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NON-REGULARITY OF MULTIPLICATIONS FOR
GENERAL MEASURE ALGEBRAS

J. LAALT* AND M. ETTEFAGH

Communicated by Fereidoun Ghahramani

ABSTRACT. Let M (X) be the space of all finite regular Borel mea-
sures on X. A general measure algebra is a subspace of MM(X),
which is an L-space and has a multiplication preserving the prob-
ability measures. Let £ C 9(X) be a general measure algebra on
a locally compact space X. In this paper, we investigate the re-
lation between Arens regularity of £ and the topology of X. We
find conditions under which the Arens regularity of £ implies the
compactness of X. We show that these conditions are necessary.
We also present some examples in showing that the new conditions
are different from Theorem 3.1 of [7].

1. Introduction

One of the questions in abstract harmonic analysis which has drawn
a considerable amount of attention has been the question of which prop-
erties the measure algebra 9(G) or £1(G) of a locally compact group
G can determine the topology of G. One of the papers dealing with this
question is due to Young (see [9]) who proved that the group algebra
LY(G) is Arens regular if and only if G is finite. In [3], Dales, Ghahra-
mani and Helemskii have shown that 9t(G) is weakly amenable if and
only if the group G is discrete.
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We consider the concept of Arens regularity for general measure al-
gebras.

Let X be a locally compact Hausdorff space and C.(X), Co(X) denote
the normed spaces of all complex valued continuous functions on X
with compact supports, vanishing at infinity, respectively. Let 2(X)
be the space of all bounded regular Borel measures on X with its usual
norm and let 9, (X) be the subset of M(X) consisting of all probability
measures. The total variation p € M(X) is denoted by |u| and

il = (1) = /X dlu.

We shall say that 9(X) has a general measure multiplication if there
exists a bilinear associative map m : MM(X) x M(X) — IM(X) such
that if p,v € My(X) then m(p,v) € My(X). We shall write pv for
m(u,v). A general measure multiplication on 9(X) makes it a Banach
algebra (see [7, Proposition 2.1] ). A closed subspace £ of M(X) is an
L-space if p € £ and |v| < |u| implies that v € £. A subalgebra £ of
M(X) which is an L-space will be called a general measure algebra on
X.

For p € M(X), the support of u, or supp p, is the largest closed set
F C X such that f € CF(X), f(z) > 0, for some x € F, implies

[ sl = i) > o
X

Also, the support of £ or supp £ is defined by supp £ = cl(|J LceSupp 1).

Let A, B, C be normed spaces. A* and A** will be the first and second
topological dual of A. The natural duality between A* and A will be
denoted by < a*,a > for a* € A*, a € A. A is canonically embedded
into A™*

Let m : A x B — C be a continuous bilinear map. Then we can
define two bounded bilinear extensions mq,mgy : A*™ x B*™ — (C**
by using iterated limits as follows. For a € A, b € B and o™ € A™,
b** € B** let

mi(a™,0™) =w* — lim (w*— lim m(a,b))
a—a** b—b**

ma(a™,0™) =w* — lim (w*— lim m(a,bd))
b—>b** a*)a**

The bilinear map m is Arens regular (or briefly regular) if the equality



Non-regularity of multiplications for general measure algebras 267

holds. The details of the constructions may be found in many places,
including the book [2] and the articles [4, 5, 6, §].

Throughout this paper, the first (second) Arens multiplication is de-
noted by O (respectively ¢). Thise multiplications can be defined on
M(X)* by

FOG = w" = limw* —lim(upvp), (FOG =w"—limw* —lim(u,vm)),

where (1), (/) are nets of elements of M (X) such that p, — F and
Vm — G in the weak™ topology.

2. The iterated limits method in Arens regular

The usuall criteria cited for Arens regularity involves the iterated limit
conditions [See [6] and [7], Theorem 2.3]. In the following Theorem, we
present a new condition for a general measure algebra which is different
from the hypothesises of Theorem 3.1 in [7].

In the rest of the paper, we adopt the notation £, = 9,(X)NL where
£ is a general measure algebra.

Lemma 2.1. Let £ be a general measure algebra on a locally compact
and non-compact Hausdorff space X. Suppose that for each positive
measure 1 in £,0 € w*—cl(uLy). Then for each ¢ > 0 and each compact
subset K of X and positive measures [u1, ..., lin 1 £, there exist v € £,
and 1 € Co(X) such that K Nsuppy = ¢ and p;.v(¢) > ||puil| — e for all
i.

