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ON THE STABILITY OF GENERALIZED DERIVATIONS
ON BANACH ALGEBRAS

E. ANSARI-PIRI∗ AND E. ANJIDANI

Communicated by Fereidoun Ghahramani

Abstract. We investigate the stability of generalized derivations
on Banach algebras with a bounded central approximate identity.
We show that every approximate generalized derivation in the sense
of Rassias, is an exact generalized derivation. Also the stability
problem of generalized derivations on the faithful Banach algebras
is investigated.

1. Introduction

The stability of functional equations appeared at first by Ulam in
1940 [11], where in 1941, Hyers studied a version of this problem in [5].

In 1978, Th.M.Rassias [9] extended the result of Hyers as follows:
Suppose that E1, E2 are Banach spaces and f : E1 → E2 is a mapping for
which there exist ε > 0 and 0 ≤ p < 1 such that ‖f(x+y)−f(x)−f(y)‖ <
ε(‖x‖p + ‖y‖p) for all x, y ∈ E1, then there exists a unique additive
mapping T : E1 → E2 such that ‖f(x) − T (x)‖ ≤ 2ε

2−2p ‖x‖p for all
x ∈ E1.

MSC(2010): Primary: 46H25; Secondary: 39B82, 39B52.

Keywords: Hyers-Ulam-Rassias stability, generalized derivation, bounded central approxi-

mate identity, faithful Banach algebra.

Received: 3 Nov 2009, Accepted: 4 April 2010.

∗Corresponding author

c© 2012 Iranian Mathematical Society.

253



254 Ansari-Piri and Anjidani

Gavruta [4] generalized the theorem of Rassias as follows:
Let G be an abelian group and E be a Banach space. Denote by φ :
G×G → [0,∞) a function such that

φ̃(x, y) :=
1
2

∞∑
k=0

2−kφ(2kx, 2ky) < ∞

for all x, y ∈ G. Suppose that f : G → E is a mapping satisfying

‖f(x + y)− f(x)− f(y)‖ ≤ φ(x, y)

for all x, y ∈ G. Then there exists a unique additive mapping T : G → E

such that ‖f(x)− T (x)‖ ≤ φ̃(x, x) for all x ∈ G.
Since then, several stability problems of various functional equations

have been investigated by many mathematicians (see [2, 10]).
In this paper, we consider the stability of generalized derivations.

Park in [7] and [8] has studied the stability of derivations. Moslehian
in [6], extended the results of [7] to generalized derivations from unital
Banach algebra A to a unit linked Banach A-bimodule. In the present
paper, we prove the generalized Hyers-Ulam-Rassias stability of gen-
eralized derivations on Banach algebras which have a bounded central
approximate identity. In particular, we show that every approximate
generalized derivation in the sense of Rassias, is an exact generalized
derivation (Theorem 2.3, Corollary 2.4).
Also we investigate the stability problem of generalized derivations on
the faithful Banach algebras.

Let A be a Banach algebra and M be a Banach A-bimodule. A
linear mapping µ : A → M is called a generalized derivation if there
exists a derivation δ : A → M such that µ(ab) = aµ(b) + δ(a)b for
all a, b ∈ A. For example, for fixed arbitrary elements x, y ∈ M , the
mapping µx,y(a) = xa − ay is a generalized derivation (it is called the
inner generalized derivation).

We recall that an approximate identity (eλ)λ∈Λ in Banach algebra A
is central if {eλ : λ ∈ Λ} ⊆ Z(A). [3]
Also Banach algebra A is called left faithful (right faithful), if

{a ∈ A : aA = 0} = 0 ({a ∈ A : Aa = 0} = 0).
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2. The stability of generalized derivations on Banach algebras
with a bounded central approximate identity

In this section, we suppose that A is a Banach algebra with a bounded
left approximate identity (eλ)λ∈Λ and M is a Banach A-bimodule such
that eλm = meλ for all m ∈ M and λ ∈ Λ. Moreover, eλm−m → 0 in
M for all m ∈ M . Our final result of the section appears in Corollary
2.4, but at first we prove a generalized version of Hyers-Ulam-Rassias
stability problem on generalized derivations from A to M .

Lemma 2.1. Let A be a Banach algebra, M be a Banach A-bimodule
and (eλ)λ∈Λ be a bounded net in A such that meλ → m for all m ∈ M .
Let also (bn) be a sequence in M such that limn→∞(bnx) = 0 uniformly
on bounded subsets of A. Then limn→∞ bn = 0.

