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APPLICATION OF FUNDAMENTAL RELATIONS ON
n-ARY POLYGROUPS

S. MIRVAKILI AND B. DAVVAZ*

Communicated by Jamshid Moori

ABSTRACT. The class of n-ary polygroups is a certain subclass of
n-ary hypergroups, a generalization of Dérnte n-ary groups and a
generalization of polygroups. The (*-relation and the ~*-relation
are the smallest equivalence relations on an n-ary polygroup P such
that P/B* and P/v* are an m-ary group and a commutative n-ary
group, respectively. We use the 3*-relation and the ~*-relation on
a given n-ary polygroup and obtain some new results and some
fundamental theorems in this respect. In particular, we prove that
the relation -~y is transitive on an n-ary polygroup.

1. Introduction

The concept of a hypergroup which is a generalization of the concept
of a group, was first introduced by Marty at the 8 International Con-
gress of Scandinavian Mathematicians [20]. Applications of hypergroups
have mainly appeared in special subclasses. For example, polygroups
which form a certain subclass of hypergroups are used to study color
algebra [1, 2].

The fundamental relation 8* which is the transitive closure of the re-
lation (8 was introduced on hypergroups by Koskas [17] and was studied
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mainly by Corsini [3] and Vougiouklis [21]. The commutative fundamen-
tal equivalence relation v* which is the transitive closure of the relation
~, was studied on hypergroups by Freni [14, 15], also see [9]. Applications
of fundamental relations §* and v* on hypergroups and polygroups were
used by Corsini and Leoreanu [4, 5], Davvaz [6, 7, 8] and Vougiouklis
21, 22].

On the other hand, the first paper about the concept of an n-ary
group has been published about 80 years ago by Dérnte in [13], which is
a natural generalization of the notion of group. Recently, the notion of
n-ary hypergroups is defined and considered by Davvaz and Vougiouklis
in [10], as a generalization of hypergroups in the sense of Marty and
a generalization of Dornte n-ary groups. Davvaz and Vougiouklis [10]
introduced the relation 8 on an n-ary semihypergroup H such that g*
is the smallest equivalence relation and the quotient (H/B*, f/5%) is
a fundamental n-ary semigroup, see also [11, 18]. Leoreanu-Fotea and
Davvaz [19] proved that the relation [ is transitive. Davvaz et. al.
[12] defined the relation v on an n-ary semihypergroup and studied the
relaton +* as the smallest equivalence relation such that the quotient
(H/~*, f/7*) is a commutative n-ary semigroup. Ghadiri and Waphare
[16] defined the notation of m-ary polygroups, as a subclass of n-ary
hypergroups and as a generalization of polygroups.

In this paper, we consider the fundamental relation §* and the com-
mutative fundamental relation v* on an m-ary polygroup, in a similar
way as in the case of n-ary hypergroups, and we obtain some new results
in this respect. In particular, we prove that the relation v is transitive
on an n-ary polygroup.

2. Basic Definitions and Results

Let H be a non-empty set and f a mapping f : H x H — P*(H),
where P*(H) denotes the set of all non-empty subsets of H. Then
f is called a binary (algebraic) hyperoperation on H. As it is well-
known a binary hyperoperation f on H is associative, if f(f(x,y),z) =
f(z, f(y,2)), for all x,y,z € H. A binary hypergroupoid with the as-
sociative hyperoperation is called a semihypergroup. A hypergroupoid
(H, f) satisfying the reproducibility axiom: f(a,H) = f(H,a) = H for
all a € H, is called a quasihypergroup. A quasihypergroup which is a
semihypergroup is called a hypergroup. Moreover, according to [1], a
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polygroup is a multivalued system (P,-,e,”') wheree € P, 7' : P — P,
-1 P x P — P*(P) and the following axioms hold for all z,y,z € P
(i) (z-y)-z=2z-(y-2),
(i) e-x=z-e=uzx,
(iii) z €y -z impliesy €x-2"'and z €y~ ! - .
Every commutative polygroup is called a canonical hypergroup.
In general, a mapping f : H X ... x H — P*(H), where H appears
n times, is called an n-ary hyperoperation. An algebraic system (H, f),
where f is an m-ary hyperoperation defined on H, is called an n-ary
hypergroupoid. Since we identify the set {z} with the element x, any
n-ary groupoid is an n-ary hypergroupoid.
We shall use the following abbreviated notation: '
The sequence z;j, Zit1, -+ ,x; will be denoted by z]. For j <4, 2/ is the
empty symbol. In this convention