Proof. By Urysohn’s Lemma, we can find ¢ € C.(X) with 0 < ¢ < 1
and p(z) =1 for all z € K. Since 0 € w* — cl(p1 + -+ - + pn)£p, We can
take v € £, such that

(p1+ -+ pn)v(p) <e.
Since v and p; (1 <14 < n) are positive measures, for 1 <i < n,
vl = (riv)(1) = (L) (1) = (1) = [[pll-
It follows that
(1 + -+ pa)vll = (1 + -+ pa)v) (1) = el + -+ [l
Now suppose that U = {z € X : ¢(z) < 1}. Then,

(1 -+ p))(U) = (1 + -+ pn)v) (1 =)
> lpall -+ ]l — &
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We now choose a compact subset H C U (so that H N K = ¢) with
(1 + -+ pa)V)(H) > [l + -+ [l — €

Therefore, since pi1,. .., py, are positive measures in £ and v € £,, for
1<1<n,

piv(H)

= ((m + -+ pn)v)(H) = (1 + -+ pio1 + pis1 + - pn)V) (H)

S pall e ol = & = (oo s + i+ + )2 (1)

= llpill —

Since, H and K are disjoint compact subsets of X, we can find disjoint
compact open subsets V and W of X such that H C V, K C W and

VAW =VNW = ¢. We apply Urysohn’s lemma to obtain 1) € C,(X)
with 0 <4 <1,¢9=1o0on H and ¢ =0 off V. Thus, for all 1 < < n,

piv(¥) 2 piv(H) > ||l — €
and
(suppy) N K = ¢.
]

Theorem 2.2. Let £ be a general measure algebra on a locally compact
Hausdorff space X such that for each positive measure p, 0 € w* —
c(ply) and 0 € w* —cl(Lpp). If £, is Arens regqular then X is compact.

Proof. Suppose that X is not compact, we must show that £, is not
Arens regular.

We construct a sequence of measures by induction.

First step. We start with any pu; € £, and take a compact K such
that p1(K) > 1 — 1. By Urysohn’s Lemma, there exists ¢; € Co(X)

2
with 0 <41 <1 and ¥; =1 on K. So,

1

p1(Y1) > pr(K) > 1 — >

By Lemma 3.1, if Ky = suppy, there exist ps € £, and ¢ € C.(X)
such that 0 <y < 1,

1

KiN(suppya) = ¢ and  pypz(h2) > 1 - 52

nt step. Suppose that 1, ..., gon—1 € Lpand Y, ..., Po—1 € Ce(X)
with (supp ;) N (suppv;) = ¢, 1 <i# j <2n—1and 0 <1 <1, have
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been chosen. Using Lemma 2.1, take p2, € £, and 99, € C.(X) such
that 0 < 19, <1 and,

((supp 1) U - -+ U (supp ¥2n—1)) N (Supp ¥2,) = ¢,

1 .
pitan(an) > 1= o5n for 1<i<2n—1.

Then, using Lemma 2.1 again (but with left and right interchanged) we
can find 9,41 € £, and op41 € Co(X) such that 0 < 1o,41 < 1,

((supp 1) U - - - U (supp tap)) N (supp ¥ons1) = ¢,

1 .
/,Lgn+1,ui(¢2n+1) >1-— W for 1<i<2n.

We now write

= Z w—hmz )1,

where (1);) is a sequence of elements of C.(X) with disjoint supports and
0 <1; <1 for each i. Therefore,

] = Zr w—zwzgl

Note that, for each n,

[ee]

= (=)™l = D U=1)"] = 9] = o < 1=y

i=1,i#n
We shall consider the iterated limits of the double sequence with terms
f2m—1H2n ().

First consider the case where m > n, we have 2m — 1 > 2n and

1
1> pom—1pon(Y2m—1) > 1 — 92m—1"
Hence

_ 1
|t2m—1t2n ((—1)*™ M hom 1) = (—1)| = pam—1p12n (1 — Pom-1) < Sam1-
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So, when m > n,

|tam—1p2n (V) — (=1)] < |pam—1p20 (W — (—1)*™ Mo _1)|
+ |M2m71H2n(*7/)2m71) + 1‘

< pom—1pon (1 — Yom—1) + pom—1p2n (1 — Yom—1)

1 1

<2x 22m—1 — 92(m—1)"

Thus, for each n,
lim pom—1pon () = —1,
or

lim lim pigpm —1p12n () = —1.
n m

Similarly, when n > m,

|om—11i2n (1) — 1] < |p2m—1pi2n (¥ — (—1)*"b20)| + |H2m—1 120 (th2n) — 1|

< Mmel,UJQn(]- - ¢2n) + #melluﬂn(l - ¢2n)
1 1

<2 X 2% — 7227171.
Thus
lim lim pioy,—1 pon () = 1.
m n
We conclude that £, is not Arens regular. O

Corollary 2.3. Let £ be a general measure algebra on a locally compact
Hausdorff space X. Suppose that for each compact subset K of X and
each positive measure p in £ we can find two positive measures \ and v
in £ such that

supp(Au) N K = ¢ = supp(uv) N K.
If £, is Arens regular then X is compact.

Proof. It is enough to show that 0 € w* —cl(£,1) and then, by Theorem
2.2, X is compact.

Given € > 0, ¢ € Cyp(X) and p is a positive measure in £, we can
choose a compact set K of X such that |o(x)| < H%H’ whenever = ¢ K.

