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BEYOND FIRST ORDER LOGIC: FROM NUMBER OF
STRUCTURES TO STRUCTURE OF NUMBERS: PART
II
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ABsTRACT. We study the history and recent developments in non-
elementary model theory focusing on the framework of abstract
elementary classes. We discuss the role of syntax and semantics
and the motivation to generalize first order model theory to non-
elementary frameworks and illuminate the study with concrete ex-
amples of classes of models.

This second part continues to study the question of catecoricity
transfer and counting the number of structures of certain cardi-
nality. We discuss more thoroughly the role of countable models,
search for a non-elementary counterpart for the concept of com-
pleteness and present two examples: one example answers a ques-
tion asked by David Kueker and the other investigates models of
Peano Arithmetic and the relation of an elementary end-extension
in terms of an abstract elementary class.

Beyond First Order Logic: in number of structures to structure of
numbers, Part I, we studied the basic concepts in non-elementary model
theory, such as syntaxr and semantics, the languages L), and the notion
of a complete theory in first order logic (i.e., in the language L, ), which
determines an elementary class of structures. Classes of structures which
cannot be axiomatized as the models of a first-order theory, but might
have some other ‘logical’ unifying attribute, are called non-elementary.
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We discussed the categoricity transfer problem and how this lead to
the development of a so-called stability classification. We emphasized
how research questions in counting the number of models of the class
in a given cardinality had led to better understanding of the structures
of the class, enabled classification via invariants and found out to have
applications beyond the original research field.

We mentioned two procedures for proving a categoricity transfer theo-
rem: the saturation transfer method and the dimension method. Specially,
we discussed types and how the question whether or how many times cer-
tain types are realized in a structure was essential. Here, we describe how
these methods have been applied to Abstract Elementary Classes.

The study of complete sentences in Ly, ,, gives little information about
countable models as each sentence is Wy-categorical. Another approach
to the study of countable models of infinitary sentences is via the study
of simple finitary AEC, which are expounded in Subsection 1.1. How-
ever, while complete sentences in L, (, is too strong a notion, some
strengthening of simple finitary AEC is needed to solve even such natural
questions as, ‘When must an Ny-categorical class have at most countably
many countable models?’. In Section 2, we focus on countable models
and study the concept of completeness for abstract elementary classes.
Some interesting examples of models of Peano Arithmetic enliven the
discussion.

1. Abstract elementary classes and Jonsson classes
We recall the definition of an abstract elementary class.

Definition 1.0.1. For any vocabulary T, a class of T-structures (K, k)
is an abstract elementary class (AEC) if

(1) both K and the binary relation <k are closed under isomorphism.
(2) If A Xk B, then A is a substructure of B.
(3) <k s a partial order on K.
(4) If (A; 13 < §) is an sg-increasing chain, then
(a) Uics Ai € K;
(b) for each j <0, Aj Sk U;cs Ais
(c) if each A; <k M €K, then |J, 5 Ai <k M.
(5) If A,B,C €K, A<k C, Bk C and A C B, then A Xk B.
(6) There is a Lowenheim-Skolem number LS(K) such that if A € K
and B C A a subset, then there is A’ € K such that B C A’ <x A
and |A'| = |B| + LS(K).
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Abstract elementary classes arise from very different notions <k, which
do not necessarily have a background in some logic traditionally stud-
ied in model theory. If a class (K, <) is an AEC, then many tools of
model theory can be applied to study that class. The first essential ob-
servation is that an analog of the Chang-Scott-Lopez-Escobar Theorem
(see Theorem 3.1.5 in Part I) holds for any AEC. Here, purely semantics
conditions on a class imply that it has a syntactic definition.

Theorem 1.0.2. (Shelah) Assume that (K, <k) is an abstract elemen-
tary class of L-structures, where |L| < LS(K). There is a vocabulary
L' O L with cardinality |LS(K)|, a first order L'-theory T and a set 2 of
at most 2V5) partial types such that K is the class of reducts of mod-
els of T omitting ¥ and <k corresponds to the L'-substructure relation
between the expansions of structures to L'.

This theorem has an interesting corollaries, since it enables us to use
the tools available for pseudoelementary classes: for example, we can
count an upper bound for the Hanf number. To extend the notion of
Hanf number (see definition 2.1.6 in Part I) to AEC, take C in the def-
inition to be the collection of all abstract elementary classes for a fixed
vocabulary and a fixed Lowenheim-Skolem number. (For a more gen-
eral account of Hanf numbers, see page 32 of [2].) There is an interesting
interplay between syntax and semantics: we can compute the Hanf num-
ber for AECs with a given LS(K), a semantically defined class. But the
proof relies on the methods available only for an associated syntactically
defined class of structures in an extended vocabulary.

The following properties of an AEC play a crucial role in advanced
work.

Definition 1.0.3 (Amalgamation and joint embedding).

(1) We say that (K, <k) has the amalgamation property (AP), if it

satisfies the following:
IfABCeK, A<k B, Ak C and BNC = A, then there

are D € K and a map f: BUC — D such that f [ B and f | C
are K-embeddings.