f(xh'" y Liy Yit1, 7yj72j+17"‘7zn)

will be written as f(x, ygﬂ, z}ﬁrl). In the case when y; 11 = ... =y; =y

- (5=
the last expression will be write in the form f(zj, ¥ ,27,,). For non-

empty subsets Aq,..., A, of H we define
fAY) = f(Ar, ..., Ap) = U{f(a}) |z, € Ai, i =1,...n}.
An n-ary hyperoperation f is called associative, if
i—1 i—1y ,.2n—1 j—1 +i—1y . 2n—1
F@y fap ™), a5t = fla fa ), a0,
holds for every 1 < i < j < n and all z1,29,...,29,-1 € H. An n-
ary hypergroupoid with the associative n-ary hyperoperation is called
an n-ary semihypergroup. An n-ary hypergroupoid (H, f) in which the
relation
be flai ! as al) (+)

has a solution x; € H for every ail_l,a;‘H,b € Hand 1 <1 < n,

is called an n-ary quasihypergroup, In addition, when (H, f) is an n-

ary semihypergroup, (H, f) is called an n-ary hypergroup. An n-ary

hypergroupoid (H, f) is commutative if for all o € S, and for every

ay € H" we have f(a1,...,an) = f(ao1), -, 5(m)). If af € H" we
(n)

denote aZ(l) as the (ag(1), - - - Go(n))-

i—1 n—i
An element e € H is called neutral element if x € f(( e ),JJ,( e )),

for every 1 < i < n and for every z € H. An element e € H is called
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. (i-=1)  (n—i) .

scalar neutral element if x = f( e ,x, e ), for every 1 < i < n and

for every x € H. If m = k(n — 1) + 1, then the m-ary hyperoperation h

given by

h(wllq(n—l)-i-l) = f(fC-- (f(f(a}), xf;ﬁl), ), wl(ﬂigi)l():jl)ﬂ)

k
will be denoted by f(). If k = 0 then m = 1 and we denote f(g)(2]") = 21.
According to [16], an n-ary polygroup is a multivalued system P =
(P, f,e,”1), where e € P, ~! is a unitary operation on P, f is an n-ary
hyperoperation on P and the following axioms hold for all 1 < 4,j <n
and z, 23" € P:

. . - _ i1 i—1 _ . .
(1) flai™ fapt eyt = flal f@ 7)), e, f s
associative,

- »
(ii) element e is a scalar neutral of P, i.e., x = f((ze ),a:, (ne Z)),
(iii) x € f(«}) implies x; € f(xl__ll, e ,$1_1,x,x;1, . ,x;ll).

An n-ary subpolygroup N of an n-ary polygroup P is normal in P if

-1 (n—3) 1
for every a € P, f(a™",N,a, e ) C N.Let A= (A, f,e;,”" ) and B =

(B,g,e2,”) be two n-ary polygroups. A homomorphism from A into

B is a mapping ¢ : A — B such that ¢(f(a})) = g(¢(a1),...,¢(an))
holds for all aq,...,a, € A, and ¢(e1) = es.

3. Application of Fundamental Relation $* and Commutative
Fundamental Relation v* on n-ary Polygroups

Davvaz and Vougiouklis in [10] defined the relation 5 on an n-ary
semihypergroup (H, f) as follows:

Bo is the diagonal relation, i.e., Sy = {(z,x)|z € H}, and, for every
integer k > 0, B is the relation defined as follows:

v By <& 32" € H:{z,y} C f)(z]), where m =k(n—1)+1.

B=J B

k>0

Now, set

then x B y if and only if « (B y for some k > 0.

If §* is the smallest strongly compatible equivalence relation on an
n-ary semihypergroup (H, f) such that the quotient (H/3*, f/3*) is an
n-ary group, then §* is transitive closure of the relation 5 (for a proof
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see[10]). The n-ary operation f/3* is as follows:

f/ﬁ*(ﬁ*(al)v s aﬁ*(an)) = ﬂ*(a)v
for all a € f(8*(a1),...,0"(an)) = B*(a). Also, Leoreanu and Davvaz
[19] showed that the relation [ is transitive on an m-ary hypergroup.
The relation * is called the fundamental relation and (H/B*, f/3*) is
called the fundamental n-ary group.

