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APPLICATION OF FUNDAMENTAL RELATIONS ON
n-ARY POLYGROUPS

S. MIRVAKILI AND B. DAVVAZ∗

Communicated by Jamshid Moori

Abstract. The class of n-ary polygroups is a certain subclass of
n-ary hypergroups, a generalization of Dörnte n-ary groups and a
generalization of polygroups. The β∗-relation and the γ∗-relation
are the smallest equivalence relations on an n-ary polygroup P such
that P/β∗ and P/γ∗ are an n-ary group and a commutative n-ary
group, respectively. We use the β∗-relation and the γ∗-relation on
a given n-ary polygroup and obtain some new results and some
fundamental theorems in this respect. In particular, we prove that
the relation γ is transitive on an n-ary polygroup.

1. Introduction

The concept of a hypergroup which is a generalization of the concept
of a group, was first introduced by Marty at the 8th International Con-
gress of Scandinavian Mathematicians [20]. Applications of hypergroups
have mainly appeared in special subclasses. For example, polygroups
which form a certain subclass of hypergroups are used to study color
algebra [1, 2].

The fundamental relation β∗ which is the transitive closure of the re-
lation β was introduced on hypergroups by Koskas [17] and was studied
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mainly by Corsini [3] and Vougiouklis [21]. The commutative fundamen-
tal equivalence relation γ∗ which is the transitive closure of the relation
γ, was studied on hypergroups by Freni [14, 15], also see [9]. Applications
of fundamental relations β∗ and γ∗ on hypergroups and polygroups were
used by Corsini and Leoreanu [4, 5], Davvaz [6, 7, 8] and Vougiouklis
[21, 22].

On the other hand, the first paper about the concept of an n-ary
group has been published about 80 years ago by Dörnte in [13], which is
a natural generalization of the notion of group. Recently, the notion of
n-ary hypergroups is defined and considered by Davvaz and Vougiouklis
in [10], as a generalization of hypergroups in the sense of Marty and
a generalization of Dörnte n-ary groups. Davvaz and Vougiouklis [10]
introduced the relation β on an n-ary semihypergroup H such that β∗

is the smallest equivalence relation and the quotient (H/β∗, f/β∗) is
a fundamental n-ary semigroup, see also [11, 18]. Leoreanu-Fotea and
Davvaz [19] proved that the relation β is transitive. Davvaz et. al.
[12] defined the relation γ on an n-ary semihypergroup and studied the
relaton γ∗ as the smallest equivalence relation such that the quotient
(H/γ∗, f/γ∗) is a commutative n-ary semigroup. Ghadiri and Waphare
[16] defined the notation of n-ary polygroups, as a subclass of n-ary
hypergroups and as a generalization of polygroups.

In this paper, we consider the fundamental relation β∗ and the com-
mutative fundamental relation γ∗ on an n-ary polygroup, in a similar
way as in the case of n-ary hypergroups, and we obtain some new results
in this respect. In particular, we prove that the relation γ is transitive
on an n-ary polygroup.

2. Basic Definitions and Results

Let H be a non-empty set and f a mapping f : H × H −→ P∗(H),
where P∗(H) denotes the set of all non-empty subsets of H. Then
f is called a binary (algebraic) hyperoperation on H. As it is well-
known a binary hyperoperation f on H is associative, if f(f(x, y), z) =
f(x, f(y, z)), for all x, y, z ∈ H. A binary hypergroupoid with the as-
sociative hyperoperation is called a semihypergroup. A hypergroupoid
(H, f) satisfying the reproducibility axiom: f(a,H) = f(H, a) = H for
all a ∈ H, is called a quasihypergroup. A quasihypergroup which is a
semihypergroup is called a hypergroup. Moreover, according to [1], a
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polygroup is a multivalued system (P, ·, e,−1 ) where e ∈ P , −1 : P → P ,
· : P × P → P∗(P ) and the following axioms hold for all x, y, z ∈ P

(i) (x · y) · z = x · (y · z),
(ii) e · x = x · e = x,
(iii) x ∈ y · z implies y ∈ x · z−1 and z ∈ y−1 · x.

Every commutative polygroup is called a canonical hypergroup.
In general, a mapping f : H × . . .×H −→ P∗(H), where H appears

n times, is called an n-ary hyperoperation. An algebraic system (H, f),
where f is an n-ary hyperoperation defined on H, is called an n-ary
hypergroupoid. Since we identify the set {x} with the element x, any
n-ary groupoid is an n-ary hypergroupoid.

We shall use the following abbreviated notation:
The sequence xi, xi+1, · · · , xj will be denoted by xj

i . For j < i, xj
i is the

empty symbol. In this convention

f(x1, · · · , xi, yi+1, · · · , yj , zj+1, . . . , zn)

will be written as f(xi
1, y

j
i+1, z

n
j+1). In the case when yi+1 = . . . = yj = y

the last expression will be write in the form f(xi
1,

(j−i)
y , zn

j+1). For non-
empty subsets A1, . . . , An of H we define

f(An
1 ) = f(A1, . . . , An) = ∪{f(xn

1 ) |xi ∈ Ai, i = 1, . . . n}.