(2) We say that (K, k) has the joint embedding property (JEP), if
for every A, B € K there is C € K, K-embeddings f : A — C and
g:B—C.
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The notion of AEC is naturally seen as a generalization of Jénsson’s
work in the 50’s on universal and homogeneous-universal relational sys-
tems; we introduce a new terminology for those AECs close to his original
notion.

Definition 1.0.4 (Jonsson class). An abstract elementary class is a
Jonsson class, if the class has arbitrarily large models and the joint em-
bedding and amalgamation properties.

The models of a first order theory under elementary embedding form a
Jonsson class in which complete first order type (over a model) coincides
exactly with the Galois types described below and the usual notion of a
monster model is the one we now explain.

A standard setting, stemming from Joénsson’s [10] version of Fraissé
limits of classes of structures, builds a ‘large enough’ monster model 9
(or universal domain) for an elementary class of structures via amalga-
mation and unions of chains. A monster model is universal and homo-
geneous in the sense that

e all ‘small enough’ structures can be elementarily embedded in 91
and

e all partial elementary maps from M to M with ‘small enough’
domain extend to automorphisms of 1.

Here, ‘small enough’ refers to the possibility of finding all structures ‘of
interest’ inside the monster model; further cardinal calculation can be
done to determine the actual size of the monster model.

The situation is more complicated for AEC. We consider here Jdnsson
classes, where we are able to construct a monster model. However, even
then the outcome differs crucially from the monster in elementary classes,
since we get only model-homogeneity, that is, the monster model for a
Jonsson class is a model 91 such that

e for any ‘small enough’ model M € K there is a K-embedding
f:M — 9.

e Any isomorphism f: M — N between ‘small enough’ K-elementary
substructures M, N <g 9 extends to an automorphism of 9.

The first order case has homogeneity over sets; AECs have homogeneity
only over models.

The first problem in stability theory for abstract elementary classes is
to define ‘type’, since now it cannot be just a collection of formulas. We
note two definitions of the Galois type.
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Definition 1.0.5 (Galois type).

(1) For an arbitrary AEC (K, <x) and models M <x N € K, con-
sider the following relation for triples (a, M, N), where a is a
finite tuple in N,

(C_l’ M7 N) = (67 M’ Nl)’
if there are a model N” € K and K-embeddings f: N — N”,

g:N'" — N" such that f | M = g | M and f(a) = b. Take
the transitive closure of this relation. The equivalence class of
a tuple a in this relation, written as tp®(a, M, N), is called the
Galois type of a in N over M.

(2) Assume that (K, k) is a Jonsson class and M is a fivred monster
model for the class. We say that the tuples @ and b in 9 have

the same Galois type over a subset A C N,

tp#(a/A) = tp#(b/A),
if there is an automorphism f of M fizing A pointwise such that
fla)=b.

Fruitful use of Definition 1.0.5.(2) depends on the class having the
amalgamation property over the ‘parameter sets’ A. Thus, even with
amalgamation, there is a good notion of Galois types only over models
and not over arbitrary subsets.

The monster model is A-saturated for a ‘big enough’ A. That is, all
Galois-types over <k-elementary substructures M of size < A, which are
realized in some <g-extension of M, are realized in 9. When M is a
K-elementary substructure of the monster model 2, the two notions of
a Galois type tp8(a, M,9) agree. As in the first order case, the set of
realization of a Galois-type of @ (over a model) is exactly the orbits of
the tuple a under automorphisms of M fixing the model M pointwise;
that is,

tp®(a, M, M) = tp&(b, M, M),

if and only if there is an automorphism f of 9 fixing M pointwise
such that f(a) = b. Furthermore, if N <xg 9 is any K-extension of
M containing a, then tp8(a, M, N) equals tp2(a, M,9t) N N. Hence, in
Jonsson classes we fix a monster model 99 and use a simpler notation
for a Galois type, tp8(a/M), which abbreviates as tp2(a, M,91). Since
we can also study automorphisms of 9 fixing some subset A of M, also
the notion of a Galois type over a set A becomes amenable. But, the
two forms are not equivalent over sets.
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The notion of Galois type lacks many properties that the compact-
ness of first order logic guarantees for first order types. In the first order
case, we can always realize a union of an increasing chain of types in
the monster model and types have finite character: the types of @ and b
agree over a subset A if and only if they agree over every finite subset of
A. Many such nice properties disappear for arbitrary Galois types. But,
we restrict to better-behaved Jénsson classes. Grossberg and VanDieren
[4] isolated the concept of tameness that is crucial in the study of cate-
goricity transfer for Jonsson classes.

Definition 1.0.6 (Tameness). We say that a Jonsson class (K, <k) is
(k, A)-tame for k < A, if the followings are equivalent for a model M of
size at most \:

o tps(a/M) = tp3(b/M),

o tps(a/M') = tps(b/M’), for each M g M, with |M'| < k.
Furthermore, we say that the class is k-tame, if it is (k, \)-tame for all
cardinals A and tame, if it is LS(K)-tame.