Proof. Let ε > 0. Since (eλ)λ∈Λ is bounded, limn→∞(bnx) = 0 uniformly
on {eλ : λ ∈ Λ}. Then there exists N ∈ N such that ‖bneλ‖ < ε

2 for all
n ≥ N and all λ ∈ Λ.
Fix n ≥ N . There is λn ∈ Λ such that ‖bn− bneλn‖ < ε

2 . Hence we have

‖bn‖ ≤ ‖bn − bneλn‖+ ‖bneλn‖ < ε.

Therefore, limn→∞ bn = 0. �

Theorem 2.2. Suppose f : A → M is a mapping with f(0) = 0 and
φ : A×A×A×A → [0,∞) is a function such that

(2.1) lim
n→∞

2−nφ(2na, 2nb, 2nc, 2nd) = 0

for all a, b, c, d ∈ A, where the convergence is uniformly on {0} × {0} ×
{c0} × E for every c0 ∈ A and every bounded subset E of A. We also
suppose

(2.2) φ̃(a) :=
1
2

∞∑
n=0

2−nφ(2na, 2na, 0, 0)

converges uniformly on every bounded subset of A. Moreover, we assume
the existence of a map g : A → M such that

(2.3) ‖f(λa + λb + cd)− λf(a)− λf(b)− cf(d)− g(c)d‖ ≤ φ(a, b, c, d)
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for all λ ∈ T = {λ ∈ C : |λ| = 1} and a, b, c, d ∈ A. Then there exists a
unique generalized derivation µ : A → M such that

(2.4) ‖f(a)− µ(a)‖ ≤ φ̃(a)

for all a ∈ A.

Proof. Put c = d = 0 and b = a and λ = 1 in (2.3) to get

‖f(2a)− 2f(a)‖ ≤ φ(a, a, 0, 0)

for all a ∈ A. One can use the induction on n to show that

(2.5)
∥∥∥∥f(2na)

2n
− f(a)

∥∥∥∥ ≤ 1
2

n−1∑
k=0

2−kφ(2ka, 2ka, 0, 0)

for all n ∈ N and all a ∈ A. Replacing a by 2ma in (2.5), we get

(2.6)
∥∥∥∥f(2n+ma)

2n+m
− f(2ma)

2m

∥∥∥∥ ≤ 1
2

n+m−1∑
k=m

2−kφ(2ka, 2ka, 0, 0)

for all n, m ∈ N and all a ∈ A.
Let E be a bounded subset of A. Since

∑∞
n=0 2−n−1φ(2na, 2na, 0, 0)

converges uniformly on E, the inequality (2.6) implies that the sequence
(f(2na)

2n ) is uniformly Cauchy on E. It follows that this sequence con-
verges uniformly on E, since M is complete. Set

(2.7) µ(a) := lim
n→∞

f(2na)
2n

.

By a similar method to the proof of [6, Theorem 2.1], one can easily
show that µ is linear. It follows from (2.5) that ‖µ(a) − f(a)‖ ≤ φ̃(a)
for all a ∈ A.

Now we prove that µ is a generalized derivation.
Let a = b = 0 and replace c, d by 2nc, 2nd, respectively, in (2.3). We
have

‖f(22ncd)− 2ncf(2nd)− 2ng(2nc)d‖ ≤ φ(0, 0, 2nc, 2nd),

and so

‖2−2nf(22ncd)− 2−ncf(2nd)− 2−ng(2nc)d‖ ≤ 2−2nφ(0, 0, 2nc, 2nd)

for all c, d ∈ A and all n ∈ N.
Let E be a bounded subset of A, c ∈ A and ε > 0. Since 1

22n φ(0, 0, 2nc, 2nx)
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converges uniformly on E to 0, there exists N1 ∈ N such that

(2.8) ‖2−2nf(22ncx)− 2−ncf(2nx)− 2−ng(2nc)x‖ <
ε

3
for all n ≥ N1 and all x ∈ E.
By (2.7), (f(2nx)

2n ) converges uniformly on bounded sets E and cE to
µ(x), so there exists N2 ∈ N such that

