Bulletin of the Iranian Mathematical Society Vol. 38 No. 1 (2012), pp 265-274.

NON-REGULARITY OF MULTIPLICATIONS FOR GENERAL MEASURE ALGEBRAS

J. LAALI* AND M. ETTEFAGH

Communicated by Fereidoun Ghahramani

ABSTRACT. Let $\mathfrak{M}(X)$ be the space of all finite regular Borel measures on X. A general measure algebra is a subspace of $\mathfrak{M}(X)$, which is an L-space and has a multiplication preserving the probability measures. Let $\mathcal{L} \subseteq \mathfrak{M}(X)$ be a general measure algebra on a locally compact space X. In this paper, we investigate the relation between Arens regularity of \mathcal{L} and the topology of X. We find conditions under which the Arens regularity of \mathfrak{L} implies the compactness of X. We show that these conditions are necessary. We also present some examples in showing that the new conditions are different from Theorem 3.1 of [7].

1. Introduction

One of the questions in abstract harmonic analysis which has drawn a considerable amount of attention has been the question of which properties the measure algebra $\mathfrak{M}(G)$ or $\mathfrak{L}^1(G)$ of a locally compact group G can determine the topology of G. One of the papers dealing with this question is due to Young (see [9]) who proved that the group algebra $L^1(G)$ is Arens regular if and only if G is finite. In [3], Dales, Ghahramani and Helemskii have shown that $\mathfrak{M}(G)$ is weakly amenable if and only if the group G is discrete.

MSC(2010): Primary: 43A10; Secondary: 46G12. 11Y50.

Keywords: Arens regular, second dual algebra, measure algebra.

Received: 30 April 2009, Accepted: 21 June 2010.

^{*}Corresponding author

^{© 2012} Iranian Mathematical Society.

²⁶⁵

We consider the concept of Arens regularity for general measure algebras.

Let X be a locally compact Hausdorff space and $C_c(X), C_0(X)$ denote the normed spaces of all complex valued continuous functions on X with compact supports, vanishing at infinity, respectively. Let $\mathfrak{M}(X)$ be the space of all bounded regular Borel measures on X with its usual norm and let $\mathfrak{M}_p(X)$ be the subset of $\mathfrak{M}(X)$ consisting of all probability measures. The total variation $\mu \in \mathfrak{M}(X)$ is denoted by $|\mu|$ and

$$\|\mu\| = |\mu|(1) = \int_X d|\mu|.$$

We shall say that $\mathfrak{M}(X)$ has a general measure multiplication if there exists a bilinear associative map $m : \mathfrak{M}(X) \times \mathfrak{M}(X) \longrightarrow \mathfrak{M}(X)$ such that if $\mu, \nu \in \mathfrak{M}_p(X)$ then $m(\mu, \nu) \in \mathfrak{M}_p(X)$. We shall write $\mu\nu$ for $m(\mu, \nu)$. A general measure multiplication on $\mathfrak{M}(X)$ makes it a Banach algebra (see [7, Proposition 2.1]). A closed subspace \mathfrak{L} of $\mathfrak{M}(X)$ is an *L*-space if $\mu \in \mathfrak{L}$ and $|\nu| \ll |\mu|$ implies that $\nu \in \mathfrak{L}$. A subalgebra \mathfrak{L} of $\mathfrak{M}(X)$ which is an *L*-space will be called a general measure algebra on *X*.

For $\mu \in \mathfrak{M}(X)$, the support of μ , or $\operatorname{supp} \mu$, is the largest closed set $F \subseteq X$ such that $f \in C_c^+(X)$, f(x) > 0, for some $x \in F$, implies

$$\int_X f d|\mu| = |\mu|(f) > 0.$$

Also, the support of \mathfrak{L} or supp \mathfrak{L} is defined by supp $\mathfrak{L} = cl(\bigcup_{\mu \in \mathfrak{L}} \operatorname{supp} \mu)$.

