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FINITE GROUPS WITH THREE RELATIVE
COMMUTATIVITY DEGREES

R. BARZGAR, A. ERFANIAN* AND M. FARROKHI D. G.
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ABSTRACT. For a finite group G and a subgroup H of G, the rel-
ative commutativity degree of H in G, denoted by d(H, G), is the
probability that an element of H commutes with an element of G.
Let D(G) = {d(H,G) : H < G} be the set of all relative commuta-
tivity degrees of subgroups of G. It is shown that a finite group G
admits three relative commutativity degrees if and only if G/Z(G)
is a non-cyclic group of order pq, where p and ¢ are primes. More-
over, we determine all the relative commutativity degrees of some
known groups.

1. Introduction

If G is a finite group, then the commutativity degree of G, denoted
by d(G), is the probability that two randomly chosen elements of G
commute. The commutativity degree first studied by Gustafson [4] and
it was shown that d(G) < % for every non-abelian finite group G and
equality holds precisely when G/Z(G) = Zg x Zs.

Let H be a subgroup of G. Erfanian et al. in [1] generalized the
commutativity degree of G by considering the relative commutativity
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degree of H in G, denoted by d(H, G), as the probability that an element
of H commutes with an element of G that is
{(h,g) e Hx G :[h,g] =1}

[HI|G|
Also they have given several lower and upper bounds for the relative
commutativity degree d(H,G). We refer the reader to [1, 4, 5] for more
details.

Now let D(G) = {d(H,G) : H < G}. It is obvious that |D(G)| =1 if
and only if G is an abelian group. Also, it is easy to see that there is no
finite group G with |D(G)| = 2 (see Lemma 2.4). We intend to study
the set D(G) and classify all finite groups G with three commutativity
degrees. We will show that if G is a finite group, then |D(G)| = 3 if and
only if G/Z(G) is a group of order pq for some primes p and q. Moreover,
the number of relative commutativity degrees will be computed for some
classes of finite groups including dihedral groups, generalized quaternion
groups and quasi-dihedral groups. The motivation to the research is the
Farrokhi’s classification of finite groups with two subgroup normality
degrees in [3]. For further details on this topic, we refer the interested
reader to [6].

d(H,G) =

2. Preliminary results
We begin with some basic lemmas.

Lemma 2.1. Let G be a finite group and H < K < G. Then d(K,G) <
d(H, Q) and the equality holds if and only if K = HCk(g) for all g € G.

Proof. Since g C ¢¥, we have |C|’§((|g)| < |C|H(‘g)‘ for each g € G. Hence

ICk (g ICr(g
d HG
|G|Z rK| |G|Z |H| )

Also d(K,G) = d(H,G) if and only if ‘Cf (| Il — 'Cg}f” for all g € G,

which is equivalent to K = HCk(g) for all g € G. O

Note that for any subgroup H < G, we have

IG\Z| !H!

geG

Lemma 2.2. Let G be a non-abelian finite group and x € G\ Z(QG).
Then d({z),G) # 1,d(QG).
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Proof. Clearly d({x),G) # 1 because x is not central. Suppose that
d({z),G) = d(G), then by Lemma 2.1, G = (z)Cq(y) for all y € G.
In particular G = (z)Cg(z) = Cg(x), which implies that x € Z(G), a
contradiction. O

From the above lemma the following result can be obtained immedi-
ately.

Corollary 2.3. If G is a non-abelian finite group, then |D(G)| # 2.

In the sequel we shall discuss finite groups with three relative com-
mutativity degrees.

Lemma 2.4. Let G be a non-abelian finite group and suppose that
D(G) = {1,d,d(G)}. If H is a subgroup of G such that d(H,G) = d,
then H 1is abelian.

Proof. Let h € H\ Z(H), then by Lemma 2.2, d((h),G) # d(G). Thus
d((h),G) = d(H,G) and by Lemma 2.1, H = (h)Cpg(g) for all g € G.
Now by replacing g by h, we conclude that h € Z(H), a contradiction.

