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SMARANDACHE ALGEBRAS AND THEIR

SUBGROUPS

P. J. ALLEN, H. S. KIM∗ AND J. NEGGERS

Communicated by Jamshid Moori

Abstract. In this paper we define Smarandache algebras and show
that every finite group can be found in some Smarandache algebra.
We define and study the Smarandache degree of a finite group and
determine the Smarandache degree of several classes of finite groups
such as cyclic groups, elementary abelian p-groups, and dihedral
groups Dp.

1. Introduction

The notion of Smarandache was introduced by Smarandache, and
Kandasamy [6] studied the concept of Smarandache groupoids, Smaran-
dache Bol groupoids and obtained several interesting results. Padilla [7]
discussed Smarandache algebraic structures. Jun [5] studied a Smaran-
dache structure on BCC-algebras, and introduced the notion of Smaran-
dache BCC-ideals and obtained some conditions for a (special) subset
to be a Smarandache BCC-ideal. The present authors [1, 2] discussed
Smarandache disjointness in BCK/d-algebras. Hummadi and Muham-
mad [4] studied tripotent elements and Smarandache triple tripotnents
in the ring of integers modulo n and in some group ring. Recently, .
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Saeid [7] discussed Smarandache weak BE-algebras. For more informa-
tion on the notion of Smarandache we refer to [6].

In this paper we define Smarandache algebras and show that every
finite group can be found in some Smarandache algebra. We define
and study the Smarandache degree of a finite group and determine the
Smarandache degree of several classes of finite groups such as cyclic
groups, elementary abelian p-groups, and dihedral groups Dp.

2. Smarandache algebras

Let P (x, y) ∈ K[x, y] denote a polynomial in two variables having
coefficients in the fieldK. We define the binary operation ∗ : K×K → K
by a ∗ b = P (a, b); that is, a ∗ b is the value of the polynomial at (a, b).
When the polynomial P (x, y) has degree n, the binary system (K, ∗)
will be called a polynomial algebra of degree n. The binary system (K, ∗)
will be called a Smarandache algebra provided K contains a subset G
with more than one element such that (G, ∗) is a group. Whenever
the binary system (K, ∗) has a non-trivial subgroup under the induced
multiplication ∗, we will call P (x, y) a Smarandache polynomial. We
begin with several instructive examples.

Example 2.1. Let K = Z5 = {0, 1, 2, 3, 4} be the field of integers
modulo 5 and define P (x, y) = x+y+xy+x2y2 ∈ K[x, y]. The product
2 ∗ 4 is illustrated

2 ∗ 4 = P (2, 4) = 2 + 4 + 2 · 4 + 22 · 42 = 78 = 3 (mod 5)

Since P (x, y) has degree 4, it follows that (K, ∗) is a polynomial algebra
of degree 4 and has its complete multiplication table given below:

∗ 0 1 4 2 3
0 0 1 4 2 3
1 1 4 0 4 1
4 4 0 1 3 3
2 2 4 3 4 2
3 3 1 3 2 1

The elements of K were arranged in the multiplication table to em-
phasize that G = {0, 1, 4} is a subgroup of (K, ∗). Clearly, G is the
familiar cyclic group of order 3 with identity 0. Consequently, (K, ∗) is
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a Smarandache algebra of degree 4. It is also clear that elements out-
side the subgroup G may not satisfy the associative law. For example,
(2 ∗ 1) ∗ 3 6= 2 ∗ (1 ∗ 3).

Example 2.2. Let P (x, y) = x2 + y2 be a polynomial of degree 2 over
the field K = Z3 of integers modulo 3. The polynomial algebra (K, ∗)
of degree 2 has the following multiplication table:

∗ 0 1 2
0 0 1 1
1 1 2 2
2 1 2 2

Although (K, ∗) is an associative binary system, it does not contain a
non-trivial subgroup. Consequently, (K, ∗) is not a Smarandache algebra,
or equivalently, P (x, y) is not a Smarandache polynomial over the field
Z3.

Our first theorem will demonstrate that any finite algebraic system
can be found within an appropriately chosen polynomial algebra.

Theorem 2.3. Let A = {a1, a2, · · · , an} be a finite set with n ele-
ments and suppose that ◦ : A×A→ A is a binary operation on A; that
is, (A, ◦) is a finite binary system with n elements. If K is any field
containing at least n elements, then there exists a polynomial P (x, y) of
degree at most 2n with coefficients in K such that the polynomial algebra
(K, ∗) contains a subalgebra (S, ∗) that is isomorphic to (A, ◦).

