APPLICATION OF FUNDAMENTAL RELATIONS ON $n ext{-}\text{ARY POLYGROUPS}$

S. MIRVAKILI AND B. DAVVAZ*

Communicated by Jamshid Moori

ABSTRACT. The class of n-ary polygroups is a certain subclass of n-ary hypergroups, a generalization of Dörnte n-ary groups and a generalization of polygroups. The β^* -relation and the γ^* -relation are the smallest equivalence relations on an n-ary polygroup P such that P/β^* and P/γ^* are an n-ary group and a commutative n-ary group, respectively. We use the β^* -relation and the γ^* -relation on a given n-ary polygroup and obtain some new results and some fundamental theorems in this respect. In particular, we prove that the relation γ is transitive on an n-ary polygroup.

1. Introduction

The concept of a hypergroup which is a generalization of the concept of a group, was first introduced by Marty at the 8^{th} International Congress of Scandinavian Mathematicians [20]. Applications of hypergroups have mainly appeared in special subclasses. For example, polygroups which form a certain subclass of hypergroups are used to study color algebra [1, 2].

The fundamental relation β^* which is the transitive closure of the relation β was introduced on hypergroups by Koskas [17] and was studied

MSC(2010): Primary: 20N20; Secondary: 08A99.

Keywords: Hypergroup, polygroup, n-ary hypergroup, n-ary polygroup, derived n-ary subgroup, fundamental relation.

Received: 30 April 2009, Accepted: 21 June 2010.

^{*}Corresponding author

^{© 2012} Iranian Mathematical Society.

mainly by Corsini [3] and Vougiouklis [21]. The commutative fundamental equivalence relation γ^* which is the transitive closure of the relation γ , was studied on hypergroups by Freni [14, 15], also see [9]. Applications of fundamental relations β^* and γ^* on hypergroups and polygroups were used by Corsini and Leoreanu [4, 5], Davvaz [6, 7, 8] and Vougiouklis [21, 22].

On the other hand, the first paper about the concept of an n-ary group has been published about 80 years ago by Dörnte in [13], which is a natural generalization of the notion of group. Recently, the notion of n-ary hypergroups is defined and considered by Davvaz and Vougiouklis in [10], as a generalization of hypergroups in the sense of Marty and a generalization of Dörnte n-ary groups. Davvaz and Vougiouklis [10] introduced the relation β on an n-ary semihypergroup H such that β^* is the smallest equivalence relation and the quotient $(H/\beta^*, f/\beta^*)$ is a fundamental n-ary semigroup, see also [11, 18]. Leoreanu-Fotea and Davvaz [19] proved that the relation β is transitive. Davvaz et. al. [12] defined the relation γ on an n-ary semihypergroup and studied the relation γ^* as the smallest equivalence relation such that the quotient $(H/\gamma^*, f/\gamma^*)$ is a commutative n-ary semigroup. Ghadiri and Waphare [16] defined the notation of n-ary polygroups, as a subclass of n-ary hypergroups and as a generalization of polygroups.

In this paper, we consider the fundamental relation β^* and the commutative fundamental relation γ^* on an n-ary polygroup, in a similar way as in the case of n-ary hypergroups, and we obtain some new results in this respect. In particular, we prove that the relation γ is transitive on an n-ary polygroup.

2. Basic Definitions and Results

Let H be a non-empty set and f a mapping $f: H \times H \longrightarrow \mathcal{P}^*(H)$, where $\mathcal{P}^*(H)$ denotes the set of all non-empty subsets of H. Then f is called a binary (algebraic) hyperoperation on H. As it is well-known a binary hyperoperation f on H is associative, if f(f(x,y),z) = f(x,f(y,z)), for all $x,y,z \in H$. A binary hypergroupoid with the associative hyperoperation is called a semihypergroup. A hypergroupoid (H,f) satisfying the reproducibility axiom: f(a,H) = f(H,a) = H for all $a \in H$, is called a quasihypergroup. A quasihypergroup which is a semihypergroup is called a hypergroup. Moreover, according to [1], a

polygroup is a multivalued system $(P, \cdot, e, ^{-1})$ where $e \in P, ^{-1}: P \to P, \cdot: P \times P \to \mathcal{P}^*(P)$ and the following axioms hold for all $x, y, z \in P$

- (i) $(x \cdot y) \cdot z = x \cdot (y \cdot z)$,
- (ii) $e \cdot x = x \cdot e = x$,
- (iii) $x \in y \cdot z$ implies $y \in x \cdot z^{-1}$ and $z \in y^{-1} \cdot x$.

Every commutative polygroup is called a canonical hypergroup.

In general, a mapping $f: H \times ... \times H \longrightarrow \mathcal{P}^*(H)$, where H appears n times, is called an n-ary hyperoperation. An algebraic system (H, f), where f is an n-ary hyperoperation defined on H, is called an n-ary hypergroupoid. Since we identify the set $\{x\}$ with the element x, any n-ary groupoid is an n-ary hypergroupoid.

We shall use the following abbreviated notation:

The sequence x_i, x_{i+1}, \dots, x_j will be denoted by x_i^j . For $j < i, x_i^j$ is the empty symbol. In this convention

$$f(x_1,\cdots,x_i,y_{i+1},\cdots,y_j,z_{j+1},\ldots,z_n)$$

will be written as $f(x_1^i, y_{i+1}^j, z_{j+1}^n)$. In the case when $y_{i+1} = \ldots = y_j = y$

the last expression will be write in the form $f(x_1^i, y^{(j-i)}, z_{j+1}^n)$. For non-empty subsets A_1, \ldots, A_n of H we define

$$f(A_1^n) = f(A_1, \dots, A_n) = \bigcup \{ f(x_1^n) \mid x_i \in A_i, \ i = 1, \dots n \}.$$

