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COMPACT COMPOSITION OPERATORS ON CERTAIN

ANALYTIC LIPSCHITZ SPACES

H. MAHYAR∗ AND A. H. SANATPOUR

Communicated by Mohammad Sal Moslehian

Abstract. We investigate compact composition operators on cer-
atin Lipschitz spaces of analytic functions on the closed unit disc
of the plane. Our approach also leads to some results about com-
position operators on Zygmund type spaces.

1. Introduction

Let A and B be Banach spaces of analytic functions on the plane set
X. For a selfmap φ of X and a complex-valued mapping ψ on X, the
weighted composition operator ψCφ : A → B is the operator given by
(ψCφf) (z) = ψ (z) f (φ (z)) for all z ∈ X and f ∈ A. In the special
case of ψ = 1 we get the composition operator (Cφf) (z) = f (φ (z)).
There has been growing interest in the study of (weighted) composition
operators between Banach spaces of analytic functions. Boundedness
and compactness of composition operators on Bloch spaces (see Section
2 for the definition) were first studied by Roan [13] and later by Madigan
[9, 10] and Matheson [10]. Moreover, Ohno, Stroethoff and Zhao studied
weighted composition operators between Bloch type spaces in [12]. The
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compactness of composition operators on certain Banach algebras of
analytic and differentiable Lipschitz functions was investigated in [1].

For a bounded plane set X and 0 < α ≤ 1, the Lipschitz algebra of
order α, Lip(X,α), is the algebra of all complex-valued functions f on
X for which

pα,X(f) = sup

{
|f(z)− f(w)|
|z − w|α

: z, w ∈ X and z 6= w

}
<∞.

These Lipschitz algebras were first studied by Sherbert [14, 15]. The
algebra Lip(X,α) is a Banach function algebra when equipped with the
norm

‖f‖Lip(X,α) = ‖f‖X + pα,X(f) (f ∈ Lip(X,α)),

where ‖f‖X = sup
z∈X
|f(z)|.

Let X be a compact plane set with nonempty interior and A(X) the
Banach function algebra of all continuous complex-valued functions on
X which are analytic on intX. For 0 < α ≤ 1, define

LipA(X,α) = Lip(X,α) ∩A(X).

Then the analytic Lipschitz algebra (LipA(X,α), ‖·‖Lip(X,α)) is a Banach
function algebra on X.

A complex-valued function f on a perfect plane set X is called differ-
entiable if at each point z0 ∈ X, the limit

f ′(z0) = lim
z→z0
z∈X

f(z)− f(z0)

z − z0
,

exists. Let X be a perfect bounded plane set, n ∈ N, and 0 < α ≤ 1.
The algebra of all complex-valued functions f on X whose derivatives up
to order n exist and f (k) ∈ Lip(X,α) for each k (0 ≤ k ≤ n), is denoted
by Lipn(X,α). These differentiable Lipschitz algebras were first studied
in [7, 11]. The algebra Lipn(X,α) (n ∈ N, 0 < α ≤ 1) with the norm

‖f‖n,α =
n∑
k=0

‖f (k)‖Lip(X,α)

k!
=

n∑
k=0

‖f (k)‖X + pα,X(f (k))

k!
,

is a normed function algebra on X which is not necessarily complete.
However, for the closed unit disc D, the algebra Lipn(D, α) is a Banach
function algebra on D.

Let φ be a selfmap of D. In [1], it was proved that φ(D) ⊆ D is a
sufficient condition for the compactness of the composition operator Cφ
on LipA(D, α) and on Lipn(D, α) when 0 < α ≤ 1. It was also proved
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that this condition is necessity when α = 1 and it was conjectured that
the same result is true in the case 0 < α < 1. Later in [2], these re-
sults were extended to more general compact plane sets X. In Section
2, using a different approach from the one given in [1], we show that the
condition φ(D) ⊆ D is a necessary condition for the compactness of the
composition operator Cφ on LipA(D, α) in the case 0 < α < 1. Indeed,
we modify the problem of compactness of a composition operator Cφ on

LipA(D, α) to an equivalent problem, i.e. compactness of a composition
operator Cϕ on a Bloch type space for suitable choice of ϕ : D → D.