Proof. Since K has at least n elements, we can select any n distinct
elements z1, z2, · · · , zn from K. Define a map ϕ : A→ S by ϕ(ai) = zi.
Since (A, ◦) is a binary system, it is clear that ai ◦ aj = ak for some k
and we take zk = ϕ(ak). Given i, j ∈ {1, 2, · · · , n} we define

Pij(x, y) = zk(xy − zizj + 1)

∏
t6=i(x− zt)

∏
s 6=j(y − zs)∏

t6=i(zi − zt)
∏
s 6=j(zj − zs)

.

It is clear that Pij(x, y) ∈ K[x, y] and has degree 2 + 2(n − 1) = 2n.
From direct substitution, it follows that

Pij(zu, zv) =

{
zk, if u = i and v = j,

0, otherwise.
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Define

(2.1) P (x, y) =
∑

1≤i,j≤n
Pij(x, y).

Then P (zi, zj) = zk and it follows that

ϕ(ai ◦ aj) = ϕ(ak) = zk = P (zi, zj) = zi ∗ zj = ϕ(ai) ◦ ϕ(aj).

That is, ϕ is an isomorphism mapping the algebra (A, ◦) onto the al-
gebra (S, ∗). Cancellation of terms in the sum (1) is always possible.
Consequently, the degree of the polynomial P (x, y) is at most 2n. �

Corollary 2.4. If G is a finite group of order n, then there exists a field
K and a polynomial P (x, y) of degree at most 2n such that the Smaran-
dache algebra (K, ∗) contains a subalgebra (B, ∗) that is isomorphic to
G.

The finite group G has Smarandache degree m, denoted by sd(G) =
m, provided G can be found within a polynomial algebra (K, ∗) of degree
m but is not contained within any polynomial algebra of degree less than
m. In view of Corollary 2.4, a finite group G of order n has Smaran-
dache degree less than or equal 2n. In this article, we will investigate
the Smarandache degree of several classes of finite groups.

Whenever P (x, y) and Q(x, y) are different polynomials in K[x, y],
each polynomial could be used to determine a polynomial algebra. We
will denote their binary operations by a∗pb = P (a, b) and a∗qb = Q(a, b),
respectively. Our next example will illustrate the argument given in the
proof of Lemma 2.6 below.

Example 2.5. Let K = Z3 = {0, 1, 2} be the field of integers modulo
3, and let P (x, y) = xy. The polynomial algebra (K, ∗p) of degree 2 has
multiplication table:

∗p 1 2 0
1 1 2 0
2 2 1 0
0 0 0 0

The cyclic group G = {1, 2} is clearly a subgroup of the polynomial
algebra (K, ∗p). Unlike Example 1, where the identity of the subgroup
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was 0, this example now has identity e = 1. However, we can use P (x, y)
to define a new polynomial Q(x, y) ∈ K[x, y] by

Q(x, y) = P (x+ 1, y + 1)− 1

= (x+ 1)(y + 1)− 1

= x+ xy + y.

Clearly Q(x, y) has the same degree as P (x, y) and gives the polynomial
algebra (K, ∗q) with multiplication table:

∗q 0 1 2
0 0 1 2
1 1 0 2
2 2 2 2

Observe that the cyclic group with two elements can now be found in
the Smarandache algebra (K, ∗q) as H = {0, 1} with identity e = 0.

Lemma 2.6. Suppose that the group G can be found within the
Smarandache algebra (K, ∗p) generated by a polynomial P (x, y) of de-
gree m. If G has the identity e ∈ K, then there exists an isomorphic
algebra (K, ∗q) generated by a polynomial Q(x, y) of degree m that con-
tains a subgroup H isomorphic to G, and H has the identity 0 ∈ K.

