# APPLICATION OF FUNDAMENTAL RELATIONS ON $n$-ARY POLYGROUPS 

S. MIRVAKILI AND B. DAVVAZ*

Communicated by Jamshid Moori


#### Abstract

The class of $n$-ary polygroups is a certain subclass of $n$-ary hypergroups, a generalization of Dörnte $n$-ary groups and a generalization of polygroups. The $\beta^{*}$-relation and the $\gamma^{*}$-relation are the smallest equivalence relations on an $n$-ary polygroup $P$ such that $P / \beta^{*}$ and $P / \gamma^{*}$ are an $n$-ary group and a commutative $n$-ary group, respectively. We use the $\beta^{*}$-relation and the $\gamma^{*}$-relation on a given $n$-ary polygroup and obtain some new results and some fundamental theorems in this respect. In particular, we prove that the relation $\gamma$ is transitive on an $n$-ary polygroup.


## 1. Introduction

The concept of a hypergroup which is a generalization of the concept of a group, was first introduced by Marty at the $8^{t h}$ International Congress of Scandinavian Mathematicians [20]. Applications of hypergroups have mainly appeared in special subclasses. For example, polygroups which form a certain subclass of hypergroups are used to study color algebra [1, 2].

The fundamental relation $\beta^{*}$ which is the transitive closure of the relation $\beta$ was introduced on hypergroups by Koskas [17] and was studied

[^0]mainly by Corsini [3] and Vougiouklis [21]. The commutative fundamental equivalence relation $\gamma^{*}$ which is the transitive closure of the relation $\gamma$, was studied on hypergroups by Freni [14, 15], also see [9]. Applications of fundamental relations $\beta^{*}$ and $\gamma^{*}$ on hypergroups and polygroups were used by Corsini and Leoreanu [4, 5], Davvaz [6, 7, 8] and Vougiouklis [21, 22].

On the other hand, the first paper about the concept of an $n$-ary group has been published about 80 years ago by Dörnte in [13], which is a natural generalization of the notion of group. Recently, the notion of $n$-ary hypergroups is defined and considered by Davvaz and Vougiouklis in [10], as a generalization of hypergroups in the sense of Marty and a generalization of Dörnte $n$-ary groups. Davvaz and Vougiouklis [10] introduced the relation $\beta$ on an $n$-ary semihypergroup $H$ such that $\beta^{*}$ is the smallest equivalence relation and the quotient $\left(H / \beta^{*}, f / \beta^{*}\right)$ is a fundamental $n$-ary semigroup, see also [11, 18]. Leoreanu-Fotea and Davvaz [19] proved that the relation $\beta$ is transitive. Davvaz et. al. [12] defined the relation $\gamma$ on an $n$-ary semihypergroup and studied the relaton $\gamma^{*}$ as the smallest equivalence relation such that the quotient $\left(H / \gamma^{*}, f / \gamma^{*}\right)$ is a commutative $n$-ary semigroup. Ghadiri and Waphare [16] defined the notation of $n$-ary polygroups, as a subclass of $n$-ary hypergroups and as a generalization of polygroups.

In this paper, we consider the fundamental relation $\beta^{*}$ and the commutative fundamental relation $\gamma^{*}$ on an $n$-ary polygroup, in a similar way as in the case of $n$-ary hypergroups, and we obtain some new results in this respect. In particular, we prove that the relation $\gamma$ is transitive on an $n$-ary polygroup.

## 2. Basic Definitions and Results

Let $H$ be a non-empty set and $f$ a mapping $f: H \times H \longrightarrow \mathcal{P}^{*}(H)$, where $\mathcal{P}^{*}(H)$ denotes the set of all non-empty subsets of $H$. Then $f$ is called a binary (algebraic) hyperoperation on $H$. As it is wellknown a binary hyperoperation $f$ on $H$ is associative, if $f(f(x, y), z)=$ $f(x, f(y, z))$, for all $x, y, z \in H$. A binary hypergroupoid with the associative hyperoperation is called a semihypergroup. A hypergroupoid $(H, f)$ satisfying the reproducibility axiom: $f(a, H)=f(H, a)=H$ for all $a \in H$, is called a quasihypergroup. A quasihypergroup which is a semihypergroup is called a hypergroup. Moreover, according to [1], a
polygroup is a multivalued system $\left(P, \cdot, e,^{-1}\right)$ where $e \in P,{ }^{-1}: P \rightarrow P$, $\cdot: P \times P \rightarrow \mathcal{P}^{*}(P)$ and the following axioms hold for all $x, y, z \in P$
(i) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$,
(ii) $e \cdot x=x \cdot e=x$,
(iii) $x \in y \cdot z$ implies $y \in x \cdot z^{-1}$ and $z \in y^{-1} \cdot x$.

Every commutative polygroup is called a canonical hypergroup.
In general, a mapping $f: H \times \ldots \times H \longrightarrow \mathcal{P}^{*}(H)$, where $H$ appears $n$ times, is called an $n$-ary hyperoperation. An algebraic system $(H, f)$, where $f$ is an $n$-ary hyperoperation defined on $H$, is called an $n$-ary hypergroupoid. Since we identify the set $\{x\}$ with the element $x$, any $n$-ary groupoid is an $n$-ary hypergroupoid.

We shall use the following abbreviated notation: The sequence $x_{i}, x_{i+1}, \cdots, x_{j}$ will be denoted by $x_{i}^{j}$. For $j<i, x_{i}^{j}$ is the empty symbol. In this convention

$$
f\left(x_{1}, \cdots, x_{i}, y_{i+1}, \cdots, y_{j}, z_{j+1}, \ldots, z_{n}\right)
$$

will be written as $f\left(x_{1}^{i}, y_{i+1}^{j}, z_{j+1}^{n}\right)$. In the case when $y_{i+1}=\ldots=y_{j}=y$ the last expression will be write in the form $f\left(x_{1}^{i}, \stackrel{(j-i)}{y}, z_{j+1}^{n}\right)$. For nonempty subsets $A_{1}, \ldots, A_{n}$ of $H$ we define

$$
f\left(A_{1}^{n}\right)=f\left(A_{1}, \ldots, A_{n}\right)=\cup\left\{f\left(x_{1}^{n}\right) \mid x_{i} \in A_{i}, i=1, \ldots n\right\} .
$$

An $n$-ary hyperoperation $f$ is called associative, if

$$
f\left(x_{1}^{i-1}, f\left(x_{i}^{n+i-1}\right), x_{n+i}^{2 n-1}\right)=f\left(x_{1}^{j-1}, f\left(x_{j}^{n+j-1}\right), x_{n+j}^{2 n-1}\right),
$$

holds for every $1 \leq i<j \leq n$ and all $x_{1}, x_{2}, \ldots, x_{2 n-1} \in H$. An $n$ ary hypergroupoid with the associative $n$-ary hyperoperation is called an $n$-ary semihypergroup. An $n$-ary hypergroupoid $(H, f)$ in which the relation

$$
\begin{equation*}
b \in f\left(a_{1}^{i-1}, x_{i}, a_{i+1}^{n}\right) \tag{*}
\end{equation*}
$$

has a solution $x_{i} \in H$ for every $a_{1}^{i-1}, a_{i+1}^{n}, b \in H$ and $1 \leq i \leq n$, is called an $n$-ary quasihypergroup, In addition, when $(H, f)$ is an $n$ ary semihypergroup, $(H, f)$ is called an $n$-ary hypergroup. An $n$-ary hypergroupoid $(H, f)$ is commutative if for all $\sigma \in \mathbb{S}_{n}$ and for every $a_{1}^{n} \in H^{n}$ we have $f\left(a_{1}, \ldots, a_{n}\right)=f\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right)$. If $a_{1}^{n} \in H^{n}$ we denote $a_{\sigma(1)}^{\sigma(n)}$ as the $\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right)$.