When (H, f) is an n-ary semihypergroup, Davvaz, Dudek and Mir-
vakili [12] studied the relation v = (J,~o 7%, where 7o is the diagonal
relation and for every integer k > 1, ~y, is the relation defined as fol-
lows: there exist z{* € H™ and o € S;, such that zv,y if and only if

z € fuy(27") and y € f(k)(zggn)), where m = k(n — 1) + 1.
Let (H, f) be an n-ary semihypergroup. We define 7* as the smallest

equivalence relation such that the quotient (H/~*, f/7*) is a commuta-

tive n-ary semigroup, where H/~v* is the set of all equivalence classes.

The equivalence relation v* is called commutative fundamental relation

and (H/~v*, f/~*) is called commutative fundamental n-ary semigroup.
The relation v (respectively, v*) was introduced on hypergroups

(2-ary hypergroups) by Freni [14, 15].
Theorem 3.1. [12] Let (H, f) be an n-ary hypergroup. Then we have:

(1) The fundamental relation v* is the transitive closure of the rela-
tion .

(2) Relation ~y is a strongly compatible relation on (H, f).

(3) If (H, f) is commutative then 5 = .

Let P = (P, f,e,”!) be an n-ary polygroup, ¢ : P — P/B* and
¢ : P — P/~* canonical projections. Then wp and D(P) are the kernels
of ¢ and ¢, respectively. In fact, wp is a neutral element of P/3* and
D(P) is a neutral element of P/v*. We have wp C D(P), since §* C v*.
Also, it is not difficult to see that

wp = B*(e)  and B*(z71) = B*(x)"! for all x € P,
D(P)=v*(e) and y*(z~ ') =~*(x)"! for all z € P.

Theorem 3.2. [12] If (H, f) is an n-ary hypergroup with a neutral
(identity) element such that H /v is i-cancellative then ~y is transitive.

So we have:

Corollary 3.3. If (P, f) is an n-ary polygroup, then ~y is an equivalence
relation on P and v = ~v*.
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Theorem 3.4. Let P be an n-ary polygroup and ai*, b7 € P such that
a; v bj for all j =1,2,...,m, where m = k(n — 1) + 1. Then for all
x € f(k)(a‘il, calm) and y € f(k)(bfl, o O where §; € {1, -1}(i =
1,2,...,m), we have x v* y. Also, this theorem is true for 3*-relation.

Proof. Suppose that a; v* b; for all j = 1,2,...,m, then there ex-
ist k; € NU {0} and z?n] € P where n; = kj(n — 1) + 1, and there
exists permutation o; € S, such that a; € f(kj)(zjl,...,zjnj) and
bj € fi;)(Zjo;(1)s -+ Zjo(n,;)- Therefore,

fay (@) € foey(firn) (21155 2100 )s -5 fh) (Bmts - Zmny, ) and
Fuoy(OF) € fiy(fir) (Zro1(1)s - - -5 101 (m1) )

oo ftem) Bmom (1) s Zmom (nm))
and so we conclude that
T € f)(a1") S flothatthm) (Z115 -5 Zlngs 5 Zmls - -+ 5 Zmn,,,) and
Y € fiy(01") C flrahrtothm) (1o (1)s - - -5 Z101(m1)»
s Zmom (1) -+ s Zmom (nm))-

Thus, we obtain x v* y. Since a; v* b; implies a; Loy b;l, so by the

similar way for all z € f(y) (ad',...,a%) and y € f(k)(b‘lsl, ..., b%m) where
0; €{1,-1}(i=1,2,...,m), we obtain x v* y. O

By the above theorem and definition of vy*-relation, we obtain:

Corollary 3.5. Let P be an n-ary polygroup and a'*, b7 € P such that

a; v* bj forallj=1,2,...,m, where m = k(n—1)+1. Then for every
™ €8y and every @ € fg(afl,...alp) and y € fa(b5, 00

where 0; € {1, —1}(i =1,2,...,m), we have x v* y.

Theorem 3.6. Let P be an n-ary polygroup. If there exist A, A’ C v*(2)

(i—1) (n—1)
and B, B' C v*(z~ 1) for some z € P such that f( A ,z, A )NB #
(i—1) (n—1)
and f( A"y, A" )N B #£0, then z v* y.