Proof. Let k ∈ K. We use P (x, y) to define a polynomial

Q(x, y) = P (x+ k, y + k)− k

Moreover, define ϕ : (K, ∗p)→ (K, ∗q) by ϕ(g) = g− k for g ∈ K. Then

ϕ(a) ∗q ϕ(b) = (a− k) ∗q (b− k)

= Q(a− k, b− k)

= P ((a− k) + k, (b− k) + k)− k
= P (a, b)− k
= a ∗p b− k
= ϕ(a ∗p b)

and it follows that ϕ : (K, ∗p) → (K, ∗q) is an isomorphism. In par-
ticular, if we choose k = e, the above isomorphism gives H = ϕ(G) as
a subgroup of (K, ∗q) that is isomorphic to G, and H has the identity
ϕ(e) = e− e = 0. �
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Throughout the remainder of this article, we will not distinguish be-
tween the group G and an isomorphic copy of it.
Lemma 2.7. Suppose that G is a non-trivial finite group having Smaran-
dache degree 1. Then G is contained in a Smarandache algebra (K, ∗)
constructed from the polynomial P (x, y) = x+ y.

Proof. In view of Lemma 2.6, we know that G is contained in an algebra
(K, ∗) of degree 1 where G has identity 0 ∈ K. The polynomial P (x, y) of
degree 1 must have the form P (x, y) = A+Bx+Cy where A,B and C are
elements of the field K. Since 0 is the identity of G, g = g∗0 = A+Bg for
every g ∈ G. Thus, 0 = A+ (B − 1)g for every g ∈ G ⊂ K immediately
forces A = 0 and B = 1. Starting with g = 0∗g will likewise give C = 1.
Consequently, P (x, y) = x+ y. �

The following basic results from the theory of fields can be found
in Herstein [3]. There is a unique field, denoted by GF (pn), with pn

elements for every prime p and every positive integer n. The fields
GF (pn) account for all finite fields. The additive group (GF (pn),+) is
the direct sum of n copies of the additive cyclic group (Zp,+) of integers
modulo p; that is,

GF (pn) ∼= Zp ⊕ Zp ⊕ · · · ⊕ Zp.

Therefore, every non-zero element in GF (pn) has order p under addition.
Consequently, (GF (pn),+) is an elementary abelian p-group.

Theorem 2.8. Let G be a non-trivial finite group. Then G has Smaran-
dache degree 1 if and only if G is an elementary abelian p-group.

Proof. Suppose G has Smarandache degree 1. Lemma 2.7 implies that
G can be found in the polynomial algebra (K, ∗) where P (x, y) = x+ y.
Clearly, a∗b = a+b is addition in the fieldK. Since fields of characteristic
0 do not contain non-zero elements of finite order under addition, it
follows that the non-trivial finite group G is a subset of K where K
has prime characteristic p. Without loss of generality, we know that
G ⊂ GF (pn) ⊂ K for some positive integer n. Thus,

G ⊂ GF (pn) ∼= Zp ⊕ Zp ⊕ · · · ⊕ Zp

and it follows that G is an abelian p-group.
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Suppose that G is an elementary abelian p-group. It is well-known
that

G ∼= Zp ⊕ Zp ⊕ · · · ⊕ Zp
for some number, say n, copies of Zp. Then G is clearly a subgroup
of the polynomial algebra (K, ∗) of degree 1, where K = GF (pn) and
P (x, y) = x + y. It follows that the finite elementary abelian p-group
has sd(G) = 1, and the proof is complete. �

Theorem 2.9. Let G be a non-trivial finite cyclic group.

(i) G has prime order p if and only if sd(G) = 1,
(ii) G has composite order if and only if sd(G) = 2.

Proof. (i) Suppose that G has Smarandache degree 1. Theorem 2.8 im-
mediately implies that G is a finite elementary abelian p-group. Since
G is cyclic, it follows that G must be a cyclic group of order p. On
the other hand, if G is a cyclic group of order p it is clear that G is
isomorphic to the additive group Zp. Consequently, G can be found in
the polynomial algebra (K, ∗) of degree 1 where K = GF (p1) ≈ Zp and
P (x, y) = x+ y.

(ii) Let K denote the field of complex numbers. Then the Smaran-
dache algebra (K, ∗) induced by the Smarandache polynomial P (x, y) =
xy is just the group of non-zero complex numbers under the usual com-
plex multiplication. Obviously, (K, ∗) contains many non-trivial sub-
groups. In particular, when n > 1 is an integer

G = {e2πik/n | k = 0, 1, 2, · · · , n− 1}

is a finite cyclic subgroup of order n. Consequently, any finite cyclic
group can be found as a subgroup of some Smarandache algebra (K, ∗)
that is induced by a Smarandache polynomial P (x, y) with degree not
greater than 2. In view of part (i), it is clear that a finite cyclic group
of composite order must have Smarandache degree 2. �

3. Polynomial algebras

Our next result demonstrates that polynomial algebras of degree less
than four can not contain any non-abelian groups.