Thus, we consider the analytic Lipschitz algebra LipA(D, α) as a Ba-
nach function space on D. In Section 3, we show that the condition
φ(D) ⊆ D is also a necessary condition for the compactness of the com-
position operator Cφ on Lipn(D, α) in the case 0 < α < 1. Indeed, we
invoke to this problem by applying Julia-Caratheodory Theorem to an
equivalent problem, i.e. compactness of a weighted composition opera-
tor on a Bloch type space. Our approach also yields some new results
about composition operators on Zygmund type spaces (see Section 3
for the definition). We also consider the differentiable Lipschitz algebra
Lipn(D, α) as a Banach function space on D.

2. The analytic Lipschitz space LipA(D, α)

Let H(D) be the space of all analytic functions on the open unit disc
D. For 0 < α <∞, we denote by Bα the Bloch type space of all functions
f ∈ H(D) satisfying

sup
z∈D

(1− |z|)α
∣∣f ′(z)∣∣ <∞.

The space Bα is a Banach space when equipped with the norm

‖f‖Bα = |f(0)|+ sup
z∈D

(1− |z|)α
∣∣f ′(z)∣∣ (f ∈ Bα).

In the case α = 1 we have the classical Bloch space B = B1 (see [16]).
By [16, Theorem 7.9], for each 0 < α < 1 the space B1−α can be iden-

tified with the analytic Lipschitz space HΛα(D) := H(D) ∩ Lip(D, α),
which is a closed subspace of (Lip(D, α), ‖·‖Lip(D,α)). Since the norm

topologies on B1−α and HΛα(D) are stronger than compact-open topol-
ogy, the Closed Graph Theorem implies that the norms ‖ · ‖B1−α and
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‖ · ‖Lip(D,α) are equivalent on HΛα(D) = B1−α, that is

(2.1) C1‖f‖B1−α ≤ ‖f‖Lip(D,α) ≤ C2‖f‖B1−α (f ∈ HΛα(D) = B1−α),

for some constants C1, C2 > 0. Using this, we show that the spaces
LipA(D, α) and B1−α are isomorphic. Note first that every f ∈ Lip(D, α)
has a unique continuous extension F to D. To see this, consider any
sequence (zn) in D converging to z0 ∈ ∂D. Since f ∈ Lip(D, α) the
sequence (f(zn)) is a Cauchy and hence is a convergent sequence. Define
F (z0) := limn→∞ f(zn), then F is well-defined and it is the unique
continuous extension of f .

Proposition 2.1. Let 0 < α < 1. Then F ∈ LipA(D, α) if and only if
f = F |D ∈ B1−α, or equivalently, f belongs to B1−α if and only if F ,
the continuous extension of f to D belongs to LipA(D, α). Moreover,

C1‖f‖B1−α ≤ ‖F‖Lip(D,α) ≤ C2‖f‖B1−α (f ∈ B1−α),

where C1 and C2 are the constants described in (2.1).

Proof. If F ∈ LipA(D, α) then clearly f = F |D ∈ HΛα(D) = B1−α

and ‖f‖Lip(D,α) ≤ ‖F‖Lip(D,α). Hence, by (2.1) we have C1‖f‖B1−α ≤
‖F‖Lip(D,α), which implies that the restriction operator

(2.2) R : LipA(D, α)→ B1−α R(F ) = F |D ,
is well-defined and bounded with ‖R‖ ≤ 1

C1
.

Now, let f ∈ B1−α and let F be the continuous extension of f to D.
For each z, w ∈ D, let (zn) and (wn) be sequences in D with zn → z and
wn → w as n→∞. Then

|F (z)− F (w)| = lim
n→∞

|f(zn)− f(wn)|

≤ pα,D(f) lim
n→∞

|zn − wn|α

= pα,D(f) |z − w|α .