Taking A € £, such that supp(Ap) N K = ¢. For K; = supp(Au), we

have
e |—|/ )01 < 7oplbul =
Hence 0 € w* — cl(£,p



Non-regularity of multiplications for general measure algebras 271

Similarly, for each positive measure p in £, 0 € w* — cl(p£y), and
then conclusion follows. O

3. Examples

Let £ be a general measure algebra and let p € £ be a positive
measure. Next, we show that, in the Theorem 2.2, the conditions 0 €
w* —cl(pgy) and 0 € w* — cl(£,p) are necessary.

Example 3.1. There exists a general measure algebra £ such that 0 &
w* — cl(ply) (for a positive measure p in £) but £ is Arens reqular
without X being compact.

Construction. Let X be a locally compact and non-compact Hausdorff
space. Define a multiplication on (X)) by

pr =v(p  (p,v € M(X)).
For p,v, A € M(X), we have

pA) = AMr)(Mp = A1) ((Dp) = (pv)A.
If p,v € M,(X) then

(u)(1) = v(1)p(1) = 1.
So the multiplication is associative and it maps a pair of probability

measures to a probability measure. Let £ C 9t(X) be a general measure
algebra and let 4 € £ be a positive measure. Take ¢ € Cy(X) with
1
0<p<l, °= Tl (on supp p).
W

Now, if v € £, then

(b)) () = v(1)u(p) = 1.
Therefore, 0 € w* — cl(pngp).
Now we prove that £ is Arens regular. Let F,G € £**. Take two nets
(tta) and (vg) of £ such that F' = w* — lim /i, and G = w* — limg ¥g.
Then

FOG = w* — limw* — lién(yal/g)
o
=w" — llénw — hénl/ﬁ(l)ua
=w" — lién —w* — liorén(,uaug)A

— FOG,
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and so F'OG = FOG which shows that £ is Arens regular.

Note that a general measure algebra which has separately weak™ con-
tinuous multiplication and has an identity in its support is not Arens
regular (See [7, Theorem 3.1] ). But all the above properties are not nec-
essary in general. Also, the following examples show that the Theorem
2.2 can not be derived as a consequence of [7, Theorem 3.1].

Example 3.2. There exists a general measure algebra IM(X) which
is meither Arens reqular nor have the following properities:

(i) There is an identity for M(X).

(ii) The multiplication in IM(X) is weak* separately continuous.
Construction. Start with the order set N = {...,3,1,2,4,...} of posi-
tive integers with discrete topology. Define an operation (n,m) — nom,
from N x N into N, by the following conditions:

max{n,m} (n=2k,m =2k")
nom = < min{n,m} (n=2k+1,m=2k"+1)

mon=mn  (n=2k,m=2k"+1)
where m,n, k, k' € N. It is easy to see that the operation is associative,
commutative and jointly continuous (by discreteness).

Take a sequence (z,) of distinct points of real numbers such that

x = lim, z, exists. We put X = {...,z3,21,2,29,24,...} with new
topology such that {z2,} is the only sequence in X which converges to

x. A bace of this topology is a collection of all subset B of X which
B = {zn} or B = {Tan, T(n41), ** ,2}. Then limzg, = x and

M(X) = {aods + Y _ anba, : ¥ |an| < o},
n=1 n=0

Define a multiplication (convolution) on 9(X) as follows:

5$nom (y = x7’“ = .'L'm)
Oy * 0, =0, %0y =< &y (y = zon, 2 =x)or(y =x,2 = Tom—1)
O (y=z=2)

It is easy to see that
Oy * (05 % 0p) = (Oy ¥ 02) x 0 (y,2,t € X).

So, the multiplication is commutative and associative and it a pair of
maps probability measures to a probability measure. Therefore, 9t(X)
is a general measure algebra.
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Set ey, = 0y, - It is easy to check that
lime, «up=p=limpxe, (ueMX)).
n n

(i) M(X) does not contain an identity. Since, if e = >, ;a;d;, is an
identity (the set I is index set) then for each n,

€ * 5$2n—1 = 6m2n—1 .

Hence, for each k € I, ko(2n + 1) = min{k,2n + 1} = 2n + 1. Thus,
k > 2n — 1 and it is impossible.
(ii) Since, w* — limy, 6, = 0, then

w* — lim(0y,, * 0z,) = w* — lim d,,, = dg,
n n
but 6 * 0z, = d4,. Therefore,

w* — lHm(8z,, * 0zy) # (W' — M 6y, ) * Os

Hence, the multiplication is not separately weak™ continuous.
Finally we show that 9t(X) is not Arens regular. Set p, = 05, write

o
Y= Z(-U”X{mn}-
n=1
For each n, m, we have

fam+2() = =1 m>n

fdn * fam+2() = {mn(w) =1 m < n,

w* — lHm lim prg, * pamao # w* — Imlim pay, * fam2-
n m m n

Thus, 9M(X) is not Arens regular.0

Example 3.3. By the same construction in the example 3.2, suppose
that Y = X\{z}, M(Y) has not an identity, but 0 € w* — cl(pIN,(Y))
for each positive measure p in MM(Y'). So, by Theorem 2.2, M(Y) is not
Arens regular. It follows that the Theorem 2.2, con not be derived as a
consequecne of [7, Theorem 3.17].
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