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PROJECTIVE MAXIMAL SUBMODULES OF

EXTENDING REGULAR MODULES

E. MOMTAHAN

Communicated by Omid Ali Shehni Karamzadeh

Abstract. We show that a projective maximal submodule of a
finitely generated, regular, extending module is a direct summand.
Hence, every finitely generated, regular, extending module with pro-
jective maximal submodules is semisimple. As a consequence, we
observe that every regular, hereditary, extending module is semisim-
ple. This generalizes and simplifies a result of Dung and Smith. As
another consequence, we observe that every right continuous ring,
whose maximal right ideals are projective, is semisimple Artinian.
This generalizes some results of Osofsky and Karamzadeh. We also
observe that four classes of rings, namely right ℵ0-continuous rings,
right continuous rings, right ℵ0-continuous regular rings and right
continuous regular rings are not axiomatizable.

1. Introduction

Here, R is an associative ring with unity and M is a right R-module.
By a regular ring we mean von Neumann regular. A module M is called
regular if every finitely generated submodule of M is a direct summand.
Every projective module over a regular ring is regular. A module is called
hereditary if its submodules are projective. We mention that projective
regular modules were studied in [20] and [22] by Ware and Zelmanowitz,
respectively, besides those who touched the concept of general regular
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modules (i.e., without the projectivity condition) subject to their works
on purities (see [21]). Ggeneral regular modules were also studied in [13]
by Karamzadeh.

We say that a submodule N of M is essential in M , denoted by
N EM , if N intersects each nonzero submodule of M nontrivially. If N
is a proper submodule which is essential in M , we denote it by N CM .
For any right R-module M , the singular submodule Z(M) is defined as
Z(M) = {m ∈M : AnnR(m)ER}. The module M is called singular if
Z(M) = M and nonsingular if Z(M) = 0. It is well-known that Z(M)
is an invariant submodule, i.e., HomR(M,M)Z(M) ⊆ Z(M), and every
submodule of a singular (nonsingular) module is singular(nonsingular).
A module M is called (ℵ0–)CS or (ℵ0–)extending if every (countably
generated) submodule is essential in a direct summand of M . If, in
addition, every submodule of M which is isomorphic to a summand of
M is itself a summand, then M is called a continuous module. It is well-
known that a direct summand of an extending (a continuous) module is
extending (continuous) (see [15, Proposition 2.7]). A ring is called right
continuous if RR is a right continuous module. When R is a regular
ring, R is a right (ℵ0–)continuous ring if and only if it is a right (ℵ0-)
extending ring, because RR always has C2, i.e., every submodule which
is isomorphic to a summand is itself a summand, for regular rings. A ring
is called right (ℵ0-)self-injective if for every (countably generated) right
ideal I and every right R-module homomorphism φ : I −→ RR, there
exists a right R-module homomorphism θ : R −→ R such that θ|I =
φ. It is well-known that right self-injective rings are right continuous.
However, neither right ℵ0-self-injectivity nor right ℵ0-continuity implies
the other one (see Section 3). Let M be a right R-module. By the socle
of M , we mean the sum (or direct sum) of all simple submodules of M .
The category of all right R-modules is denoted by R-Mod. A right ideal
I in a ring R is said to be small if I+K = R implies that K = R, where
K is a right ideal of R. A ring R is called semiperfect if R/Jac(R) is
semisimple Artinian and idempotents lift modulo the Jacobson radical.

In [17] and [18], Osofsky has shown that a ring with the property
that all its cyclic right modules are injective is semisimple Artinian.
She has also proved that any right hereditary right self-injective ring is
semisimple Artinian. This interesting fact is quoted by several authors
(see, for example, [12], [3] and [5]). Karamzadeh [12, Corollary 3] has
improved this result by replacing “hereditary”, by “maximal right ideals
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are projective”. In [5, Theorem 6], Dung and Smith have remarkably
generalized Osofsky’s observation as follows:

([5, Theorem 6]) Let R be any ring and M be a right R-
module such that M is a hereditary extending module.
Then, M is a direct sum of Noetherian uniform modules.

Their proof is based on the fundamental observation of Osofsky (see
[6, Lemma 10.3]), in which she used a set theoretic result of Tarsky. As a
consequence of Theorem 6, they observed that every regular, hereditary,
extending module is semisimple. In Proposition 2.2, we observe that
every finitely generated, regular, extending module in which every max-
imal submodule is projective, is semisimple. As a corollary, we prove
that every hereditary, regular, extending module is semisimple and this
simplifies and generalizes their observation (see [5], page 177, a para-
graph before Proposition 13). The reader is reminded that their main
result ([5, Theorem 6]) remains intact by our observation.