Consequently, F ∈ Lip(D, α) and pα,D(F ) ≤ pα,D(f). On the other hand,

since F |D = f ∈ H(D), we have F ∈ A(D). Hence F ∈ LipA(D, α) and
also ‖F‖D = ‖F‖D = ‖f‖D. Therefore, ‖F‖Lip(D,α) ≤ ‖f‖Lip(D,α) and

by (2.1) we get ‖F‖Lip(D,α) ≤ C2‖f‖B1−α . This completes the proof and

also shows that the extension operator

(2.3) E : B1−α → LipA(D, α) E(f) = F,
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is well-defined and bounded with ‖E‖ ≤ C2. �

Remark 2.2. It is worth mentioning that in the proof of Proposition
2.1, in order to show that E(f) ∈ Lip(D, α) one could also use the fact
that E(f) ∈ Lip(∂D, α) (by [16, Theorem 7.9] and [5, Theorem 5.1]) and
hence, by [6, Lemma 4], E(f) ∈ Lip(D, α).

Let Cφ : LipA(D, α) → LipA(D, α) be a composition operator in-

duced by the non-constant selfmap φ : D → D. Consider the selfmap
ϕ = R(φ) = φ |D : D → D. Then ϕ induces a composition opera-
tor Cϕ : B1−α → B1−α. To see this, let f ∈ B1−α. Then E(f) ∈
LipA(D, α) and hence E(f) ◦ φ ∈ LipA(D, α). Consequently, f ◦ ϕ =
R (E(f) ◦ φ) ∈ B1−α. Conversely, if ϕ induces the composition operator
Cϕ : B1−α → B1−α then φ = E(ϕ) : D → D induces the composition

operator Cφ : LipA(D, α)→ LipA(D, α). This follows from the fact that

if F ∈ LipA(D, α), then R(F ) ◦ ϕ ∈ B1−α and hence, by the uniqueness
of the continuous extension we have F ◦φ = E (R(F ) ◦ ϕ) ∈ LipA(D, α).

Theorem 2.3. Let 0 < α < 1 and let Cφ : LipA(D, α) → LipA(D, α)

be a composition operator induced by the non-constant selfmap φ : D→
D. Let ϕ denote the restriction of φ to D. Then Cφ : LipA(D, α) →
LipA(D, α) is compact if and only if Cϕ : B1−α → B1−α is compact.

Proof. Let R and E denote the restriction and the extension operators
described in (2.2) and (2.3), and note that by the discussion right before
this theorem, we have

(2.4) Cφ = E ◦ Cϕ ◦R and Cϕ = R ◦ Cφ ◦ E.

By the same argument as in the proof of Proposition 2.1, the operators
R : LipA(D, α) → B1−α and E : B1−α → LipA(D, α) are bounded.
Therefore, by (2.4), Cϕ : B1−α → B1−α is compact if and only if Cφ :

LipA(D, α)→ LipA(D, α) is compact. �

For the rest of this paper, we need the following important theorem
proved by MacCluer and Zhao in [8] for weighted composition operators
on the Bloch type spaces.
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Theorem 2.4. [8, Theorem 5] Let 0 < α < 1, ζ ∈ ∂D and u, ϕ ∈ H(D),
where ϕ is a selfmap of D. If uCϕ : Bα → Bα is compact, then u(ζ) = 0
whenever limr→1− ϕ(rζ) exists and has modulus 1.

For 0 < α ≤ 1, consider the composition operator Cφ : LipA(D, α)→
LipA(D, α) induced by the non-constant selfmap φ : D → D. It was
proved in [1, Theorem 3.3] that Cφ is compact provided that φ(D) ⊆ D.
It was also shown that for α = 1, this condition is necessary. Here we
will prove that the same condition is necessary for 0 < α < 1.

Theorem 2.5. Let 0 < α ≤ 1 and let Cφ : LipA(D, α)→ LipA(D, α) be

a composition operator induced by the non-constant selfmap φ : D→ D.
Then Cφ is compact if and only if φ(D) ⊆ D.