An element $e \in H$ is called neutral element if $x \in f\left({ }_{(i-1)}^{e}, x, \stackrel{n-i)}{e}\right)$, for every $1 \leq i \leq n$ and for every $x \in H$. An element $e \in H$ is called
scalar neutral element if $x=f(\stackrel{(i-1)}{e}, x, \stackrel{(n-i)}{e})$, for every $1 \leq i \leq n$ and for every $x \in H$. If $m=k(n-1)+1$, then the $m$-ary hyperoperation $h$ given by

$$
h\left(x_{1}^{k(n-1)+1}\right)=\underbrace{f\left(f\left(\cdots\left(f\left(f\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right), \cdots\right), x_{(k-1)(n-1)+2}^{k(n-1)+1}\right)\right.}_{k}
$$

will be denoted by $f_{(k)}$. If $k=0$ then $m=1$ and we denote $f_{(0)}\left(z_{1}^{m}\right)=z_{1}$. According to [16], an $n$-ary polygroup is a multivalued system $\mathbb{P}=$ $\left(P, f, e,^{-1}\right)$, where $e \in P,^{-1}$ is a unitary operation on $P, f$ is an $n$-ary hyperoperation on $P$ and the following axioms hold for all $1 \leq i, j \leq n$ and $x, x_{1}^{2 n-1} \in P$ :
(i) $f\left(x_{1}^{i-1}, f\left(x_{i}^{n+i-1}\right), x_{n+i}^{2 n-1}\right)=f\left(x_{1}^{j-1}, f\left(x_{j}^{n+j-1}\right), x_{n+j}^{2 n-1}\right)$, i.e., $f$ is associative,
(ii) element $e$ is a scalar neutral of $P$, i.e., $x=f(\stackrel{(i-1)}{e}, x, \stackrel{(n-i)}{e})$,
(iii) $x \in f\left(x_{1}^{n}\right)$ implies $x_{i} \in f\left(x_{i-1}^{-1}, \ldots, x_{1}^{-1}, x, x_{n}^{-1}, \ldots, x_{i+1}^{-1}\right)$.

An $n$-ary subpolygroup $N$ of an $n$-ary polygroup $P$ is normal in $P$ if for every $a \in P, f\left(a^{-1}, N, a, \stackrel{(n-3)}{e}\right) \subseteq N$. Let $\mathbb{A}=\left(A, f, e_{1},{ }^{-1}\right)$ and $\mathbb{B}=$ $\left(B, g, e_{2},{ }^{-1}\right)$ be two $n$-ary polygroups. A homomorphism from $A$ into $B$ is a mapping $\phi: A \longrightarrow B$ such that $\phi\left(f\left(a_{1}^{n}\right)\right)=g\left(\phi\left(a_{1}\right), \ldots, \phi\left(a_{n}\right)\right)$ holds for all $a_{1}, \ldots, a_{n} \in A$, and $\phi\left(e_{1}\right)=e_{2}$.

## 3. Application of Fundamental Relation $\beta^{*}$ and Commutative Fundamental Relation $\gamma^{*}$ on $n$-ary Polygroups

Davvaz and Vougiouklis in [10] defined the relation $\beta$ on an $n$-ary semihypergroup $(H, f)$ as follows:
$\beta_{0}$ is the diagonal relation, i.e., $\beta_{0}=\{(x, x) \mid x \in H\}$, and, for every integer $k>0, \beta_{k}$ is the relation defined as follows:

$$
x \beta_{k} y \quad \Leftrightarrow \quad \exists z_{1}^{m} \in H:\{x, y\} \subseteq f_{(k)}\left(z_{1}^{n}\right), \text { where } m=k(n-1)+1
$$

Now, set

$$
\beta=\bigcup_{k \geq 0} \beta_{k},
$$

then $x \beta y$ if and only if $x \beta_{k} y$ for some $k \geq 0$.
If $\beta^{*}$ is the smallest strongly compatible equivalence relation on an $n$-ary semihypergroup $(H, f)$ such that the quotient $\left(H / \beta^{*}, f / \beta^{*}\right)$ is an $n$-ary group, then $\beta^{*}$ is transitive closure of the relation $\beta$ (for a proof
see[10]). The $n$-ary operation $f / \beta^{*}$ is as follows:

$$
f / \beta^{*}\left(\beta^{*}\left(a_{1}\right), \ldots, \beta^{*}\left(a_{n}\right)\right)=\beta^{*}(a),
$$

for all $a \in f\left(\beta^{*}\left(a_{1}\right), \ldots, \beta^{*}\left(a_{n}\right)\right)=\beta^{*}(a)$. Also, Leoreanu and Davvaz [19] showed that the relation $\beta$ is transitive on an $n$-ary hypergroup. The relation $\beta^{*}$ is called the fundamental relation and $\left(H / \beta^{*}, f / \beta^{*}\right)$ is called the fundamental n-ary group.

When $(H, f)$ is an $n$-ary semihypergroup, Davvaz, Dudek and Mirvakili [12] studied the relation $\gamma=\bigcup_{k>0} \gamma_{k}$, where $\gamma_{0}$ is the diagonal relation and for every integer $k \geq 1, \gamma_{k}$ is the relation defined as follows: there exist $z_{1}^{m} \in H^{m}$ and $\sigma \in \mathbb{S}_{m}$ such that $x \gamma_{k} y$ if and only if $x \in f_{(k)}\left(z_{1}^{m}\right)$ and $y \in f_{(k)}\left(z_{\sigma(1)}^{\sigma(m)}\right)$, where $m=k(n-1)+1$.

Let $(H, f)$ be an $n$-ary semihypergroup. We define $\gamma^{*}$ as the smallest equivalence relation such that the quotient $\left(H / \gamma^{*}, f / \gamma^{*}\right)$ is a commutative $n$-ary semigroup, where $H / \gamma^{*}$ is the set of all equivalence classes. The equivalence relation $\gamma^{*}$ is called commutative fundamental relation and $\left(H / \gamma^{*}, f / \gamma^{*}\right)$ is called commutative fundamental $n$-ary semigroup.

The relation $\gamma$ (respectively, $\gamma^{*}$ ) was introduced on hypergroups (2-ary hypergroups) by Freni [14, 15].

Theorem 3.1. [12] Let $(H, f)$ be an n-ary hypergroup. Then we have:
(1) The fundamental relation $\gamma^{*}$ is the transitive closure of the relation $\gamma$.
(2) Relation $\gamma$ is a strongly compatible relation on $(H, f)$.
(3) If $(H, f)$ is commutative then $\beta=\gamma$.

Let $\mathbb{P}=\left(P, f, e,^{-1}\right)$ be an $n$-ary polygroup, $\phi: P \rightarrow P / \beta^{*}$ and $\varphi: P \rightarrow P / \gamma^{*}$ canonical projections. Then $w_{P}$ and $D(P)$ are the kernels of $\phi$ and $\varphi$, respectively. In fact, $w_{P}$ is a neutral element of $P / \beta^{*}$ and $D(P)$ is a neutral element of $P / \gamma^{*}$. We have $w_{P} \subseteq D(P)$, since $\beta^{*} \subseteq \gamma^{*}$. Also, it is not difficult to see that

$$
\begin{array}{cl}
w_{P}=\beta^{*}(e) & \text { and } \beta^{*}\left(x^{-1}\right)=\beta^{*}(x)^{-1} \text { for all } x \in P, \\
D(P)=\gamma^{*}(e) & \text { and } \gamma^{*}\left(x^{-1}\right)=\gamma^{*}(x)^{-1} \text { for all } x \in P .
\end{array}
$$

Theorem 3.2. [12] If $(H, f)$ is an n-ary hypergroup with a neutral (identity) element such that $H / \gamma *$ is $i$-cancellative then $\gamma$ is transitive.