Giving up compactness also has benefits: ‘non-standard structures’
that realize unwanted types, which are forced by compactness, can now
be avoided. For example, we might study real vector spaces in a two
sorted language and demand that the reals be standard.

The first ‘test question’ for AECs was to ask if one can prove a cate-
goricity transfer theorem. Shelah stated the following conjecture.

Conjecture 1.0.7. There exists a cardinal number k (depending only on
LS(K)) such that if an AEC with a given number LS(K) is categorical in
some cardinality A\ > k, then it is categorical in every cardinality A > k.

Shelah introduced the notion of a Jonsson class (not the name) in
1999 [18] and proved the following categoricity transfer result (see [2] in
Part II).

Theorem 1.0.8. (Shelah) Let (K,<k) be a Jonsson class. There is a
calculable cardinal Hy, depending only on LS(K), such that if (K, k) is
categorical in some cardinal \* > Ha, then (K, <) is categorical in all
cardinals in the interval [Ha, AT].

We remark that this almost settles the Categoricity Conjecture for
Jonsson classes: for each such AEC with a fixed Lowenheim-Skolem
number LS, let pux be the sup (if it exists) of the successor cardinals
in which K is categorical. Since there does not exist a proper class of
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such AECs, there is a supremum for such ug; denote this number by
A(LS). Now, if a Jonsson class with Lowenheim-Skolem number LS is
categorical in some successor cardinal A > p = sup(A(LS), Ha), then it is
categorical in all cardinals in [Hg, AT], and in arbitrarily large successor
cardinals, and hence in all cardinals above Hy. Two problems remain in
this area. Remove the restriction to successor cardinals in Theorem 1.0.8;
this would avoid the completely non-effective appeal to A(LS). Make a
more precise calculation of the cardinal Hs in the successor case (Problem
D.1.5 in [2].)

Shelah [18] proved a downward categoricity transfer theorem and also
showed categoricity for At > H, implies a certain kind of ‘tameness’
for Galois types over models of size < Hs, which enables the transfer of
categoricity up to all cardinals in the interval [Ha, AT]. Grossberg and
VanDieren [4] separated out the upward categoricity transfer argument,
and realized that tameness was the only additional condition needed
to transfer categoricity arbitrarily high. The downward step used the
saturation transfer method, where saturation was with respect to Galois
types; the upwards induction uses the dimension method.

Theorem 1.0.9. (Grossberg and VanDieren [4]) Assume that a x-tame
Jonsson class (K, <xk) is categorical in \*, where A > LS(K) and X\ > x.
Then, (K, <k) is categorical in each cardinal > \*.

Lessmann [15] extended the result to LS(K)™'-categoricity in the case
LS(K) = ®g. The restriction to the countable Léwenheim cardinal num-
ber reflects a significant combinatorial obstacle. In these two results,
the categoricity transfer is only from successor cardinals and the proof is
essentially an induction on the dimension. In Subsection 1.1, we discuss
further use of the saturation transfer method for simple, finitary AECs
by Hyttinen and Keséld [11].

1.1. Simple finitary AECs. Simple finitary AECs were defined partic-
ularly to study independence and stability theory in a framework without
compactness. The idea was to find a common extension for homogeneous
model theory, study excellent sentences in L, (see Part I) and also
clarify the ‘core’ properties which support a successful dimension theory.
The property finite character is essential for this analysis.

Definition 1.1.1 (Finite character). We say that (K,<k) has finite
character if for any two models A, B € K such that A C B the followings
are equivalent:
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(1) A=k B.
(2) For every finite sequence a € A, there is a K-embedding f: A — B
such that f(a) = a.

Definition 1.1.2 (Finitary AEC). An abstract elementary class is fini-
tary, if it is a Jonsson class with the countable Léwenheim-Skolem num-
ber that has finite character.

Definition 1.1.2 slightly modifies Hyttinen and Kesila [6]; in particu-
lar, the formulation of finite character is from Kueker [14]. Elementary
classes are finitary AECs. However, a class defined by an arbitrary sen-
tence in Ly, ., the relation <k being the one given by the corresponding
fragment, may not have AP, JEP or even arbitrarily large models. A
relation <k, given by any fragment of Ly, will have finite character.
Most abstract elementary classes definable in Ly, (Q) do not have finite
character. An easy example of a class without finite character, due to
Kueker [14], is a class of structures with a countable predicate P, where
M <x N if and only if M C N and P(M) = P(N).

The notion of weak type is just the Galois type with a built-in finite
character: two tuples @ and b have the same weak type over a set A,
written as

tp™(a/A) = tp™ (b/A),
if they have the same Galois type over each finite subset A’ C A. Fur-
thermore, we say that a model M is weakly saturated, if it realizes all
weak types over subsets of size < M.

Basic stability theory with a categoricity transfer result for simple fini-
tary AECs is carried out in [6, 7] and [5]. However, some parts of the
theory hold also for arbitrary Jonsson classes; this is expounded in [9].
David Kueker [14] clarified when AEC admits syntactic definitions and
particularly the connection of finite character to definability in L., de-
finability of AECs; unlike Theorem 1.0.2, no extra vocabulary is needed
for these results.