Let A, B, C be normed spaces. A^* and A^{**} will be the first and second topological dual of A. The natural duality between A^* and A will be denoted by $\langle a^*, a \rangle$ for $a^* \in A^*$, $a \in A$. A is canonically embedded into A^{**}

Let $m : A \times B \longrightarrow C$ be a continuous bilinear map. Then we can define two bounded bilinear extensions $m_1, m_2 : A^{**} \times B^{**} \longrightarrow C^{**}$ by using iterated limits as follows. For $a \in A$, $b \in B$ and $a^{**} \in A^{**}$, $b^{**} \in B^{**}$, let

$$m_1(a^{**}, b^{**}) = w^* - \lim_{a \longrightarrow a^{**}} (w^* - \lim_{b \longrightarrow b^{**}} m(a, b))$$
$$m_2(a^{**}, b^{**}) = w^* - \lim_{b \longrightarrow b^{**}} (w^* - \lim_{a \longrightarrow a^{**}} m(a, b))$$

The bilinear map m is Arens regular (or briefly regular) if the equality

$$m_1(a^{**}, b^{**}) = m_2(a^{**}, b^{**}) \quad (a^{**} \in A^{**}, b^{**} \in B^{**})$$

holds. The details of the constructions may be found in many places, including the book [2] and the articles [4, 5, 6, 8].

Throughout this paper, the first (second) Arens multiplication is denoted by \Box (respectively \Diamond). Thise multiplications can be defined on $\mathfrak{M}(X)^{**}$ by

$$F \Box G = w^* - \lim_n w^* - \lim_m (\mu_n \nu_m), \quad (F \Diamond G = w^* - \lim_m w^* - \lim_n (\mu_n \nu_m)),$$

where $(\mu_n), (\nu_m)$ are nets of elements of $\mathfrak{M}(X)$ such that $\mu_n \longrightarrow F$ and $\nu_m \longrightarrow G$ in the weak^{*} topology.

2. The iterated limits method in Arens regular

The usuall criteria cited for Arens regularity involves the iterated limit conditions [See [6] and [7], Theorem 2.3]. In the following Theorem, we present a new condition for a general measure algebra which is different from the hypothesises of Theorem 3.1 in [7].

In the rest of the paper, we adopt the notation $\mathfrak{L}_p = \mathfrak{M}_p(X) \cap \mathfrak{L}$ where \mathfrak{L} is a general measure algebra.

Lemma 2.1. Let \mathfrak{L} be a general measure algebra on a locally compact and non-compact Hausdorff space X. Suppose that for each positive measure μ in $\mathfrak{L}, 0 \in w^* - cl(\mu \mathfrak{L}_p)$. Then for each $\varepsilon > 0$ and each compact subset K of X and positive measures μ_1, \ldots, μ_n in \mathfrak{L} , there exist $\nu \in \mathfrak{L}_p$ and $\psi \in C_c(X)$ such that $K \cap \operatorname{supp} \psi = \phi$ and $\mu_i . \nu(\psi) \ge \|\mu_i\| - \varepsilon$ for all i.

Proof. By Urysohn's Lemma, we can find $\varphi \in C_c(X)$ with $0 \leq \varphi \leq 1$ and $\varphi(x) = 1$ for all $x \in K$. Since $0 \in w^* - cl(\mu_1 + \cdots + \mu_n)\mathfrak{L}_p$, we can take $\nu \in \mathfrak{L}_p$ such that

$$(\mu_1 + \dots + \mu_n)\nu(\varphi) < \varepsilon.$$

Since ν and μ_i $(1 \le i \le n)$ are positive measures, for $1 \le i \le n$,

$$\|\mu_i\nu\| = (\mu_i\nu)(1) = \mu_i(1)\nu(1) = \mu_i(1) = \|\mu_i\|.$$

It follows that

$$\|(\mu_1 + \dots + \mu_n)\nu\| = ((\mu_1 + \dots + \mu_n)\nu)(1) = \|\mu_1\| + \dots + \|\mu_n\|.$$

