_{i} of $M[x]_{S}$ such that $\operatorname{ann}_{S}\left(K_{i}\right)=I_{i}$, for all $i \geq 1$ and $K_{1} \supseteq K_{2} \supseteq K_{3} \supseteq \cdots$. Let $M_{i}=\left\{\right.$ all coefficients of elements of $\left.K_{i}\right\}$. Since M is skew quasiArmendariz, M_{i} is submodule of M for all $i \geq 1$. Clearly $M_{i} \supseteq M_{i+1}$ for all $i \geq 1$. Thus $a n n_{R}\left(M_{1}\right) \subseteq a n n_{R}\left(M_{2}\right) \subseteq a n n_{R}\left(M_{3}\right) \subseteq \cdots$. Since M_{R} satisfies the ascending chain condition on annihilator of submodules, there exists $n \geq 1$ such that $\operatorname{ann}_{R}\left(M_{i}\right)=a n n_{R}\left(M_{n}\right)$ for all $i \geq n$. We show that $a n n_{S}\left(K_{i}\right)=a n n_{S}\left(K_{n}\right)$ for all $i \geq n$. Let $f(x)=$ $a_{0}+a_{1} x+\cdots+a_{m} x^{m} \in \operatorname{ann}_{S}\left(K_{i}\right)$. Then $M_{i} a_{j}=0$ for $j=0, \ldots, m$, because M is skew quasi-Armendariz. Thus $M_{n} a_{j}=0$ for $j=0, \ldots, m$ and so $K_{n} f(x)=0$ by Lemma 2.16. Therefore $a n n_{S}\left(K_{i}\right)=a n n_{S}\left(K_{n}\right)$ for all $i \geq n$ and $M[x]_{S}$ satisfies the ascending chain condition on annihilator of submodules. Now assume $M[x]_{S}$ satisfies the ascending chain condition on annihilator of submodules. Let $J_{1} \subseteq J_{2} \subseteq J_{3} \subseteq \ldots$ be a chain of annihilator of submodules of M_{R}. Then there exist submodules M_{i} of M such that $\operatorname{ann}_{R}\left(M_{i}\right)=J_{i}$ and $M_{1} \supseteq M_{2} \supseteq M_{3} \supseteq \cdots$ for all $i \geq 1$. Hence $M_{i}[x]$ is a submodule of $M[x]$ and $M_{i}[x] \supseteq M_{i+1}[x]$ and $\operatorname{ann}_{S}\left(M_{i}[x]\right) \subseteq \operatorname{ann}_{S}\left(M_{i+1}[x]\right)$ for all $i \geq 1$. Since $M[x]_{S}$ satisfies the ascending chain condition on annihilator of submodules, there exists $n \geq 1$ such that $a n n_{S}\left(M_{i}[x]\right)=a n n_{S}\left(M_{n}[x]\right)$ for all $i \geq n$. Since M is skew quasi-Armendariz, by a similar argument as used in the previous paragraph, one can show that $\operatorname{ann_{R}}\left(M_{i}\right)=\operatorname{ann} n_{R}\left(M_{n}\right)$ for all $i \geq n$.

Following [3], the second author and E. Hashemi [17] introduced (α, δ)-compatible rings and studied its properties. A ring R is α-compatible if for each $a, b \in R, a b=0$ if and only if $a \alpha(b)=0$. Moreover, R is said to be δ-compatible if for each $a, b \in R, a b=0$ implies $a \delta(b)=0$. A ring R is (α, δ)-compatible if it is both α-compatible and δ-compatible. In this case, clearly the endomorphism α is injective. Also by [17, Lemma 2.2], a ring R is (α, δ)-compatible and reduced if and only if R is α-rigid in the sense of Krempa [26]. Thus the α-compatible ring is a generalization of α-rigid ring to the more general case where R is not assumed to be reduced.
Corollary 3.7. Let R be an (α, δ)-compatible and skew quasi-Armendariz ring. Then R satisfies the ascending chain condition on right annihilators if and only if so does $R[x ; \alpha, \delta]$.
Corollary 3.8. [19, Corollary 3.3] Let R be an Armendariz ring. Then R satisfies the ascending chain condition on right annihilators if and only if so does $R[x]$.

Theorem 3.9. Let M_{R} be an ($\left.\alpha, \delta\right)$-compatible module. Then M_{R} is quasi-Baer (respectively, p.q.-Baer) if and only if $M[x]_{R[x ; \alpha, \delta]}$ is quasiBaer (respectively, p.q.-Baer). In this case M_{R} is skew quasi-Armendariz.