Theorem 1.1.3. (Kueker) Assume that (K, 5k) is an abstract elemen-
tary class with LS(K) = k. Then,

(1) the class K is closed under L, .+-elementary equivalence.

(2) If LS(K) = Ry and (K, k) contains at most X models of car-
dinality < A, for some cardinal X, such that A = A, then K 1is
definable with a sentence in Ly+ .

(3) If k = Ng and (K,<k) has finite character, then the class is
closed under Lo ,-elementary equivalence.
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(4) If kK = Vo, (K,xk) has finite character and at most A\ many
models of size < A, for some infinite A\, then K is definable with
sentence in Lyt .

The notion of an indiscernible sequence of tuples further illustrates the
distinction between the syntactic and semantic viewpoints. Classically,
a sequence is indiscernible, if each increasing n-tuple of elements realize
the same (syntactic) type. In AEC, a sequence (a;);<x is indiscernible
over a set A (or A-indiscernible), if the sequence can be extended to
any ‘small enough’ length ' > k so that any order-preserving partial
permutation of the larger sequence extends to an automorphism of the
monster model fixing the set A.

Note that two tuples lying on the same A-indiscernible sequence is a
much stronger condition than two tuples having the same Galois type
over A. However, ‘lying on the same sequence’ is not a transitive relation
and hence is not an equivalence relation; the notion of the Lascar strong
type is obtained by taking the transitive closure of this relation.

Using indiscernible sequences, we can define a notion of independence
based on the Lascar splitting'. Furthermore, we say that the class is
simple, if this notion satisfies that each type is independent over its
domain. Under further stability hypotheses (both the Rg-stability [5, 6]
and superstability |7, 9] have been developed) we get an independence
calculus for subsets of the monster model. Unlike the case of elementary
stability theory, stability or even categoricity does not imply simplicity;
it is a further assumption. However, we show that if any reasonable
independence calculus exists for arbitrary sets and not just over models,
the class must be simple and the notion of independence must agree with
the one defined by the Lascar splitting; see [5].

IThe notions are defined ‘for weak types’, since they are preserved under the
equivalence of weak types.

Definition 1.1.4 (Independence). A type tp*“(a/A) Lascar-splits over a finite set
E C A, if there is a strongly indiscernible sequence (G;)i<w such that o, a1 are in the
set A, but

tp¥(ao/EUa) # tp“ (a1 /E Ua).
We write that a set B is independent of a set C' over a set A, written by

B \l/A 07

if for any finite tuple a € B there is a finite set E C A such that for all sets D
containing AU C' there is b realizing the type tp" (a/A U C) such that tp™ (b/D) does
NOT Lascar-split over E.
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The saturation transfer method was further analyzed for simple, fini-
tary AECs by Hyttinen and Keséld [11]. It was noted there that, even
without tameness, weak saturation transfers among different uncountable
cardinalities. Assuming simplicity, they developed much of the stability
theoretic machinery for these classes and hence were able to remove the
assumption in Theorems 1.0.8 and 1.0.9 that the categoricity cardinal is
a SuCccessor.

Theorem 1.1.5. Assume that (K, Xk) is a simple finitary AEC, k > w,
and each model of size k is weakly saturated. Then,

(1) for any A > min{(2%)T),k}, each model of size \ is weakly
saturated.

(2) Furthermore, each uncountable Ro-saturated model is weakly sat-
urated.

If, in addition, (K, <) is No-tame, then all weakly saturated models with
a common cardinality are isomorphic.

What then is the role of finite character of xk? If it happens that
there are only countably many Galois types over any finite set (this holds,
for example, if the class is Nyp-stable), then the finite character property
provides a ‘finitary’ sufficient condition for a substructure M of 91 to be
in K: if all Galois types over finite subsets are realized in M, then M is
back-and forth-equivalent to an Ng-saturated K-elementary substructure
N of M with |N| = |M|; a chain argument and finite character give that
N =~ M. Even without the condition on the number of Galois types,
finite character enables many constructions involving building models
from finite sequences. It implies, for example, that under simplicity and
superstability, two tuples with the same Lascar type over a countable
set can be mapped to each other by an automorphism fixing the set
(i.e., they have the same Galois type over the set); see [9]. These Lascar
types (also called weak Lascar strong types) are a major tool in geometric
stability theory for finitary classes [8], since they have finite character.