Dung and Smith have also shown (as a consequence of their main
Theorem) that: (i) Any right hereditary right extending ring is right
noetherian and (ii) with R being a ring which is either commutative or
semiprime, any hereditary continuous right R-module is semisimple (see
[5, Corollary 7 and Theorem 11]). They also proved that ([5, Example
12]) there are hereditary injective Noetherian R-modules which are not
semisimple, where R is neither commutative nor semiprime. Neverthe-
less, in Proposition 3.4, we observe (based on Proposition 2.2) that a
right continuous ring, in which maximal right ideals are projective, is
semisimple Artinian. This shows that if in (i) we also assume R is right
continuous, then we obtain semisimple Artinian rings and furthermore,
if we restrict ourselves only to rings, it is possible to drop the conditions
“commutative” and “semiprime” in (ii).

2. Regular extending modules

It is well-known that for a countably generated module N , these two
statements are equivalent: (a) N is a direct sum of finitely generated
modules; (b) every finitely generated submodule of N is contained in
a finitely generated direct summand (e.g., [21, (8.9)]). Based on these
facts, the following key lemma has been proved in [13]. Here, we give a
proof for the sake of completeness.

Lemma 2.1. Let M be a regular module. Then, every countably gener-
ated submodule of M is a direct sum of finitely generated submodules.



406 Momtahan

Proof. Let P be a countably generated submodule of M . Then, every
finitely generated submodule of P is a direct summand of M , and hence
by the modular law a direct summand of P . Now, by the aforementioned
fact the proof is complete. �

Karamzadeh has observed that in a right self-injective ring, every
projective maximal right ideal is a direct summand. This was our moti-
vation to prove the following (see [12, Proposition 1] and [14, Corollary
1.7]).

Proposition 2.2. Let M be a finitely generated regular extending mod-
ule and P be a maximal submodule of M which is projective. Then, P
is a direct summand of M .

Proof. By the Kaplansky theorem (see [11]), each projective module is a
direct sum of countably generated modules. By the Lemma 2.1, we can
write P =

∑
i∈I ⊕Pi, where each Pi is a finitely generated submodule.

If I is infinite, then I = A∪B, where A∩B = ∅ and |A| = |B| =∞. Set
P1 =

∑
i∈A⊕Pi and P2 =

∑
i∈B ⊕Pi. Now, there exist direct summands,

K1 and K2, such that Pi E Ki, for i = 1, 2. That K1
⋂
K2 = (0) is an

immediate consequence of the fact that P1
⋂
P2 = (0) . We claim that

either P1 = K1 or P2 = K2. Otherwise, P = P1 ⊕ P2 C K1 ⊕K2 = M ,
and then

M

P
=
K1 ⊕K2

P1 ⊕ P2

∼=
K1

P1
⊕ K2

P2
,

but, M
P is a simple module, giving a contradiction. Hence, either P1 =

K1 or P2 = K2. But, this means that either A or B is finite, because M
is finitely generated, a contradiction again. Hence, I is finite. �

In [5], Dung and Smith, as a corollary of their main theorem, observed
that every regular hereditary extending module is semisimple. The next
corollary is theirs.

Corollary 2.3. Let M be a right hereditary regular extending module.
Then, M is semisimple.

Proof. By Kaplansky’s theorem, M is a direct sum of countably gener-
ated projective submodules, and by Lemma 2.1, M is indeed a direct
sum of finitely generated submodules, i.e., M =

∑
i∈I ⊕Mi, where each

Mi is finitely generated, extending (by [15, Proposition 2.7]) and regu-
lar. Since, by Proposition 2.2, every maximal submodule of each Mi is
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a direct summand, we know that the Mi are semisimple. This implies
that M is semisimple.

�

Remark 2.4. Let M be a finitely generated ℵ0-extending regular mod-
ule. Then, every countably generated maximal submodule of M is a
direct summand. Therefore, essential maximal submodules of M are un-
countably generated. In particular, if M is countable, then M is Artin
semisimple.

3. Continuous rings

Proposition 2.2 gives the following fact immediately.

Proposition 3.1. Let R be a right continuous regular ring. Then, every
projective maximal right ideal of R is a direct summand.

Proof. By Proposition 2.2, the verification is immediate. �

Corollary 3.2. Let R be a commutative regular continuous ring. Then,
every projective prime ideal of R is a direct summand.

The following lemma is a modification of a result by Güngöroglu [9].

Lemma 3.3. Let R be a right continuous ring and P be a projective
maximal right ideal. Then, P = eR+ Jac(R), where e = e2.