An n-ary hyperoperation f is called associative, if

$$f(x_1^{i-1},f(x_i^{n+i-1}),x_{n+i}^{2n-1})=f(x_1^{j-1},f(x_j^{n+j-1}),x_{n+j}^{2n-1}),$$

holds for every $1 \leq i < j \leq n$ and all $x_1, x_2, \ldots, x_{2n-1} \in H$. An n-ary hypergroupoid with the associative n-ary hypergroupoid is called an n-ary semihypergroup. An n-ary hypergroupoid (H, f) in which the relation

$$b \in f(a_1^{i-1}, x_i, a_{i+1}^n) \tag{*}$$

has a solution $x_i \in H$ for every $a_1^{i-1}, a_{i+1}^n, b \in H$ and $1 \leq i \leq n$, is called an n-ary quasihypergroup, In addition, when (H, f) is an n-ary semihypergroup, (H, f) is called an n-ary hypergroup. An n-ary hypergroupoid (H, f) is commutative if for all $\sigma \in \mathbb{S}_n$ and for every $a_1^n \in H^n$ we have $f(a_1, \ldots, a_n) = f(a_{\sigma(1)}, \ldots, a_{\sigma(n)})$. If $a_1^n \in H^n$ we denote $a_{\sigma(1)}^{\sigma(n)}$ as the $(a_{\sigma(1)}, \ldots, a_{\sigma(n)})$.

An element $e \in H$ is called *neutral element* if $x \in f(\stackrel{(i-1)}{e}, x, \stackrel{(n-i)}{e})$, for every $1 \le i \le n$ and for every $x \in H$. An element $e \in H$ is called

scalar neutral element if $x = f(\stackrel{(i-1)}{e}, x, \stackrel{(n-i)}{e})$, for every $1 \le i \le n$ and for every $x \in H$. If m = k(n-1) + 1, then the m-ary hyperoperation h given by

 $h(x_1^{k(n-1)+1}) = \underbrace{f(f(\cdots(f(f(x_1^n), x_{n+1}^{2n-1}), \cdots), x_{(k-1)(n-1)+2}^{k(n-1)+1})}_{l}$

will be denoted by $f_{(k)}$. If k=0 then m=1 and we denote $f_{(0)}(z_1^m)=z_1$. According to [16], an *n*-ary polygroup is a multivalued system $\mathbb{P}=(P,f,e,^{-1})$, where $e\in P,^{-1}$ is a unitary operation on P,f is an *n*-ary hyperoperation on P and the following axioms hold for all $1 \leq i, j \leq n$ and $x, x_1^{2n-1} \in P$:

- (i) $f(x_1^{i-1}, f(x_i^{n+i-1}), x_{n+i}^{2n-1}) = f(x_1^{j-1}, f(x_j^{n+j-1}), x_{n+j}^{2n-1})$, i.e., f is associative.
- (ii) element e is a scalar neutral of P, i.e., $x = f(\stackrel{(i-1)}{e}, x, \stackrel{(n-i)}{e})$, (iii) $x \in f(x_1^n)$ implies $x_i \in f(x_{i-1}^{-1}, \dots, x_1^{-1}, x, x_n^{-1}, \dots, x_{i+1}^{-1})$.

An n-ary subpolygroup N of an n-ary polygroup P is normal in P if for every $a \in P$, $f(a^{-1}, N, a, e^{(n-3)}) \subseteq N$. Let $\mathbb{A} = (A, f, e_1, e^{-1})$ and $\mathbb{B} = (B, g, e_2, e^{-1})$ be two *n*-ary polygroups. A homomorphism from A into B is a mapping $\phi: A \longrightarrow B$ such that $\phi(f(a_1^n)) = g(\phi(a_1), \dots, \phi(a_n))$ holds for all $a_1, \ldots, a_n \in A$, and $\phi(e_1) = e_2$.

3. Application of Fundamental Relation β^* and Commutative Fundamental Relation γ^* on *n*-ary Polygroups

Davvaz and Vougiouklis in [10] defined the relation β on an n-ary semihypergroup (H, f) as follows:

 β_0 is the diagonal relation, i.e., $\beta_0 = \{(x,x)|x \in H\}$, and, for every integer k > 0, β_k is the relation defined as follows:

$$x \ \beta_k \ y \quad \Leftrightarrow \quad \exists z_1^m \in H : \{x,y\} \subseteq f_{(k)}(z_1^n), \text{ where } m = k(n-1)+1.$$

Now, set

$$\beta = \bigcup_{k>0} \beta_k,$$

then $x \beta y$ if and only if $x \beta_k y$ for some $k \ge 0$.

If β^* is the smallest strongly compatible equivalence relation on an n-ary semihypergroup (H, f) such that the quotient $(H/\beta^*, f/\beta^*)$ is an *n*-ary group, then β^* is transitive closure of the relation β (for a proof see[10]). The *n*-ary operation f/β^* is as follows:

$$f/\beta^*(\beta^*(a_1),\ldots,\beta^*(a_n)) = \beta^*(a),$$

for all $a \in f(\beta^*(a_1), \ldots, \beta^*(a_n)) = \beta^*(a)$. Also, Leoreanu and Davvaz [19] showed that the relation β is transitive on an *n*-ary hypergroup. The relation β^* is called the *fundamental relation* and $(H/\beta^*, f/\beta^*)$ is called the *fundamental n-ary group*.

When (H,f) is an n-ary semihypergroup, Davvaz, Dudek and Mirvakili [12] studied the relation $\gamma = \bigcup_{k\geq 0} \gamma_k$, where γ_0 is the diagonal relation and for every integer $k\geq 1$, γ_k is the relation defined as follows: there exist $z_1^m \in H^m$ and $\sigma \in \mathbb{S}_m$ such that $x\gamma_k y$ if and only if $x \in f_{(k)}(z_1^m)$ and $y \in f_{(k)}(z_{\sigma(1)}^{\sigma(m)})$, where m = k(n-1) + 1.

Let (H,f) be an n-ary semihypergroup. We define γ^* as the smallest equivalence relation such that the quotient $(H/\gamma^*,f/\gamma^*)$ is a commutative n-ary semigroup, where H/γ^* is the set of all equivalence classes. The equivalence relation γ^* is called commutative fundamental relation and $(H/\gamma^*,f/\gamma^*)$ is called commutative fundamental n-ary semigroup.

The relation γ (respectively, γ^*) was introduced on hypergroups (2-ary hypergroups) by Freni [14, 15].