2. Countable models and completeness

We recall that a theory T in the first order logic L, is said to be
complete, if, for any sentence ¢ € L, either ¢ or its negation can be
deduced from T

A famous open conjecture for elementary classes was stated by Vaught
[21] as follows.
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Conjecture 2.0.6 (Vaught conjecture). The number of countable models
of a countable and complete first order theory must be either countable
or 280,

The conjecture can be resolved by the continuum hypothesis, which
is independent of the axioms of set theory: if there is no cardinality be-
tween RXg and 280, then the conjecture is trivially true. The problem is
to determine the value in ZFC. Morley [17] proved the most significant
result: not just for first order theories, but for any sentence of L, the
number of countable models is either < R; or 2%, He used a combina-
tion of descriptive set theoretic and model theoretic techniques. There
has been much progress using descriptive set theory. The study of this
conjecture has also lead to many new innovations in model theory: a
positive solution for Ryp-stable theories was shown by Harrington et al.
[19] and a more general positive solution for superstable theories of finite
rank by Buechler [3]. However, the full conjecture is still open. The work
in [1] provides connections with the methods of this paper.

An easier question for elementary classes is the number of countable
models of a theory, which has only one model, up to isomorphism, in some
uncountable power. Morley [16] showed that the number of countable
models of an uncountably categorical elementary class must be count-
able. We consider a useful ‘motivating question’.

Question 2.0.7. Must an AEC categorical in Wy or in some uncountable
cardinal have only countably many countable models?

As asked, the answer is opposite to the first order case. For example,
we can define a sentence ¢ in L, as a disjunct of two sentences, one
totally categorical and one having uncountably many countable models
but no uncountable models. This problem does not occur in the first
order case, because categoricity implies completeness. Ly, ., poses two
difficulties to this approach. First, deducing completeness from cate-
goricity is problematic; there are several completions. Secondly, L, .-
completeness is too strong; it implies Ny categoricity and there are in-
teresting N;i-categorical sentences that are not Ng-categorical. But, sen-
tences like ¥ lack ‘good’ semantic properties such as joint embedding.
We might ask a further question: are there some semantic properties
that allow the dimensional analysis of the Baldwin-Lachlan proof for an
abstract elementary class? For example, does the question have a neg-
ative answer for, say, finitary AECs? (See Subsection 2.1.) What can
we say about the number of countable models in different frameworks?
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Some results and conjectures were stated for admissible infinitary logics
by Kierstead in 1980 [12].

For a non-elementary class with a better toolbox for dimension-theoretic
considerations it might be possible to say more on such questions. For
example, excellent sentences of L, have a well-behaved model theory:;
but such sentences are complete, and so their countable model is unique
up to isomorphism. An essential benefit of the approach of finitary ab-
stract elementary classes is that the framework also enables the study of
incomplete sentences of L, .. The Vaught conjecture is false for finitary
abstract elementary classes: Kueker [14]| gives an example, well-orders
of length < wy, where < is taken as end-extension. This example has
exactly N; many countable models. The example is categorical in Ny,
but is not a finitary AEC since it does not have arbitrarily large models.
However, we can transform the example to a finitary AEC by adding a
sort with a totally categorical theory; but we lose categoricity.

Contrast the semantic and syntactic approach. If we require defin-
ability in some specific language, L, or L,., the Vaught conjecture is
a hard problem, but it has an ‘easy’ solution under the ‘semantic’ re-
quirements we have suggested, such as a finitary AEC. Is there a similar
difference for Question 2.0.7, maybe in the opposite direction? David
Kueker had a special reason for asking question 2.0.7 for finitary AFECs.
Recall that by Theorem 1.1.3 (4) that if (K, xx) is an AEC with finite
character, LS(K) = RXg, and K contains at most A models of cardinality
< A, then it is definable in Ly+,,. Hence, if (K, xk) is N; categorical and
has only countably many countable models, then it is definable in L.
But, under what circumstances can we gain this? Clearly, if (K, <k)
is Ng-categorical, then this holds. Kueker asks the following refining
Question 2.0.7.

Question 2.0.8. (Kueker) Does categoricity in some uncountable car-
dinal imply that a finitary AEC (K, k) is definable with a sentence in
Lyyw?

Answering the following question positively would suffice.

Question 2.0.9. (Kueker) Does categoricity in some uncountable cardi-
nal imply that a finitary AEC (K, <k) has only countably many countable
models?

Unfortunately, Example 2.1.1 gives a negative answer to Question 2.0.9,
leaving the first question open.
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Kueker’s results illuminate the distinction between semantic and syn-
tactic properties. Abstract elementary classes were defined with only
semantic properties in mind. Kueker provides additional semantic con-
ditions which imply definability in a specific syntax. Thus, the ability
to choose a notion of <k for an AEC to make it finitary has definability
consequences. The concept of finite character concerns the relation <g
between the models in an AEC; Kueker’s results conclude definability for
the class K of structures. He does prove some, but remarkably weaker,
definability results without assuming finite character.

2.1. An example answering Kueker’s second question. The fol-
lowing example is a simple finitary AEC, which is categorical in each
uncountable power but has uncountably many countable models. Hence,
the example gives a negative answer to Kueker’s second question.

Example 2.1.1. We define a language L = {Q, (Py)n<w, E, f), where
Q and P, are unary predicates, E is a ternary relation and f is a unary
function. We consider the following axiomatization in Ly, ,:

(1) The predicates Q and (P, :n < w) partition the universe.

(2) @ has at most one element.

(3) If E(x,y, z), then x € Q and z,y are not in Q.