So we have:
Corollary 3.3. If $(P, f)$ is an n-ary polygroup, then $\gamma$ is an equivalence relation on $P$ and $\gamma=\gamma^{*}$.

Theorem 3.4. Let $P$ be an n-ary polygroup and $a_{1}^{m}, b_{1}^{m} \in P$ such that $a_{j} \gamma^{*} b_{j}$ for all $j=1,2, \ldots, m$, where $m=k(n-1)+1$. Then for all $x \in f_{(k)}\left(a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right)$ and $y \in f_{(k)}\left(b_{1}^{\delta_{1}}, \ldots, b_{m}^{\delta_{m}}\right)$ where $\delta_{i} \in\{1,-1\}(i=$ $1,2, \ldots, m)$, we have $x \gamma^{*} y$. Also, this theorem is true for $\beta^{*}$-relation.

Proof. Suppose that $a_{j} \gamma^{*} b_{j}$ for all $j=1,2, \ldots, m$, then there exist $k_{j} \in \mathbb{N} \cup\{0\}$ and $z_{j 1}^{j n_{j}} \in P$ where $n_{j}=k_{j}(n-1)+1$, and there exists permutation $\sigma_{j} \in \mathbb{S}_{n_{j}}$ such that $a_{j} \in f_{\left(k_{j}\right)}\left(z_{j 1}, \ldots, z_{j n_{j}}\right)$ and $b_{j} \in f_{\left(k_{j}\right)}\left(z_{j \sigma_{j}(1)}, \ldots, z_{j \sigma_{j}\left(n_{j}\right)}\right)$. Therefore,

$$
\begin{aligned}
& f_{(k)}\left(a_{1}^{m}\right) \subseteq f_{(k)}\left(f_{\left(k_{1}\right)}\left(z_{11}, \ldots, z_{1 n_{1}}\right), \ldots, f_{\left(k_{m}\right)}\left(z_{m 1}, \ldots, z_{m n_{m}}\right)\right) \text { and } \\
& f_{(k)}\left(b_{1}^{m}\right) \subseteq f_{(k)}\left(f_{\left(k_{1}\right)}\left(z_{1 \sigma_{1}(1)}, \ldots, z_{1 \sigma_{1}\left(n_{1}\right)}\right)\right. \\
& \left.\quad \ldots, f_{\left(k_{m}\right)}\left(z_{m \sigma_{m}(1)}, \ldots, z_{m \sigma_{m}\left(n_{m}\right)}\right)\right),
\end{aligned}
$$

and so we conclude that

$$
\begin{aligned}
& x \in f_{(k)}\left(a_{1}^{m}\right) \subseteq f_{\left(k+k_{1}+\ldots+k_{m}\right)}\left(z_{11}, \ldots, z_{1 n_{1}}, \ldots, z_{m 1}, \ldots, z_{m n_{m}}\right) \text { and } \\
& y \in f_{(k)}\left(b_{1}^{m}\right) \subseteq f_{\left(k+k_{1}+\ldots+k_{m}\right)}\left(z_{1 \sigma_{1}(1)}, \ldots, z_{1 \sigma_{1}\left(n_{1}\right)},\right. \\
& \left.\ldots, z_{m \sigma_{m}(1)}, \ldots, z_{m \sigma_{m}\left(n_{m}\right)}\right) .
\end{aligned}
$$

Thus, we obtain $x \gamma^{*} y$. Since $a_{j} \gamma^{*} b_{j}$ implies $a_{j}^{-1} \gamma^{*} b_{j}^{-1}$, so by the similar way for all $x \in f_{(k)}\left(a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right)$ and $y \in f_{(k)}\left(b_{1}^{\delta_{1}}, \ldots, b_{m}^{\delta_{m}}\right)$ where $\delta_{i} \in\{1,-1\}(i=1,2, \ldots, m)$, we obtain $x \gamma^{*} y$.

By the above theorem and definition of $\gamma^{*}$-relation, we obtain:
Corollary 3.5. Let $P$ be an n-ary polygroup and $a_{1}^{m}, b_{1}^{m} \in P$ such that $a_{j} \gamma^{*} b_{j}$ for all $j=1,2, \ldots, m$, where $m=k(n-1)+1$. Then for every $\tau \in \mathbb{S}_{m}$ and every $x \in f_{(k)}\left(a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right)$ and $y \in f_{(k)}\left(b_{\tau(1)}^{\delta_{\tau(1)}}, \ldots, b_{\tau(m)}^{\left.\delta_{\tau(m)}\right)}\right)$ where $\delta_{i} \in\{1,-1\}(i=1,2, \ldots, m)$, we have $x \gamma^{*} y$.

Theorem 3.6. Let $P$ be an n-ary polygroup. If there exist $A, A^{\prime} \subseteq \gamma^{*}(z)$ and $B, B^{\prime} \subseteq \gamma^{*}\left(z^{-1}\right)$ for some $z \in P$ such that $f(\stackrel{(i-1)}{A}, x, \stackrel{(n-i)}{A}) \cap B \neq \emptyset$ ${ }^{(i-1)} \quad{ }^{(n-i)}$ and $f\left(A^{\prime}, y, A^{\prime}\right) \cap B^{\prime} \neq \emptyset$, then $x \gamma^{*} y$.

Proof. Suppose that there exist $A, A^{\prime} \subseteq \gamma^{*}(z)$ and $B, B^{\prime} \subseteq \gamma^{*}\left(z^{-1}\right)$ for some $z \in P$ such that $f(\stackrel{(i-1)}{A}, x, \stackrel{(n-i)}{A}) \cap B \neq \emptyset$ and $f\left(\stackrel{(i-1)}{A^{\prime}}, y, \stackrel{(n-i)}{A^{\prime}}\right) \cap B^{\prime} \neq$
$\emptyset$. Then we have

$$
\begin{aligned}
& f / \gamma^{*}\left(\gamma^{*}(A), \gamma^{*}(x), \gamma^{*}(A)\right) \cap \gamma^{*}(B) \neq \emptyset, \\
& (i-1) \\
& f / \gamma^{*}\left(\gamma^{*}\left(A^{\prime}\right), \gamma^{*}(y), \gamma^{*}\left(A^{\prime}\right)\right) \cap \gamma^{*}\left(B^{\prime}\right) \neq \emptyset
\end{aligned}
$$

Therefore, we conclude that $f / \gamma^{*}\left(\gamma^{*}(z), \gamma^{*}(x), \stackrel{(n-i)}{\gamma^{*}(z)}\right)=\gamma^{*}\left(z^{-1}\right)$ and $(i-1) \quad(n-i)$ $f / \gamma^{*}\left(\gamma^{*}(z), \gamma^{*}(y), \gamma^{*}(z)\right)=\gamma^{*}\left(z^{-1}\right)$. Since $P / \gamma^{*}$ is an $n$-ary group, $\gamma^{*}(x)=\gamma^{*}(y)$.