Proof. Assume M_{R} is quasi-Baer. First we shall prove that M_{R} is skew quasi-Armendariz. Suppose that $\left(m_{0}+m_{1} x+\cdots+m_{k} x^{k}\right) R[x ; \alpha, \delta]\left(b_{0}+\right.$ $\left.b_{1} x+\cdots+b_{n} x^{n}\right)=0$, with $m_{i} \in M, b_{j} \in R$. In particular case we have

$$
\begin{equation*}
\left(m_{0}+m_{1} x+\cdots+m_{k} x^{k}\right) R\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)=0 \tag{3.4}
\end{equation*}
$$

Thus $m_{k} R b_{n}=0$ and $b_{n} \in \operatorname{ann}_{R}\left(m_{k} R\right)$. Then $m_{k} x^{k} R x^{t} b_{n} x^{n}=0$, by Lemma 2.15. Since M_{R} is quasi-Baer, there exists $e_{k}^{2}=e_{k} \in R$ such that $a n n_{R}\left(m_{k} R\right)=e_{k} R$ and so $b_{n}=e_{k} b_{n}$. Replacing R by $R e_{k}$ in (3.4) and using Lemma 2.15, we obtain $\left(m_{0}+m_{1} x+\cdots+m_{k-1} x^{k-1}\right) R e_{k}\left(b_{0}+\right.$ $\left.b_{1} x+\cdots+b_{n} x^{n}\right)=0$. Hence $m_{k-1} R e_{k} b_{n}=m_{k-1} R b_{n}=0$ and $b_{n} \in$ ann $n_{R}\left(m_{k-1} R\right)$. Then $m_{k-1} x^{k-1} R x^{t} b_{n} x^{n}=0$, by Lemma 2.15. Hence $b_{n} \in \operatorname{ann} n_{R}\left(m_{k} R\right) \cap a n n_{R}\left(m_{k-1} R\right)$. Since M_{R} is quasi-Baer, there exists $f^{2}=f \in R$ such that $a n n_{R}\left(m_{k} R\right)=f R$ and so $b_{n}=f b_{n}$. If we put $e_{k-1}=e_{k} f$, then $e_{k-1} b_{n}=e_{k} f b_{n}=e_{k} b_{n}=b_{n}$ and $e_{k-1} \in$ $\operatorname{ann}_{R}\left(m_{k} R\right) \cap \operatorname{ann} n_{R}\left(m_{k-1} R\right)$. Next, replacing R by $R e_{k-1}$ in (3.4), and using Lemma 2.15, we obtain $\left(m_{0}+m_{1} x+\cdots+m_{k-2} x^{k-2}\right) R e_{k-1}\left(b_{0}+\right.$
$\left.b_{1} x+\cdots+b_{n} x^{n}\right)=0$. Hence we have $m_{k-2} R e_{k-1} b_{n}=m_{k-2} R b_{n}=0$ and that $b_{n} \in \operatorname{ann}_{R}\left(m_{k-2} R\right)$ and so $m_{k-2} x^{k-2} R x^{t} b_{n} x^{n}=0$, by Lemma 2.15. Continuing this process, we get $m_{i} x^{i} R x^{t} b_{n} x^{n}=0$ for $i=0, \ldots, k$. Using induction on $k+n$, we obtain $m_{i} x^{i} R x^{t} b_{j} x^{j}=0$ for all i, j, t. Therefore M_{R} is skew quasi-Armendariz. Let J be a S-submodule of $M[x]$. Let $N=\{m \in M \mid m$ is a leading coefficient of some non-zero element of J $\}$ $\cup\{0\}$. Clearly, N is a submodule of M. Since M_{R} is quasi-Baer, there exists $e^{2}=e \in R$ such that $\operatorname{ann}_{R}(N)=e R$. Hence $e S \subseteq a n n_{S}(J)$ by Lemma 2.15. Let $f(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in a n n_{S}(J)$. Then $N b_{j}=0$ for each $j=0, \ldots, n$, because M_{R} is skew quasi-Armendariz. Hence $b_{j}=e b_{j}$ for each $j=0, \ldots, n$ and $f(x)=e f(x) \in e S$. Thus $a n n_{S}(J)=$ $e S$ and $M[x]_{S}$ is quasi-Baer. Now assume that $M[x]_{S}$ is quasi-Baer and I is a submodule of M. Then $I[x]$ is a submodule of $M[x]$. Since $M[x]$ is quasi-Baer, there exists an idempotent $e(x)=e_{0}+\cdots+e_{n} x^{n} \in S$ such that $a n n_{S}(I[x])=e(x) S$. Hence $I e_{0}=0$ and $e_{0} R \subseteq a n n_{R}(I)$. Let $t \in \operatorname{ann}_{R}(I)$. Then $I[x] t=0$, by Lemma 2.16. Hence $t=e(x) t$ and so $t=e_{0} t \in e_{0} R$. Thus $\operatorname{ann}_{R}(I)=e_{0} R$ and M_{R} is quasi-Baer.