Proof. Let P be a right maximal ideal of R which is projective. Then,
P/J is a maximal right ideal of R/J , where J = Jac(R). By [15,
Propositions 3.11], R/J is a right continuous regular ring. On the other
hand, for every f : R −→ R, we have f(J) ⊆ J (J is small). Now, by
the dual basis lemma, we conclude that P/J is a projective maximal
right ideal of R/J . By Proposition 3.1, it follows that P/J is a direct
summand of R/J . Since idempotents of R/J lift to R by [15, Lemma
3.7], there is an idempotent e ∈ R such that P = eR+ J . �

Fact: Let R be a ring and N be a sigular right R-mdule. Then, no
non-zero submodule inside N is projective. In fact, in R-Mod, every
singular right R-module has the form F/K, where F is a free right R-
module and K is an essential submodule of F . Now, if F/K is projective,
then the following short exact sequence splits: 0 → K → F → F/K →
0, i.e., K is a direct summand, but K is essential (and not equal to F );
a contradiction.

Let R be a ring. The above observation shows that Z(RR) contains no
non-zero projective right subideal; in particular, Z(RR) is not projective.
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Since in a right continuous ring, Jac(R) = Z(RR) ([15, Proposition 3.5]),
we conclude that in a right continuous ring, Jac(R) contains no non-
zero projective right ideal. As a generalization of Osofsky’s observation,
Karamzadeh proved that a right self-injective ring, in which maximal
right ideals are projective, is Artin semisimple ([12, Corollary 3]). He
also observed that the converse may not be true (see [14]). The next
proposition generalizes Karamzadeh’s result (and hence Osofsky’s one).

Proposition 3.4. Let R be a right continuous ring. Then, a maximal
right ideal of R is projective if and only if it is a direct summand. In
particular, a right continuous ring, in which maximal right ideals are
projective (e.g., a hereditary right continuous ring), is Artin semisimple.

Proof. We have already shown that every maximal right ideal P is of the
form P = eR + J , where J = Jac(R) (Lemma 3.3). Hence, (1− e)P ⊆
J = Z(RR), and P = eP⊕(1−e)P , i.e., (1−e)P is projective, and hence
is zero. This means that P = eP = eR. The converse is trivial. �

Corollary 3.5. Let R be a right continuous regular ring which is not a
division ring. Then, S = soc(R) is not a maximal right ideal and each
maximal right ideal of R/S is essential.

Proof. If S = 0 and a maximal right ideal, then R is a division ring,
giving a contradiction. Now, suppose that S 6= 0 and is a maximal right
ideal. Since S is projective, R = S ⊕ m. Now, m is a minimal right
ideal, i.e., m ⊂ S, a contradiction. Suppose P/S is a maximal right
ideal in R/S and R/S = P/S ⊕ K/S. Since P/S is principal, we can
write P = xR ⊕ D, where D ⊆ S, and so P is projective, and hence
R = P ⊕m, but then m ⊆ S ⊆ P ; a contradiction. �

In [5, Corollary 14], it has been observed that: every right continuous
ring, in which every right ideal is countably generated, is a semiperfect
ring. The next corollary is a generalization of this observation.

Corollary 3.6. Let R be a right continuous ring such that every maxi-
mal right ideal of R is countably generated. Then, R is semiperfect. In
particular, any countable right continuous ring is semiperfect.

Proof. Let J denote the Jacobson radical of R. Then, R/J is a von
Neumann regular ring and idempotents can be lifted (see [15, Corollary
3.9 and Theorem 3.11]). Since every maximal right ideal of R/J is
countably generated, using regularity, every maximal right ideal of R/J
is projective. Hence, by Proposition 3.1, every maximal right ideal of
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R/J is a direct summand, i.e., R/J is semisimple artinian. Hence, R is
semiperfect. �

It is well-known that there exist prime right ℵ0-continuous regular
rings which are not right ℵ0-self-injective (see [8, Example 14.9]). On
the other hand, there exist prime unit regular right and left ℵ0-self-
injective rings which are neither right nor left ℵ0-continuous (see [8,
Example 14.21]). But, the next result shows that right ℵ0-continuous
regular rings and right ℵ0-self-injective regular rings share this property
that the essential maximal right ideals are uncountably generated.

Proposition 3.7. Let R be either a right ℵ0-self-injective regular or a
right ℵ0-extending regular ring. Then every countably generated right
maximal ideal is a direct summand.

Proof. For R being a right ℵ0-self-injective regular, the fact has been
shown in [16], by the author.