Theorem 3.7. Let $(P, f)$ be an n-ary polygroup.
(1) If $x_{1}^{n} \in D(P)$ then for every $a \in P$, there exists $A \subseteq \gamma^{*}(a)$ such that for every $i \in\{1,2, \ldots, n\}$, we have $f\left(x_{1}^{i-1}, A, x_{i+1}^{n}\right) \cap A \neq \emptyset$.
(2) Let $a, x_{1}^{n} \in P$ such that $x_{1} \gamma^{*} \ldots \gamma^{*} x_{n}$. If there exist $A \subseteq \gamma^{*}(a)$ and $i \in\{1, \ldots, n\}$ such that $f\left(x_{1}^{i-1}, A, x_{i+1}^{n}\right) \cap A \neq \emptyset$ and $D(P)=$ $\gamma^{*}(e)$ is a unique neutral element of $P / \gamma^{*}$ then $x_{1}^{i-1}, x_{i+1}^{n} \in$ $D(P)$.

Proof. (1) Suppose that $x_{1}^{n} \in D(P)$ and set $A=\gamma^{*}(a)$ for an arbitrary $a \in P$. So for every $1 \leq i \leq n$, we have:

$$
\begin{aligned}
& \varphi\left(f\left(x_{1}^{i-1}, a, x_{i+1}^{n}\right)\right) \\
& =f / \gamma^{*}\left(\gamma^{*}\left(x_{1}\right), \ldots, \gamma^{*}\left(x_{i-1}\right), \gamma^{*}(a), \gamma^{*}\left(x_{i+1}\right), \ldots, \gamma^{*}\left(x_{n}\right)\right) \\
& =f / \gamma^{*}\left(D(P), \gamma^{*}(a), D(P)\right)=\gamma^{*}(a) .
\end{aligned}
$$

Thus, $f\left(x_{1}^{i-1}, \gamma^{*}(a), x_{i+1}^{n}\right) \cap \gamma^{*}(a) \neq \emptyset$, so $f\left(x_{1}^{i-1}, A, x_{i+1}^{n}\right) \cap A \neq \emptyset$.
(2) If $f\left(x_{1}^{i-1}, A, x_{i+1}^{n}\right) \cap A \neq \emptyset$, then

$$
f / \gamma^{*}\left(\gamma^{*}\left(x_{1}\right), \ldots, \gamma^{*}\left(x_{i-1}\right), \gamma^{*}(a), \gamma^{*}\left(x_{i+1}\right), \ldots, \gamma^{*}\left(x_{n}\right)\right)=\gamma^{*}(a) .
$$

Since $D(P)$ is the unique identity element of $P / \gamma^{*}$ and $\gamma^{*}\left(x_{1}\right)=\ldots=$ $\gamma^{*}\left(x_{n}\right)$ then $\gamma^{*}\left(x_{i}\right)=D(P)$ and $x_{i} \in D(p)$, when $i \in\{1, \ldots, i-1, i+$ $1, \ldots, n\}$.

Let $P$ be an $n$-ary polygroup and $a \in P$, we define $a^{l}$, where $l \in \mathbb{N} \cup\{0\}$, as follows

$$
\begin{cases}a^{l}=e & \text { if } l=0, \\ a^{l}=f_{(k)}\left(\stackrel{(l)}{a}\left(\frac{m-l)}{e}\right)\right. & \\ \text { if }(k-1)(n-1)+1<l \leq m=k(n-1)+1 .\end{cases}
$$

Then, by the above notation we have:

Theorem 3.8. Let $P$ be a n-ary polygroup. For every $a \in P$, and $r, r^{\prime} \in \mathbb{N} \cup\{0\}$ such that $r^{\prime} \leq r$, if $a^{r} \cap a^{r^{\prime}} \neq \emptyset$ then $a^{r-r^{\prime}} \subseteq D(P)$.
Proof. Let $(k-1)(n-1)+1<r \leq m=k(n-1)+1$ and $\left(k^{\prime}-1\right)(n-$ 1) $+1<r^{\prime} \leq m^{\prime}=k^{\prime}(n-1)+1$. Now, we have $\left(k-k^{\prime}-2\right)(n-$ 1) $+1<r-r^{\prime}=r^{\prime \prime}<m-m^{\prime}+1=\left(k-k^{\prime}\right)(n-1)+1=m^{\prime \prime}$ or $r^{\prime \prime}=r-r^{\prime}=\left(k-k^{\prime}-2\right)(n-1)+1=m^{\prime \prime}$. First, suppose that $\left(k-k^{\prime}-2\right)(n-1)+1<r-r^{\prime}=r^{\prime \prime}<m-m^{\prime}+1=\left(k-k^{\prime}\right)(n-1)+1=$ $m^{\prime \prime}$, then $a^{r} \cap a^{r^{\prime}} \neq \emptyset$ implies $f_{(k)}(\stackrel{(r)}{a}, \stackrel{(m-r)}{e}) \cap f_{\left(k^{\prime}\right)}\left(\stackrel{\left.r^{\prime}\right)}{a}, \stackrel{\left(m^{\prime}-r^{\prime}\right)}{e}\right) \neq \emptyset$. So $\varphi\left(f_{(k)}(\stackrel{(r)}{a}, \stackrel{(m-r)}{e})\right)=\varphi\left(f_{\left(k^{\prime}\right)}\left(\stackrel{\left(r^{\prime}\right)}{a},{ }_{\left(m^{\prime}-r^{\prime}\right)}^{e}\right)\right)$ which implies that

$$
\left(f / \gamma^{*}\right)_{(k)}\left(\gamma^{*}(a),{\left.\stackrel{(m-r)}{\gamma^{*}}(e)\right)}^{(f)}=\left(f / \gamma^{*}\right)_{\left(k^{\prime}\right)}\left(\gamma^{*}(a), \stackrel{\left(r^{\prime}\right)}{\gamma^{*}\left(r^{\prime}\right)}(e)\right),\right.
$$

hence

$$
\begin{aligned}
& \left(f / \gamma^{*}\right)_{\left(k^{\prime}\right)}\left(\gamma^{\left(r^{\prime}\right)}(a),\left(f / \gamma^{*}\right)_{\left(k-k^{\prime}\right)}\left(\gamma^{*}(a), \stackrel{\left.r^{\prime}\right)}{\left(m-m^{\prime}+1-\left(r-r^{\prime}\right)\right)} \gamma^{*}(e),\binom{\left(m^{\prime}-r^{\prime}-1\right)}{\left.\gamma^{*}(e)^{\prime}\right)}\right.\right. \\
& =\left(f / \gamma^{*}\right)_{\left(k^{\prime}\right)}\left(\gamma^{*}(a), \gamma^{*}(e)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left(f / \gamma^{*}\right)_{\left(k^{\prime}\right)}\left(\gamma^{\left(\gamma^{*}\right)}(a),\left(f / \gamma^{*}\right)_{\left(k^{\prime \prime}\right)}\left(\gamma^{\left(\gamma^{\prime \prime}\right)}(a), \stackrel{\left(m^{\prime \prime}-r^{\prime \prime}\right)}{\left.\gamma^{*}(e)\right),} \begin{array}{c}
\left(m^{\prime}-r^{\prime}-1\right) \\
\gamma^{*}(e)
\end{array}\right)\right. \\
& \stackrel{\left(r^{\prime}\right)}{\left(m^{\prime}-r^{\prime}\right)} \\
& =\left(f / \gamma^{*}\right)_{\left(k^{\prime}\right)}\left(\gamma^{*}(a), \gamma^{*}(e)\right) .
\end{aligned}
$$

Since $P / \gamma^{*}$ is an $n$-ary group, we have $\left(f / \gamma^{*}\right)_{\left(k^{\prime \prime}\right)}\left(\begin{array}{cc}\left(\gamma^{\prime \prime}\right) & \left(\gamma^{*}(a),\right. \\ \left.m^{\prime \prime}-r^{\prime \prime}\right) \\ \gamma^{*}(e)\end{array}\right)=\gamma^{*}(e)$ and so $\gamma^{*}\left(f_{\left(k^{\prime \prime}\right)}\left(\begin{array}{c}\left(r^{\prime \prime}\right) \\ a\end{array},{ }_{\left(m^{\prime \prime}-r^{\prime \prime}\right)}^{e}\right)\right)=\gamma^{*}(e)$. Therefore, $f_{\left(k^{\prime \prime}\right)}\left(r^{\left(r^{\prime \prime}\right)} a, m^{\left.m^{\prime \prime}-r^{\prime \prime}\right)} e^{*}\right) \subseteq$ $D(P)$, thus $a^{r-r^{\prime}}=a^{r^{\prime \prime}} \subseteq D(P)$.