An n-ary hyperoperation f is called associative, if

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j ),

holds for every 1 ≤ i < j ≤ n and all x1, x2, . . . , x2n−1 ∈ H. An n-
ary hypergroupoid with the associative n-ary hyperoperation is called
an n-ary semihypergroup. An n-ary hypergroupoid (H, f) in which the
relation

b ∈ f(ai−1
1 , xi, a

n
i+1) (∗)

has a solution xi ∈ H for every ai−1
1 , an

i+1, b ∈ H and 1 ≤ i ≤ n,
is called an n-ary quasihypergroup, In addition, when (H, f) is an n-
ary semihypergroup, (H, f) is called an n-ary hypergroup. An n-ary
hypergroupoid (H, f) is commutative if for all σ ∈ Sn and for every
an

1 ∈ Hn we have f(a1, . . . , an) = f(aσ(1), . . . , aσ(n)). If an
1 ∈ Hn we

denote a
σ(n)
σ(1) as the (aσ(1), . . . , aσ(n)).

An element e ∈ H is called neutral element if x ∈ f(
(i−1)

e , x,
(n−i)

e ),
for every 1 ≤ i ≤ n and for every x ∈ H. An element e ∈ H is called
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scalar neutral element if x = f(
(i−1)

e , x,
(n−i)

e ), for every 1 ≤ i ≤ n and
for every x ∈ H. If m = k(n− 1) + 1, then the m-ary hyperoperation h
given by

h(xk(n−1)+1
1 ) = f(f(· · · (f(f︸ ︷︷ ︸

k

(xn
1 ), x2n−1

n+1 ), · · · ), xk(n−1)+1
(k−1)(n−1)+2)

will be denoted by f(k). If k = 0 then m = 1 and we denote f(0)(zm
1 ) = z1.

According to [16], an n-ary polygroup is a multivalued system P =
(P, f, e,−1 ), where e ∈ P , −1 is a unitary operation on P , f is an n-ary
hyperoperation on P and the following axioms hold for all 1 ≤ i, j ≤ n
and x, x2n−1

1 ∈ P :

(i) f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j ), i.e., f is
associative,

(ii) element e is a scalar neutral of P , i.e., x = f(
(i−1)

e , x,
(n−i)

e ),
(iii) x ∈ f(xn

1 ) implies xi ∈ f(x−1
i−1, . . . , x

−1
1 , x, x−1

n , . . . , x−1
i+1).

An n-ary subpolygroup N of an n-ary polygroup P is normal in P if

for every a ∈ P , f(a−1, N, a,
(n−3)

e ) ⊆ N. Let A = (A, f, e1,
−1 ) and B =

(B, g, e2,
−1 ) be two n-ary polygroups. A homomorphism from A into

B is a mapping φ : A −→ B such that φ(f(an
1 )) = g(φ(a1), . . . , φ(an))

holds for all a1, . . . , an ∈ A, and φ(e1) = e2.

3. Application of Fundamental Relation β∗ and Commutative
Fundamental Relation γ∗ on n-ary Polygroups

Davvaz and Vougiouklis in [10] defined the relation β on an n-ary
semihypergroup (H, f) as follows:

β0 is the diagonal relation, i.e., β0 = {(x, x)|x ∈ H}, and, for every
integer k > 0, βk is the relation defined as follows:

x βk y ⇔ ∃zm
1 ∈ H : {x, y} ⊆ f(k)(z

n
1 ), where m = k(n− 1) + 1.

Now, set

β =
⋃
k≥0

βk,

then x β y if and only if x βk y for some k ≥ 0.
If β∗ is the smallest strongly compatible equivalence relation on an

n-ary semihypergroup (H, f) such that the quotient (H/β∗, f/β∗) is an
n-ary group, then β∗ is transitive closure of the relation β (for a proof
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see[10]). The n-ary operation f/β∗ is as follows:

f/β∗(β∗(a1), . . . , β∗(an)) = β∗(a),

for all a ∈ f(β∗(a1), . . . , β∗(an)) = β∗(a). Also, Leoreanu and Davvaz
[19] showed that the relation β is transitive on an n-ary hypergroup.
The relation β∗ is called the fundamental relation and (H/β∗, f/β∗) is
called the fundamental n-ary group.

When (H, f) is an n-ary semihypergroup, Davvaz, Dudek and Mir-
vakili [12] studied the relation γ =

⋃
k≥0 γk, where γ0 is the diagonal

relation and for every integer k ≥ 1, γk is the relation defined as fol-
lows: there exist zm

1 ∈ Hm and σ ∈ Sm such that xγky if and only if
x ∈ f(k)(zm

1 ) and y ∈ f(k)(z
σ(m)
σ(1) ), where m = k(n− 1) + 1.