Theorem 3.1. If G is a subgroup of the polynomial algebra (K, ∗) of
degree less than or equal to 3, then G is abelian.
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Proof. Assume that there exists a polynomial algebra of degree less than
or equal to 3 that contains a non-abelian group G. Without loss of
generality, we may in view of Lemma 2.6 suppose that the identity of G
is e = 0 and that the polynomial algebra (K, ∗) of degree less than or
equal to 3 is generated by the polynomial

P (x, y) = A+Bx+Cy+Dx2 +Exy+Fy2 +Gx3 +Hx2y+ Ixy2 +Jy3

where the coefficients A,B, · · · , J are elements of the field K. The
elements of G will be denoted by

G = {e = 0, g1, g2, · · · , gr} ⊂ K

where each gi 6= 0. Since G is non-abelian, G must contain at least 6
elements. Therefore, r ≥ 5. Clearly, for each gi ∈ G

(3.1) gi = gi ∗ 0 = P (gi, 0) = A+Bgi +Dg2i +Gg3i

and

(3.2) gi = 0 ∗ gi = P (0, gi) = A+ Cgi + Fg2i + Jg3i .

After subtracting (3.2) from (3.1) we obtain

(3.3) 0 = (B − C)gi + (D − F )g2i + (G− J)g3i .

Equation (3.3) shows that the polynomial

f(x) = (B − C)x+ (D − F )x2 + (G− J)x3 ∈ K[x]

has at least 5 roots in the field K. Therefore, the polynomial f(x) must
be the zero polynomial; i.e., B − C = 0, D − F = 0, and G − J = 0.
Consequently, B = C,D = F,G = J and we can write P (x, y) as

P (x, y) = A+B(x+ y) +D(x2 + y2) +Exy+Hx2y+ Ixy2 +G(x3 + y3)

After rewriting equation (3.1) above as 0 = A+ (B − 1)gi +Dg2i +Gg3i ,
it is also clear that the polynomial h(x) = A+(B−1)x+Dx2 +Gx3 has
at least 5 roots in K. Consequently, h(x) must be the zero polynomial
with A = 0, B = 1, D = 0 and G = 0. It now follows that

(3.4) P (x, y) = (x+ y) + xy(E +Hx+ Iy).

If I = H, then it must follow that a ∗ b = P (a, b) = P (b, a) = b ∗ a
for every a, b ∈ G, a contradiction since G is non-abelian. Therefore,
I 6= H. Since e = 0 and each gi ∈ G has an inverse, we may suppose
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that gj ∈ G is such that gi ∗ gj = gj ∗ gi = 0. Using equation (3.4) we
have

(3.5) 0 = gi + gj + gigj(E +Hgi + Igj),

and

(3.6) 0 = gj + gi + gjgi(E +Hgj + Igi).

Subtracting (3.6) from (3.5) gives

0 = (gigj)(H − I)(gi − gj).
The product of elements in a field K can not be zero unless one of the
factors is zero. Since gigj 6= 0 and H − I 6= 0 it follows that gi − gj =
0. Consequently, gi = gj and we have shown that each element of
G is its own inverse. This immediately implies that G is abelian, a
contradiction. �

Let Zp denote the field of integers modulo the prime p > 2. Since the
multiplicative group of any finite field is cyclic, it is clear that

G = {g ∈ Zp | g 6= 0}
is multiplicatively a cyclic group of order p− 1. The elements of G can
be written as

1, 2, 3, · · · , p− 1

2
,−p− 1

2
, · · · ,−3,−2,−1

and consequently, G2 = {12, 22, 32, · · · , [p−12 ]2} since g2 = (−g)2 in any

field. It is easy to see that the subgroup G2 has order p−1
2 . We will need

the well known results in the next lemma. The proof is provided for the
sake of completeness.

Lemma 3.2. Let p be a prime, p > 2, and let Zp denote the field of
integers modulo p. Then

(i) The polynomial x2 + r ∈ Zp[x], where r 6= 0, is irreducible over
Zp if and only if −r 6∈ G2.