Proof. Suppose that there exist A, A’ C v*(z) and B, B’ C v*(27!) for
( (i-1)  (n—i)

(i-1)  (n—i)
some z € Psuch that f( A ,z, A )NB#0and f( A" ,y, A" )NB' #
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(). Then we have
(i—1) (n—1)
fIv (v (A), v (), 7" (A)) N y*(B) # 0,
(i-1) (n—i) /
FIr (A7), 7 (), v (A) Ny*(B) # 0.
(i-1) (n—1)
Therefore, we conclude that f/v*(v*(2),v*(z),7*(2)) = v*(¢7!) and
(i-1) (n—1)
FIv (v (2), 7" (), 7"(2)) = 7*(z71). Since P/7* is an n-ary group,
V(@) =7 (Y)- m
Theorem 3.7. Let (P, f) be an n-ary polygroup.
(1) If 2¥ € D(P) then for every a € P, there exists A C v*(a) such
that for every i € {1,2,...,n}, we have f(:nll_l, Az )NA#£0.
(2) Let a, 2 € P such that x17*...v"xn. If there exist A C v*(a)
andi € {1,...,n} such that f(z{"', A, 2, | )NA # 0 and D(P) =
v*(e) is a unique neutral element of P/v* then i ' 2%, €
D(P).
Proof. (1) Suppose that 2} € D(P) and set A = v*(a) for an arbitrary

a € P. So for every 1 < i < n, we have:

So(f(xzi_la a, x?—i—l))
= f/7v (v (), v (@), v (@), Y (Tig), - - 7 (20))

(i—1) (n—1)

= /7" (D(P),v*(a), D(P)) = v*(a).
Thus, f(m’i_l,’y*(a),xﬁl) N~y*(a) # 0, so f(mzi_l, Azl )NAFD.
(2) If f(2i7", A 2P ) N A # 0, then
I (@), (i), v (@), v (i), -y () = 77 (a).
Since D(P) is the unique identity element of P/~v* and v*(z1) = ... =

v*(xy) then v*(z;) = D(P) and x; € D(p), when ¢ € {1,...,1— 1,7+
1,...,n}. O

Let P be an n-ary polygroup and a € P, we define a', where
l € NU{0}, as follows

ad=e if =0,
l —1
i = fuy (@, ") i (k-1 +1<I<m=kn—1)+1.

Then, by the above notation we have:
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Theorem 3.8. Let P be a n-ary polygroup. For every a € P, and
rr' € NU{0} such that ' <r, if a" Na" # 0 then """ C D(P).

Proof. Let (k—1)(n—1)+1<r<m=k(n—1)+1and (¥ —1)(n—
D+1<7v” <m =FkK(n-1)+1. Now, we have (k — k' — 2)(n —
D+l<r—r=+"<m-m+1=k-K)n-1)+1=

or " =r—r' =(k—-k—-2)(n—-1)+1=m" First, suppose that
(k=K -2)n—-1)+1<r—r'=r"<m-m'+1=(k—-K)n-1)+1=

(m—r) () (m

m”, then a” Na” # () implies i) ((T) e )N fan(a, e )) # 0. So

(7”) ( —r) ’) (m/—r") e
o(fay(a, e 7)) =o(fu ( , e )) which implies that

hence

)
(f/v*)(k;/)(v*(a()
= (/7)o (v (@), v*(e) ).

Therefore,

T/ (7,//) (m//_T//) (m’—r’—l)

(r)
(f/7) (v (Cf) (/) e (Y (@), v (e) ), v*(e) )

(m/—r")
= (f/7) (v (@), v*(e) ).

(,,Jl) (m//_,,,//)

Since P/~* is an n-ary group, we have (f/v*) ) (v*(a), v*(e) ) =v"(e)

(7,,//) ( " _ //) (,r,ll) (m//_rl/)

and so v*(fny(a )) = 7*(e). Therefore, fn(a’, e 7)C

D(P), thus a’ " = aT C D(P).
Ifr"=r—r"=(k—-kF—-2)(n—1)4+1=m", then by a similar way

we obtain a’"~" C D(P). O

Remark 3.9. If we use B*, wp and ¢ instead of v*, D(P) and ¢ re-
spectively, then Theorems 3.6, 3.7 and 3.8, are still valid.

Let A be a non-empty subset of P. The intersection of 3-parts of P
which contains A is called §-closure of A in P. It will be denoted by
C3(A). Also, we define v-closure of A in P (i.e., Cy(A)) by a similar
way.