Let (H, f) be an n-ary semihypergroup. We define γ∗ as the smallest
equivalence relation such that the quotient (H/γ∗, f/γ∗) is a commuta-
tive n-ary semigroup, where H/γ∗ is the set of all equivalence classes.
The equivalence relation γ∗ is called commutative fundamental relation
and (H/γ∗, f/γ∗) is called commutative fundamental n-ary semigroup.

The relation γ (respectively, γ∗) was introduced on hypergroups
(2-ary hypergroups) by Freni [14, 15].

Theorem 3.1. [12] Let (H, f) be an n-ary hypergroup. Then we have:
(1) The fundamental relation γ∗ is the transitive closure of the rela-

tion γ.
(2) Relation γ is a strongly compatible relation on (H, f).
(3) If (H, f) is commutative then β = γ.

Let P = (P, f, e,−1 ) be an n-ary polygroup, φ : P → P/β∗ and
ϕ : P → P/γ∗ canonical projections. Then wP and D(P ) are the kernels
of φ and ϕ, respectively. In fact, wP is a neutral element of P/β∗ and
D(P ) is a neutral element of P/γ∗. We have wP ⊆ D(P ), since β∗ ⊆ γ∗.
Also, it is not difficult to see that

wP = β∗(e) and β∗(x−1) = β∗(x)−1 for all x ∈ P,
D(P ) = γ∗(e) and γ∗(x−1) = γ∗(x)−1 for all x ∈ P.

Theorem 3.2. [12] If (H, f) is an n-ary hypergroup with a neutral
(identity) element such that H/γ∗ is i-cancellative then γ is transitive.

So we have:

Corollary 3.3. If (P, f) is an n-ary polygroup, then γ is an equivalence
relation on P and γ = γ∗.
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Theorem 3.4. Let P be an n-ary polygroup and am
1 , bm

1 ∈ P such that
aj γ∗ bj for all j = 1, 2, . . . ,m, where m = k(n − 1) + 1. Then for all
x ∈ f(k)(a

δ1
1 , . . . , aδm

m ) and y ∈ f(k)(b
δ1
1 , . . . , bδm

m ) where δi ∈ {1,−1}(i =
1, 2, . . . ,m), we have x γ∗ y. Also, this theorem is true for β∗-relation.

Proof. Suppose that aj γ∗ bj for all j = 1, 2, . . . ,m, then there ex-
ist kj ∈ N ∪ {0} and z

jnj

j1 ∈ P where nj = kj(n − 1) + 1, and there
exists permutation σj ∈ Snj such that aj ∈ f(kj)(zj1, . . . , zjnj ) and
bj ∈ f(kj)(zjσj(1), . . . , zjσj(nj

). Therefore,

f(k)(am
1 ) ⊆ f(k)(f(k1)(z11, . . . , z1n1), . . . , f(km)(zm1, . . . , zmnm)) and

f(k)(bm
1 ) ⊆ f(k)(f(k1)(z1σ1(1), . . . , z1σ1(n1)),

. . . , f(km)(zmσm(1), . . . , zmσm(nm))),

and so we conclude that

x ∈ f(k)(am
1 ) ⊆ f(k+k1+...+km)(z11, . . . , z1n1 , . . . , zm1, . . . , zmnm) and

y ∈ f(k)(bm
1 ) ⊆ f(k+k1+...+km)(z1σ1(1), . . . , z1σ1(n1),

. . . , zmσm(1), . . . , zmσm(nm)).

Thus, we obtain x γ∗ y. Since aj γ∗ bj implies a−1
j γ∗ b−1

j , so by the
similar way for all x ∈ f(k)(a

δ1
1 , . . . , aδm

m ) and y ∈ f(k)(b
δ1
1 , . . . , bδm

m ) where
δi ∈ {1,−1}(i = 1, 2, . . . ,m), we obtain x γ∗ y. �

By the above theorem and definition of γ∗-relation, we obtain:

Corollary 3.5. Let P be an n-ary polygroup and am
1 , bm

1 ∈ P such that
aj γ∗ bj for all j = 1, 2, . . . ,m, where m = k(n− 1) + 1. Then for every

τ ∈ Sm and every x ∈ f(k)(a
δ1
1 , . . . , aδm

m ) and y ∈ f(k)(b
δτ(1)

τ(1) , . . . , b
δτ(m)

τ(m) )
where δi ∈ {1,−1}(i = 1, 2, . . . ,m), we have x γ∗ y.

Theorem 3.6. Let P be an n-ary polygroup. If there exist A,A′ ⊆ γ∗(z)

and B,B′ ⊆ γ∗(z−1) for some z ∈ P such that f(
(i−1)

A , x,
(n−i)

A ) ∩ B 6= ∅

and f(
(i−1)

A′ , y,
(n−i)

A′ ) ∩B′ 6= ∅, then x γ∗ y.