Proof. We only need to show that φ(D) ⊆ D whenever Cφ is compact and

0 < α < 1. By Theorem 2.3, if Cφ : LipA(D, α)→ LipA(D, α) is compact
then Cϕ is a compact operator on B1−α (0 < α < 1). Now, by contrary
let φ(ζ) = η ∈ ∂D for some ζ ∈ ∂D. Then |limr→1− ϕ(rζ)| = |η| = 1.
Therefore, Theorem 2.4 leads to a contradiction and completes the proof
of the theorem. 2

3. The differentiable Lipschitz space Lipn(D, α)

The Zygmund space Z is the class of all functions f ∈ H(D) ∩ C(D)
with

sup
eiθ∈∂D
h>0

∣∣f (ei(θ+h)
)

+ f
(
ei(θ−h)

)
− 2f

(
eiθ
)∣∣

h
<∞.

By [5, Theorem 5.3], an analytic function f belongs to Z if and only if
f ′ ∈ B, or equivalently supz∈D (1− |z|) |f ′′(z)| < ∞. For 0 < α < ∞
we denote by Zα the Zygmund type space of those functions f ∈ H(D)
satisfying

sup
z∈D

(1− |z|)α
∣∣f ′′(z)∣∣ <∞.

The space Zα is a Banach space with the norm

‖f‖Zα = |f(0)|+
∣∣f ′(0)

∣∣+ sup
z∈D

(1− |z|)α
∣∣f ′′(z)∣∣ (f ∈ Zα).
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Boundedness of composition operators on Z was first studied by Choe,
Koo and Smith in [4].

Now, in general, for each n ∈ N and 0 < α < ∞ we define the space
Zαn of those functions f ∈ H(D) satisfying

sup
z∈D

(1− |z|)α
∣∣∣f (n+1)(z)

∣∣∣ <∞.
The space Zαn is a Banach space when equipped with the norm

‖f‖Zαn = |f(0)|+
∣∣f ′(0)

∣∣+ · · ·+
∣∣∣f (n)(0)

∣∣∣+ sup
z∈D

(1− |z|)α
∣∣∣f (n+1)(z)

∣∣∣ .
Note that for a differentiable function F on D, we have R(F ′) =

R(F )′, where R is the restriction operator R(F ) = F |D . We also have

F ∈ Lipn(D, α) if and only if F (n) ∈ LipA(D, α). Hence, for n ∈ N
and 0 < α < 1, if F ∈ Lipn(D, α) then by Proposition 2.1, R(F )(n) =

R(F (n)) ∈ B1−α. This shows that the restriction operator

(3.1) R : Lipn(D, α)→ Z1−α
n R(F ) = F |D ,

is well-defined. This operator is also bounded with ‖R‖ ≤ n! max{1, 1
C1
}.

Note also that if Cφ : Lipn(D, α) → Lipn(D, α) (0 < α < 1) is a com-

position operator induced by the non-constant selfmap φ : D→ D, then
ϕ = R(φ) = φ |D : D → D induces the composition operator Cϕ :

Z1−α
n → Z1−α

n . To see this, let f ∈ Z1−α
n and note that f (n) ∈ B1−α.

Hence by Proposition 2.1, Fn := E(f (n)) ∈ LipA(D, α). Define

Fn−1(z) :=

∫ z

0
Fn(ζ)dζ + f (n−1)(0) =

∫ z

0
E(f (n))(ζ)dζ + f (n−1)(0),

for z ∈ D. It follows that F ′n−1 = Fn = E(f (n)) ∈ LipA(D, α) and hence

Fn−1 ∈ Lip1(D, α). On the other hand, R(Fn−1) = f (n−1) which implies

that f (n−1) ∈ HΛα(D). Also Fn−1 = E(f (n−1)), because f (n−1) has a
unique continuous extension to D. Setting

F (z) :=

∫ z

0
F1(ζ)dζ + f(0) =

∫ z

0
E(f ′)(ζ)dζ + f(0) (z ∈ D),

it yields F ∈ Lipn(D, α), F = E(f) and F (n) = Fn = E(f (n)). Moreover,

R(F (k)) = R(Fk) = f (k) and E(f (k)) = Fk = F (k) = E(f)(k) for each
0 ≤ k ≤ n. Since φ induces the composition operator Cφ on Lipn(D, α),

we have F ◦ φ ∈ Lipn(D, α) or equivalently (F ◦ φ)(n) ∈ LipA(D, α).
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Therefore, Proposition 2.1 implies that