(ii) If r ∈ G and −r 6∈ G2, then (−r)
p−1
2 = −1.

Proof. (i) It is obvious that the quadratic x2 + r ∈ Zp is irreducible if
and only if it has no roots in Zp. Part(i) follows immediately.

(ii) Since p − 1 is an even integer, we can write p − 1 = 2nq where q
is an odd integer (note that q may be 1). A cyclic group has one and
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only one subgroup of order k for every positive divisor k of its order.
Consequently, G contains a subgroup T of order 2n and a subgroup H of
order q. Since gcd(2n, q) = 1, it is clear that T ∩H =< 1 >. Moreover,
G = TH. Clearly, H =< h >= {1, h, h2, h3, · · · , hq−1} is a cyclic group
of odd order q, since G is cyclic and any subgroup of a cyclic group
must be cyclic. We know that hs is a generator of H if and only if
gcd(s, q) = 1. Consequently, h2 is a generator of H and it follows that
H2 = H. Therefore,

G2 = (TH)2 = T 2H2 = T 2H.

We have already observed that G2 has p−1
2 elements. It follows imme-

diately that T 2 must have 2n−1 elements.
Next, suppose that t ∈ T where t 6∈ T 2. Since T has order 2n, it

is clear that t has order 2k where 1 ≤ k ≤ n. Assume that k < n.
Since T 2 is a cyclic group of order 2n−1, and 2k divides the order T 2, it
follows that T 2 contains one and only one subgroup, say J , of order 2k.
However, we now have two distinct subgroups, J and < t >, of the cyclic
group G with the same order, which is a contradiction. We have proven
that if t ∈ T where t 6∈ T 2, then t is a generator of T . So t2

n
= 1. Since

−1 is the unique element of order 2 in G, and since the cyclic subgroup

T must contain an element of order 2, it follows that t2
n−1

= −1.
Finally, let r ∈ G where −r 6∈ G2. We can write r = th where t ∈ T

and h ∈ H. Clearly, −r = −(th) = (−t)h. Since −r 6∈ G2 = T 2H, it
follows that −t 6∈ T 2. We now have

(−r)
p−1
2 = (−t)

p−1
2 h

p−1
2

= (−t)2n−1qh2
n−1q

= [(−t)2n−1
]q[hq]2

n−1

= [−1]q[1]2
n−1

, since −t 6∈ T 2 and |H| = q

= −1, since q is an odd integer.

This completes the proof of part (ii). �

The field K = GF (p2) is constructed from the quotient ring

K ∼= Zp[x]/(x2 + r)

where x2 + r is an irreducible quadratic in Zp. In view of Lemma 3.2,
we may use any r ∈ G where −r 6∈ G2. The elements of K, modulo the



Smarandache algebras and their subgroups 1073

ideal (x2 + r), are the polynomials of the form

K = {ux+ v |u, v ∈ Zp}
We of course add and multiply as in any quotient ring and use the fact
that x2 + r = 0, or equivalently, x2 = −r, to reduce products to the
form ux+ v.
Lemma 3.3. If ux+ v ∈ K = GF (p2) where x2 + r is irreducible, then

(ux+ v)p = −ux+ v.

Proof. It follows that

(ux+ v)p = (ux)p + vp

= upxp + vp

= ux(x2)
p−1
2 + v

= ux(−r)
p−1
2 + v

= ux(−1) + v by Lemma 3.2

= −ux+ v.

�

Lemma 3.4. Let P (x, y) = x + y + xy(1 + yp−1) be a polynomial in
Zp[x, y]. If mx + n and ux + v are elements in the field K = GF (p2),
then

(mx+ n) ∗ (ux+ v) = (m+ u+ 2mv)x+ (n+ v + 2nv).

Proof. It will be convenient to rewrite the polynomial P (x, y) as

P (x, y) = x+ y + x(y + yp).

Then

(mx+ n) ∗ (ux+ v)

= (mx+ n) + (ux+ v) + (mx+ n)[(ux+ v) + (ux+ v)p]

= (mx+ n) + (ux+ v) + (mx+ n)[(ux+ v) + (−ux+ v)]

= (mx+ n) + (ux+ v) + (mx+ n)[2v]

= (m+ u+ 2mv)x+ (n+ v + 2nv).