Proof. Suppose that there exist A,A′ ⊆ γ∗(z) and B,B′ ⊆ γ∗(z−1) for

some z ∈ P such that f(
(i−1)

A , x,
(n−i)

A )∩B 6= ∅ and f(
(i−1)

A′ , y,
(n−i)

A′ )∩B′ 6=
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∅. Then we have

f/γ∗(
(i−1)

γ∗(A), γ∗(x),
(n−i)

γ∗(A)) ∩ γ∗(B) 6= ∅,

f/γ∗(
(i−1)

γ∗(A′), γ∗(y),
(n−i)

γ∗(A′)) ∩ γ∗(B′) 6= ∅.

Therefore, we conclude that f/γ∗(
(i−1)

γ∗(z), γ∗(x),
(n−i)

γ∗(z)) = γ∗(z−1) and

f/γ∗(
(i−1)

γ∗(z), γ∗(y),
(n−i)

γ∗(z)) = γ∗(z−1). Since P/γ∗ is an n-ary group,
γ∗(x) = γ∗(y). �

Theorem 3.7. Let (P, f) be an n-ary polygroup.
(1) If xn

1 ∈ D(P ) then for every a ∈ P , there exists A ⊆ γ∗(a) such
that for every i ∈ {1, 2, . . . , n}, we have f(xi−1

1 , A, xn
i+1)∩A 6= ∅.

(2) Let a, xn
1 ∈ P such that x1γ

∗ . . . γ∗xn. If there exist A ⊆ γ∗(a)
and i ∈ {1, . . . , n} such that f(xi−1

1 , A, xn
i+1)∩A 6= ∅ and D(P ) =

γ∗(e) is a unique neutral element of P/γ∗ then xi−1
1 , xn

i+1 ∈
D(P ).

Proof. (1) Suppose that xn
1 ∈ D(P ) and set A = γ∗(a) for an arbitrary

a ∈ P . So for every 1 ≤ i ≤ n, we have:

ϕ(f(xi−1
1 , a, xn

i+1))
= f/γ∗(γ∗(x1), . . . , γ∗(xi−1), γ∗(a), γ∗(xi+1), . . . , γ∗(xn))

= f/γ∗(
(i−1)

D(P ), γ∗(a),
(n−i)

D(P )) = γ∗(a).

Thus, f(xi−1
1 , γ∗(a), xn

i+1) ∩ γ∗(a) 6= ∅, so f(xi−1
1 , A, xn

i+1) ∩A 6= ∅.
(2) If f(xi−1

1 , A, xn
i+1) ∩A 6= ∅, then

f/γ∗(γ∗(x1), . . . , γ∗(xi−1), γ∗(a), γ∗(xi+1), . . . , γ∗(xn)) = γ∗(a).

Since D(P ) is the unique identity element of P/γ∗ and γ∗(x1) = . . . =
γ∗(xn) then γ∗(xi) = D(P ) and xi ∈ D(p), when i ∈ {1, . . . , i − 1, i +
1, . . . , n}. �

Let P be an n-ary polygroup and a ∈ P , we define al, where
l ∈ N ∪ {0}, as follows{

al = e if l = 0,

al = f(k)(
(l)
a ,

(m−l)
e ) if (k − 1)(n− 1) + 1 < l ≤ m = k(n− 1) + 1.

Then, by the above notation we have:
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Theorem 3.8. Let P be a n-ary polygroup. For every a ∈ P , and
r, r′ ∈ N ∪ {0} such that r′ ≤ r, if ar ∩ ar′ 6= ∅ then ar−r′ ⊆ D(P ).

Proof. Let (k − 1)(n− 1) + 1 < r ≤ m = k(n− 1) + 1 and (k′ − 1)(n−
1) + 1 < r′ ≤ m′ = k′(n − 1) + 1. Now, we have (k − k′ − 2)(n −
1) + 1 < r − r′ = r′′ < m − m′ + 1 = (k − k′)(n − 1) + 1 = m′′

or r′′ = r − r′ = (k − k′ − 2)(n − 1) + 1 = m′′. First, suppose that
(k−k′−2)(n−1)+1 < r− r′ = r′′ < m−m′+1 = (k−k′)(n−1)+1 =

m′′, then ar ∩ ar′ 6= ∅ implies f(k)(
(r)
a ,

(m−r)
e ) ∩ f(k′)(

(r′)
a ,

(m′−r′)
e ) 6= ∅. So

ϕ(f(k)(
(r)
a ,

(m−r)
e )) = ϕ(f(k′)(

(r′)
a ,

(m′−r′)
e )) which implies that

(f/γ∗)(k)(
(r)

γ∗(a),
(m−r)

γ∗(e)) = (f/γ∗)(k′)(
(r′)

γ∗(a),
(m′−r′)

γ∗(e) ),

hence

(f/γ∗)(k′)(
(r′)

γ∗(a), (f/γ∗)(k−k′)(
(r−r′)

γ∗(a),
(m−m′+1−(r−r′))

γ∗(e) ),
(m′−r′−1)

γ∗(e) )

= (f/γ∗)(k′)(
(r′)

γ∗(a),
(m′−r′)

γ∗(e) ).