(f ◦ ϕ)(n) = (R(F ◦ φ))(n) = R
(

(F ◦ φ)(n)
)
∈ B1−α,

meaning that f ◦ ϕ ∈ Z1−α
n , so ϕ induces the composition operator

Cϕ : Z1−α
n → Z1−α

n .
Conversely, if ϕ : D→ D induces a composition operator Cϕ : Z1−α

n →
Z1−α
n , then φ = E(ϕ) : D → D induces the composition operator

Cφ : Lipn(D, α) → Lipn(D, α). To see this, let F ∈ Lipn(D, α). As

mentioned, F ◦ φ ∈ Lipn(D, α) if and only if (F ◦ φ)(n) ∈ LipA(D, α).
According to Proposition 2.1, this is equivalent to

(R(F ) ◦ ϕ)(n) = (R(F ◦ φ))(n) = R
(

(F ◦ φ)(n)
)
∈ B1−α.

On the other hand, since ϕ induces the composition operator Cϕ :
Z1−α
n → Z1−α

n and R(F ) ∈ Z1−α
n , we have R(F ) ◦ ϕ ∈ Z1−α

n , or equiva-

lently, (R(F ) ◦ ϕ)(n) ∈ B1−α. Hence, φ : D→ D induces the composition
operator Cφ : Lipn(D, α)→ Lipn(D, α). �

Lemma 3.1. Let n ∈ N and 0 < α < 1. Then there exists a constant
C > 0 such that

‖g(`)‖D ≤ C‖g‖Zαn ,
for all g ∈ Zαn and 0 ≤ ` ≤ n.

Proof. Let g ∈ Zαn . Using the Fundamental Theorem of Calculus we
have

g(`)(z) =

∫ z

0
g(`+1)(ζ)dζ + g(`)(0) (z ∈ D),

for each 0 ≤ ` ≤ n− 1, which implies that

(3.2) ‖g(`)‖D ≤ ‖g(`+1)‖D + |g(`)(0)|.
Hence, by applying (n− `)-times (3.2), we have

(3.3) ‖g(`)‖D ≤ |g(`)(0)|+ |g(`+1)(0)|+ · · ·+ |g(n−1)(0)|+ ‖g(n)‖D.

On the other hand, g(n) ∈ Bα. So, by Proposition 2.1 we get

(3.4) ‖g(n)‖D ≤ ‖E(g(n))‖D ≤ ‖E(g(n))‖Lip(D,1−α) ≤ C2‖g(n)‖Bα .

Now, applying (3.3) and (3.4), it follows that

‖g(`)‖D ≤ max{1, C2}‖g‖Zαn ,
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for all 0 ≤ ` ≤ n. �

Theorem 3.2. Let 0 < α < 1, n ∈ N and let Cφ : Lipn(D, α) →
Lipn(D, α) be a composition operator induced by the selfmap φ : D →
D. Let ϕ denote the restriction of φ to D. Then Cφ : Lipn(D, α) →
Lipn(D, α) is compact if and only if Cϕ : Z1−α

n → Z1−α
n is compact.

Proof. Let R denote the restriction operator R : Lipn(D, α) → Z1−α
n

described in (3.1). Consider the operator T : Z1−α
n → Lipn(D, α) given

by

(3.5) T (f)(z) =

∫ z

0
E(f ′)(ζ)dζ + f(0) (f ∈ Z1−α

n , z ∈ D).

Note that by the discussion before Lemma 3.1, the operator T is
well-defined and R ◦ T = id. We now show that T is bounded. Let
(fm) ⊆ Z1−α

n with fm → f in Z1−α
n and T (fm) → g in Lipn(D, α). By

Lemma 3.1, we have

(3.6) ‖T (fm)− T (f)‖D → 0 as n→∞.

On the other hand, ‖T (fm) − g‖D ≤ ‖T (fm) − g‖n,α → 0 as n → ∞.
This along with (3.6) implies that T (f) = g on D and hence, T (f) = g
on D. Thus, by the Closed Graph Theorem, the operator T is bounded.