If $r^{\prime \prime}=r-r^{\prime}=\left(k-k^{\prime}-2\right)(n-1)+1=m^{\prime \prime}$, then by a similar way we obtain $a^{r-r^{\prime}} \subseteq D(P)$.

Remark 3.9. If we use $\beta^{*}, w_{P}$ and $\phi$ instead of $\gamma^{*}, D(P)$ and $\varphi$ respectively, then Theorems 3.6, 3.7 and 3.8, are still valid.

Let $A$ be a non-empty subset of $P$. The intersection of $\beta$-parts of $P$ which contains $A$ is called $\beta$-closure of $A$ in $P$. It will be denoted by $C_{\beta}(A)$. Also, we define $\gamma$-closure of $A$ in $P$ (i.e., $C_{\gamma}(A)$ ) by a similar way.

Similar to Theorem 63 in [3], we have:

Theorem 3.10. Let $B$ be a non-empty subset of an n-ary polygroup $P$. Then
(1) $C_{\beta}(B)=\bigcup_{b \in B} C_{\beta}(b)$,
(2) $C_{\gamma}(B)=\bigcup_{b \in B} C_{\gamma}(b)$.

Theorem 3.11. Let $P$ be an n-ary polygroup. If $A$ is a non-empty subset of $P$. Then for every $i \in\{1,2, \ldots, n-1\}$ we have

1) $f\left(\stackrel{(i-1)}{w_{P}}, A, \stackrel{(n-i)}{w_{P}}\right)=\phi^{-1}(\phi(A))$,
2) $f(\stackrel{(i-1)}{D}(P), A, \stackrel{(n-i)}{D}(P))=\varphi^{-1}(\varphi(A))$.

Proof. We prove (2), the proof of (1) is similar. For every $x \in f(\stackrel{(i-1)}{D}(P)$ ${ }^{(n-i)}$
, $A, D(P))$, there exist $d_{2}, \ldots, d_{n} \in D(P)$ and $a \in A$ such that $x \in$
 $x \in \varphi^{-1}(\varphi(x))=\varphi^{-1}(\varphi(a)) \subseteq \varphi^{-1}(\varphi(A))$.

For the converse, take $x \in \varphi^{-1}(\varphi(A))$, so an element $b \in A$ exists such that $\varphi(x)=\varphi(b)$. Since $P$ is an $n$-ary polygroup, thus $a \in P$ exists such that $x \in f(a, \stackrel{(i-2)}{e}, b, \stackrel{(n-i)}{e})$, so $\varphi(b)=\varphi(x)=f / \gamma^{*}(\varphi(a), \stackrel{(i-2)}{\varphi(e), \varphi(b), \stackrel{(n-i)}{\varphi(e)}) ~}$
 thus $P$ is 1-cancellative and so $\varphi(a)=e_{P / \gamma^{*}}$ and $a \in \varphi^{-1}\left(e_{P / \gamma^{*}}\right)=$ $D(P)$. Hence $x \in f(a, \stackrel{(i-2)}{e}, b, \stackrel{(n-i)}{e}) \subseteq f(\stackrel{(i-1)}{D}(P), A, \stackrel{(n-i)}{D(P)})$. Therefore we obtain $f(\stackrel{(i-1)}{D}(P), A, \stackrel{(n-i)}{D(P)})=\varphi^{-1}(\varphi(A))$.
Theorem 3.12. If $A$ is a non-empty subset of an n-ary polygroup $P$, then for every $i \in\{1,2, \ldots, n\}$,
(1) $f\left(\stackrel{(i-1)}{w_{P}}, A, \stackrel{(n-i)}{w_{P}}\right)=C_{\beta}(A)$,
(2) $f(\stackrel{(i-1)}{D}(P), A, \stackrel{(n-i)}{D}(P))=C_{\gamma}(A)$,
where $C_{\beta}(A)$ and $C_{\gamma}(A)$ are $\beta$-closure and $\gamma$-closure of $A$ in $P$, respectively.
Proof. We prove (2), the proof of (1) is similar. If $x \in \varphi^{-1}(\varphi(A))$, then $a \in A$ there exists such that $\varphi(x)=\varphi(a)$ and so $\gamma^{*}(x)=\gamma^{*}(a)$. Therefore, $x \in \gamma^{*}(a) \subseteq C_{\gamma}(a)$. Also, if $x \in C_{\gamma}(a)$ for some $a \in A$, then
we have $x \gamma^{*} a$ and so $\varphi(x)=\varphi(a)$. Thus, we obtain $x \in \varphi^{-1}(\varphi(A))$ and so:

$$
\varphi^{-1}(\varphi(A))=\left\{x \in P \mid \exists a \in A: x \in C_{\gamma}(a)\right\}=\bigcup_{b \in B} C_{\gamma}(b) .
$$

By Theorems 3.10 and 3.11 , we obtain $f(\stackrel{(i-1)}{D}(P), A, \stackrel{(n-i)}{D(P)})=C_{\gamma}(A)$.
Corollary 3.13. If $A$ is a non-empty subset of an $n$-ary polygroup $P$, then for every $1 \leq i, j \leq n$ we have:
(1) $f\left(\stackrel{(i-1)}{w_{P}}, A, \stackrel{(n-i)}{w_{P}}\right)=f\left(\stackrel{(j-1)}{w_{P}}, A, \stackrel{(n-j)}{w_{P}}\right)$,
(2) $f(\stackrel{(i-1)}{D(P)}, A, \stackrel{(n-i)}{D(P)})=f(\stackrel{(j-1)}{D(P)}, A, \stackrel{(n-j)}{D(P)})$.

Corollary 3.14. Let $P$ be an n-ary polygroup and $A \in \wp(P)^{*}$. If $A$ is a $\gamma$-part then for evey $i \in\{1,2, \ldots, n\}$ we have $f(\stackrel{(i-1)}{D}(P), A, \stackrel{(n-i)}{D(P)})=A$. Conversely, if for some $i \in\{1,2, \ldots, n\}$ we have $f(\stackrel{(i-1)}{D}(P), A, \stackrel{(n-i)}{D}(P))=A$, then $A$ is a $\gamma$-part of $P$. Also, this corollary is true for the $\beta^{*}$-relation.

Proof. By Theorem 3.12, the proof is straightforward.
Theorem 3.15. If $P$ is an n-ary polygroup, then
(1) $w_{P}$ is a $\beta$-part of $P$,
(2) $D(P)$ is a $\gamma$-part of $P$.