Therefore,

(f/γ∗)(k′)(
(r′)

γ∗(a), (f/γ∗)(k′′)(
(r′′)

γ∗(a),
(m′′−r′′)

γ∗(e) ),
(m′−r′−1)

γ∗(e) )

= (f/γ∗)(k′)(
(r′)

γ∗(a),
(m′−r′)

γ∗(e) ).

Since P/γ∗ is an n-ary group, we have (f/γ∗)(k′′)(
(r′′)

γ∗(a),
(m′′−r′′)

γ∗(e) ) = γ∗(e)

and so γ∗(f(k′′)(
(r′′)
a ,

(m′′−r′′)
e )) = γ∗(e). Therefore, f(k′′)(

(r′′)
a ,

(m′′−r′′)
e ) ⊆

D(P ), thus ar−r′ = ar′′ ⊆ D(P ).
If r′′ = r − r′ = (k − k′ − 2)(n− 1) + 1 = m′′, then by a similar way

we obtain ar−r′ ⊆ D(P ). �

Remark 3.9. If we use β∗, wP and φ instead of γ∗, D(P ) and ϕ re-
spectively, then Theorems 3.6, 3.7 and 3.8, are still valid.

Let A be a non-empty subset of P . The intersection of β-parts of P
which contains A is called β-closure of A in P . It will be denoted by
Cβ(A). Also, we define γ-closure of A in P (i.e., Cγ(A)) by a similar
way.

Similar to Theorem 63 in [3], we have:
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Theorem 3.10. Let B be a non-empty subset of an n-ary polygroup P .
Then

(1) Cβ(B) =
⋃
b∈B

Cβ(b),

(2) Cγ(B) =
⋃
b∈B

Cγ(b).

Theorem 3.11. Let P be an n-ary polygroup. If A is a non-empty
subset of P . Then for every i ∈ {1, 2, . . . , n− 1} we have

1) f(
(i−1)
wP , A,

(n−i)
wP ) = φ−1(φ(A)),

2) f(
(i−1)

D(P ), A,
(n−i)

D(P )) = ϕ−1(ϕ(A)).

Proof. We prove (2), the proof of (1) is similar. For every x ∈ f(
(i−1)

D(P )

, A,
(n−i)

D(P )), there exist d2, . . . , dn ∈ D(P ) and a ∈ A such that x ∈

f(di−1
2 , a, dn

i+1), so ϕ(x) = f/γ∗(
(i−1)
eP/γ∗ , ϕ(a),

(n−i)
eP/γ∗) = ϕ(a), therefore

x ∈ ϕ−1(ϕ(x)) = ϕ−1(ϕ(a)) ⊆ ϕ−1(ϕ(A)).
For the converse, take x ∈ ϕ−1(ϕ(A)), so an element b ∈ A exists such

that ϕ(x) = ϕ(b). Since P is an n-ary polygroup, thus a ∈ P exists such

that x ∈ f(a,
(i−2)

e , b,
(n−i)

e ), so ϕ(b) = ϕ(x) = f/γ∗(ϕ(a),
(i−2)

ϕ(e), ϕ(b),
(n−i)

ϕ(e)

) = f/γ∗(ϕ(a),
(i−2)
eP/γ∗ , ϕ(b),

(n−i)
eP/γ∗). But f/γ∗(

(i−1)
eP/γ∗ , ϕ(b),

(n−i)
eP/γ∗) = ϕ(b),

thus P is 1-cancellative and so ϕ(a) = eP/γ∗ and a ∈ ϕ−1(eP/γ∗) =

D(P ). Hence x ∈ f(a,
(i−2)

e , b,
(n−i)

e ) ⊆ f(
(i−1)

D(P ), A,
(n−i)

D(P )). Therefore we

obtain f(
(i−1)

D(P ), A,
(n−i)

D(P )) = ϕ−1(ϕ(A)). �

Theorem 3.12. If A is a non-empty subset of an n-ary polygroup P ,
then for every i ∈ {1, 2, . . . , n},

(1) f(
(i−1)
wP , A,

(n−i)
wP ) = Cβ(A),

(2) f(
(i−1)

D(P ), A,
(n−i)

D(P )) = Cγ(A),
where Cβ(A) and Cγ(A) are β-closure and γ-closure of A in P , respec-
tively.