Now suppose that $U = \{x \in X : \varphi(x) < 1\}$. Then,

$$((\mu_1 + \dots + \mu_n)\nu)(U) \ge ((\mu_1 + \dots + \mu_n)\nu)(1 - \varphi)$$
$$> \|\mu_1\| + \dots + \|\mu_n\| - \varepsilon.$$

We now choose a compact subset $H \subseteq U$ (so that $H \cap K = \phi$) with

$$((\mu_1 + \dots + \mu_n)\nu)(H) > ||\mu_1|| + \dots + ||\mu_n|| - \varepsilon$$

Therefore, since μ_1, \ldots, μ_n are positive measures in \mathfrak{L} and $\nu \in \mathfrak{L}_p$, for $1 \leq i \leq n$,

$$\mu_{i}\nu(H) = ((\mu_{1} + \dots + \mu_{n})\nu)(H) - ((\mu_{1} + \dots + \mu_{i-1} + \mu_{i+1} + \dots + \mu_{n})\nu)(H)$$

> $\|\mu_{1}\| + \dots + \|\mu_{n}\| - \varepsilon - ((\mu_{1} + \dots + \mu_{i-1} + \mu_{i+1} + \dots + \mu_{n})\nu)(1)$
= $\|\mu_{i}\| - \varepsilon$

Since, H and K are disjoint compact subsets of X, we can find disjoint compact open subsets V and W of X such that $H \subset V$, $K \subseteq W$ and $V \cap \overline{W} = \overline{V} \cap W = \phi$. We apply Urysohn's lemma to obtain $\psi \in C_c(X)$ with $0 \leq \psi \leq 1$, $\psi = 1$ on H and $\psi = 0$ off V. Thus, for all $1 \leq i \leq n$,

$$\mu_i \nu(\psi) \ge \mu_i \nu(H) > \|\mu_i\| - \varepsilon$$

and

$$(\operatorname{supp}\psi)\cap K=\phi.$$

Theorem 2.2. Let \mathfrak{L} be a general measure algebra on a locally compact Hausdorff space X such that for each positive measure μ , $0 \in w^* - cl(\mu \mathfrak{L}_p)$ and $0 \in w^* - cl(\mathfrak{L}_p\mu)$. If \mathfrak{L}_p is Arens regular then X is compact.

Proof. Suppose that X is not compact, we must show that \mathfrak{L}_p is not Arens regular.

We construct a sequence of measures by induction.

First step. We start with any $\mu_1 \in \mathfrak{L}_p$ and take a compact K such that $\mu_1(K) > 1 - \frac{1}{2}$. By Urysohn's Lemma, there exists $\psi_1 \in C_c(X)$ with $0 \leq \psi_1 \leq 1$ and $\psi_1 = 1$ on K. So,

$$\mu_1(\psi_1) \ge \mu_1(K) > 1 - \frac{1}{2}.$$

By Lemma 3.1, if $K_1 = \operatorname{supp} \psi_1$, there exist $\mu_2 \in \mathfrak{L}_p$ and $\psi_2 \in C_c(X)$ such that $0 \leq \psi_2 \leq 1$,

$$K_1 \cap (\operatorname{supp} \psi_2) = \phi$$
 and $\mu_1 \mu_2(\psi_2) > 1 - \frac{1}{2^2}$.

 n^{th} step. Suppose that $\mu_1, \ldots, \mu_{2n-1} \in \mathfrak{L}_p$ and $\psi_1, \ldots, \psi_{2n-1} \in C_c(X)$ with $(\operatorname{supp} \psi_i) \cap (\operatorname{supp} \psi_j) = \phi$, $1 \leq i \neq j \leq 2n-1$ and $0 \leq \psi_i \leq 1$, have