Now, let R be a right ℵ0-continuous regular ring and P be a count-
ably generated right ideal. By a slight modification of Proposition 3.1,
and this fact that countably generated right ideals of a regular ring are
projective, we conclude that P is a direct summand.

�

One may conclude from [8, Lemma 14.18] that in a right ℵ0-continuous
regular ring, every countably generated right ideal is a right subideal of
a countably generated essential right ideal. This implies that in right ℵ0-
continuous regular rings, there are always countably generated essential
right ideals. Now, by the above proposition we may conclude that a
right ℵ0-continuous regular ring contains countably generated essential
right ideals which are not maximal.

Corollary 3.8. Let R be a right ℵ0-continuous regular ring. If R con-
tains an infinite set of orthogonal idempotents, then R contains a count-
ably generated essential right ideal which is not maximal.

In the sequel, by X we mean a Tychonoff space and by C(X) we
mean the ring of all real valued continuous functions on X. The reader
is referred to [7] for undefined terms and notions about C(X).

Example 3.9. In view of Corollary 3.8, it is worth to mention that, in
C(X), where X is an infinite space, there is always an essential ideal
which is not a prime ideal (see [1, Proposition 4.1]).
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Example 3.10. Let X be a Tychonoff space and C(X) be the ring of real
valued continuous functions. Brookshear has shown that each projective
prime ideal of C(X) is generated by an idempotent and therefore is a
direct summand (see [4]). On the other hand, in [2], it has been shown
that (i) X is extremally disconnected (i.e., the closure of any open set is
open) if and only if C(X) is extending and (ii) C(X) is ℵ0-extending if
and only if X is basically disconnected (i.e., the closure of any cozero-
set is open). Now, one may ask: “Is a commutative regular ring with
all projective prime ideals direct summand, a continuous ring ?”. To
get a counter example, choose a P -space which is not an exteremally
disconnected space. Since every P -space is basically disconnected, C(X)
is an ℵ0-continuous regular ring, and by Brookshear’s observation its
projective prime ideals are direct summands, but C(X) is not a continu-
ous ring by (i). However, in a commutative ℵ0-continuous regular ring,
every countably generated prime ideal is a direct summand.

4. On axiomatizability of continuous rings

Now, we turn to model theoretic aspects of continuous and ℵ0-continuo
-us rings and prove that four classes of rings, namely right ℵ0-continuous
rings, right continuous rings, right ℵ0-continuous regular rings and right
continuous regular rings are not axiomatizable. We use definitions and
terminologies of [10]. A class C of rings is called axiomatizable if there
exists a family of first order sentences in the corresponding language
such that C consists exactly of the rings satisfying these first order sen-
tences. We say that two rings are elementary equivalent, and denote
this by R ≡ S, if R and S satisfy the same first order sentences in the
corresponding language. A class C of rings is called elementarily closed
if R ≡ S and R ∈ C implies S ∈ C. It is well-known that a class C
is axiomatizable if and only if C is closed under elementary equivalence
and under formation of ultraproducts (see [10, Theorem 2.12]). In the
sequel, we use the downward Löwenheim-Skolem theorem. Briefly, this
states that if a countable infinite set of sentences formalized within a
first order predicate calculus has a model, then the sentences have a
countable submodel. We also need the following result from [10].

Proposition 4.1. Let R be a semiperfect ring. Then, R is stable under
elementary descent and under elementary equivalence.

Proof. See [10, Proposition 10.10]. �
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It is well-known that the class of self-injective rings is not closed under
elementary equivalence and under formation of ultraproducts. In [16], it
has been observed that the class of right ℵ0-self-injective (regular) rings
is not axiomatizable, but it is closed under formation of ultraproducts.
Along this line, we study the axiomatizability of the following classes of
rings.

Proposition 4.2. The following classes of rings are not closed under
elementary equivalence and hence are not axiomatizable:

(1) the class of right continuous regular rings;
(2) the class of right ℵ0-continuous rings;
(3) the class of right continuous rings;
(4) the class of right ℵ0-continuous regular rings.

Proof. Let C be any of the four classes mentioned above. Suppose that
this class is closed under elementary equivalence. Let R ∈ C. Then, by
the downward Löwenheim-Skolem theorem, R has a countable substruc-
ture (subring) S, which is elementarily equivalent with R, i.e., S ≡ R.
By the hypothesis, S belongs to any of the four classes. And by Corollary
3.6, S is semiperfect. Hence, by Proposition 4.1, R is also semiperfect.
But, there are non-semiperfect rings which belong to any of the four
classes (for example, an infinite direct product of a field belongs to each
of the above classes and is not semiperfect yet); a contradiction.

�
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