Proof. We prove (2), the proof of (1) is similar. If x ∈ ϕ−1(ϕ(A)),
then a ∈ A there exists such that ϕ(x) = ϕ(a) and so γ∗(x) = γ∗(a).
Therefore, x ∈ γ∗(a) ⊆ Cγ(a). Also, if x ∈ Cγ(a) for some a ∈ A, then
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we have x γ∗ a and so ϕ(x) = ϕ(a). Thus, we obtain x ∈ ϕ−1(ϕ(A))
and so:

ϕ−1(ϕ(A)) = {x ∈ P | ∃a ∈ A : x ∈ Cγ(a)} =
⋃
b∈B

Cγ(b).

By Theorems 3.10 and 3.11, we obtain f(
(i−1)

D(P ), A,
(n−i)

D(P )) = Cγ(A). �

Corollary 3.13. If A is a non-empty subset of an n-ary polygroup P ,
then for every 1 ≤ i, j ≤ n we have:

(1) f(
(i−1)
wP , A,

(n−i)
wP ) = f(

(j−1)
wP , A,

(n−j)
wP ),

(2) f(
(i−1)

D(P ), A,
(n−i)

D(P )) = f(
(j−1)

D(P ), A,
(n−j)

D(P )).

Corollary 3.14. Let P be an n-ary polygroup and A ∈ ℘(P )∗. If A is

a γ-part then for evey i ∈ {1, 2, . . . , n} we have f(
(i−1)

D(P ), A,
(n−i)

D(P )) = A.

Conversely, if for some i ∈ {1, 2, . . . , n} we have f(
(i−1)

D(P ), A,
(n−i)

D(P )) = A,
then A is a γ-part of P . Also, this corollary is true for the β∗-relation.

Proof. By Theorem 3.12, the proof is straightforward. �

Theorem 3.15. If P is an n-ary polygroup, then

(1) wP is a β-part of P ,
(2) D(P ) is a γ-part of P .

Proof. (1) See the proof of (2) and set σ = id.
(2) Let m = k(n − 1) + 1, zm

1 ∈ P . We have f(k)(zm
1 )

⋂
D(P ) 6=

∅. Thus, there exists x ∈ f(k)(zm
1 )

⋂
D(P ) and so we obtain ϕ(x) =

ϕ(D(P )) = eP/γ∗ and ϕ(x) = ϕ(f(k)(zm
1 )) = γ∗(f(k)(zm

1 )). Now, for

every σ ∈ Sm and for every y ∈ f(k)(z
σ(m)
σ(1) ) we have x γ∗y, because

x ∈ f(k)(zm
1 ). Therefore, eP/γ∗ = γ∗(f(k)(zm

1 )) = γ∗(x) = γ∗(y) =

γ∗(f(k)(z
σ(m)
σ(1) ). Thus, f(k)(z

σ(m)
σ(1) ) ⊆ ϕ−1(eP/γ∗) = D(P ), this shows that

D(P ) is a γ-part of P . �

Theorem 3.16. Let P be an n-ary polygroup. If Ai is a γ-part of P
for some i ∈ {1, 2, . . . , n}, then for every σ ∈ Sn and for every Aj ⊆ P ,
i 6= j ∈ {1, 2, . . . , n}, the image f(Aσ(n)

σ(1) ) is a γ-part of P . Also, this
theorem is true for the β∗-relation.
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Proof. Set B = f(Aσ(n)
σ(1) ) and suppose that σ(k) = i. We prove that

f(B,
(n−1)

D(P )) = B and then by Corollary 3.14, B is a γ-part of P . Since

Ai is a γ-part of P , by Corollary 3.14, we have f(
(j−1)

D(P ), Ai,
(n−j)

D(P )) = Ai,
for every j ∈ {1, 2, . . . , n}. Now, by Corollary 3.13, we obtain:

f(B,
(n−1)

D(P )) = f(f(Aσ(n)
σ(1) ),

(n−1)

D(P )) = f(Aσ(n−1)
σ(1) , f(Aσ(n),

(n−1)

D(P )))

= f(Aσ(n−1)
σ(1) , f(

(n−1)

D(P ), Aσ(n))) = f(Aσ(n−2)
σ(1) , f(Aσ(n−1),

(n−1)

D(P )), Aσ(n))

. . .

= f(Aσ(k−1)
σ(1) , f(Aσ(k),

(n−1)

D(P )), Aσ(n)
σ(k+1))

= f(Aσ(k−1)
σ(1) , f(Ai,

(n−1)

D(P )), Aσ(n)
σ(k+1))

= f(Aσ(k−1)
σ(1) , Ai, A

σ(n)
σ(k+1)) = f(Aσ(n)

σ(1) ) = B.

Therefore, f(B,
(n−1)

D(P )) = B and the proof is completed. �

Let P be an n-ary polygroup, and
∏

(P ) be the set of m-ary hyper-
products of elements of P . In fact:∏

(P ) = {f(k)(z
m
1 ) | m = k(n− 1) + 1, k ∈ N ∪ {0}, zm

1 ∈ P}.