Non-regularity of multiplications for general measure algebras

been chosen. Using Lemma 2.1, take $\mu_{2n} \in \mathfrak{L}_p$ and $\psi_{2n} \in C_c(X)$ such that $0 \leq \psi_{2n} \leq 1$ and,

$$((\operatorname{supp} \psi_1) \cup \dots \cup (\operatorname{supp} \psi_{2n-1})) \cap (\operatorname{supp} \psi_{2n}) = \phi,$$

 $\mu_i \mu_{2n}(\psi_{2n}) > 1 - \frac{1}{2^{2n}} \quad \text{for} \quad 1 \le i \le 2n - 1.$

Then, using Lemma 2.1 again (but with left and right interchanged) we can find $\mu_{2n+1} \in \mathcal{L}_p$ and $\psi_{2n+1} \in C_c(X)$ such that $0 \leq \psi_{2n+1} \leq 1$,

$$((\operatorname{supp}\psi_1)\cup\cdots\cup(\operatorname{supp}\psi_{2n}))\cap(\operatorname{supp}\psi_{2n+1})=\phi_2$$

$$\mu_{2n+1}\mu_i(\psi_{2n+1}) > 1 - \frac{1}{2^{2n+1}}$$
 for $1 \le i \le 2n$.

We now write

$$\psi = \sum_{i=1}^{\infty} (-1)^i \psi_i = \lim \sum_{i=1}^{n} (-1)^i \psi_i,$$

where (ψ_i) is a sequence of elements of $C_c(X)$ with disjoint supports and $0 \le \psi_i \le 1$ for each *i*. Therefore,

$$|\psi| = \sum_{i=1}^{\infty} |(-1)^i \psi_i| = \sum_{i=1}^{\infty} \psi_i \le 1.$$

Note that, for each n,

$$|\psi - (-1)^n \psi_n| = \sum_{i=1, i \neq n}^{\infty} |(-1)^i \psi_i| = |\psi| - \psi_n \le 1 - \psi_n$$

We shall consider the iterated limits of the double sequence with terms

$$\mu_{2m-1}\mu_{2n}(\psi).$$

First consider the case where m > n, we have 2m - 1 > 2n and

$$1 \ge \mu_{2m-1}\mu_{2n}(\psi_{2m-1}) > 1 - \frac{1}{2^{2m-1}}.$$

Hence

$$|\mu_{2m-1}\mu_{2n}((-1)^{2m-1}\psi_{2m-1}) - (-1)| = \mu_{2m-1}\mu_{2n}(1-\psi_{2m-1}) < \frac{1}{2^{2m-1}}.$$

So, when m > n,

$$\begin{aligned} |\mu_{2m-1}\mu_{2n}(\psi) - (-1)| &\leq |\mu_{2m-1}\mu_{2n}(\psi - (-1)^{2m-1}\psi_{2m-1})| \\ &+ |\mu_{2m-1}\mu_{2n}(-\psi_{2m-1}) + 1| \\ &\leq \mu_{2m-1}\mu_{2n}(1 - \psi_{2m-1}) + \mu_{2m-1}\mu_{2n}(1 - \psi_{2m-1}) \\ &< 2 \times \frac{1}{2^{2m-1}} = \frac{1}{2^{2(m-1)}}. \end{aligned}$$

Thus, for each n,

$$\lim_{m} \mu_{2m-1} \mu_{2n}(\psi) = -1,$$

or

$$\lim_{n} \lim_{m} \mu_{2m-1} \mu_{2n}(\psi) = -1.$$

Similarly, when n > m,

$$\begin{aligned} |\mu_{2m-1}\mu_{2n}(\psi) - 1| &\leq |\mu_{2m-1}\mu_{2n}(\psi - (-1)^{2n}\psi_{2n})| + |\mu_{2m-1}\mu_{2n}(\psi_{2n}) - 1| \\ &\leq \mu_{2m-1}\mu_{2n}(1 - \psi_{2n}) + \mu_{2m-1}\mu_{2n}(1 - \psi_{2n}) \\ &< 2 \times \frac{1}{2^{2n}} = \frac{1}{2^{2n-1}}. \end{aligned}$$

Thus

$$\lim_{m}\lim_{n}\mu_{2m-1}\mu_{2n}(\psi)=1$$

We conclude that \mathfrak{L}_p is not Arens regular.