Considering the bounded operators R : Lipn(D, α) → Z1−α
n and T :

Z1−α
n → Lipn(D, α), we have Cϕ = R ◦ Cφ ◦ T and Cφ = T ◦ Cϕ ◦ R.

Therefore the compactness of Cφ : Lipn(D, α) → Lipn(D, α) and Cϕ :
Z1−α
n → Z1−α

n are equivalent. �

In order to state the main results of this section, we need a few prelim-
inary lemmas. In what follows, set Lip0(D, α) = LipA(D, α) and denote
by Zα0 the Bloch type space Bα.

Lemma 3.3. Let 0 < α < 1 and let k, n be two nonnegative integers.
Let ϕ : D→ D be in Zαn+2. Then P ≡ Pk,n : Zαn → Zαn given by

P (f)(z) = ϕ′(z)kϕ′′(z)

∫ ϕ(z)

0
f(ζ)dζ (f ∈ Zαn , z ∈ D),

is a compact operator.
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Proof. First we show that P is well-defined. To see this, let f ∈ Zαn .
Then by Lemma 3.1 there exists a constant C > 0 such that

(3.7) ‖f (j)‖D ≤ C‖f‖Zαn (0 ≤ j ≤ n),

and

(3.8) ‖ϕ(i)‖D ≤ C‖ϕ‖Zαn+2
(0 ≤ i ≤ n+ 2).

On the other hand, considering the bounded extension operator T given
in (3.5), one can see that the extension T (ϕ) of ϕ to D belongs to
Lipn+2(D, 1 − α), because ϕ ∈ Zαn+2. Hence, by the discussion before

Lemma 3.1, T (ϕ(i)) = T (ϕ)(i) ∈ LipA(D, 1− α) for each 0 ≤ i ≤ n + 2.

Therefore, by Proposition 2.1, ϕ(i) ∈ Bα or equivalently,

(3.9) sup
z∈D

(1− |z|2)α|ϕ(i+1)(z)| <∞ (0 ≤ i ≤ n+ 2).

Now, consider

‖P (f)‖Zαn =

n∑
i=0

∣∣∣P (f)(i)(0)
∣∣∣+ sup

z∈D
(1− |z|2)α

∣∣∣P (f)(n+1)(z)
∣∣∣

=

n∑
i=0

∣∣∣∣∣∣
(
ϕ′(z)kϕ′′(z)

∫ ϕ(z)

0
f(ζ)dζ

)(i)

z=0

∣∣∣∣∣∣
+ sup

z∈D
(1− |z|2)α

∣∣∣∣∣∣
(
ϕ′(z)kϕ′′(z)

∫ ϕ(z)

0
f(ζ)dζ

)(n+1)
∣∣∣∣∣∣ ,(3.10)

and note that the terms in (3.10) are all dominated by the terms of the
type (3.7), (3.8) and (3.9). This implies that (3.10) is bounded. Thus,
P (f) ∈ Zαn and P is well-defined.

To see the compactness of P , let (fm) be a bounded sequence in Zαn .
It follows from boundedness of the extension operator T , given in (3.5),
that (T (fm)) is a bounded sequence in Lipn(D, 1−α). Consequently, for

each 0 ≤ j ≤ n, the sequence (T (fm)(j)) is equicontinuous and hence,
up to subsequence, there exists a continuous function F on D such that

(3.11) ‖T (f (j)
m )− F (j)‖D = ‖T (fm)(j) − F (j)‖D → 0 as m→∞,

for each 0 ≤ j ≤ n. Let f = R(F ) be the restriction of F to D, then

by applying R(T (fm)) = fm to (3.11), we have ‖f (j)
m − f (j)‖D → 0 as

m→∞, thereby giving that

(3.12) ‖f (j)
p − f (j)

q ‖D → 0 as p, q →∞,
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for each 0 ≤ j ≤ n. Now, to prove the convergence of (P (fm)), we show
that it is a Cauchy sequence in Zαn . Considering

‖P (fp)− P (fq)‖Zαn =

n∑
i=0

∣∣∣∣∣∣
(
ϕ′(z)kϕ′′(z)

∫ ϕ(z)