(2.9) ‖2−2nf(22ncx)− µ(cx)‖ <
ε

3
,

and

(2.10) ‖2−ncf(2nx)− cµ(x)‖ <
ε

3
for all n ≥ N2 and all x ∈ E.
By (2.8),(2.9) and (2.10), we have

‖2−ng(2nc)x− µ(cx) + cµ(x)‖
≤ ‖2−ng(2nc)x− 2−2nf(22ncx) + 2−ncf(2nx)‖

+‖2−2nf(22ncx)− µ(cx)‖+ ‖2−ncf(2nx)− cµ(x)‖ < ε

for all n ≥ max{N1, N2} and all x ∈ E. Hence the sequence (2−ng(2nc)x)
converges uniformly on E and we have

(2.11) lim
n→∞

(2−ng(2nc)d) = µ(cd)− cµ(d)

for all c, d ∈ A.
Let c1, c2, x ∈ A. Then

limn→∞ (2−ng(2nc1c2)x) = µ(c1c2x)− c1c2µ(x)
= limn→∞(2−ng(2nc1)c2x) + c1µ(c2x)− c1c2µ(x)
= limn→∞(2−ng(2nc1)c2x) + c1 limn→∞(2−ng(2nc2)x),

and so

lim
n→∞

((2−ng(2nc1c2)− 2−ng(2nc1)c2 − 2−nc1g(2nc2))x) = 0

uniformly on bounded subsets. Since A has a bounded left approximate
identity (eλ) such that meλ → m for all m ∈ M , by Lemma 2.1 we
obtain

(2.12) lim
n→∞

(2−ng(2nc1c2)− 2−ng(2nc1)c2 − 2−nc1g(2nc2)) = 0

for all c1, c2 ∈ A.
Now we prove that the sequence (2−ng(2nc)) converges for all c ∈ A.

Let c ∈ A. By the Cohen factorization theorem, there exist c1, c2 ∈ A
such that c = c1c2. By the proof of Cohen factorization theorem (see
[1]), there exist 0 < γ < 1 and a sequence (en) in {eλ : λ ∈ Λ} such
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that c1 =
∑∞

k=1 γ(1− γ)k−1ek. Since eλm = meλ for all m ∈ M and all
λ ∈ Λ, we have c1m = mc1 for all m ∈ M .
By (2.12) we have

(2.13) lim
n→∞

(2−ng(2nc)− 2−ng(2nc1)c2 − 2−nc1g(2nc2)) = 0.

Now 2−nc1g(2nc2) = 2−ng(2nc2)c1 for all n ∈ N and (2−ng(2nx)y) con-
verges for all x, y ∈ A. Therefore, by (2.13) the sequence (2−ng(2nc))
converges. Set δ(c) := limn→∞ 2−ng(2nc) for all c ∈ A.
By (2.11) and (2.12) we have

(2.14) µ(cd) = cµ(d) + δ(c)d

and
δ(c1c2) = δ(c1)c2 + c1δ(c2)

for all c1, c2, c, d ∈ A. Since µ is linear, by (2.14) we get

δ(αc1 + βc2)eλ = (αδ(c1) + βδ(c2))eλ

for all c1, c2 ∈ A and α, β ∈ C and λ ∈ Λ. Thus δ is a linear derivation.
It then follows from (2.14) that µ is a generalized derivation.
It is easy to see that the additive mapping µ satisfying (2.4) is unique.

�

The following theorem that extend Corollary 2.4 of [6], states that
every approximate generalized derivation in the sense of Rassias, is an
exact generalized derivation.

Theorem 2.3. Suppose that f : A → M is a mapping with f(0) = 0 for
which there exist a map g : A → M and constants β > 0 and 0 ≤ p < 1
such that

‖f(λa + λb + cd)− λf(a)− λf(b)− cf(d)− g(c)d‖ ≤

(2.15) β(‖a‖p + ‖b‖p + ‖c‖p + ‖d‖p)

for all λ ∈ T and all a, b, c, d ∈ A. Then f is a generalized derivation
and g is a derivation.

Proof. Put φ(a, b, c, d) = β(‖a‖p + ‖b‖p + ‖c‖p + ‖d‖p) in Theorem
2.2. Since the series

∑∞
n=0 β2n(p−1)‖x‖p converges uniformly on every

bounded subset of A, φ and φ̃ satisfy in (2.1) and (2.2). Therefore,
there exists a unique generalized derivation µ : A → M such that
‖f(a)− µ(a)‖ ≤ β‖a‖p

1−2p−1 .
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Also by the proof of Theorem 2.2, the sequence (2−ng(2na)) converges
for all a ∈ A and the mapping δ, defined by δ(a) := limn→∞

g(2na)
2n , is a

derivation.
Putting a = b = 0 and replacing c by 2nc in (2.15), we get

‖f(2ncd)− 2ncf(d)− g(2nc)d‖ ≤ β(‖2nc‖p + ‖d‖p)

and hence

‖f(2ncd)
2n

− cf(d)− g(2nc)
2n

d‖ ≤ β

2n
(‖2nc‖p + ‖d‖p).