[l

Lemma 2.5. Let G be a finite group with |D(G)| = 3. Then Cg(x) is
an abelian mazimal subgroup of G, for all x € G\ Z(Q).

Proof. Let x € G\ Z(G). If Cg(x) is a non-abelian group, then by
Lemmas 2.4 and 2.1, we have G = Cg(x)Cq(g) for all ¢ € G. In
particular, G = Cg(z)Cq(z) = Cg(z) and hence z € Z(G), which is
a contradiction. Now let M be a maximal subgroup of G containing
Cq(z). If M is non-abelian, then by Lemmas 2.4 and 2.1, G = M Cg(z)
so G = M, a contradiction. Thus M is abelian and consequently M =
Ca(z), as required. O

Lemma 2.6. If H is a subgroup of G, then d(HZ(G),G) = d(H,G).
Proof. The proof is straightforward. 0

Lemma 2.7. Let G be a finite group with |D(G)| = 3. Then the follow-
ing assertions are true:
(i) if « is a p-element, then P € Z(G);
(i) if z,y € G\ Z(Q) are p-element and q-element, respectively, then
(r = @)|Gl = qalp — D[Ca(x)| - p(g — 1)|Ca(y)]-

In particular, |Ca(z)| = |Ca(y)| if and only if p = q.
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Proof. (i) Let z € G\ Z(G) be a p-element of order p™. We proceed by
induction on n. Cearly the result holds for n = 0,1. Suppose that the
result holds for n — 1. Then |2P| = p"~! and by hypothesis a?’ € Z(Q).
If 2 ¢ Z(G), then by Lemma 2.2, d((z),G) = d({aP), G). On the other
hand,

1

(21,6 =~ 16+ =) e+ ) (o))
and
). 6) =~ ("G + (= ) Cala)),

from which we obtain
p=[G:Cc(z)|+ (p — 1)[Ca(a’) : Ca(z)].

Hence [G : Cg(z)] = [Cq(aP) : Ca(x)] =1 that is x € Z(G), contradict-
ing the hypothesis.
(ii) By Lemma 2.2, d((z),G) = d({y), G). By part (i) we have

d((z), G) = pn}m@mlwar + (™ — p )| Ca(x)])
and
). G) = iz @161+ (" — " ICa ).

from which the result follows. The rest of the proof is a direct conse-
quence of the last two equations. ]

3. Main results

We are now in a position to give the main theorems. The nilpotent
and non-nilpotent cases are discussed separately.

Theorem 3.1. Let G be a finite nilpotent group. Then |D(G)| = 3 if
2

and only if G/Z(G) = Zyp X Zy. In particular, D(G) = {1, 2;;;1’ P 4;39—1 .

Proof. Since G is nilpotent, so G = Py X P, X --- X P,, where P, is the
Sylow p;-subgroup of G. Clearly
D(G) =D(P1)D(Py)---D(P,) 2 D(P)UD(P)U---UD(F,).

Since |D(G)| = 3, there exists a Sylow p;-subgroup P = P; such that
D(P) = D(G) and P; is abelian for each j # i. Let x,y € P such
that xy # yx, M = Cp(xz) and N = Cp(y). Then by Lemma 2.5(i),
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M and N are abelian maximal subgroups of P. Clearly P = M N and
M NN = Z(P). Hence

__Mp o INE
MmN ~ IMNN| |MNN]|

Conversely, let H < G be a proper non-central subgroup of G such that
d(H,G) # d(G). By Lemma 2.6, d(H,G) = d(HZ(G),G) and we may
assume that Z(G) C H. Then H/Z(G) = Z, and we have

> 16t = 7 3 e

d(H,G)

L ”G’ helt hett
1 <|Z<G>| - DIZ@), )
= e— p J— —
plZ(G)| p
2p—1
Similarly, it can be easily shown that d(G) = E 2;{2—1 and consequently
D(G) = {1, 251, By, .