0
(fp(ζ)− fq(ζ))dζ

)(i)

z=0

∣∣∣∣∣∣
+ sup

z∈D
(1− |z|2)α

∣∣∣∣∣∣
(
ϕ′(z)kϕ′′(z)

∫ ϕ(z)

0
(fp(ζ)− fq(ζ))dζ

)(n+1)
∣∣∣∣∣∣ ,(3.13)

one can see that the terms in (3.13) are all dominated by the terms of
the type (3.8) and (3.9), and they all contain a term of the type (3.12).
Therefore, (3.13) along with (3.12) implies that ‖P (fp)−P (fq)‖Zαn → 0
as p, q →∞. �

Lemma 3.4. Let 0 < α < 1 and let k, n be two integers with n ≥ 0 and
k ≥ 1. Let ϕ : D → D be in Zαn+2. Then (ϕ′)kCϕ : Zαn+1 → Zαn+1 is

compact if and only if (ϕ′)k+1Cϕ : Zαn → Zαn is compact.

Proof. First, we recall that the differentiation and integration operators
given by

D : Zαn+1 → Zαn D(f) = f ′,

and

S : Zαn → Zαn+1 S(f)(z) =

∫ z

0
f(ζ)dζ,

are bounded, indeed, ‖D‖ ≤ 1 and ‖S‖ ≤ 1. Now, consider the following
diagram,

Zαn+1

(ϕ′)kCϕ// Zαn+1

D
��

Zαn

S

OO

Q // Zαn ,
where the operator Q : Zαn → Zαn is given by

(3.14) Q = D ◦ (ϕ′)kCϕ ◦ S.
Therefore,

(3.15) S ◦Q ◦D = (ϕ′)kCϕ + P0,
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where P0 : Zαn+1 → Zαn+1 is the compact operator given by P0(f) =

−f(0)(ϕ′)k−f(ϕ(0))ϕ′(0)k+f(0)ϕ′(0)k. Note that by (3.14) and (3.15)
and boundedness of the operators S and D, one can conclude that the
operator (ϕ′)kCϕ : Zαn+1 → Zαn+1 is compact if and only if the operator
Q : Zαn → Zαn is compact. Now, for each f ∈ Zαn and z ∈ D we have

Q(f)(z) =D

(
ϕ′(z)k

(∫ ϕ(z)

0
f(ζ)dζ

))

=kϕ′(z)k−1ϕ′′(z)

(∫ ϕ(z)

0
f(ζ)dζ

)
+ ϕ′(z)k+1f(ϕ(z))

=kPk−1,n(f)(z) + (ϕ′)k+1Cϕ(f)(z),

where Pk−1,n : Zαn → Zαn is the compact operator given in Lemma 3.3.

Consequently, Q : Zαn → Zαn is compact if and only if (ϕ′)k+1Cϕ : Zαn →
Zαn is compact, which is the desired result. �

We remark that the result of Lemma 3.4 also holds in the case k = 0
without assuming ϕ ∈ Zαn+2. Indeed, if k = 0, then Q = ϕ′Cϕ and hence
Cϕ : Zαn+1 → Zαn+1 is compact if and only if ϕ′Cϕ : Zαn → Zαn . In fact,
the following result holds.

Corollary 3.5. Let 0 < α < 1, n a nonnegative integer, and ϕ an
analytic selfmap of D. Then Cϕ : Zαn+1 → Zαn+1 is compact if and only
if ϕ′Cϕ : Zαn → Zαn is compact.

We are now ready to state our main results in this section.

Theorem 3.6. Let 0 < α < 1, n ∈ N and let Cϕ : Zαn → Zαn be a
composition operator induced by ϕ : D→ D. Then Cϕ is compact if and
only if the weighted composition operator (ϕ′)nCϕ : Bα → Bα is compact.