Taking the limit as n →∞ we obtain

(2.16) µ(cd) = cf(d) + δ(c)d (c, d ∈ A).

Now we have

cf(2nd) + 2nδ(c)d = µ(2ncd) = 2ncf(d) + δ(2nc)d = 2ncf(d) + 2nδ(c)d,

and so cf(d) = 2−ncf(2nd) for all c, d ∈ A and n ∈ N. By the limit
process, we get cf(d) = cµ(d) for all c, d ∈ A. Thus f = µ, since
eλm → m for every m ∈ M .
Similarly, putting a = b = 0 and replacing d by 2nd in (2.15), we obtain∥∥∥∥f(2ncd)

2n
− c

f(2nd)
2n

− g(c)d
∥∥∥∥ ≤ β

2n
(‖c‖p + ‖2nd‖p).

Taking the limit as n →∞, we have µ(cd)−cµ(d)−g(c)d = 0. Therefore,
by (2.16), we obtain g(c)d = δ(c)d for all c, d ∈ A. Then g = δ which
means f is a generalized derivation and g is a derivation. �

Corollary 2.4. Let A be a Banach algebra with a bounded central ap-
proximate identity (eλ). The Theorems 2.2 and 2.3 remain true if we
replace M by A.

Definition 2.5. The mapping f : A → A is called an approximately
generalized derivation if f(0) = 0 and there exist a positive number ε
and a mapping g : A → A such that

‖f(λa + λb + cd)− λf(a)− λf(b)− cf(d)− g(c)d‖ ≤ ε

for all λ ∈ T and all a, b, c, d ∈ A. [6]

The next corollary immediately follows by Theorem 2.3.
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Corollary 2.6. Let A be a Banach algebra with a bounded central ap-
proximate identity. Suppose that f : A → A is an approximately gener-
alized derivation with the corresponding mapping g. Then f is a gener-
alized derivation and g is a derivation.

Proof. Put p = 0 in Theorem 2.3. �

3. Stability of generalized derivations on faithful algebras

The significance of theorems, given in section 2, is that we do not need
any additional functional inequality on g for existence of derivation δ.
In this section, we suppose that g is an approximately linear function
and prove the generalized Hyers-Ulam-Rassias stability of generalized
derivations on faithful Banach algebras.

Theorem 3.1. Let A be a left faithful Banach algebra. Suppose that
f : A → A is a mapping with f(0) = 0 for which there exist a map
g : A → A with g(0) = 0 and a function φ : A6 → [0,∞) such that

(3.1) lim
n→∞

2−nφ(2na1, 2nb1, 2nc, 2nd, 2na2, 2nb2) = 0,

(3.2) φ̃(a1, a2) :=
1
2

∞∑
n=0

2−nφ(2na1, 2na1, 0, 0, 2na2, 2na2) < ∞,

and

‖f(λa1+λb1+cd)+g(λa2+λb2)−λ(f(a1)+f(b1)+g(a2)+g(b2))−cf(d)−g(c)d‖

(3.3) ≤ φ(a1, b1, c, d, a2, b2)

for all λ ∈ T and all a1, a2, b1, b2, c, d ∈ A. Then there exist a unique
derivation δ : A → A and a unique generalized derivation µ : A → A
such that

‖δ(a)− g(a)‖ ≤ φ̃(0, a) and ‖µ(a)− f(a)‖ ≤ φ̃(a, 0)

for all a ∈ A.

Proof. We use the Rassias method to show that the sequences (f(2na)
2n )

and (g(2na)
2n ) are convergent (see [4, 6]).
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Let a1, a2 ∈ A and c = d = 0 and b1 = a1, b2 = a2 and λ = 1 in (3.3).
Then

(3.4) ‖f(2a1) + g(2a2)− 2f(a1)− 2g(a2)‖ ≤ φ(a1, a1, 0, 0, a2, a2).