Theorem 3.1. [12] Let (H, f) be an n-ary hypergroup. Then we have:

- (1) The fundamental relation γ^* is the transitive closure of the relation γ .
- (2) Relation γ is a strongly compatible relation on (H, f).
- (3) If (H, f) is commutative then $\beta = \gamma$.

Let $\mathbb{P}=(P,f,e,^{-1})$ be an n-ary polygroup, $\phi:P\to P/\beta^*$ and $\varphi:P\to P/\gamma^*$ canonical projections. Then w_P and D(P) are the kernels of ϕ and φ , respectively. In fact, w_P is a neutral element of P/β^* and D(P) is a neutral element of P/γ^* . We have $w_P\subseteq D(P)$, since $\beta^*\subseteq\gamma^*$. Also, it is not difficult to see that

$$w_P = \beta^*(e)$$
 and $\beta^*(x^{-1}) = \beta^*(x)^{-1}$ for all $x \in P$, $D(P) = \gamma^*(e)$ and $\gamma^*(x^{-1}) = \gamma^*(x)^{-1}$ for all $x \in P$.

Theorem 3.2. [12] If (H, f) is an n-ary hypergroup with a neutral (identity) element such that $H/\gamma *$ is i-cancellative then γ is transitive.

So we have:

Corollary 3.3. If (P, f) is an n-ary polygroup, then γ is an equivalence relation on P and $\gamma = \gamma^*$.

Theorem 3.4. Let P be an n-ary polygroup and $a_1^m, b_1^m \in P$ such that $a_j \ \gamma^* \ b_j$ for all j = 1, 2, ..., m, where m = k(n-1) + 1. Then for all $x \in f_{(k)}(a_1^{\delta_1}, ..., a_m^{\delta_m})$ and $y \in f_{(k)}(b_1^{\delta_1}, ..., b_m^{\delta_m})$ where $\delta_i \in \{1, -1\}(i = 1, 2, ..., m)$, we have $x \ \gamma^* \ y$. Also, this theorem is true for β^* -relation.

Proof. Suppose that $a_j ext{ } \gamma^* ext{ } b_j ext{ for all } j = 1, 2, ..., m$, then there exist $k_j \in \mathbb{N} \cup \{0\}$ and $z_{j1}^{jn_j} \in P$ where $n_j = k_j(n-1)+1$, and there exists permutation $\sigma_j \in \mathbb{S}_{n_j}$ such that $a_j \in f_{(k_j)}(z_{j1}, ..., z_{jn_j})$ and $b_j \in f_{(k_j)}(z_{j\sigma_j(1)}, ..., z_{j\sigma_j(n_j)})$. Therefore,

$$f_{(k)}(a_1^m) \subseteq f_{(k)}(f_{(k_1)}(z_{11}, \dots, z_{1n_1}), \dots, f_{(k_m)}(z_{m1}, \dots, z_{mn_m})) \text{ and}$$

$$f_{(k)}(b_1^m) \subseteq f_{(k)}(f_{(k_1)}(z_{1\sigma_1(1)}, \dots, z_{1\sigma_1(n_1)}),$$

$$\ldots, f_{(k_m)}(z_{m\sigma_m(1)}, \ldots, z_{m\sigma_m(n_m)})),$$

and so we conclude that

$$x \in f_{(k)}(a_1^m) \subseteq f_{(k+k_1+\ldots+k_m)}(z_{11},\ldots,z_{1n_1},\ldots,z_{m1},\ldots,z_{mn_m})$$
 and $y \in f_{(k)}(b_1^m) \subseteq f_{(k+k_1+\ldots+k_m)}(z_{1\sigma_1(1)},\ldots,z_{1\sigma_1(n_1)},\ldots,z_{$

$$\ldots, z_{m\sigma_m(1)}, \ldots, z_{m\sigma_m(n_m)}).$$

Thus, we obtain $x ext{ } \gamma^* ext{ } y$. Since $a_j ext{ } \gamma^* ext{ } b_j ext{ implies } a_j^{-1} ext{ } \gamma^* ext{ } b_j^{-1}$, so by the similar way for all $x \in f_{(k)}(a_1^{\delta_1}, \ldots, a_m^{\delta_m})$ and $y \in f_{(k)}(b_1^{\delta_1}, \ldots, b_m^{\delta_m})$ where $\delta_i \in \{1, -1\} (i = 1, 2, \ldots, m)$, we obtain $x ext{ } \gamma^* ext{ } y$.

By the above theorem and definition of γ^* -relation, we obtain:

Corollary 3.5. Let P be an n-ary polygroup and $a_1^m, b_1^m \in P$ such that $a_j \ \gamma^* \ b_j$ for all $j = 1, 2, \ldots, m$, where m = k(n-1)+1. Then for every $\tau \in \mathbb{S}_m$ and every $x \in f_{(k)}(a_1^{\delta_1}, \ldots, a_m^{\delta_m})$ and $y \in f_{(k)}(b_{\tau(1)}^{\delta_{\tau(1)}}, \ldots, b_{\tau(m)}^{\delta_{\tau(m)}})$ where $\delta_i \in \{1, -1\}(i = 1, 2, \ldots, m)$, we have $x \ \gamma^* \ y$.

Theorem 3.6. Let P be an n-ary polygroup. If there exist $A, A' \subseteq \gamma^*(z)$ and $B, B' \subseteq \gamma^*(z^{-1})$ for some $z \in P$ such that $f(A', x, A') \cap B \neq \emptyset$ and $f(A', y, A') \cap B' \neq \emptyset$, then $x \gamma^* y$.

Proof. Suppose that there exist $A, A' \subseteq \gamma^*(z)$ and $B, B' \subseteq \gamma^*(z^{-1})$ for some $z \in P$ such that $f(A', x, A') \cap B \neq \emptyset$ and $f(A', y, A') \cap B' \neq \emptyset$

 \emptyset . Then we have

$$f/\gamma^*(\gamma^*(A), \gamma^*(x), \gamma^*(A)) \cap \gamma^*(B) \neq \emptyset,$$

$$f/\gamma^*(\gamma^*(A'), \gamma^*(y), \gamma^*(A')) \cap \gamma^*(B') \neq \emptyset.$$

Therefore, we conclude that $f/\gamma^*(\gamma^*(z),\gamma^*(x),\gamma^*(z)) = \gamma^*(z^{-1})$ and $f/\gamma^*(\gamma^*(z),\gamma^*(y),\gamma^*(z)) = \gamma^*(z^{-1})$. Since P/γ^* is an n-ary group, $\gamma^*(x) = \gamma^*(y).$

Theorem 3.7. Let (P, f) be an n-ary polygroup.