It is clear that R is a right p.q.-Baer ring if and only if R_{R} is a p.q.Baer module. But, there exists a p.q.-Baer right R-module such that R is not right p.q.-Baer.
Example 3.10. Let $R=Z_{2}[x] /\left(x^{2}\right)$, where $Z_{2}[x]$ is the polynomial ring over the field Z_{2} of two elements and $\left(x^{2}\right)$ is the ideal of $Z_{2}[x]$ generated by x^{2}. It is easy to see that R is a quasi-Armendariz ring. Since right annihilator of $x+\left(x^{2}\right)$ is not generated by any idempotent, R is not a right p.q.-Baer ring. Now let $e=1+\left(x^{2}\right)$ and $I=R e R$. Then $e^{2}=e$, and for each $a \in R, \operatorname{ann}_{R}((a+I) R)=e R$. Therefore R / I is p.q.-Baer right R-module.

Corollary 3.11. [17, Corollary 2.8] Let R be an (α, δ)-compatible ring. Then R is quasi-Baer (respectively, right p.q.-Baer) if and only if $R[x ; \alpha, \delta]$ is quasi-Baer (respectively, right p.q.-Baer). In this case R is a skew quasi-Armendariz ring.

Corollary 3.12. [9, Corollary 2.8] A ring R is quasi-Baer (respectively, right p.q.-Baer) if and only if $R[x]$ is quasi-Baer (respectively, right p.q.Baer).

Corollary 3.13. [20, Theorems 12, 15] Let R be an α-rigid ring. Then R is quasi-Baer (respectively, right p.q.-Baer) if and only if $R[x ; \alpha, \delta]$ is quasi-Baer (respectively, right p.q.-Baer).

The following example shows that " (α, δ)-compatibility condition" on M_{R} in Theorem 3.9 is not superfluous.

Example 3.14. [5, Example 11] There is a ring R and a derivation δ of R such that $R[x ; \delta]$ is a Baer (hence quasi-Baer) ring, but R is not quasi-Baer. In fact let $R=\mathbb{Z}_{2}[t] /\left(t^{2}\right)$ with the derivation δ such that $\delta(\bar{t})=1$ where $\bar{t}=t+\left(t^{2}\right)$ in R and $\mathbb{Z}_{2}[t]$ is the polynomial ring over the field \mathbb{Z}_{2} of two elements. Consider the Ore extension $R[x ; \delta]$. If we set $e_{11}=\bar{t} x, e_{12}=\bar{t}, e_{21}=\bar{t} x^{2}+x$, and $e_{22}=1+\bar{t} x$ in $R[x ; \delta]$, then they form a system of matrix units in $R[x ; \delta]$. Now the centralizer of these matrix units in $R[x ; \delta]$ is $\mathbb{Z}_{2}\left[x^{2}\right]$. Therefore $R[x ; \delta] \cong M_{2}\left(\mathbb{Z}_{2}\left[x^{2}\right]\right) \cong M_{2}\left(\mathbb{Z}_{2}\right)[y]$, where $M_{2}\left(\mathbb{Z}_{2}\right)[y]$ is the polynomial ring over $M_{2}\left(\mathbb{Z}_{2}\right)$. So the ring $R[x ; \delta]$ is a Baer ring, but R is not quasi-Baer.

Acknowledgments

We thank the referee for a very careful reading of the paper and many helpful comments and suggestions, which improved the presentation of the paper.