By induction on n, we get∥∥∥∥f(2na1)
2n

− f(a1) +
g(2na2)

2n
− g(a2)

∥∥∥∥
(3.5) ≤ 1

2

n−1∑
k=0

2−kφ(2ka1, 2ka1, 0, 0, 2ka2, 2ka2)

for all n ∈ N.
Also by (3.4) and induction on n, we obtain

‖2−nf(2na1)− 2−mf(2ma1) + 2−ng(2na2)− 2−mg(2ma2)‖

(3.6) ≤ 1
2

n−1∑
k=m

2−kφ(2ka1, 2ka1, 0, 0, 2ka2, 2ka2)

for all n > m.
Fix a ∈ A. Let a2 = 0 and a1 = a in (3.6). It follows from the

convergence of series (3.2) and inequality (3.6) that the sequence (f(2na)
2n )

is Cauchy and so converges.
Again, putting a1 = 0 and a2 = a in (3.6), we see that the sequence
(g(2na)

2n ) converges. Set

µ(a) := lim
n→∞

f(2na)
2n

, δ(a) := lim
n→∞

g(2na)
2n

.

Putting a2 = 0 and a1 = a (respectively, a1 = 0 and a2 = a) in (3.5)
and taking the limit as n →∞ we obtain, respectively,

(3.7) ‖µ(a)− f(a)‖ ≤ φ̃(a, 0) and ‖δ(a)− g(a)‖ ≤ φ̃(0, a)

for all a ∈ A.
By the same reasoning as in the proof of [6, Theorem 2.1], one can

show that µ and δ are linear mappings.
Now let a1 = b1 = a2 = b2 = 0 and replace c, d by 2nc, 2nd, respec-

tively, in (3.3). We obtain

‖f(22ncd)− 2ncf(2nd)− 2ng(2nc)d‖ ≤ φ(0, 0, 2nc, 2nd, 0, 0)

and so

‖2−2nf(22ncd)− 2−ncf(2nd)− 2−ng(2nc)d‖ ≤ 2−2nφ(0, 0, 2nc, 2nd, 0, 0).
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By taking the limit as n → ∞ we get µ(cd) = cµ(d) + δ(c)d for all
c, d ∈ A.

It is sufficient to prove that δ is a derivation.
Let c1, c2, x ∈ A. We have

δ(c1c2)x = µ(c1c2x)− c1c2µ(x)
= c1µ(c2x) + δ(c1)c2x− c1c2µ(x)
= c1(µ(c2x)− c2µ(x)) + δ(c1)c2x
= (c1δ(c2) + δ(c1)c2)x.

Therefore, {δ(c1c2)−c1δ(c2)−δ(c1)c2}A = {0} and so δ(c1c2) = c1δ(c2)+
δ(c1)c2, since A is left faithful.
Thus δ is a derivation and µ is a generalized derivation.
It is easy to see that the additive mappings µ and δ satisfying (3.7) are
unique. �

By Theorem 3.1 and by a similar method to the proof of Theorem
2.3, one can prove the following theorem.

Theorem 3.2. Let A be a left and right faithful Banach algebra. Sup-
pose that f : A → A and g : A → A are mappings with f(0) = 0 and
g(0) = 0. Suppose that there exist the constants β > 0 and p < 1 such
that

‖f(λa1+λb1+cd)+g(λa2+λb2)−λ(f(a1)+f(b1)+g(a2)+g(b2))−cf(d)−g(c)d‖

≤ β(‖a1‖p + ‖a2‖p + ‖b1‖p + ‖b2‖p + ‖c‖p + ‖d‖p)

for all λ ∈ T and all a1, a2, b1, b2, c, d ∈ A. Then f is a generalized
derivation and g is a derivation.

Proof. Put φ(a1, b1, c, d, a2, b2) = β(‖a1‖p+‖b1‖p+‖c‖p+‖d‖p+‖a2‖p+
‖b2‖p) in Theorem 3.1. Then there exist a derivation δ : A → A and a
generalized derivation µ : A → A, defined by

µ(a) := lim
n→∞

f(2na)
2n

, δ(a) := lim
n→∞

g(2na)
2n

.

By the same reasoning as in the proof of Theorem 2.3, we obtain
cf(d) = cµ(d) and g(c)d = δ(c)d for all c, d ∈ A. Since A is left and
right faithful, we have f = µ and g = δ. �

Putting p = 0 in Theorem 3.2, we obtain a result similar to Corollary
2.6 for left and right faithful Banach algebras.
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