Also, consider
∏

(P ) with an n-ary hyperoperation F defined as follows:

F (A1, . . . , An) = {C ∈
∏

(P ) | C ⊆ f(A1, . . . , An)},

for all An
1 ∈

∏
(P ). We consider the following condition:

(*) X ∈ F (An
1 ), if for every ai ∈ Ai(i = 1, ..., n), there exists x ∈ X such

that x ∈ f(an
1 ).

Then we have the following theorem:

Theorem 3.17. (Construction) If P is an n-ary polygroup which
satisfies the (*), then (

∏
(P ), F ) is an n-ary polygroup.
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Proof. (1) First, we show that n-ary hyperoperation F on
∏

(P ) is as-
sociative. Let A2n−1

1 ∈
∏

(P ). Then for every 1 ≤ i, j ≤ n we have:

F (Ai−1
1 , F (An+i−1

i ), A2n−1
n+i )

= {F (Ai−1
1 , C, A2n−1

n+i ) | C ⊆ f(An+i−1
i )}

= {D| D ⊆ f(Ai−1
1 , f(An+i−1

i ), A2n−1
n+i )}

= {D| D ⊆ f(Aj−1
1 , f(An+j−1

j ), A2n−1
n+j )}

= {F (Aj−1
1 , C, A2n−1

n+j ) | C ⊆ f(An+j−1
j )}

= F (Aj−1
1 , F (An+j−1

j ), A2n−1
n+j ).

(2) Let E = {e}. Then for all A ∈
∏

(P ) and for every i ∈ {1, 2, . . . , n},

it is easy to see that f(
(i−1)

E ,A,
(n−i)

E) ) = A, and E−1 = {e}−1 = {e−1} =
{e} = E.

(3) We define the unitary operation −I as follows

−I :
∏

(P ) −→
∏

(P )

(f(k)(x1, . . . , xm))−I = f(k)(x−1
m , . . . , x−1

1 ),

where m = k(n− 1) + 1 and xm
1 ∈ P . Now, let A1 = f(k1)(a

1m1
11 ), A2 =

f(k2)(a
2m2
21 ), . . ., An = f(kn)(a

nmn
n1 ) and An+1 = f(kn+1)(a

(n+1)mn+1

(n+1)1 ) be
elements of

∏
(P ) such that An+1 ∈ F (A1, . . . , An). Let ai ∈ Ai, 1 ≤ i ≤

n be arbitrary. Then, there exists an+1 ∈ An+1 such that an+1 ∈ f(an
1 ).

Since P is an n-ary polygroup, thus,

ai ∈ f(a−1
i−1, . . . , a

−1
1 , an+1, a

−1
n , . . . , a−1

i+1).

But for every 1 ≤ j ≤ n we have a−1
j ∈ f(kj)(a

−1
jmj

, . . . , a−1
j1 ) = A−1

j , and
so we obtain

ai ∈ f(a−1
i−1, . . . , a

−1
1 , an+1, a

−1
n , . . . , a−1

i+1)

⊆ f(A−1
i−1, . . . , A

−1
1 , An+1, A

−1
n , . . . , A−1

i+1).

Since for every ai ∈ Ai the above equation is true,

Ai ⊆ f(A−1
i−1, . . . , A

−1
1 , An+1, A

−1
n , . . . , A−1

i+1),
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or Ai ∈ F (A−1
i−1, . . . , A

−1
1 , An+1, A

−1
n , . . . , A−1

i+1). Thus, by (1), (2), (3)
and definition of n-ary polygroups, we conclude that (

∏
(P ), F ) is an

n-ary polygroup. �

Corollary 3.18. If A is an n-ary subpolygroup of P and A belongs to∏
(P ), then A is contained in wP and D(P ).

Proof. Since A is an n-ary subpolygroup thus e ∈ A. But A ∈
∏

(P )
and so for every x ∈ A we have β∗(x) = β∗(A) = β∗(e). This means
that x ∈ wP or A ⊆ wP . Since wP ⊆ D(P ), A ⊆ D(P ). �

The following example shows that not all n-ary subpolygroups of an
n-ary polygroup are in

∏
(P ).

Example 3.19. Let P = {e, a, b, c} and let (P, f) be a commutative
ternary hypergroupoid with two scalar neutral elements e ∈ P and a ∈ P .
Assume that and 3-ary hyperoperation f defined as follows:

f(e, a, b) = b, f(e, a, c) = c, f(e, b, b) = {e, a, c},
f(e, b, c) = {b, c}, f(e, c, c) = {e, a, b}, f(a, b, b) = {e, a, c},
f(a, b, c) = {b, c}, f(a, c, c) = {e, a, b}, f(b, b, b) = {b, c},
f(b, b, c) = {e, a, b}, f(b, c, c) = P, f(c, c, c) = {b, c}.