Corollary 2.3. Let \mathfrak{L} be a general measure algebra on a locally compact Hausdorff space X. Suppose that for each compact subset K of X and each positive measure μ in \mathfrak{L} we can find two positive measures λ and ν in \mathfrak{L} such that

$$\operatorname{supp}(\lambda\mu) \cap K = \phi = \operatorname{supp}(\mu\nu) \cap K.$$

If \mathfrak{L}_p is Arens regular then X is compact.

Proof. It is enough to show that $0 \in w^* - cl(\mathfrak{L}_p\mu)$ and then, by Theorem 2.2, X is compact.

Given $\varepsilon > 0$, $\varphi \in C_0(X)$ and μ is a positive measure in \mathfrak{L} , we can choose a compact set K of X such that $|\varphi(x)| < \frac{\varepsilon}{\|\mu\|}$, whenever $x \notin K$. Taking $\lambda \in \mathfrak{L}_p$ such that $\operatorname{supp}(\lambda\mu) \cap K = \phi$. For $K_1 = \operatorname{supp}(\lambda\mu)$, we have

$$|\lambda\mu(\varphi)| = |\int_{K_1} \varphi(t) d(\lambda\mu)(t)| \le \frac{\varepsilon}{\|\mu\|} \|\lambda\mu\| = \varepsilon.$$

Hence $0 \in w^* - cl(\mathfrak{L}_p\mu)$.

270

Similarly, for each positive measure μ in \mathfrak{L} , $0 \in w^* - cl(\mu \mathfrak{L}_p)$, and then conclusion follows.

3. Examples

Let \mathfrak{L} be a general measure algebra and let $\mu \in \mathfrak{L}$ be a positive measure. Next, we show that, in the Theorem 2.2, the conditions $0 \in w^* - cl(\mu \mathfrak{L}_p)$ and $0 \in w^* - cl(\mathfrak{L}_p\mu)$ are necessary.

Example 3.1. There exists a general measure algebra \mathfrak{L} such that $0 \notin w^* - cl(\mu \mathfrak{L}_p)$ (for a positive measure μ in \mathfrak{L}) but \mathfrak{L} is Arens regular without X being compact.

Construction. Let X be a locally compact and non-compact Hausdorff space. Define a multiplication on $\mathfrak{M}(X)$ by

$$\mu\nu = \nu(1)\mu \quad (\mu, \nu \in \mathfrak{M}(X)).$$

For $\mu, \nu, \lambda \in \mathfrak{M}(X)$, we have

$$\mu(\nu\lambda) = (\lambda(1)\nu)(1)\mu = \lambda(1)(\nu(1)\mu) = (\mu\nu)\lambda.$$

If $\mu, \nu \in \mathfrak{M}_p(X)$ then

$$(\mu\nu)(1) = \nu(1)\nu(1) = 1.$$

So the multiplication is associative and it maps a pair of probability measures to a probability measure. Let $\mathfrak{L} \subseteq \mathfrak{M}(X)$ be a general measure algebra and let $\mu \in \mathfrak{L}$ be a positive measure. Take $\varphi \in C_0(X)$ with

$$0 \le \varphi \le 1, \quad \varphi = \frac{1}{\|\mu\|} \quad (\text{on supp } \mu).$$

Now, if $\nu \in \mathfrak{L}_p$ then

$$(\mu\nu)(\varphi) = \nu(1)\mu(\varphi) = 1.$$

Therefore, $0 \notin w^* - cl(\mu \mathfrak{L}_p)$.