Theorem 3.2. Let G be a finite non-nilpotent group. Then |D(G)| = 3
if and only if G/Z(QG) is a non-cyclic group of order pq, where p and q
are distinct primes. In particular, D(G) = {1 —|— s— =2 + e

pq p pg*
whenever p > q.

Proof. Since G is not nilpotent, there exist a p-element x and a g-element
y (p # q) such that xy # yx. Clearly we may assume that ¢ is the
smallest prime dividing |G/Z(G)|. By Lemma 2.5, M = Cg(x) and
N = Cg(y) are different abelian maximal subgroups of G. Moreover,
M NN = Z(G) and by Lemma 2.7

(3.1) (r—q)|G| = q(p — 1)|M| - p(g — 1)|N].

Note that by Lemma 2.7(ii), |M| # |N| so that M and N are not
conjugate.

Let ~ : G — G/Z(G) be the natural homomorphism. If M and N are
non-normal subgroups of G, then Ng(M) = M, Ng(N) = N and the
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conjugates of M and N all have trivial intersection. Thus

Gl> M ulJn
geG geG
=1+[G: M](JM] = 1)+ [G: N](IN] - 1)

‘G| |G| ral
> - -—
> 1+ 5 + 5 > |G,

which is a contradiction. Thus M or N is a normal subgroup of G, which
implies that G = MN. If M, N < G, then G = M x N is abelian and
hence G is nilpotent, a contradiction. Therefore G is a Frobenius group
with M and N as its Frobenius kernel and complement in some order.
Moreover, ged(|M]|, |N|) = 1.

From the equation (3.1) it follows that |M| divides p(q — 1)|N|, which
implies that |M| divides p. Hence [M| = p and, using the equation (3.1)
once more, we obtain |N| = ¢q. Therefore |G| = pq, as required.

Conversely, suppose that G is a finite non-nilpotent group such that
|G/Z(G)| = pq for some primes. Clearly G/Z(G) is non-abelian, p # ¢
and we may assume that p > ¢q. Let H be a proper non-central subgroup
of G. Then by Lemma 2.6, we may assume that Z(G) C H. Thus
H/Z(G) = Zy, or Zg. In the first case

1 1 1 1 1
am,6) = e (1@ + - viz@n ) =1+ 1o L

and in the second case

1 1 1 1 1
d(H,G <Z +(g—1 ZG)—+—.
( )‘H‘I()I( )!()!p o7 pa
On the other hand G/Z(G) is a Frobenius group with Frobenius kernel
and complement isomorphic to cyclic groups of orders p and ¢, respec-
tively. Thus

46) = 155 (121 + 0~ DIZ@L + 0 - 2O )
111
p @ pg
Therefore D(G )—{1 —1—7—— f—i—%—%} and the proof is complete.

pq’ p
O
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4. Examples

This subsection is devoted to the determination of the set of all rel-
ative commutativity degrees of some classes of isoclinic finite groups.
First, we compute the set of all relative commutativity degrees of di-
hedral groups, then we apply isoclinism between groups to obtain the
relative commutativity degrees for some other classes of groups.

Theorem 4.1. Let G = Dy, = {a,b: a" = b*> = 1,a® = a™!) be the
dihedral group of order 2n. Then

[ 2r(n)—1, n odd,
P = o k1 and m o

where T(m) is the number of divisors of m.

Proof. 1t is known that an arbitrary subgroup of G = Ds, has the form
(a*), (a'b) or (a*,a'b), wheret = 0,--- ,n—1,klnandl =0,1,2,..., =
1. We proceed in two steps.