- (1) If $x_1^n \in D(P)$ then for every $a \in P$, there exists $A \subseteq \gamma^*(a)$ such
- that for every $i \in \{1, 2, ..., n\}$, we have $f(x_1^{i-1}, A, x_{i+1}^n) \cap A \neq \emptyset$. (2) Let $a, x_1^n \in P$ such that $x_1 \gamma^* ... \gamma^* x_n$. If there exist $A \subseteq \gamma^*(a)$ and $i \in \{1, ..., n\}$ such that $f(x_1^{i-1}, A, x_{i+1}^n) \cap A \neq \emptyset$ and $D(P) = \{1, ..., n\}$ $\gamma^*(e)$ is a unique neutral element of P/γ^* then $x_1^{i-1}, x_{i+1}^n \in$ D(P).

Proof. (1) Suppose that $x_1^n \in D(P)$ and set $A = \gamma^*(a)$ for an arbitrary $a \in P$. So for every $1 \le i \le n$, we have:

$$\varphi(f(x_1^{i-1}, a, x_{i+1}^n)) = f/\gamma^*(\gamma^*(x_1), \dots, \gamma^*(x_{i-1}), \gamma^*(a), \gamma^*(x_{i+1}), \dots, \gamma^*(x_n))$$

$$= f/\gamma^*(D(P), \gamma^*(a), D(P)) = \gamma^*(a).$$

Thus, $f(x_1^{i-1}, \gamma^*(a), x_{i+1}^n) \cap \gamma^*(a) \neq \emptyset$, so $f(x_1^{i-1}, A, x_{i+1}^n) \cap A \neq \emptyset$.

(2) If $f(x_1^{i-1}, A, x_{i+1}^n) \cap A \neq \emptyset$, then

$$f/\gamma^*(\gamma^*(x_1),\ldots,\gamma^*(x_{i-1}),\gamma^*(a),\gamma^*(x_{i+1}),\ldots,\gamma^*(x_n))=\gamma^*(a).$$

Since D(P) is the unique identity element of P/γ^* and $\gamma^*(x_1) = \dots =$ $\gamma^*(x_n)$ then $\gamma^*(x_i) = D(P)$ and $x_i \in D(p)$, when $i \in \{1, \dots, i-1, i+1\}$ $1, \ldots, n$.

Let P be an n-ary polygroup and $a \in P$, we define a^l , where $l \in \mathbb{N} \cup \{0\}$, as follows

$$\begin{cases} a^{l} = e & \text{if } l = 0, \\ a^{l} = f_{(k)}(a^{(l)}, e^{(m-l)}) & \text{if } (k-1)(n-1) + 1 < l \le m = k(n-1) + 1. \end{cases}$$

Then, by the above notation we have:

Theorem 3.8. Let P be a n-ary polygroup. For every $a \in P$, and $r, r' \in \mathbb{N} \cup \{0\}$ such that $r' \leq r$, if $a^r \cap a^{r'} \neq \emptyset$ then $a^{r-r'} \subseteq D(P)$.

Proof. Let $(k-1)(n-1)+1 < r \le m = k(n-1)+1$ and $(k'-1)(n-1)+1 < r' \le m' = k'(n-1)+1$. Now, we have (k-k'-2)(n-1)+1 < r-r' = r'' < m-m'+1 = (k-k')(n-1)+1 = m'' or r'' = r-r' = (k-k'-2)(n-1)+1 = m''. First, suppose that (k-k'-2)(n-1)+1 < r-r' = r'' < m-m'+1 = (k-k')(n-1)+1 = m'', then $a^r \cap a^{r'} \ne \emptyset$ implies $f_{(k)}\binom{r}{a}, \binom{m-r}{e} \cap f_{(k')}\binom{r'}{a}, \binom{m'-r'}{e} \ne \emptyset$. So $\varphi(f_{(k)}\binom{r}{a}, \binom{m-r}{e}) = \varphi(f_{(k')}\binom{r'}{a}, \binom{m'-r'}{e})$ which implies that

$$(f/\gamma^*)_{(k)}(\gamma^*(a), \gamma^*(e)) = (f/\gamma^*)_{(k')}(\gamma^*(a), \gamma^*(e)),$$

hence

Therefore,

$$(f/\gamma^*)_{(k')}(\gamma^*(a), (f/\gamma^*)_{(k'')}(\gamma^*(a), \gamma^*(e)), \gamma^*(e))$$

$$= (f/\gamma^*)_{(k')}(\gamma^*(a), \gamma^*(e)).$$

Since P/γ^* is an n-ary group, we have $(f/\gamma^*)_{(k'')}(\gamma^*(a), \ \gamma^*(e)) = \gamma^*(e)$ and so $\gamma^*(f_{(k'')}(\stackrel{(r'')}{a}, \stackrel{(m''-r'')}{e})) = \gamma^*(e)$. Therefore, $f_{(k'')}(\stackrel{(r'')}{a}, \stackrel{(m''-r'')}{e}) \subseteq D(P)$, thus $a^{r-r'} = a^{r''} \subseteq D(P)$.

If $r'' = r - r' = (k - \overline{k'} - 2)(n - 1) + 1 = m''$, then by a similar way we obtain $a^{r-r'} \subseteq D(P)$.

Remark 3.9. If we use β^* , w_P and ϕ instead of γ^* , D(P) and φ respectively, then Theorems 3.6, 3.7 and 3.8, are still valid.

Let A be a non-empty subset of P. The intersection of β -parts of P which contains A is called β -closure of A in P. It will be denoted by $C_{\beta}(A)$. Also, we define γ -closure of A in P (i.e., $C_{\gamma}(A)$) by a similar way.