Proof. (1) See the proof of (2) and set $\sigma=i d$.
(2) Let $m=k(n-1)+1, z_{1}^{m} \in P$. We have $f_{(k)}\left(z_{1}^{m}\right) \cap D(P) \neq$ $\emptyset$. Thus, there exists $x \in f_{(k)}\left(z_{1}^{m}\right) \bigcap D(P)$ and so we obtain $\varphi(x)=$ $\varphi(D(P))=e_{P / \gamma^{*}}$ and $\varphi(x)=\varphi\left(f_{(k)}\left(z_{1}^{m}\right)\right)=\gamma^{*}\left(f_{(k)}\left(z_{1}^{m}\right)\right)$. Now, for every $\sigma \in \mathbb{S}_{m}$ and for every $y \in f_{(k)}\left(z_{\sigma(1)}^{\sigma(m)}\right)$ we have $x \gamma^{*} y$, because $x \in f_{(k)}\left(z_{1}^{m}\right)$. Therefore, $e_{P / \gamma^{*}}=\gamma^{*}\left(f_{(k)}\left(z_{1}^{m}\right)\right)=\gamma^{*}(x)=\gamma^{*}(y)=$ $\gamma^{*}\left(f_{(k)}\left(z_{\sigma(1)}^{\sigma(m)}\right)\right.$. Thus, $f_{(k)}\left(z_{\sigma(1)}^{\sigma(m)}\right) \subseteq \varphi^{-1}\left(e_{P / \gamma^{*}}\right)=D(P)$, this shows that $D(P)$ is a $\gamma$-part of $P$.
Theorem 3.16. Let $P$ be an n-ary polygroup. If $A_{i}$ is a $\gamma$-part of $P$ for some $i \in\{1,2, \ldots, n\}$, then for every $\sigma \in \mathbb{S}_{n}$ and for every $A_{j} \subseteq P$, $i \neq j \in\{1,2, \ldots, n\}$, the image $f\left(A_{\sigma(1)}^{\sigma(n)}\right)$ is a $\gamma$-part of $P$. Also, this theorem is true for the $\beta^{*}$-relation.

Proof. Set $B=f\left(A_{\sigma(1)}^{\sigma(n)}\right)$ and suppose that $\sigma(k)=i$. We prove that $f(B, \stackrel{(n-1)}{D}(P))=B$ and then by Corollary $3.14, B$ is a $\gamma$-part of $P$. Since $A_{i}$ is a $\gamma$-part of $P$, by Corollary 3.14, we have $f\left(\stackrel{(j-1)}{D}(P), A_{i}, \stackrel{(n-j)}{D}(P)\right)=A_{i}$, for every $j \in\{1,2, \ldots, n\}$. Now, by Corollary 3.13, we obtain:

$$
\begin{aligned}
& f(B, \stackrel{(n-1)}{D(P)})=f\left(f\left(A_{\sigma(1)}^{\sigma(n)}\right), \stackrel{(n-1)}{D(P)}\right)=f\left(A_{\sigma(1)}^{\sigma(n-1)}, f\left(A_{\sigma(n)}, \stackrel{(n-1)}{D(P))}\right)\right. \\
& =f\left(A_{\sigma(1)}^{\sigma(n-1)}, f\left(\stackrel{(n-1)}{D(P)}, A_{\sigma(n)}\right)\right)=f\left(A_{\sigma(1)}^{\sigma(n-2)}, f\left(A_{\sigma(n-1)}, \stackrel{(n-1)}{\left.D(P)), A_{\sigma(n)}\right)}\right.\right. \\
& \cdots \\
& =f\left(A_{\sigma(1)}^{\sigma(k-1)}, f\left(A_{\sigma(k)}, \stackrel{(n-1)}{D(P)}\right), A_{\sigma(k+1)}^{\sigma(n)}\right) \\
& =f\left(A_{\sigma(1)}^{\sigma(k-1)}, f\left(A_{i}, \stackrel{(n-1)}{\left.D(P)), A_{\sigma(k+1)}^{\sigma(n)}\right)}\right.\right. \\
& =f\left(A_{\sigma(1)}^{\sigma(k-1)}, A_{i}, A_{\sigma(k+1)}^{\sigma(n)}\right)=f\left(A_{\sigma(1)}^{\sigma(n)}\right)=B .
\end{aligned}
$$

Therefore, $f(B, \stackrel{(n-1)}{D}(P))=B$ and the proof is completed.

Let $P$ be an $n$-ary polygroup, and $\prod(P)$ be the set of $m$-ary hyperproducts of elements of $P$. In fact:

$$
\prod(P)=\left\{f_{(k)}\left(z_{1}^{m}\right) \mid m=k(n-1)+1, k \in \mathbb{N} \cup\{0\}, z_{1}^{m} \in P\right\} .
$$

Also, consider $\Pi(P)$ with an $n$-ary hyperoperation $F$ defined as follows:

$$
F\left(A_{1}, \ldots, A_{n}\right)=\left\{C \in \prod(P) \mid C \subseteq f\left(A_{1}, \ldots, A_{n}\right)\right\}
$$

for all $A_{1}^{n} \in \Pi(P)$. We consider the following condition: $\left.{ }^{( }{ }^{*}\right) X \in F\left(A_{1}^{n}\right)$, if for every $a_{i} \in A_{i}(i=1, \ldots, n)$, there exists $x \in X$ such that $x \in f\left(a_{1}^{n}\right)$.
Then we have the following theorem:
Theorem 3.17. (Construction) If $P$ is an $n$-ary polygroup which satisfies the $\left(^{*}\right)$, then $(\Pi(P), F)$ is an n-ary polygroup.

Proof. (1) First, we show that $n$-ary hyperoperation $F$ on $\prod(P)$ is associative. Let $A_{1}^{2 n-1} \in \Pi(P)$. Then for every $1 \leq i, j \leq n$ we have:

$$
\begin{aligned}
& F\left(A_{1}^{i-1}, F\left(A_{i}^{n+i-1}\right), A_{n+i}^{2 n-1}\right) \\
& =\left\{F\left(A_{1}^{i-1}, C, A_{n+i}^{2 n-1}\right) \mid C \subseteq f\left(A_{i}^{n+i-1}\right)\right\} \\
& =\left\{D \mid D \subseteq f\left(A_{1}^{i-1}, f\left(A_{i}^{n+i-1}\right), A_{n+i}^{2 n-1}\right)\right\} \\
& =\left\{D \mid D \subseteq f\left(A_{1}^{j-1}, f\left(A_{j}^{n+j-1}\right), A_{n+j}^{2 n-1}\right)\right\} \\
& =\left\{F\left(A_{1}^{j-1}, C, A_{n+j}^{2 n-1}\right) \mid C \subseteq f\left(A_{j}^{n+j-1}\right)\right\} \\
& =F\left(A_{1}^{j-1}, F\left(A_{j}^{n+j-1}\right), A_{n+j}^{2 n-1}\right) .
\end{aligned}
$$

(2) Let $E=\{e\}$. Then for all $A \in \Pi(P)$ and for every $i \in\{1,2, \ldots, n\}$, it is easy to see that $f(\stackrel{(i-1)}{E}, A, \stackrel{(n-i)}{E}))=A$, and $E^{-1}=\{e\}^{-1}=\left\{e^{-1}\right\}=$ $\{e\}=E$.
(3) We define the unitary operation ${ }^{-I}$ as follows

$$
\begin{aligned}
&-I \prod(P) \\
& \longrightarrow \prod(P) \\
&\left(f_{(k)}\left(x_{1}, \ldots, x_{m}\right)\right)^{-I}=f_{(k)}\left(x_{m}^{-1}, \ldots, x_{1}^{-1}\right)
\end{aligned}
$$

where $m=k(n-1)+1$ and $x_{1}^{m} \in P$. Now, let $A_{1}=f_{\left(k_{1}\right)}\left(a_{11}^{1 m_{1}}\right), A_{2}=$ $f_{\left(k_{2}\right)}\left(a_{21}^{2 m_{2}}\right), \ldots, A_{n}=f_{\left(k_{n}\right)}\left(a_{n 1}^{n m_{n}}\right)$ and $A_{n+1}=f_{\left(k_{n+1}\right)}\left(a_{(n+1) 1}^{(n+1) m_{n+1}}\right)$ be elements of $\Pi(P)$ such that $A_{n+1} \in F\left(A_{1}, \ldots, A_{n}\right)$. Let $a_{i} \in A_{i}, 1 \leq i \leq$ $n$ be arbitrary. Then, there exists $a_{n+1} \in A_{n+1}$ such that $a_{n+1} \in f\left(a_{1}^{n}\right)$. Since $P$ is an $n$-ary polygroup, thus,

$$
a_{i} \in f\left(a_{i-1}^{-1}, \ldots, a_{1}^{-1}, a_{n+1}, a_{n}^{-1}, \ldots, a_{i+1}^{-1}\right)
$$