Then the 3-ary hyperoperation f is associative. We define unitary oper-
ation x−1 = x for every x ∈ P . Then P = (P, f, e,−1 ) is a ternary poly-
group. Furthere, A = {e, a} is a 3-ary subpolygroup of P , but A 6∈

∏
(P ).

We also have wP = D(P ) = f(b, c, c) = P ∈
∏

(P ).

If P is an n-ary polygroup, we denote the set of n-ary hyperproducts A

of elements of P by,
∏
Cβ

(P ) (
∏
Cγ

(P )) such that Cβ(A) = A (Cγ(A) = A).

Theorem 3.20. Let P be an n-ary polygroup and let xm
1 , where m =

k(n− 1)+1, are elements of P such that f(k)(xm
1 ) ∈

∏
Cγ

(P ). Then there

exists ym
1 ∈ P such that f(2k+1)(xm

1 , y1
m,

(n−2)
e ) = D(P ). This theorem is

true for β∗-relation, too.

Proof. Suppose that aj ∈ D(P ), where 1 ≤ j ≤ m. Then there ex-

ists yj ∈ P such that aj ∈ f(xj , yj ,
(n−2)

e ). Since D(P ) is a γ-part,

then f(xj , yj ,
(n−2)

e ) ⊆ D(P ), and so f(xj , yj ,
(n−3)

e ,D(P )) = D(P ). By
Corollaries 3.13 and 3.14, we obtain
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f(f(k)(xm
1 ), ym,

(n−2)
e ) = f(f(f(k)(xm

1 ),
(n−1)

D(P )), ym,
(n−2)

e )

= f(f(k)(xm
1 ), f(

(n−1)

D(P ), ym),
(n−2)

e )

= f(f(k)(xm
1 ), f(ym,

(n−1)

D(P )),
(n−2)

e )

= f(k+1)(x
m−1
1 , f(xm, ym,

(n−3)
e ,D(P )),

(n−2)

D(P ), e)

= f(k+1)(x
m−1
1 ,

(n−1)

D(P ), e),
and so

f(f(k)(xm
1 ), ym, ym−1,

(n−3)
e )

= f(f(k)(xm
1 ), ym, f(

(n−2)
e , ym−1, e),

(n−3)
e )

= f(f(f(k)(xm
1 ), ym,

(n−2)
e ), ym−1,

(n−2)
e )

= f(f(k+1)(x
m−1
1 ,

(n−1)

D(P ), e), ym−1,
(n−2)

e )

= f(k+1)(x
m−1
1 ,

(n−1)

D(P ), f(e, ym−1,
(n−2)

e ))

= f(k+1)(x
m−1
1 ,

(n−1)

D(P ), f(ym−1,
(n−1)

e ))

= f(k+1)(x
m−1
1 , f(

(n−1)

D(P ), ym−1),
(n−1)

e )

= f(k+1)(x
m−1
1 , f(ym−1,

(n−1)

D(P )),
(n−1)

e )

= f(k+1)(x
m−2
1 , f(xm−1, ym−1,

(n−3)
e ,D(P )),

(n−2)

D(P ), e, e)

= f(k+1)(x
m−2
1 ,

(n−1)

D(P ),
(2)
e ).

If we continue in the same way, then we obtain

f(k)(f(k)(x
m
1 ), y2

m) = f(k+1)(x1,
(n−1)

D(P ),
(m−1)

e ),
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and since e is a scalar neutral element of P , then f(k)(f(k)(xm
1 ), y2

m) =

f(x1,
(n−1)

D(P )). Finally

f(2k+1)(xm
1 , y2

m, y1,
(n−2)

e ) = f(f(2k)(xm
1 , y2

m), y1,
(n−2)

e )

= f(f(x1,
(n−1)

D(P )), y1,
(n−2)

e ) = f(f(x1, y1,
(n−3)

e ,D(P )), e,
(n−2)

D(P ))

= f(D(P ), e,
(n−2)

D(P )) = D(P ).

Therefore, f(2k+1)(xm
1 , y1

m,
(n−2)

e ) = D(P ). �

Corollary 3.21. Let P be an n-ary polygroup. Then

(1) If
∏
Cβ

(P ) 6= ∅ then wP ∈
∏
Cβ

(P ) and wP is m-ary hyperproduct.

(2) If
∏
Cγ

(P ) 6= ∅ then D(P ) ∈
∏
Cγ

(P ) and D(P ) is m-ary hyper-

product.

Theorem 3.22. Let P be an n-ary polygroup. Then
(1) If P\wP is an m-ary hyperproduct, then wP is m-ary hyperprod-

uct and wP ∈
∏
Cβ

(P ).

(2) If P\D(P ) is an m-ary hyperproduct, then D(P ) is m-ary hy-
perproduct and D(P ) ∈

∏
Cγ

(P ).

Proof. (1) Since wP is a β-part, then P\wP is also β-part.
Now, P\wP ∈

∏
Cβ

(P ) and by Corollary 3.21, the proof is completed.

The proof of (2) is similar. �
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