Similar to Theorem 63 in [3], we have:

Theorem 3.10. Let B be a non-empty subset of an n-ary polygroup P. Then

$$(1) C_{\beta}(B) = \bigcup C_{\beta}(b),$$

(1)
$$C_{\beta}(B) = \bigcup_{b \in B} C_{\beta}(b),$$

(2) $C_{\gamma}(B) = \bigcup_{b \in B} C_{\gamma}(b).$

Theorem 3.11. Let P be an n-ary polygroup. If A is a non-empty subset of P. Then for every $i \in \{1, 2, ..., n-1\}$ we have

1)
$$f(\stackrel{(i-1)}{w_P}, A, \stackrel{(n-i)}{w_P}) = \phi^{-1}(\phi(A)),$$

2) $f(D(P), A, D(P)) = \varphi^{-1}(\varphi(A)).$

2)
$$f(D(P), A, D(P)) = \varphi^{-1}(\varphi(A)).$$

Proof. We prove (2), the proof of (1) is similar. For every $x \in f(D(P))$

(A, D(P)), there exist $d_2, \ldots, d_n \in D(P)$ and $a \in A$ such that $x \in A$ $f(d_2^{i-1},a,d_{i+1}^n), \text{ so } \varphi(x) = f/\gamma^*(\stackrel{(i-1)}{e_{P/\gamma^*}}, \ \varphi(a), \ \stackrel{(n-i)}{e_{P/\gamma^*}}) = \varphi(a), \text{ therefore } x \in \varphi^{-1}(\varphi(x)) = \varphi^{-1}(\varphi(a)) \subseteq \varphi^{-1}(\varphi(A)).$

For the converse, take $x \in \varphi^{-1}(\varphi(A))$, so an element $b \in A$ exists such that $\varphi(x) = \varphi(b)$. Since P is an n-ary polygroup, thus $a \in P$ exists such that $x \in f(a, e^{(i-2)}, b, e^{(n-i)})$, so $\varphi(b) = \varphi(x) = f/\gamma^*(\varphi(a), \varphi(e), \varphi(b), \varphi(e))$ $\varphi(e) = f/\gamma^*(\varphi(a), e^{(i-2)}_{P/\gamma^*}, \varphi(b), e^{(n-i)}_{P/\gamma^*})$. But $f/\gamma^*(e^{(i-1)}_{P/\gamma^*}, \varphi(b), e^{(n-i)}_{P/\gamma^*}) = \varphi(b)$, thus P is 1-cancellative and so $\varphi(a) = e_{P/\gamma^*}$ and $a \in \varphi^{-1}(e_{P/\gamma^*}) = \varphi(b)$.

$$D(P). \text{ Hence } x \in f(a, \stackrel{(i-2)}{e}, b, \stackrel{(n-i)}{e}) \subseteq f(D(P), A, D(P)). \text{ Therefore we obtain } f(D(P), A, D(P)) = \varphi^{-1}(\varphi(A)).$$

Theorem 3.12. If A is a non-empty subset of an n-ary polygroup P, then for every $i \in \{1, 2, \ldots, n\}$,

(1)
$$f(\stackrel{(i-1)}{w_P}, A, \stackrel{(n-i)}{w_P}) = C_{\beta}(A),$$

(2)
$$f(\hat{D}(\hat{P}), A, \hat{D}(\hat{P})) = C_{\gamma}(A),$$

where $C_{\beta}(A)$ and $C_{\gamma}(A)$ are β -closure and γ -closure of A in P, respec-

Proof. We prove (2), the proof of (1) is similar. If $x \in \varphi^{-1}(\varphi(A))$, then $a \in A$ there exists such that $\varphi(x) = \varphi(a)$ and so $\gamma^*(x) = \gamma^*(a)$. Therefore, $x \in \gamma^*(a) \subseteq C_{\gamma}(a)$. Also, if $x \in C_{\gamma}(a)$ for some $a \in A$, then

we have $x \gamma^* a$ and so $\varphi(x) = \varphi(a)$. Thus, we obtain $x \in \varphi^{-1}(\varphi(A))$ and so:

$$\varphi^{-1}(\varphi(A)) = \{ x \in P \mid \exists a \in A : x \in C_{\gamma}(a) \} = \bigcup_{b \in B} C_{\gamma}(b).$$

By Theorems 3.10 and 3.11, we obtain $f(D(P), A, D(P)) = C_{\gamma}(A)$.

Corollary 3.13. If A is a non-empty subset of an n-ary polygroup P, then for every $1 \le i, j \le n$ we have:

$$(1) \ f(\stackrel{(i-1)}{w_P},A,\stackrel{(n-i)}{w_P}) = f(\stackrel{(j-1)}{w_P},A,\stackrel{(n-j)}{w_P}),$$

$$\stackrel{(i-1)}{(2)} \ f(D(P),A,D(P)) = f(D(P),A,D(P)).$$

(2)
$$f(D(P), A, D(P)) = f(D(P), A, D(P)).$$

Corollary 3.14. Let P be an n-ary polygroup and $A \in \wp(P)^*$. If A is a γ -part then for every $i \in \{1, 2, ..., n\}$ we have f(D(P), A, D(P)) = A. Conversely, if for some $i \in \{1, 2, ..., n\}$ we have f(D(P), A, D(P)) = A, then A is a γ -part of P. Also, this corollary is true for the β^* -relation.

Proof. By Theorem 3.12, the proof is straightforward.

Theorem 3.15. If P is an n-ary polygroup, then

- (1) w_P is a β -part of P,
- (2) D(P) is a γ -part of P.

Proof. (1) See the proof of (2) and set $\sigma = id$.