Now we prove that \mathfrak{L} is Arens regular. Let $F, G \in \mathfrak{L}^{**}$. Take two nets (μ_{α}) and (ν_{β}) of \mathfrak{L} such that $F = w^* - \lim_{\beta} \hat{\mu}_{\alpha}$ and $G = w^* - \lim_{\beta} \hat{\nu}_{\beta}$. Then

$$F \Box G = w^* - \lim_{\alpha} w^* - \lim_{\beta} (\mu_{\alpha} \nu_{\beta})^{\hat{}}$$

= $w^* - \lim_{\alpha} w^* - \lim_{\beta} \nu_{\beta} (1) \hat{\mu}_{\alpha}$
= $w^* - \lim_{\beta} -w^* - \lim_{\alpha} (\mu_{\alpha} \nu_{\beta})^{\hat{}}$
= $F \Diamond G$,

and so $F \Box G = F \Diamond G$ which shows that \mathfrak{L} is Arens regular.

Note that a general measure algebra which has separately weak^{*} continuous multiplication and has an identity in its support is not Arens regular (See [7, Theorem 3.1]). But all the above properties are not necessary in general. Also, the following examples show that the Theorem 2.2 can not be derived as a consequence of [7, Theorem 3.1].

Example 3.2. There exists a general measure algebra $\mathfrak{M}(X)$ which is neither Arens regular nor have the following properities:

(i) There is an identity for $\mathfrak{M}(X)$.

(ii) The multiplication in $\mathfrak{M}(X)$ is weak* separately continuous. Construction. Start with the order set $N = \{\ldots, 3, 1, 2, 4, \ldots\}$ of positive integers with discrete topology. Define an operation $(n, m) \mapsto n \circ m$, from $N \times N$ into N, by the following conditions:

$$n \circ m = \begin{cases} \max\{n, m\} & (n = 2k, m = 2k') \\ \min\{n, m\} & (n = 2k + 1, m = 2k' + 1) \\ mon = n & (n = 2k, m = 2k' + 1) \end{cases}$$

where $m, n, k, k' \in N$. It is easy to see that the operation is associative, commutative and jointly continuous (by discreteness).

Take a sequence (x_n) of distinct points of real numbers such that $x = \lim_n x_n$ exists. We put $X = \{\dots, x_3, x_1, x, x_2, x_4, \dots\}$ with new topology such that $\{x_{2n}\}$ is the only sequence in X which converges to x. A bace of this topology is a collection of all subset B of X which $B = \{x_n\}$ or $B = \{x_{2n}, x_{2(n+1)}, \dots, x\}$. Then $\lim x_{2n} = x$ and

$$\mathfrak{M}(X) = \{a_0\delta_x + \sum_{n=1}^{\infty} a_n\delta_{x_n} : \sum_{n=0}^{\infty} |a_n| < \infty\}.$$

Define a multiplication (convolution) on $\mathfrak{M}(X)$ as follows:

$$\delta_{y} * \delta_{z} = \delta_{z} * \delta_{y} = \begin{cases} \delta_{x_{nom}} & (y = x_{n}, z = x_{m}) \\ \delta_{y} & (y = x_{2n}, z = x) or(y = x, z = x_{2m-1}) \\ \delta_{x} & (y = x = z) \end{cases}$$

It is easy to see that

$$\delta_y * (\delta_z * \delta_t) = (\delta_y * \delta_z) * \delta_t \quad (y, z, t \in X).$$

So, the multiplication is commutative and associative and it a pair of maps probability measures to a probability measure. Therefore, $\mathfrak{M}(X)$ is a general measure algebra.

Non-regularity of multiplications for general measure algebras

Set
$$e_n = \delta_{x_{2n-1}}$$
. It is easy to check that

$$\lim_{n} e_n * \mu = \mu = \lim_{n} \mu * e_n \quad (\mu \in \mathfrak{M}(X)).$$

(i) $\mathfrak{M}(X)$ does not contain an identity. Since, if $e = \sum_{i \in I} a_i \delta_{x_i}$ is an identity (the set I is index set) then for each n,

$$e * \delta_{x_{2n-1}} = \delta_{x_{2n-1}}.$$

Hence, for each $k \in I$, $ko(2n + 1) = \min\{k, 2n + 1\} = 2n + 1$. Thus, $k \ge 2n - 1$ and it is impossible.