First suppose that n is odd. Then

he(ak) i=1
k 1 n k
=2 (14+=(==1)) =
n < * 2(k )> o
1 1 1 1 1 1
d tb G = _— = — ]_ — e
(@).C) =[] 2« e 2(+n) 2 "o
he(alb)
1 1
d({a",a'b) = —
(a0 = e am) 2 e
he(ak,alb)
n_1

T 9 — |(ak))CG| &= |(aki+ib)C|

-1
C2n 2 \k n\k k)) 4 2n 4n’
where kln and [ =0,1,2,..., 7 — 1.
Thus D(G) = {2 + £, 1+ L+ & .k k'|n} and a simple verification
shows that |D(G)| = 27(n) — 1.
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Now suppose that n = 2Fm is even, where k£ > 1 and m is odd. Then

. Ea+ir-1)=3+£, % odd,

[P

d((a*),G) = >

k
|(a >\h€<ak> (2_|_ (7_2)) %—i—%, ¥ even.
Since (a'b)® = {a*?b: 0 < i < 2} we have d((a'b),G) = 3(1 + %) =
2
% + % Also

d((a*,alb),G) =

n n
Therefore
1 ki 1 ke 11 ks 1 1 Fky
D(Dyy) = o toks b b R
(D2n) {2+ 2 o 4+n+2n’4+n+4n
kr, ko, k3, k] g dd
n, 731’6681’1&1’1 —,T— are o
1, N2, 3, 4 k ]{7 Vv k27k4 ’

where k3, ks # n. We consider the following cases:

()Iff4+2 =241 then 2 = k3+2(1—k) and k3 +2(1—k1) <0
if k1 > 1. Thus k; =1 and k3 = 5.

@) Ifi+5 =141k ehen = ky+4(1— k1) and ks +2(1— k1) < 0
if k& > 1. Thus k1 = 1 and k4 = n, which is a contradiction.

(3) 1f%+§—;=i+%+§;,then =ks+2—koand kg +2— ko <0
if ko > 2. Thus ky < 2. Since % is odd we should have ko = 2, hence
ks = 2.

) Ifd ke =11y ks pen = ky +4— 2k and kg +4— 2ky < 0
if ko > 2. Thus k- < 2 Wthh is a contradiction.

(5) If 3 + 5L =1 4+ %2 then ky = 2k;.

(6) If + + 1 +’;§L—4+n+@,thenk4:2k3.

Now, by utlhzlng the cases (1)-(6), the result follows. O

Corollary 4.2. |D(Dg,)| = 3 if and only if n = p or 2p, where p is a
prime.

Definition 4.3. Let G1 and Go be two groups and Hy, and Hs be sub-
group of G1 and Ga, respectively. Suppose that o is an isomorphism
from G1/Z(G1) to G2/Z(G2) such that its restriction to Hi/H1NZ(G1)
is an isomorphism from Hy/H1 N Z(G1) to Hy/Ha N Z(G2) and B is an
isomorphism from [Hy,G1] to [Ha, Ga]. Then the pair (o, ) is called a
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relative isoclinism from (Hy,G1) to (Ha, G2) if the following diagram is
commutative:

Hy G, o Hy Go
mnZ(Gy ~ Z(GY) MnZ(Ga) ~ Z(Ga)
wl l"fz
B
[H17G1} [HQ,GQ]

where

Y (h1(H1 N Z(Gh)), 1Z(G1)) = [h1, 91]
and

Ya(h2(Ha N Z(G2)), 92Z(G2)) = [ha, g2]
for each hy € Hy, hog € Ho, g1 € G1 and go € Go. If H = G1 and
Hy = G, then we say that G1 and Go are isoclinic.

As an immediate consequent of the above definition we have the fol-
lowing result.

Lemma 4.4. If G; and Go are two isoclinic groups, then D(G1) =
D(G,).

Using Lemma 4.4 and Theorem 4.1 we obtain the following results.
Note that the generalized quarernion groups ()4, and quasi-dihedral
groups Q@ Dan (n > 3) are isoclinic with the groups Dy, and Dan, respec-
tively.

Corollary 4.5. If n = 2"m (m odd), then |D(Quy)| = 2(k+1)7(m) —1.
Corollary 4.6. If n > 3, then |D(QDan)| = 2n — 3.
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