(2) Let m = k(n-1) + 1, $z_1^m \in P$. We have $f_{(k)}(z_1^m) \cap D(P) \neq$ \emptyset . Thus, there exists $x \in f_{(k)}(z_1^m) \cap D(P)$ and so we obtain $\varphi(x) =$ $\varphi(D(P)) = e_{P/\gamma^*}$ and $\varphi(x) = \varphi(f_{(k)}(z_1^m)) = \gamma^*(f_{(k)}(z_1^m))$. Now, for every $\sigma \in \mathbb{S}_m$ and for every $y \in f_{(k)}(z_{\sigma(1)}^{\sigma(m)})$ we have $x \gamma^* y$, because $x \in f_{(k)}(z_1^m)$. Therefore, $e_{P/\gamma^*} = \gamma^*(f_{(k)}(z_1^m)) = \gamma^*(x) = \gamma^*(y) = \gamma^*(y)$ $\gamma^*(f_{(k)}(z_{\sigma(1)}^{\sigma(m)})$. Thus, $f_{(k)}(z_{\sigma(1)}^{\sigma(m)}) \subseteq \varphi^{-1}(e_{P/\gamma^*}) = D(P)$, this shows that D(P) is a γ -part of P.

Theorem 3.16. Let P be an n-ary polygroup. If A_i is a γ -part of P for some $i \in \{1, 2, ..., n\}$, then for every $\sigma \in \mathbb{S}_n$ and for every $A_j \subseteq P$, $i \neq j \in \{1, 2, ..., n\}$, the image $f(A_{\sigma(1)}^{\sigma(n)})$ is a γ -part of P. Also, this theorem is true for the β^* -relation.

Proof. Set $B = f(A_{\sigma(1)}^{\sigma(n)})$ and suppose that $\sigma(k) = i$. We prove that f(B, D(P)) = B and then by Corollary 3.14, B is a γ -part of P. Since A_i is a γ -part of P, by Corollary 3.14, we have $f(D(P), A_i, D(P)) = A_i$, for every $j \in \{1, 2, \ldots, n\}$. Now, by Corollary 3.13, we obtain:

$$\begin{split} f(B,D(P)) &= f(f(A_{\sigma(1)}^{\sigma(n)}),D(P)) = f(A_{\sigma(1)}^{\sigma(n-1)},f(A_{\sigma(n)},D(P))) \\ &= f(A_{\sigma(1)}^{\sigma(n-1)},f(D(P),A_{\sigma(n)})) = f(A_{\sigma(1)}^{\sigma(n-2)},f(A_{\sigma(n-1)},D(P)),A_{\sigma(n)}) \\ &\cdots \\ &= f(A_{\sigma(1)}^{\sigma(k-1)},f(A_{\sigma(k)},D(P)),A_{\sigma(k+1)}^{\sigma(n)}) \\ &= f(A_{\sigma(1)}^{\sigma(k-1)},f(A_{i},D(P)),A_{\sigma(k+1)}^{\sigma(n)}) \\ &= f(A_{\sigma(1)}^{\sigma(k-1)},f(A_{i},D(P)),A_{\sigma(k+1)}^{\sigma(n)}) \\ &= f(A_{\sigma(1)}^{\sigma(k-1)},A_{i},A_{\sigma(k+1)}^{\sigma(n)}) = f(A_{\sigma(1)}^{\sigma(n)}) = B. \end{split}$$

Therefore, f(B, D(P)) = B and the proof is completed.

Let P be an n-ary polygroup, and $\prod(P)$ be the set of m-ary hyper-products of elements of P. In fact:

$$\prod(P) = \{ f_{(k)}(z_1^m) \mid m = k(n-1) + 1, k \in \mathbb{N} \cup \{0\}, z_1^m \in P \}.$$

Also, consider $\prod(P)$ with an *n*-ary hyperoperation F defined as follows:

$$F(A_1,\ldots,A_n) = \{C \in \prod (P) \mid C \subseteq f(A_1,\ldots,A_n)\},\$$

for all $A_1^n \in \prod(P)$. We consider the following condition: (*) $X \in F(A_1^n)$, if for every $a_i \in A_i (i = 1, ..., n)$, there exists $x \in X$ such that $x \in f(a_1^n)$.

Then we have the following theorem:

Theorem 3.17. (Construction) If P is an n-ary polygroup which satisfies the (*), then $(\prod(P), F)$ is an n-ary polygroup.

Proof. (1) First, we show that n-ary hyperoperation F on $\Pi(P)$ is associative. Let $A_1^{2n-1} \in \Pi(P)$. Then for every $1 \le i, j \le n$ we have:

$$\begin{split} &F(A_1^{i-1},F(A_i^{n+i-1}),A_{n+i}^{2n-1})\\ &=\{F(A_1^{i-1},C,A_{n+i}^{2n-1})\mid C\subseteq f(A_i^{n+i-1})\}\\ &=\{D\mid D\subseteq f(A_1^{i-1},f(A_i^{n+i-1}),A_{n+i}^{2n-1})\}\\ &=\{D\mid D\subseteq f(A_1^{j-1},f(A_j^{n+j-1}),A_{n+j}^{2n-1})\}\\ &=\{F(A_1^{j-1},C,A_{n+j}^{2n-1})\mid C\subseteq f(A_j^{n+j-1})\}\\ &=F(A_1^{j-1},F(A_j^{n+j-1}),A_{n+j}^{2n-1}). \end{split}$$

- (2) Let $E = \{e\}$. Then for all $A \in \prod(P)$ and for every $i \in \{1, 2, ..., n\}$, it is easy to see that $f(E^{(i-1)}, A, E) = A$, and $E^{-1} = \{e\}^{-1} = \{e^{-1}\} = \{e\} = E$.
 - (3) We define the unitary operation $^{-I}$ as follows

$$^{-I}: \prod(P) \longrightarrow \prod(P)$$
$$(f_{(k)}(x_1, \dots, x_m))^{-I} = f_{(k)}(x_m^{-1}, \dots, x_1^{-1}),$$

where m = k(n-1) + 1 and $x_1^m \in P$. Now, let $A_1 = f_{(k_1)}(a_{11}^{1m_1})$, $A_2 = f_{(k_2)}(a_{21}^{2m_2})$, ..., $A_n = f_{(k_n)}(a_{n1}^{nm_n})$ and $A_{n+1} = f_{(k_{n+1})}(a_{(n+1)1}^{(n+1)m_{n+1}})$ be elements of $\prod(P)$ such that $A_{n+1} \in F(A_1, \ldots, A_n)$. Let $a_i \in A_i$, $1 \le i \le n$ be arbitrary. Then, there exists $a_{n+1} \in A_{n+1}$ such that $a_{n+1} \in f(a_1^n)$. Since P is an n-ary polygroup, thus,

$$a_i \in f(a_{i-1}^{-1}, \dots, a_1^{-1}, a_{n+1}, a_n^{-1}, \dots, a_{i+1}^{-1}).$$