Similar to Theorem 63 in [3], we have:
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Theorem 3.10. Let B be a non-empty subset of an n-ary polygroup P.

Then
(1) Cs(B) = | Cs(0),
beB
(2) ¢4(B) = | C,(0).
beB

Theorem 3.11. Let P be an n-ary polygroup. If A is a non-empty
subset of P. Then for every i € {1,2,...,n — 1} we have

1) 1(0p, 4, %) = 671 (6(4)),

(i—1) (n—1)
2) f(D(P), A, D(P)) = ¢~} (p(A)).
(i—1)
Proof. We prove (2), the proof of (1) is similar. For every = € f(D(P)
(n—1)
,A,D(P)), there exist da,...,d, € D(P) and a € A such that = €
. " L, (i=1) (n—i)
f(dQ laa7di+1)7 S0 So(x) - f/7 (eP/'y*a (p(a), eP/’y*) = QO(G), therefore
v € ¢ (p(2)) = v~ p(a) € ¢ H(p(A)).
For the converse, take € p~!(p(A)), so an element b € A exists such
that p(x) = ¢(b). Since P is an n-ary polygroup, thus a € P exists such
(i-2)  (n—i) i (i—2) (n—i)
that = € f(a, e b, e ), 50 p(b) = p(z) = f/7"(p(a), p(e), p(b), p(e)

" (i—2) (n—1) o (1) (n—1)
) = f/’y (Sp(a)aeP/'y*a(P(b)veP/'y*)' But f/’y (eP/'y*790(b)7€P/'y*) = Sp(b)a
thus P is 1-cancellative and so ¢(a) = ep/,« and a € ¢ (ep/y+) =
i n—i (i—1) (n—i)
D(P). Hence z € f(a,( 62), e )) C f(D(P),A, D(P)). Therefore we
(i—1) (n—i)

obtain f(D(P), A, D(P)) = ¢~ (p(A)). O

b,

Theorem 3.12. If A is a non-empty subset of an n-ary polygroup P,
then for every i € {1,2,...,n},

) £Cp, 4, %)) = 0s(4),

(i—-1) (n—1)
where C3(A) and Cy(A) are B-closure and y-closure of A in P, respec-
tively.

Proof. We prove (2), the proof of (1) is similar. If x € ¢ 1(p(A)),
then a € A there exists such that p(z) = ¢(a) and so v*(z) = 7v*(a).
Therefore, z € v*(a) C Cy(a). Also, if z € Cy(a) for some a € A, then
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we have  v* a and so ¢(z) = ¢(a). Thus, we obtain z € ¢~ (p(A))
and so:

o (p(A) ={zreP|3acA:zecCa)}=]C0)
beB

(i—-1) (n—1)
By Theorems 3.10 and 3.11, we obtain f(D(P), A, D(P)) = C,(4). O

Corollary 3.13. If A is a non-empty subset of an n-ary polygroup P,
then for every 1 < 1,5 < n we have:

i—1 n—i) j—1 n—j
W rop), 4, % = 1o, 4, %),

(i—1) (n—1) (-1 (n—j)

(2) f(D(P), A, D(P)) = f(D(P), A, D(P)).

Corollary 3.14. Let P be an n-ary polygroup and A € p(P)*. If A is
(i—1) (n—1t)

a y-part then for evey i € {1,2,...,n} we have f(D(P),A, D(P)) = A.
(i—1) (n—1)

Conwversely, if for somei € {1,2,...,n} we have f(D(P), A, D(P)) = A,

then A is a vy-part of P. Also, this corollary is true for the 3*-relation.
Proof. By Theorem 3.12, the proof is straightforward. O

Theorem 3.15. If P is an n-ary polygroup, then

(1) wp is a B-part of P,
(2) D(P) is a y-part of P.

Proof. (1) See the proof of (2) and set o = id.