(4) If Q is empty, then we have that for eachn < w, |Pyt1| < |Pp|+1.

(5) If Py is nonempty, then Q is nonempty.

(6) For all x € Q, the relation E(x,—,—) is an equivalence relation,

where each class intersects each P, exactly once.

(7) f(z) ==, for allz € Q, and y € P, implies f(y) € Pyy1.

(8) f is one-to-one.

8 Forx € Q,y € P, and z € Pyy1, E(x,y,2) if and only if
fly) ==z

Now, we define the class K to be the L-structures satisfying the axioms
above and the relation <k to be the substructure relation.

The example has two kinds of countable models. When there is no
element in @, the predicate P, may have at most n elements, and either
|Ppy1| = |Pn| or Pph4q is one element larger. If any P, has more than
n elements, then the predicate () gets an element. When there is an
element x in @), all predicates P, have equal cardinality, since the relation
E(x,—,—) gives a bijection between the predicates.

Thus, we can characterize the countable models of K: There are count-
ably many models with nonempty (): one where each P, is countably
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infinite and one where each P, has size k, for 1 < k < w. If Q is empty,
then the model is characterized by a function f : w — {0,1} so that
f(n) = 1if and only if |P,11] > |P,|. Hence, there are 280 countable
models.

This example is an AEC with LS(K) = XNy. The key to establish
closure under unions of chains is to note that if the union of a chain
has a nonempty @, then some model in the chain must already have one.
This example clearly has finite character, joint embedding and arbitrarily
large models. Furthermore, the class is categorical in all uncountable
cardinals.

We prove that the class has amalgamation. For this, let M, M’ and
M" be in K such that M’ and M" extend M. We need to amalgamate
M’ and M" over M. The case where Q(M) is nonempty is easier and
we leave it as an exercise. Hence, we assume that Q(M) is empty. By
taking isomorphic copies, if necessary, we may assume that the inter-
section P,(M") N P, (M') is P,(M) for n = m and empty otherwise.
Furthermore, we extend both M’ and M” if necessary, so that Q(M")
and Q(M") become nonempty and each one of P,(M’) and P,(M") be-
comes infinite. We amalgamate as follows: for two elements x € P, (M’)
and y € P,(M"), if there is k < w such that f*(z) = f*(y) in P, yx(M),
then we identify z and y. Otherwise, we take a disjoint union.

We prove that the class is simple. For this, define the following notion
of independence for A, B and C subsets of the monster model:

Alc B < Foranya€ Abe B, if we have that E(z,a,b),
then there is ¢ € C' with E(z,a,c).

This notion satisfies invariance, monotonicity, finite character, local char-
acter, extension, transitivity, symmetry and uniqueness of free exten-
sions. Furthermore, a 4~ B if and only if for some D O B and every
b = tp¥(a/CUB), the type tp% (b/DUC) (Lascar-)splits over C. Hence,
the notion is the same as the independence notion defined for general
finitary AECs. This ends the proof.

We can divide this AEC into two disjoint subclasses, both of which
are AEC with the same Lowenheim-Skolem number. The class of models
where there is no element in ) has uncountably many countable mod-
els and is otherwise ‘badly-behaved’; all models are countable and the
amalgamation property fails. However, the class of models where @ is
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nonempty is an uncountably categorical finitary AEC with only count-
ably many countable models. This resembles the example of the sentence
in Ly, ., mentioned in the beginning of this section, which was a disjunc-
tion of two sentences, a totally categorical one and one with uncountably
many countable models and no uncountable ones. Is this ‘incomplete-
ness’ the reason for categoricity not implying countably many countable
models? Can we obtain the conjecture if we require the AEC to be some-
how ‘complete’? These concepts and questions are explored in the next
section.

Jonathan Kirby recently suggested another example with similar prop-
erties. This example might feel more natural to some readers, since it
consists of ‘familiar’ structures.

Example 2.1.2. Let K be the class of all fields of characteristic 0 which
are either algebraically closed or (isomorphic to) subfields of the complex
algebraic numbers Q®9. Let <k be the substructure relation. Then, K is
categorical in all uncountable cardinalities and has 2%° countable models
which all embed in the uncountable models. Also, (K, k) is a simple
finitary AEC. Furthermore, this class can be divided into smaller AECs.
For example, we can take all algebraically closed fields of characteristic
0, except those isomorphic to subfields of Q™9 as one class and all fields
isomorphic to a subfield of Q™9 as the other.

2.2. Complete, irreducible and minimal AECs. We define several
concepts to describe the ‘completeness’ or ‘incompleteness’ of an abstract
elementary class. A nonempty collection C of structures of an AEC
(K, k) is a sub-AEC of (K, k), if

e C is an abstract elementary class with <¢ = g N C2.

o LS(K) = LS(C), that is, the Léwenheim-Skolem numbers are the

same.

This allows both ‘extreme cases’ that C is K or that C consists of only
one structure, up to isomorphism. The latter can happen if the only
structure in C is of size LS(K) and is not isomorphic to a proper <k-
substructure of itself.