But for every $1 \le j \le n$ we have $a_j^{-1} \in f_{(k_j)}(a_{jm_j}^{-1}, \dots, a_{j1}^{-1}) = A_j^{-1}$, and so we obtain

$$a_i \in f(a_{i-1}^{-1}, \dots, a_1^{-1}, a_{n+1}, a_n^{-1}, \dots, a_{i+1}^{-1})$$

$$\subseteq f(A_{i-1}^{-1}, \dots, A_1^{-1}, A_{n+1}, A_n^{-1}, \dots, A_{i+1}^{-1}).$$

Since for every $a_i \in A_i$ the above equation is true,

$$A_i \subseteq f(A_{i-1}^{-1}, \dots, A_1^{-1}, A_{n+1}, A_n^{-1}, \dots, A_{i+1}^{-1}),$$

or $A_i \in F(A_{i-1}^{-1}, \dots, A_1^{-1}, A_{n+1}, A_n^{-1}, \dots, A_{i+1}^{-1})$. Thus, by (1), (2), (3) and definition of n-ary polygroups, we conclude that $(\prod(P), F)$ is an n-ary polygroup. \square

Corollary 3.18. If A is an n-ary subpolygroup of P and A belongs to $\prod(P)$, then A is contained in w_P and D(P).

Proof. Since A is an n-ary subpolygroup thus $e \in A$. But $A \in \prod(P)$ and so for every $x \in A$ we have $\beta^*(x) = \beta^*(A) = \beta^*(e)$. This means that $x \in w_P$ or $A \subseteq w_P$. Since $w_P \subseteq D(P)$, $A \subseteq D(P)$.

The following example shows that not all n-ary subpolygroups of an n-ary polygroup are in $\prod(P)$.

Example 3.19. Let $P = \{e, a, b, c\}$ and let (P, f) be a commutative ternary hypergroupoid with two scalar neutral elements $e \in P$ and $a \in P$. Assume that and 3-ary hyperoperation f defined as follows:

 $\begin{array}{ll} f(e,a,b) = b, & f(e,a,c) = c, & f(e,b,b) = \{e,a,c\}, \\ f(e,b,c) = \{b,c\}, & f(e,c,c) = \{e,a,b\}, & f(a,b,b) = \{e,a,c\}, \\ f(a,b,c) = \{b,c\}, & f(a,c,c) = \{e,a,b\}, & f(b,b,b) = \{b,c\}, \\ f(b,b,c) = \{e,a,b\}, & f(b,c,c) = P, & f(c,c,c) = \{b,c\}. \end{array}$

Then the 3-ary hyperoperation f is associative. We define unitary operation $x^{-1} = x$ for every $x \in P$. Then $\mathbb{P} = (P, f, e, ^{-1})$ is a ternary polygroup. Furthere, $A = \{e, a\}$ is a 3-ary subpolygroup of P, but $A \notin \prod(P)$. We also have $w_P = D(P) = f(b, c, c) = P \in \prod(P)$.

If P is an n-ary polygroup, we denote the set of n-ary hyperproducts A of elements of P by, $\prod_{C_{\beta}}(P)$ ($\prod_{C_{\gamma}}(P)$) such that $C_{\beta}(A) = A$ ($C_{\gamma}(A) = A$).

Theorem 3.20. Let P be an n-ary polygroup and let x_1^m , where m = k(n-1)+1, are elements of P such that $f_{(k)}(x_1^m) \in \prod_{C_{\gamma}} (P)$. Then there

exists $y_1^m \in P$ such that $f_{(2k+1)}(x_1^m, y_m^1, e^{(n-2)}) = D(P)$. This theorem is true for β^* -relation, too.

Proof. Suppose that $a_j \in D(P)$, where $1 \leq j \leq m$. Then there exists $y_j \in P$ such that $a_j \in f(x_j, y_j, \stackrel{(n-2)}{e})$. Since D(P) is a γ -part, then $f(x_j, y_j, \stackrel{(n-2)}{e}) \subseteq D(P)$, and so $f(x_j, y_j, \stackrel{(n-3)}{e}, D(P)) = D(P)$. By Corollaries 3.13 and 3.14, we obtain

$$\begin{split} f(f_{(k)}(x_1^m),y_m,\overset{(n-2)}{e}) &= f(f(f_{(k)}(x_1^m),\overset{(n-1)}{D(P)}),y_m,\overset{(n-2)}{e}) \\ &= f(f_{(k)}(x_1^m),f(\overset{(n-1)}{D(P)},y_m),\overset{(n-2)}{e}) \\ &= f(f_{(k)}(x_1^m),f(y_m,\overset{(n-1)}{D(P)}),\overset{(n-2)}{e}) \\ &= f_{(k+1)}(x_1^{m-1},f(x_m,y_m,\overset{(n-3)}{e},D(P)),\overset{(n-2)}{D(P)},e) \\ &= f_{(k+1)}(x_1^{m-1},\overset{(n-1)}{D(P)},e), \end{split}$$

and so

$$f(f_{(k)}(x_{1}^{m}), y_{m}, y_{m-1}, \overset{(n-3)}{e})$$

$$= f(f_{(k)}(x_{1}^{m}), y_{m}, f(\overset{(n-2)}{e}, y_{m-1}, e), \overset{(n-3)}{e})$$

$$= f(f(f_{(k)}(x_{1}^{m}), y_{m}, \overset{(n-2)}{e}), y_{m-1}, \overset{(n-2)}{e})$$