(2) Let m = k(n — 1) +1, 21" € P. We have f)(2") (1 D(P) #
(. Thus, there exists z € fz)(2{")(D(P) and so we obtain p(r) =
©(D(P)) = epsy and @(z) = ©(fu)(21")) = v (fw)(21")). Now, for
every o € S,, and for every y € f(k)(zg((?;)) we have x v*y, because
z € fuy(2"). Therefore, ep/ = v*(fir)(21")) = () = 7*(y) =
¥ (fuy (zoy)- Thus, fy(221))) € ¢~ (epyy+) = D(P), this shows that
D(P) is a ~y-part of P. O
Theorem 3.16. Let P be an n-ary polygroup. If A; is a vy-part of P
for some i € {1,2,...,n}, then for every o € S,, and for every A; C P,
i # 7 € {1,2,...,n}, the image f(AZE?))) is a y-part of P. Also, this
theorem is true for the 3*-relation.
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Proof. Set B = f(A UE%) and suppose that o(k) = i. We prove that
(n—1)
f(B,D(P)) = B and then by Corollary 3.14, B is a «y-part of P. Since
(j—1) (n—j)
A; is a y-part of P, by Corollary 3.14, we have f(D(P), A;, D(P)) = A;,
for every j € {1,2,...,n}. Now, by Corollary 3.13, we obtain:

(n-1) o, (D - (n-1)
f(B7D(P)) = f(f('Ao'(l))’D(P)) = f(Ao'(l) 7f(A0'(n))D(P)))
(n-1) (n-1)

Therefore, f(B, D(P)) = B and the proof is completed. O

Let P be an n-ary polygroup, and [[(P) be the set of m-ary hyper-
products of elements of P. In fact:

[1(P) = {fo(=") | m=k(n—1)+1,k € NU{0}, 2" € P}.

Also, consider [[(P) with an n-ary hyperoperation F' defined as follows:
F(Ar,..., A) ={C e [[(P) | C C f(Ar,..., A},

for all A" € [[(P). We consider the following condition:
(*) X € F(AD), if for every a; € A;(i = 1,...,n), there exists z € X such
that x € f(a}).
Then we have the following theorem:

Theorem 3.17. (Construction) If P is an n-ary polygroup which
satisfies the (*), then ([[(P), F) is an n-ary polygroup.
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Proof. (1) First, we show that n-ary hyperoperation F' on [[(P) is as-
sociative. Let A2"~! € [[(P). Then for every 1 < i,j < n we have:

P FATH), A2

= {F(AT,C,ATG) | € C f(ATTh)

={D| D C f(AT", f(AT7H), AV}

={D| D C f(A]™", f(ATT7), A2 1))

= {F(A]7",C, AT | € C fATHTh)

= P(A P77, Ao,

(2) Let E = {e}. Then forall A € [[(P) and for every i € {1,2,...,n},
(n—i)

1)
it is easy to see that f( E A E))=A and B~ ={e} 1 ={e 1} =
{e} =E.

(3) We define the unitary operation ~! as follows
1P — TI(P)
(Fuo @1, am)) ™ = foy (et arh),
where m = k(n — 1) + 1 and 27" € P. Now, let A; = f(kl)(aﬂnl), Ay =

S (@302), -y An = foy (@) and Apiy = fi, o (apeiy) ™) be
elements of [ [(P) such that 4,11 € F(A41,...,Ay). Leta; € 4;, 1 <i <
n be arbitrary. Then, there exists a, 41 € A,41 such that a,+1 € f(al).
Since P is an n-ary polygroup, thus,

-1 -1 1
a; € f(a; 1,...,a1 T D/ N Z+1)

a; ') = A7!) and

Butforevery1<]<nwehavea € fu, (]m,...,]l T

so we obtain
-1 -1 -1 1
a; € fla;q,...,0] ,Qny1,ay ..., z+1)

C A, AT Ann, AL AZ).

Since for every a; € A; the above equation is true,

A; Cf( i— 1""7A1_17An+17A7717" aA'_l )7
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or A; € F(A;_ll, .. .,Afl,AnJrl,A;l, .. ,A;_i_ll). Thus, by (1), (2), (3)
and definition of n-ary polygroups, we conclude that ([[(P),F') is an
n-ary polygroup. O

Corollary 3.18. If A is an n-ary subpolygroup of P and A belongs to
[I(P), then A is contained in wp and D(P).

Proof. Since A is an n-ary subpolygroup thus e € A. But A € [[(P)
and so for every x € A we have §*(z) = *(4) = f*(e). This means
that x € wp or A C wp. Since wp C D(P), A C D(P). O

The following example shows that not all n-ary subpolygroups of an
n-ary polygroup are in [[(P).