Definition 2.2.1 (Minimal AEC). We say that an AEC is minimal, if
it does mot contain a proper sub-AEC.

Definition 2.2.2 (Irreducible AEC). We say that an AEC (K, k) is
irreducible, if there are no two proper sub-AECs C1 and Cy of K such
that C{ UCy = K.
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Definition 2.2.3 (Complete AEC). We say that an AEC (K, <k) is
complete, if there are no two sub-AECs C; and Co of K such that C; U
Co=Kand CiNCy =0.

Example 2.1.1 is not complete, not irreducible and not minimal. The
sub-AEC of Example 2.1.1, which contains the models where () is nonemp
-ty, is also not complete: One abstract elementary class can be formed
by taking all such models where each P, is of equal size being < M for
some finite M, and the rest of the models of the class form another AEC.

We make a few remarks that follow from the definitions.

Remark 2.2.4. (1) Minimality implies irreducibility, which implies

completeness.

(2) Minimality implies the joint embedding property for models of
size LS(K).

(3) Completeness and the amalgamation property imply joint embed-
ding.

(4) If T is a complete first order theory, then the elementary class of
models of T is not necessarily complete in the sense above.

Item 1 is obvious. Item 2 holds, since if there is a pair My, M; of mod-
els in K with size LS(K), which do not have a common extension, those
structures of K which K-embed My form a proper sub-AEC. For item 3,
note that if the class has the amalgamation property, the following classes
are disjoint sub-AECs: {M € K: M can be jointly embedded with My}
and {M € K: M cannot be jointly embedded with My}. Furthermore,
the amalgamation property gives that joint embedding for models of size
LS(K) implies joint embedding for all models. Note that an R; but not
No-categorical countable first order theory is not complete as an AEC.

Example 2.1.1 has joint embedding and amalgamation but is not com-
plete or minimal, and hence the implications of items 2 and 3 are not
reversible. Is one or both of the implications of item 1 of Remark 2.2.4
reversible? If (K, <xk) is an Ryp-stable elementary class which is not Rg-
categorical, then the class of Ny-saturated models of T is a proper sub-
AFEC, and so the class is not minimal. Example 2.3.7 below gives a class
which is complete but not irreducible, minimal or Ny-categorical. How-
ever, this example is not finitary: it does not have finite character or
even arbitrarily large models.

To discuss the relationship between minimality and LS(K)-categoricity,
it is important to specify the meaning of LS(KK)-categoricity. We define
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an AEC to be LS(K)-categorical, if it has only one model up to iso-
morphism, of size at most LS(K). We have forbidden smaller models
because models of an AEC which are strictly smaller than the number
LS(K) can be quite irrational and one could see insignificant changes to
the class. We could add, say, one finite model which is not embeddable
in any member of the class; this would give non-minimality, since the
one model constitutes an AEC. However, an AEC with one model of
size LS(K) and no smaller models, is automatically minimal: for any
sub-AEC K’, we can show by induction on the size of the models in K,
using the union and Léwenheim-Skolem axioms, that all models of K are
actually contained in K'.
Here are some further questions.

Question 2.2.5. (1) If an AEC is uncountably categorical and com-
plete, can it then have uncountably many countable models?
(2) Is there a minimal AEC which is not LS(K)-categorical?
(3) Is there an irreducible AEC which is not minimal?

2.3. An example of models of Peano arithmetic-completeness
not implying irreducibility. Here, we present an example of a class
of models of Peano arithmetic suggested by Roman Kossak. The example
shows that completeness does not imply irreducibility. The properties
of the class are from Chapters 1.10 and 10 of the book The Structure of
Models of Peano Arithmetic [13].

A model M of Peano Arithmetic (PA) is recursively saturated, if for
all finite tuples b € M and recursive types p(v,w), if p(v,b) is finitely
realizable then p(v,b) is realized in M. Clearly, an elementary union
of recursively saturated models is recursively saturated. For M, a non-
standard model of PA, define SSy(M), the standard system of M, as
follows:

SSy(M) ={X C N:3JY definable in M such that X =Y NN}.

Lemma 2.3.1. (Proposition 1.8.1 of [13]) Let N and M be two recur-
siwely saturated models of Peano arithmetic. Then, M =4, N if and
only if M = N and SSy(M) = SSy(N).

It follows that any countable recursively saturated elementary end-
extension of a recursively saturated M is isomorphic to M.

We say N = PA is wy-like, if it has cardinality 8; and every proper
initial segment of N is countable. We say that N = PA is an elementary
cut in M if M is an elementary end-extension of N.
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Theorem 2.3.2. (Corollary 10.3.3 of [13]|) Every countable recursively
saturated model M = PA has 281 pairwise non-isomorphic recursively
saturated wi-like elementary end-extensions.

The following abstract elementary class (K, <) has one countable
model, 2% models of size ¥; and no bigger models. We will use it to
generate the counterexample.