References

[1] N. Agayev, G. Gungoroglu, A. Harmanci and S. Halicioglu, Abelian modules, Acta Math. Univ. Comenian. 78 (2009), no. 2, 235-244.
[2] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272.
[3] S. Annin, Associated and Attached Primes Over Noncommutative Rings, $P h D$ Thesis, University of California, Berkeley, 2002.
[4] S. Annin, Associated primes over Ore extension rings, J. Algebra Appl. 3 (2004), no. 2, 193-205.
[5] E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.
[6] M. Başer, On Armendariz and quasi-Armendariz modules, Note Mat. 26 (2006), no. 1, 173-177.
[7] G. F. Birkenmeier, J. Y. Kim and J. K. Park, On quasi-Baer rings, Contemp. Math. 259 (2000), 67-92.
[8] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2001), no. 2, 639-660.
[9] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), no. 1, 25-42.
[10] G. F. Birkenmeier, J. Y. Kim, J. K. Park, On polynomial extensions of principally quasi-Baer rings, Kyungpook Math. J. 40 (2000), no. 2, 247-253.
[11] A. M. Buhphang and M. B. Rege, Semi-commutative modules and Armendariz modules, Arab J. Math. Sci. 8 (2002), no. 1, 53-65.
[12] W. Chen and W. Tong, On skew Armendariz rings and rigid rings, Houston J. Math. 33 (2007), no. 2, 341-353.
[13] W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-423.
[14] K.R. Goodearl and R. B. Warfield, An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, Cambridge, 1989.
[15] J. Han, Y. Hirano and H. Kim, Semiprime Ore extensions, Comm. Algebra 28 (2000), no. 8, 3795-3801.
[16] E. Hashemi, On δ-quasi Armendariz modules, Bull. Iranian Math. Soc. 33 (2007), no. 2, 15-26.
[17] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207-224.
[18] E. Hashemi, A. Moussavi and H. Haj Seyyed Javadi, Polynomial Ore extensions of Baer and p.p.-rings, Bull. Iranian Math. Soc. 29 (2003), no. 2, 65-86.
[19] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52.
[20] C.Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215-226.
[21] C. Y. Hong, N. K. Kim and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103-122.
[22] C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761.
[23] I. Kaplansky, Rings of Operators, Benjamin, New York, 1965.
[24] J.W. Kerr, The polynomial ring over a Goldie ring need not be a Goldie ring, J. Algebra 134 (1990), no. 2, 344-352.
[25] N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488.
[26] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
[27] T. Y. Lam, A. Leroy and J. Matczuk, Primeness, semiprimeness, and prime radical of Ore extensions, Comm. Algebra 25 (1997), no. 8, 2459-2506.
[28] T. K. Lee and Y. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004), no. 6, 2287-2299.
[29] T. K. Lee and Y. Zhou, Reduced modules. Rings, modules, algebras, and abelian groups, Lect. Notes Pure Appl. Math., Marcel Dekker, New York 236 (2004), 365-377.
[30] R. Manaviyat, A. Moussavi and M. Habibi, Principally quasi-Baer skew power series rings, Comm. Algebra 38 (2010), no. 6, 2164-2176.
[31] N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295.
[32] A. Moussavi, On the semiprimitivity of skew polynomial rings, Proc. Edinburgh Math. Soc. 36 (1993), no. 2, 169-178.
[33] A. Moussavi and E. Hashemi, On the semiprimitivity of skew polynomial rings, Mediterr. J. Math. 4 (2007), no. 3, 375-381.
[34] A. Moussavi and E. Hashemi, On (α, δ)-skew Armendariz rings, J. Korean Math. Soc. 42 (2005), no. 2, 353-363.
[35] A.R. Nasr-Isfahani and A. Moussavi, Ore extensions of skew Armendariz rings, Comm. Algebra 36 (2008), no. 2, 508-522.
[36] A. R. Nasr-Isfahani, A. Moussavi, On Ore extensions of quasi-Baer rings, J. Algebra Appl. 7 (2008), no. 2, 211-224.
[37] A. R. Nasr-Isfahani, A. Moussavi, Baer and quasi-Baer differential polynomial rings, Comm. Algebra 36 (2008), no. 9, 3533-3542.
[38] A. R. Nasr-Isfahani, A. Moussavi, On classical quotient rings of skew Armendariz rings, Int. J. Math. Math. Sci. (2007) Art. ID 61549.
[39] A. R. Nasr-Isfahani, A. Moussavi, On Goldie prime ideals of Ore extensions, Comm. Algebra 38 (2010), no. 1, 1-10.
[40] P. Pollingher and A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37 (1970), 127-138.
[41] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17.
[42] M. B. Rege and M. Buhphang, On reduced modules and rings, Int. Electron. J. Algebra 3 (2008), 58-74.
[43] C.P. Zhang and J. L. Chen, α-skew Armendariz modules and α-semicommutative modules, Taiwanese J. Math. 12 (2008), no. 2, 473-486.

Abdollah Alhevaz

Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O. Box 14115-134, Tehran, Iran Email: a.alhevaz@yahoo.com and a.alhevaz@gmail.com.

Ahmad Moussavi

Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O. Box 14115-134, Tehran, Iran
Email: moussavi.a@modares.ac.ir and moussavi.a@gmail.com.

[^0]: MSC(2010): Primary: 16S36; Secondary: 16E50.
 Keywords: Skew polynomial ring, Baer module, Quasi-Baer module, Skew-Armendariz module, Skew quasi-Armendariz module.
 Received: 20 June 2009, Accepted: 23 August 2010.
 *Corresponding author
 (c) 2012 Iranian Mathematical Society.