But for every $1 \leq j \leq n$ we have $a_{j}^{-1} \in f_{\left(k_{j}\right)}\left(a_{j m_{j}}^{-1}, \ldots, a_{j 1}^{-1}\right)=A_{j}^{-1}$, and so we obtain

$$
\begin{aligned}
a_{i} & \in f\left(a_{i-1}^{-1}, \ldots, a_{1}^{-1}, a_{n+1}, a_{n}^{-1}, \ldots, a_{i+1}^{-1}\right) \\
& \subseteq f\left(A_{i-1}^{-1}, \ldots, A_{1}^{-1}, A_{n+1}, A_{n}^{-1}, \ldots, A_{i+1}^{-1}\right) .
\end{aligned}
$$

Since for every $a_{i} \in A_{i}$ the above equation is true,

$$
A_{i} \subseteq f\left(A_{i-1}^{-1}, \ldots, A_{1}^{-1}, A_{n+1}, A_{n}^{-1}, \ldots, A_{i+1}^{-1}\right)
$$

or $A_{i} \in F\left(A_{i-1}^{-1}, \ldots, A_{1}^{-1}, A_{n+1}, A_{n}^{-1}, \ldots, A_{i+1}^{-1}\right)$. Thus, by (1), (2), (3) and definition of $n$-ary polygroups, we conclude that $(\Pi(P), F)$ is an $n$-ary polygroup.

Corollary 3.18. If $A$ is an n-ary subpolygroup of $P$ and $A$ belongs to $\Pi(P)$, then $A$ is contained in $w_{P}$ and $D(P)$.

Proof. Since $A$ is an $n$-ary subpolygroup thus $e \in A$. But $A \in \prod(P)$ and so for every $x \in A$ we have $\beta^{*}(x)=\beta^{*}(A)=\beta^{*}(e)$. This means that $x \in w_{P}$ or $A \subseteq w_{P}$. Since $w_{P} \subseteq D(P), A \subseteq D(P)$.

The following example shows that not all $n$-ary subpolygroups of an $n$-ary polygroup are in $\Pi(P)$.

Example 3.19. Let $P=\{e, a, b, c\}$ and let $(P, f)$ be a commutative ternary hypergroupoid with two scalar neutral elements $e \in P$ and $a \in P$. Assume that and 3-ary hyperoperation $f$ defined as follows:

$$
\begin{array}{lll}
f(e, a, b)=b, & f(e, a, c)=c, & f(e, b, b)=\{e, a, c\}, \\
f(e, b, c)=\{b, c\}, & f(e, c, c)=\{e, a, b\}, & f(a, b, b)=\{e, a, c\}, \\
f(a, b, c)=\{b, c\}, & f(a, c, c)=\{e, a, b\}, & f(b, b, b)=\{b, c\}, \\
f(b, b, c)=\{e, a, b\}, & f(b, c, c)=P, & f(c, c, c)=\{b, c\} .
\end{array}
$$

Then the 3-ary hyperoperation $f$ is associative. We define unitary operation $x^{-1}=x$ for every $x \in P$. Then $\mathbb{P}=\left(P, f, e,^{-1}\right)$ is a ternary polygroup. Furthere, $A=\{e, a\}$ is a 3 -ary subpolygroup of $P$, but $A \notin \Pi(P)$. We also have $w_{P}=D(P)=f(b, c, c)=P \in \Pi(P)$.

If $P$ is an $n$-ary polygroup, we denote the set of $n$-ary hyperproducts $A$ of elements of $P$ by, $\prod_{C_{\beta}}(P)\left(\prod_{C_{\gamma}}(P)\right)$ such that $C_{\beta}(A)=A\left(C_{\gamma}(A)=A\right)$.

Theorem 3.20. Let $P$ be an n-ary polygroup and let $x_{1}^{m}$, where $m=$ $k(n-1)+1$, are elements of $P$ such that $f_{(k)}\left(x_{1}^{m}\right) \in \prod_{C_{\gamma}}(P)$. Then there exists $y_{1}^{m} \in P$ such that $f_{(2 k+1)}\left(x_{1}^{m}, y_{m}^{1}, \stackrel{(n-2)}{e}\right)=D(P)$. This theorem is true for $\beta^{*}$-relation, too.

Proof. Suppose that $a_{j} \in D(P)$, where $1 \leq j \leq m$. Then there exists $y_{j} \in P$ such that $a_{j} \in f\left(x_{j}, y_{j}, \stackrel{(n-2)}{e}\right)$. Since $D(P)$ is a $\gamma$-part, then $f\left(x_{j}, y_{j},{ }^{(n-2)} e\right) \subseteq D(P)$, and so $f\left(x_{j}, y_{j},{ }^{(n-3)}{ }^{e}, D(P)\right)=D(P)$. By Corollaries 3.13 and 3.14 , we obtain

$$
\begin{aligned}
f\left(f_{(k)}\left(x_{1}^{m}\right), y_{m}, \stackrel{(n-2)}{e}\right) & =f\left(f\left(f_{(k)}\left(x_{1}^{m}\right), \stackrel{(n-1)}{D(P)}\right), y_{m}, \stackrel{(n-2)}{e}\right) \\
& =f\left(f_{(k)}\left(x_{1}^{m}\right), f\left(\stackrel{(n-1)}{\left.\left.D(P), y_{m}\right), \stackrel{(n-2)}{e}\right)}\right.\right. \\
& =f\left(f_{(k)}\left(x_{1}^{m}\right), f\left(y_{m}, \stackrel{(n-1)}{D(P)), \stackrel{(n-2)}{e})}\right.\right. \\
& =f_{(k+1)}\left(x_{1}^{m-1}, f\left(x_{m}, y_{m}, \stackrel{(n-3)}{e}, D(P)\right), \stackrel{(n-2)}{D(P), e)}\right. \\
& =f_{(k+1)}\left(x_{1}^{m-1}, \stackrel{(n-1)}{D(P), e)}\right.
\end{aligned}
$$

and so

$$
\begin{aligned}
& f\left(f_{(k)}\left(x_{1}^{m}\right), y_{m}, y_{m-1}, \stackrel{(n-3)}{e}\right) \\
& =f\left(f_{(k)}\left(x_{1}^{m}\right), y_{m}, f\left(\stackrel{n-2)}{e}, y_{m-1}, e\right), \stackrel{(n-3)}{e}\right) \\
& =f\left(f\left(f_{(k)}\left(x_{1}^{m}\right), y_{m}, \stackrel{(n-2)}{e}\right), y_{m-1}, \stackrel{(n-2)}{e}\right) \\
& =f\left(f _ { ( k + 1 ) } \left(x_{1}^{m-1}, \stackrel{(n-1)}{\left.D(P), e), y_{m-1}, \stackrel{(n-2)}{e}\right)}\right.\right. \\
& =f_{(k+1)}\left(x_{1}^{m-1}, \stackrel{(n-1)}{\left.D(P), f\left(e, y_{m-1}, \stackrel{(n-2)}{e}\right)\right)}\right. \\
& =f_{(k+1)}\left(x_{1}^{m-1}, \stackrel{(n-1)}{\left.D(P), f\left(y_{m-1}, \stackrel{(n-1)}{e}\right)\right)}\right. \\
& =f_{(k+1)}\left(x_{1}^{m-1}, f\left(D(P), y_{m-1}\right), \stackrel{(n-1)}{e}\right) \\
& =f_{(k+1)}\left(x_{1}^{m-1}, f\left(y_{m-1}, \stackrel{(n-1)}{D(P)), \stackrel{(n-1)}{e})}\right.\right. \\
& =f_{(k+1)}\left(x_{1}^{m-2}, f\left(x_{m-1}, y_{m-1}, \stackrel{(n-3)}{e}, D(P)\right), \stackrel{(n-2)}{D(P), e, e)}\right. \\
& =f_{(k+1)}\left(x_{1}^{m-2}, \stackrel{(n-1)}{D(P), \stackrel{(2)}{e}) .}\right.
\end{aligned}
$$