Example 2.3.3. Let M be a countable recursively saturated model of
Peano arithmetic. Let K be the smallest class, closed under isomor-
phism, containing M and all wi-like recursively saturated elementary
end-extensions of M. Let <k be elementary end-extension.

Lemma 2.3.4. The AEC specified in Example 2.3.3 does not have finite
character.

Proof. Let M be a recursively saturated countable model of PA. Let M’
be a recursively saturated elementary substructure of M (not necessar-
ily a cut) and let @ be a finite tuple in M’. We construct a <g-map
f: M — M fixing a. When M’ is not a cut, we contradict finite
character. For this, we will find an elementary cut M” of M and an
isomorphism f : M’ — M" such that f(a) = a. Since M and M’
are recursively saturated, both (M,a) and (M’,a) are recursively sat-
urated. Furthermore, (M, a) is elementarily equivalent to (M’ a). Now,
let M” be an elementary cut in M such that (M,a) is an elementary
end-extension of (M”,a) and (M”,a) is recursively saturated. Then,
(M',a) = (M",a). O

From now on, let M be a fixed countable recursively saturated model
of PA.

Now, we construct a complete but not irreducible AEC. Let <cnq
denote an elementary end-extension. Define

M(a) = {K <ena M : a € K},

Mla] = | J{K <ena M :a ¢ K},

where M|a] can be empty. Then, let gap(a) denote M (a) \ MJa].

It is easy to see that an equivalent definition is the following: Let F
be the set of definable functions f: M — M, for which z < y implies
z < f(x) < f(y). Let a be an element in M. The gap(a) in M is the
smallest subset C' of M containing a such that whenever b € C, f € F
and b < x < f(b) or x <b < f(x), then z € C.
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We say that N |= PA is short if it is of the form N(a) for some a € N.
Equivalently, N has a last gap. A short model N(a) is not recursively
saturated, since it omits the type

p(v,a) = {t(a) <v:ta Skolem term}.

If N is not short, then it is called tall. The following three properties are
exercises in [13].
(1) The union of any w-chain of end-extensions of short elementary
cuts in M is tall.
(2) Any tall elementary cut in M is recursively saturated and hence
is isomorphic to M.

(3) If K is an elementary cut in M and is NOT recursively saturated,
then K = M (a), for some a € M.

It follows also that the union of any w-chain of elementary end-extensions
of models isomorphic to short elementary cuts in M is isomorphic to M.
For the following theorem, see [20].

Theorem 2.3.5. Two short elementary cuts M(a) and M(b) are not
isomorphic if and only if the sets of complete types realised in gap(a)
and gap(b), respectively, are disjoint. There are countably many pairwise
non-isomorphic short elementary cuts in M.

Lemma 2.3.6. If a ¢ M(0), then the model M(a) is isomorphic to
some proper initial segment M (a’) of M(a), which is an elementary cut

of M(a).
Proof. Define the recursive type,
p(z,a) ={¢(z) <> ¢(a) : ¢(z) € L} U {t(r) < a:tis a Skolem term}.

Any finite subset of tp(a /) is realized in M (0), since M (0) < M. Hence,
p(xz,a) is consistent as M(0) is closed under the Skolem terms. Let
a’ € M realize p(x,a). Then, tp(a’) = tp(a) and M(a') < a. Hence,
M (a) is isomorphic to M (a') by Theorem 2.3.5. Furthermore, M(a’) is
an elementary cut in M(a). O

Lemma 2.3.6 implies that elementary <,,4-chains can be formed from
isomorphic copies of one M(a), when a ¢ My. Hence, each of the
following classes K, is an abstract elementary class extending the Ng-
categorical class K from Example 2.3.3 and K, has a many countable
models, where a € w U {w}.
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Example 2.3.7. Let a be a finite number or w. Choose (M(a;))i<a to
be pairwise non-isomorphic short elementary cuts in M, where each a; s
non-standard. Let K, be the smallest class, closed under isomorphism,
containing K and M(a;), for all 1 < i < «a. Let <k be elementary
end-extension.

The countable models of K, are exactly M and M (a;), for 1 <i < a.
This class is closed under <g-unions: if (M, j < ) is a <k-chain of
models in K,, then we have that for every countable limit ordinal 3,
U <3 Mg is tall and hence is isomorphic to M, and if 8 is uncountable,
then the union is isomorphic to some ws-like recursively saturated model
in K. (Note that the union is also an end-extension of M.)

Any abstract elementary class containing a short elementary cut M (a)
for some @ € M must contain M, as M is a union of models isomorphic
to M(a) elementarily end-extending each other. Hence, any abstract
elementary class containing M (a) contains M.

It follows that K, is complete, since it has no disjoint sub-AECs.
Furthermore, the class K, is not irreducible for o > 2, since we can
divide it into two classes, one containing M (a;) but not M (a;) and one
vice versa, for any i # j < a.

However, Example 2.3.7 is neither a Jonsson class (all models have
cardinality below the continuum) nor a finitary AEC. We now ask the
following question.

Question 2.3.8. Is there a Jonsson class which is complete but not
irreducible or minimal? Furthermore, is there such a finitary AEC?
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