�
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Let p > 2 be a prime, and let

Dp =< a, b | ap = 1, b2 = 1, and ba = a−1b >

be the dihedral group of order 2p. We will show, in the next two theo-
rems, that Dp has Smarandache degree p+ 1.

Theorem 3.5. Let p > 2 be a prime. The dihedral group Dp of order
2p can be found within the polynomial algebra (K, ∗) where K = GF (p2)
and P (x, y) = x+ y + xy(1 + yp−1).

Proof. We know that K = GF (p2) = {ux+ v |u, v ∈ Zp}. Let G denote
the following set of elements in K:

0, x, 2x, 3x, · · · , (p−1)x,−1,−1x−1,−2x−1,−3x−1, · · · ,−(p−1)x−1.

It is clear that G contains 2p distinct elements of K. Define a map
η : Dp → G by

η(aibj) =

{
ix, if j = 0,

−ix− 1, if j = 1
.

It follows that η is a one-to-one map from Dp onto G. The following
four cases will show that η(g1 · g2) = η(g1) ∗ η(g2) for every g1, g2 ∈ Dp

and it will have been proven that (G, ∗) is a group isomorphic to Dp.
Case 1: g1 = ai and g2 = aj .

η(ai) ∗ η(aj) = (ix) ∗ (jx)

= (i+ j)x, by Lemma 3.4

= η(ai+j)

= η(ai · aj).

Case 2: g1 = aib and g2 = aj .

η(aib) ∗ η(aj) = (−ix− 1) ∗ (jx)

= −(i− j)x− 1, by Lemma 3.4

= η(ai−jb)

= η(aib · aj).
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Case 3: g1 = aib and g2 = ajb.

η(aib) ∗ η(ajb) = (−ix− 1) ∗ (−jx− 1)

= (i− j)x, by Lemma 3.4

= η(ai−j)

= η(aib · ajb).

Case 4: g1 = ai and g2 = ajb.

η(ai) ∗ η(ajb) = (ix) ∗ (−jx− 1)

= −(i+ j)x− 1, by Lemma 3.4

= η(ai+jb)

= η(ai · ajb).

�

Theorem 3.6. The dihedral group Dp of order 2p where p > 2 is prime
and has sd(Dp) = p+ 1.

Proof. Assume that Dp can be found within a polynomial algebra (K, ∗)
generated by the polynomial P (x, y) having degree k ≤ p. Lemma 2.6
implies that we may consider e = 0 is the identity of Dp. If we write
P (x, y) =

∑
aijx

iyj , then g ∗ 0 = g for every g ∈ Dp implies that

g = P (g, 0) = a00 + a10g + a20g
2 + · · ·+ ak0g

k.

Consequently, the polynomial f(x) = a00+(a10−1)x+a20x
2+· · ·+ak0xk

has every element in Dp for a root; i.e., f(g) = 0 for every g ∈ Dp. It
follows that f(x) must be the zero polynomial. Thus, a00 = a20 = a30 =
· · · = ak0 = 0 and a10 = 1. By a symmetric argument, the fact that
0∗g = g for every g ∈ Dp will imply that a00 = a02 = a03 = · · · = a0k = 0
and a01 = 1. Therefore,

P (x, y) = x+ y + xyQ(x, y)

for some polynomial Q(x, y) having degree k − 2.
The dihedral group Dp contains p elements of order 2 each having the

form

b0 = a0b, b1 = a1b, b2 = a2b, · · · , bp−1 = ap−1b.
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Thus,

0 = bi ∗ bi = P (bi, bi) = bi + bi + bibiQ(bi, bi)

= 2bi + bibiQ(bi, bi)

= (2 + biQ(bi, bi))bi.

Since bi 6= 0 in the field K, it must follow that 2 + biQ(bi, bi) = 0.
Consequently, the polynomial h(x) = 2 + xQ(x, x) has degree at most
p − 1 and has p elements b0, b1, · · · , bp−1 that are roots and it follows
that h(x) must be the zero polynomial. Therefore, 2 = 0 in the field
K, and Q(x, x) is also the zero polynomial. Since 2 = 0, it is clear that
K has characteristic 2. The generator a ∈ Dp must have order p > 2.
However,

a ∗ a = P (a, a) = a+ a+ a2Q(a, a)

= 2a+ a2 · 0 since Q(x, x) is the zero polynomial

= 0 + a2 · 0
= 0.

We have established that a has order 2, a contradiction. �
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