If we continue in the same way, then we obtain

$$
f_{(k)}\left(f_{(k)}\left(x_{1}^{m}\right), y_{m}^{2}\right)=f_{(k+1)}\left(x_{1}, \stackrel{(n-1)}{D}(P), \stackrel{(m-1)}{e}\right)
$$

and since $e$ is a scalar neutral element of $P$, then $f_{(k)}\left(f_{(k)}\left(x_{1}^{m}\right), y_{m}^{2}\right)=$ $f\left(x_{1}, \stackrel{(n-1)}{D(P)}\right)$. Finally

$$
\begin{aligned}
& f_{(2 k+1)}\left(x_{1}^{m}, y_{m}^{2}, y_{1}, \stackrel{(n-2)}{e}\right)=f\left(f_{(2 k)}\left(x_{1}^{m}, y_{m}^{2}\right), y_{1}, \stackrel{(n-2)}{e}\right) \\
& =f\left(f \left(x_{1}, \stackrel{(n-1)}{\left.D(P)), y_{1}, \stackrel{(n-2)}{e}\right)=f\left(f\left(x_{1}, y_{1}, \stackrel{(n-3)}{e}, D(P)\right), e, \stackrel{(n-2)}{D(P))}\right.} \begin{array}{l}
=f(D(P), e, D(P))=D(P) .
\end{array} .=(n-2)\right.\right. \\
& =(P))
\end{aligned}
$$

Therefore, $f_{(2 k+1)}\left(x_{1}^{m}, y_{m}^{1}, \stackrel{(n-2)}{e}\right)=D(P)$.
Corollary 3.21. Let $P$ be an n-ary polygroup. Then
(1) If $\prod_{C_{\beta}}(P) \neq \emptyset$ then $w_{P} \in \prod_{C_{\beta}}(P)$ and $w_{P}$ is m-ary hyperproduct.
(2) If $\prod_{C_{\gamma}}(P) \neq \emptyset$ then $D(P) \in \prod_{C_{\gamma}}(P)$ and $D(P)$ is m-ary hyperproduct.

Theorem 3.22. Let $P$ be an n-ary polygroup. Then
(1) If $P \backslash w_{P}$ is an m-ary hyperproduct, then $w_{P}$ is m-ary hyperproduct and $w_{P} \in \prod_{C_{\beta}}(P)$.
(2) If $P \backslash D(P)$ is an m-ary hyperproduct, then $D(P)$ is m-ary hyperproduct and $D(P) \in \prod_{C_{\gamma}}(P)$.
Proof. (1) Since $w_{P}$ is a $\beta$-part, then $P \backslash w_{P}$ is also $\beta$-part.
Now, $P \backslash w_{P} \in \prod_{C_{\beta}}(P)$ and by Corollary 3.21 , the proof is completed.
The proof of (2) is similar.

## References

[1] S. D. Comer, Polygroups derived from cogroups, J. Algebra 89 (1984) 397-405.
[2] S. D. Comer, Extension of polygroups by polygroups and their representations using color schemes, in: 91-103, Lecture Notes in Math., No. 1004, Universal Algebra and Lattice Theory, Springer, Berlin, 1983.
[3] P. Corsini, Prolegomena of Hypergroup Theory, Second edition, Aviani editore, Tricesimo, 1993.
[4] P. Corsini and V. Leoreanu, About the heart of a hypergroup, Acta Univ. Carolinae 37 (1996), 17-28.
[5] P. Corsini and V. Leoreanu, Applications of Hyperstructures Theory, Advanced in Mathematics, Kluwer Academic Publisher, Dordrecht, 2003.
[6] B. Davvaz, Isomorphism theorems of polygroups, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), 385-392.
[7] B. Davvaz, Applications of the $\gamma^{*}$-relation to polygroups, Comm. Algebra 35 (2007) 2698-2706.
[8] B. Davvaz, On polygroups and weak polygroups, Southeast Asian Bull. Math. 25 (2001) 87-95.
[9] B. Davvaz and M. Karimian, On the $\gamma^{*}$-complete hypergroups, European J. Combin. 8 (2007), 86-93.
[10] B. Davvaz and T. Vougiouklis, $N$-ary hypergroups, Iran. J. Sci. Technol. Trans. A Sci. 30 (2006), no. 2, 165-174.
[11] B. Davvaz, W.A. Dudek and T. Vougiouklis, A Generalization of $n$-ary algebraic systems, Comm. Algebra 37 (2009), 1248-1263.
[12] B. Davvaz, W. A. Dudek and S. Mirvakili, Neutral elements, fundamental relations and $n$-ary hypersemigroups, Int. J. Algebra Comput. 19 (2009), 567-583.
[13] W. Dörnte, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29 (1928), 1-19.
[14] D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra 30 (2002) 3977-3989.
[15] D. Freni, Strongly transitive geometric spaces: applications to hypergroups and semigroups theory, Comm. Algebra 32 (2004), 969-988.
[16] M. Ghadiri and B. N. Waphare, n-ary polygroups, Iran. J. Sci. Technol. Trans. A Sci. 33 (2009), 145-158.
[17] M. Koskas, Groupoides, Demi-hypergroupes et hypergroupes, J. Math. Pures et Appl. 49 (1970), 155-192.
[18] V. Leoreanu-Fotea and B. Davvaz, Join $n$-spaces and lattices, J. Mult.-Valued Logic Soft Comput. 15 (2009), 421-432.
[19] V. Leoreanu-Fotea and B. Davvaz, $n$-hypergroups and binary relations, European J. Combin. 29 (2008), 1207-1218.
[20] F. Marty, Sur uni generalization de la notion de group, in: 8 th Congress Math. Scandenaves, Stockholm, 1934, pp. 45-49.
[21] T. Vougiouklis, Hyperstructures and their Representations, Hadronic Press, Inc., Palm Harber, USA, 1994.
[22] T. Vougiouklis, Groups in hypergroups, Ann. Discrete Math. 37 (1988), 459-468.

## Saeed Mirvakili

Department of Mathematics, Payame Noor University, Yazd, Iran
Email: saeed.mirvakili@yahoo.com

## Bijan Davvaz

Department of Mathematics, Yazd University, Yazd, Iran
Email: davvaz@yazduni.ac.ir


[^0]:    MSC(2010): Primary: 20N20; Secondary: 08A99.
    Keywords: Hypergroup, polygroup, $n$-ary hypergroup, $n$-ary polygroup, derived $n$-ary subgroup, fundamental relation.
    Received: 30 April 2009, Accepted: 21 June 2010.
    *Corresponding author
    (c) 2012 Iranian Mathematical Society.