(ii) Since, $w^* - \lim_n \delta_{x_{2n}} = \delta_x$, then

$$w^* - \lim_n (\delta_{x_{2n}} * \delta_{x_2}) = w^* - \lim_n \delta_{x_{2n}} = \delta_x,$$

but $\delta_x * \delta_{x_2} = \delta_{x_2}$. Therefore,

$$w^* - \lim_n (\delta_{x_{2n}} * \delta_{x_2}) \neq (w^* - \lim_n \delta_{x_{2n}}) * \delta_{x_2}$$

Hence, the multiplication is not separately weak^{*} continuous.

Finally we show that $\mathfrak{M}(X)$ is not Arens regular. Set $\mu_n = \delta_{x_n}$ write

$$\psi = \sum_{n=1}^{\infty} (-1)^n \chi_{\{x_{2n}\}}.$$

For each n, m, we have

$$\mu_{4n} * \mu_{4m+2}(\psi) = \begin{cases} \mu_{4m+2}(\psi) = -1 & m > n \\ \mu_{4n}(\psi) = 1 & m \le n, \end{cases}$$

$$w^* - \lim_n \lim_m \mu_{4n} * \mu_{4m+2} \neq w^* - \lim_m \lim_n \mu_{4n} * \mu_{4m+2}.$$

Thus, $\mathfrak{M}(X)$ is not Arens regular. \Box

Example 3.3. By the same construction in the example 3.2, suppose that $Y = X \setminus \{x\}$, $\mathfrak{M}(Y)$ has not an identity, but $0 \in w^* - cl(\mu \mathfrak{M}_p(Y))$ for each positive measure μ in $\mathfrak{M}(Y)$. So, by Theorem 2.2, $\mathfrak{M}(Y)$ is not Arens regular. It follows that the Theorem 2.2, con not be derived as a consequence of [7, Theorem 3.17].

Acknowledgments

The authors would like to express their thanks to Professor John Pym for suggesting this problem (in particular by Theorem 2.2) and his valuable advice.

References

- R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839–848.
- [2] H. G. Dales, Banach Aalgebras and Automatic Continuity, Clarendon Press, Oxford University Press, New York, 2000.
- [3] H. G. Dales, F. Ghahramani and A. Ya. Helemskii, The amenability of measure algebras, J. London Math. Soc. 66 (2002), no. 2, 213–226.
- [4] H. G. Dales, A. Rodriguez-Palacios and M. V. Velasco, The second transpose of a derivation, J. London Math. Soc. 64 (2001), no. 2, 707–721.
- [5] M. Eshaghi Gorgji and M. Filali, Arens regularity of module actions, *Studia Math.* 181 (2007), no. 3, 237–254.
- [6] J. Laali, Arens regularity of bilinear maps for Banach spaces, Far East J. Math. Sci. (FJMS) 12 (2004), no. 1, 89–103.
- [7] J. Laali and J. Pym, Concepts of Arens regularity for general measure algebras, Quart. J. Math. Oxford 47 (1996), no. 2, 187–198.
- [8] S. Mohammadzadeh and H. R. E. Vishki, Arens regularity of module actions and the second adjointg of a derivation, *Bull. Austral. Math. Soc.* 77 (2008), 465–476.
- [9] N. J. Young, The irregularity of multiplication in group algebras, Quart. J. Math. (Oxford) 24 (1973), 59–62.

J. Laali

Department of Mathematics, Kharazmi University, Tehran 15614 Tehran, Iran Email: Laali@tmu.ac.ir

M. Ettefagh

Department of Mathematics, Islamic Azad University, Tabriz Branch, Tabriz, Iran Email: etefagh@iaut.ac.ir, minaettefagh@gmail.com