Proof. The case n = 1 is done by Corollary 3.5. Let n ≥ 2 and consider
the composition operator Cϕ : Zαn → Zαn . Then by the same argument
as in the proof of Lemma 3.4, one has

ϕ′Cϕ = D ◦ Cϕ ◦ S,
S ◦ ϕ′Cϕ ◦D = Cϕ + P0,
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where P0 : Zαn → Zαn is the compact operator given by P0(f) = −f(ϕ(0)).
Hence, Cϕ : Zαn → Zαn is compact if and only if ϕ′Cϕ : Zαn−1 → Zαn−1 is
compact. Now, applying (n − 1)-times Lemma 3.4 implies that, this is
equivalent to the compactness of (ϕ′)nCϕ : Bα → Bα which completes
the proof of the theorem. �

Applying [12, Theorem 3.1] to Theorem 3.6, one can get the following
characterization for the compactness of the composition operators on
Zygmund type spaces.

Corollary 3.7. Let 0 < α < 1, n ∈ N and let Cϕ : Zαn → Zαn be
a composition operator induced by the selfmap ϕ of D. Then Cϕ is
compact if and only if

lim
|ϕ(z)|→1−

(
1− |z|2

1− |ϕ(z)|2

)α
|ϕ′(z)|n+1 = 0.

Next, we apply Theorem 3.2 and Theorem 3.6 to improve the result of
[1, Theorem 4.3 and Remark 4.4] to the case 0 < α ≤ 1. We first recall
the concept of angular derivative and Julia-Caratheodory Theorem.

Let f be a complex-valued function on D and w ∈ ∂D. We say
that the angular (or non-tangential) limit of f at w is L, denoted by
∠ limz→w f(z) = L, if f(z) → L as z → w through any triangle in D
that has one of its vertices at w. An analytic selfmap g : D→ D has an
angular derivative at a point w ∈ ∂D if for some η ∈ ∂D

∠g′(w) = ∠ lim
z→w

η − g(z)

w − z
,

exits (finitely).
By Julia-Caratheodory Theorem, if the angular derivative of a non-

constant analytic selfmap g : D→ D exists at some point w ∈ ∂D, then
∠g′(w) 6= 0 [3, Chapter I of Part Six].

Let a selfmap g : D→ D be continuously differentiable. If g(w) = η ∈
∂D for some w ∈ ∂D, then clearly the angular derivative of g at w exists
and ∠g′(w) = g′(w). Therefore, by Julia-Caratheodory Theorem, if g is
non-constant then g′(w) 6= 0.

Theorem 3.8. Let 0 < α ≤ 1, n ∈ N and let Cφ : Lipn(D, α) →
Lipn(D, α) be a composition operator induced by the non-constant self-
map φ of D. Then Cφ is compact if and only if φ(D) ⊆ D.
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Proof. We only need to show φ(D) ⊆ D whenever Cφ is compact and

0 < α < 1. By Theorem 3.2, if Cφ : Lipn(D, α)→ Lipn(D, α) is compact,
then the composition operator Cϕ : Z1−α

n → Z1−α
n is compact, where

ϕ = R(φ) = ϕ |D . Hence, by Theorem 3.6, the weighted composition
operator (ϕ′)nCϕ : B1−α → B1−α is compact. Now, by contrary let
φ(ζ) = η ∈ ∂D for some ζ ∈ ∂D. Then |limr→1− ϕ(rζ)| = |η| = 1 and
hence by Theorem 2.4, we get (φ′(ζ))n = 0. On the other hand, by the
discussion before this Theorem, Julia-Caratheodory Theorem implies
that φ′(ζ) 6= 0 which leads to a contradiction and completes the proof
of the theorem. �

Remark 3.9. Choe, Koo and Smith in [4, Theorem 2.3] proved the
results of Theorem 2.5 and Theorem 3.8 for the spaces Lip(∂D, α)∩A(D)
and Lipn(∂D, α) ∩ A(D) (n ∈ N, 0 < α ≤ 1). On the other hand, by
[6, Lemma 4] for a continuous function f on D which is analytic on
D, f ∈ Lip(∂D, α) if and only if f ∈ Lip(D, α). Hence, [4, Theorem
2.3] along with [6, Lemma 4] provides another proof to Theorem 2.5 and
Theorem 3.8. Our approach has the advantage to lead us to some new
results stated in Theorem 3.6 and Corollary 3.7 besides giving a new
proof to [4, Theorem 2.3].
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