Example 3.19. Let P = {e,a,b,c} and let (P, f) be a commutative
ternary hypergroupoid with two scalar neutral elementse € P anda € P.
Assume that and 3-ary hyperoperation f defined as follows:
f(ea a, b) =0, f(ea a, C) =6 f(ea b, b) = {6, a, C},
f(e;b,c) ={b,c}, fle,e,c) ={e,a,b},  f(a,b,b) ={e,a,c},
f(aa b, C) = {b’ C}’ f(av G C) = {67 a, b}7 f(bv b, b) = {bv C}?
f(,b,c) ={e,a,b}, f(b,c,c)=P, fle,e.c) ={b,c}.
Then the 3-ary hyperoperation f is associative. We define unitary oper-
ation ' = x for every x € P. Then P = (P, f,e,™') is a ternary poly-
group. Furthere, A = {e,a} is a 3-ary subpolygroup of P, but A & [[(P).
We also have wp = D(P) = f(b,c,c) = P € [[(P).

If P is an n-ary polygroup, we denote the set of n-ary hyperproducts A
of elements of P by, H(P) (H(P)) such that C3(A4) = A (C,(A) = A).
Cs c,

Theorem 3.20. Let P be an n-ary polygroup and let z7*, where m =

k(n—1)+1, are elements of P such that fu,(27") € H(P) Then there
e,

-2
exists yi* € P such that f(2k+1)(:z’fl7y}n, (ne )) = D(P). This theorem is

true for B*-relation, too.

Proof. Suppose that a; € D(P), where 1 < j < m. Then there ex-

-2
ists y; € P such that a; € f(xj,yj,(ne )). Since D(P) is a v-part,

then f(z;,y;, (ng2)) C D(P), and so f(z;,y;, (ngg),D(P)) = D(P). By

Corollaries 3.13 and 3.14, we obtain
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n— (n—1) n—
FEw @ ym: ") = 1w @), D(P)), g e )

(n—-1) (n—2)

= [y ("), f(D(P),ym), € )

(n=1)  (n—2)

:f(f(k)(xT)7f(ymaD(P))v e )

-1 (n-3) e
= f(k+1)($1 f(@msym, €7, D(P)), D(P),e)

) (n—1)
= f(kJrl)(x;n_ 7D(P)7 6)7
and so

(n—3)
f(f(k)(l’in),ym7ym,1, € )

(n—2) (n—3)
:f(f(k)(xin)aymvf( € aym—lae)? € )

(n—2) (n—2)

:f(f(f(k)(xT)7yma € )7ym—17 € )

_ (n—1) (n—2)
:f(f(k-i-l)(x;n 15D(P)76)aym*17 € )

_ D (n-2)
= f(k—i—l)(xT laD(P)af(evym—la € ))

_ (n—1) (n—1)
= ey @ D(P), f(ym-1, € )

1, D (n—1)
:f(k+1)(1’71n 1af(D(P)7ym—1)’ e’)

_ (=) - (n-1)
= fis1) (@] f(Ym—1, D(P)), € )

i (n—3) (n—2)
:f(k—i-l)(xl 27f(xm—17ym—17 € 7D(P))7D<P)7eae)

(n—1)
= faorn (@2, D(P), D).

If we continue in the same way, then we obtain

(n=1) (1)
f(k)(f(k)(xgn)v yr2n) :f(k+1)(3317 D(P), e ),
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and since e is a scalar neutral element of P, then fu,)(fx, (27, 92,) =

(n—1)
f(z1, D(P)). Finally

(n—2) (n—2)
f(2k+1)(x71nay3myla e ):f(f(2k)(x71nay72n)aylv € )
(n—1) (n—2) (n—3) (n—2)
:f<f($17D(P))ay17 € ):f(f(xlayh € 7D(P))7€7D(P))
(n—2)
= f(D(P),e,D(P)) = D(P).
Therefore, f(2k+1)(93’1”,y}m (ng2)) = D(P). O

Corollary 3.21. Let P be an n-ary polygroup. Then
) If H ) # 0 then wp € H and wp is m-ary hyperproduct.

) If H ) # (0 then D(P H ) and D(P) is m-ary hyper-

pmduct

Theorem 3.22. Let P be an n-ary polygroup. Then
(1) If P\wp is an m-ary hyperproduct, then wp is m-ary hyperprod-
uct and wp € H(P)

Cp
(2) If P\D(P) is an m- ary hyperproduct, then D(P) is m-ary hy-
perproduct and D(P H

Proof. (1) Since wp is a (-part, then P\wp is also 3-part.

Now, P\wp € H(P) and by Corollary 3.21, the proof is completed.
Cs

The proof of (2) is similar. O
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