$$= f(f(f_{(k+1)}(x_{1}^{m-1}, D(P), e), y_{m-1}, \overset{(n-2)}{e})$$

$$= f(f_{(k+1)}(x_{1}^{m-1}, D(P), f(e, y_{m-1}, \overset{(n-2)}{e}))$$

$$= f_{(k+1)}(x_{1}^{m-1}, D(P), f(y_{m-1}, \overset{(n-1)}{e}))$$

$$= f_{(k+1)}(x_{1}^{m-1}, f(D(P), y_{m-1}), \overset{(n-1)}{e})$$

$$= f_{(k+1)}(x_{1}^{m-1}, f(y_{m-1}, D(P)), \overset{(n-1)}{e})$$

$$= f_{(k+1)}(x_{1}^{m-2}, f(x_{m-1}, y_{m-1}, \overset{(n-3)}{e}, D(P)), D(P), e, e)$$

$$= f_{(k+1)}(x_{1}^{m-2}, D(P), \overset{(n-1)}{e}).$$

If we continue in the same way, then we obtain

$$f_{(k)}(f_{(k)}(x_1^m), y_m^2) = f_{(k+1)}(x_1, D(P), e^{(m-1)},$$

and since e is a scalar neutral element of P, then $f_{(k)}(f_{(k)}(x_1^m), y_m^2) =$ $f(x_1, D(P))$. Finally

$$\begin{split} &f_{(2k+1)}(x_1^m,y_m^2,y_1,\overset{(n-2)}{e}) = f(f_{(2k)}(x_1^m,y_m^2),y_1,\overset{(n-2)}{e}) \\ &= f(f(x_1,D(P)),y_1,\overset{(n-2)}{e}) = f(f(x_1,y_1,\overset{(n-3)}{e},D(P)),e,\overset{(n-2)}{D(P)}) \\ &= f(D(P),e,\overset{(n-2)}{D(P)}) = D(P). \end{split}$$

Therefore,
$$f_{(2k+1)}(x_1^m, y_m^1, e^{(n-2)}) = D(P)$$
.

Corollary 3.21. Let P be an n-ary polygroup. Then

- (1) If $\prod_{C_{\beta}}(P) \neq \emptyset$ then $w_P \in \prod_{C_{\beta}}(P)$ and w_P is m-ary hyperproduct. (2) If $\prod_{C_{\gamma}}(P) \neq \emptyset$ then $D(P) \in \prod_{C_{\gamma}}(P)$ and D(P) is m-ary hyper-

Theorem 3.22. Let P be an n-ary polygroup. Then

- (1) If $P \setminus w_P$ is an m-ary hyperproduct, then w_P is m-ary hyperprod $uct \ and \ w_P \in \prod(P).$
- (2) If $P \setminus D(P)$ is an m-ary hyperproduct, then D(P) is m-ary hyperproduct and $D(P) \in \prod_{C_{\gamma}} (P)$.

Proof. (1) Since w_P is a β -part, then $P \setminus w_P$ is also β -part.

Now, $P \setminus w_P \in \prod(P)$ and by Corollary 3.21, the proof is completed.

The proof of (2) is similar.

References

- [1] S. D. Comer, Polygroups derived from cogroups, J. Algebra 89 (1984) 397–405.
- [2] S. D. Comer, Extension of polygroups by polygroups and their representations using color schemes, in: 91-103, Lecture Notes in Math., No. 1004, Universal Algebra and Lattice Theory, Springer, Berlin, 1983.
- [3] P. Corsini, Prolegomena of Hypergroup Theory, Second edition, Aviani editore, Tricesimo, 1993.
- [4] P. Corsini and V. Leoreanu, About the heart of a hypergroup, Acta Univ. Carolinae **37** (1996), 17-28.

[5] P. Corsini and V. Leoreanu, Applications of Hyperstructures Theory, Advanced in Mathematics, Kluwer Academic Publisher, Dordrecht, 2003.

- [6] B. Davvaz, Isomorphism theorems of polygroups, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), 385–392.
- [7] B. Davvaz, Applications of the γ^* -relation to polygroups, Comm. Algebra 35 (2007) 2698–2706.
- [8] B. Davvaz, On polygroups and weak polygroups, Southeast Asian Bull. Math. **25** (2001) 87-95.
- [9] B. Davvaz and M. Karimian, On the γ^* -complete hypergroups, European J. Combin. 8 (2007), 86-93.
- [10] B. Davvaz and T. Vougiouklis, N-ary hypergroups, Iran. J. Sci. Technol. Trans. A Sci. 30 (2006), no. 2, 165–174.
- [11] B. Davvaz, W.A. Dudek and T. Vougiouklis, A Generalization of n-ary algebraic systems, Comm. Algebra 37 (2009), 1248–1263.
- [12] B. Davvaz, W. A. Dudek and S. Mirvakili, Neutral elements, fundamental relations and n-ary hypersemigroups, Int. J. Algebra Comput. 19 (2009), 567–583.
- [13] W. Dörnte, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z. **29** (1928), 1–19.
- [14] D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra 30 (2002) 3977–3989.
- [15] D. Freni, Strongly transitive geometric spaces: applications to hypergroups and semigroups theory, Comm. Algebra 32 (2004), 969-988.
- [16] M. Ghadiri and B. N. Waphare, n-ary polygroups, Iran. J. Sci. Technol. Trans. A Sci. 33 (2009), 145–158.
- [17] M. Koskas, Groupoides, Demi-hypergroupes et hypergroupes, J. Math. Pures et Appl. 49 (1970), 155–192.
- [18] V. Leoreanu-Fotea and B. Davvaz, Join n-spaces and lattices, J. Mult.-Valued Logic Soft Comput. 15 (2009), 421–432.
- [19] V. Leoreanu-Fotea and B. Davvaz, n-hypergroups and binary relations, European J. Combin. 29 (2008), 1207–1218.
- [20] F. Marty, Sur uni generalization de la notion de group, in: 8th Congress Math. Scandenaves, Stockholm, 1934, pp. 45–49.
- [21] T. Vougiouklis, Hyperstructures and their Representations, Hadronic Press, Inc., Palm Harber, USA, 1994.
- [22] T. Vougiouklis, Groups in hypergroups, Ann. Discrete Math. 37 (1988), 459–468.

Saeed Mirvakili

Department of Mathematics, Payame Noor University, Yazd, Iran

Email: saeed_mirvakili@yahoo.com

Bijan Davvaz

Department of Mathematics, Yazd University, Yazd, Iran

Email: davvaz@yazduni.ac.ir