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FINITE GROUPS WITH THREE RELATIVE

COMMUTATIVITY DEGREES

R. BARZGAR, A. ERFANIAN∗ AND M. FARROKHI D. G.

Communicated by Ali Reza Ashrafi

Abstract. For a finite group G and a subgroup H of G, the rel-
ative commutativity degree of H in G, denoted by d(H,G), is the
probability that an element of H commutes with an element of G.
Let D(G) = {d(H,G) : H ≤ G} be the set of all relative commuta-
tivity degrees of subgroups of G. It is shown that a finite group G
admits three relative commutativity degrees if and only if G/Z(G)
is a non-cyclic group of order pq, where p and q are primes. More-
over, we determine all the relative commutativity degrees of some
known groups.

1. Introduction

If G is a finite group, then the commutativity degree of G, denoted
by d(G), is the probability that two randomly chosen elements of G
commute. The commutativity degree first studied by Gustafson [4] and
it was shown that d(G) ≤ 5

8 for every non-abelian finite group G and
equality holds precisely when G/Z(G) ∼= Z2 × Z2.

Let H be a subgroup of G. Erfanian et al. in [1] generalized the
commutativity degree of G by considering the relative commutativity
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degree of H in G, denoted by d(H,G), as the probability that an element
of H commutes with an element of G that is

d(H,G) =
{(h, g) ∈ H ×G : [h, g] = 1}

|H||G|
.

Also they have given several lower and upper bounds for the relative
commutativity degree d(H,G). We refer the reader to [1, 4, 5] for more
details.

Now let D(G) = {d(H,G) : H ≤ G}. It is obvious that |D(G)| = 1 if
and only if G is an abelian group. Also, it is easy to see that there is no
finite group G with |D(G)| = 2 (see Lemma 2.4). We intend to study
the set D(G) and classify all finite groups G with three commutativity
degrees. We will show that if G is a finite group, then |D(G)| = 3 if and
only if G/Z(G) is a group of order pq for some primes p and q. Moreover,
the number of relative commutativity degrees will be computed for some
classes of finite groups including dihedral groups, generalized quaternion
groups and quasi-dihedral groups. The motivation to the research is the
Farrokhi’s classification of finite groups with two subgroup normality
degrees in [3]. For further details on this topic, we refer the interested
reader to [6].

2. Preliminary results

We begin with some basic lemmas.

Lemma 2.1. Let G be a finite group and H ≤ K ≤ G. Then d(K,G) ≤
d(H,G) and the equality holds if and only if K = HCK(g) for all g ∈ G.

Proof. Since gH ⊆ gK , we have |CK(g)|
|K| ≤

|CH(g)|
|H| for each g ∈ G. Hence

d(K,G) =
1

|G|
∑
g∈G

|CK(g)|
|K|

≤ 1

|G|
∑
g∈G

|CH(g)|
|H|

= d(H,G).

Also d(K,G) = d(H,G) if and only if |CK(g)|
|K| = |CH(g)|

|H| for all g ∈ G,

which is equivalent to K = HCK(g) for all g ∈ G. �

Note that for any subgroup H ≤ G, we have

d(H,G) =
1

|G|
∑
g∈G

|CH(g)|
|H|

.

Lemma 2.2. Let G be a non-abelian finite group and x ∈ G \ Z(G).
Then d(〈x〉, G) 6= 1, d(G).
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Proof. Clearly d(〈x〉, G) 6= 1 because x is not central. Suppose that
d(〈x〉, G) = d(G), then by Lemma 2.1, G = 〈x〉CG(y) for all y ∈ G.
In particular G = 〈x〉CG(x) = CG(x), which implies that x ∈ Z(G), a
contradiction. �

From the above lemma the following result can be obtained immedi-
ately.

Corollary 2.3. If G is a non-abelian finite group, then |D(G)| 6= 2.

In the sequel we shall discuss finite groups with three relative com-
mutativity degrees.

Lemma 2.4. Let G be a non-abelian finite group and suppose that
D(G) = {1, d, d(G)}. If H is a subgroup of G such that d(H,G) = d,
then H is abelian.

Proof. Let h ∈ H \ Z(H), then by Lemma 2.2, d(〈h〉, G) 6= d(G). Thus
d(〈h〉, G) = d(H,G) and by Lemma 2.1, H = 〈h〉CH(g) for all g ∈ G.
Now by replacing g by h, we conclude that h ∈ Z(H), a contradiction.

�

Lemma 2.5. Let G be a finite group with |D(G)| = 3. Then CG(x) is
an abelian maximal subgroup of G, for all x ∈ G \ Z(G).

Proof. Let x ∈ G \ Z(G). If CG(x) is a non-abelian group, then by
Lemmas 2.4 and 2.1, we have G = CG(x)CG(g) for all g ∈ G. In
particular, G = CG(x)CG(x) = CG(x) and hence x ∈ Z(G), which is
a contradiction. Now let M be a maximal subgroup of G containing
CG(x). If M is non-abelian, then by Lemmas 2.4 and 2.1, G = MCG(x)
so G = M , a contradiction. Thus M is abelian and consequently M =
CG(x), as required. �

Lemma 2.6. If H is a subgroup of G, then d(HZ(G), G) = d(H,G).

Proof. The proof is straightforward. �

Lemma 2.7. Let G be a finite group with |D(G)| = 3. Then the follow-
ing assertions are true:

(i) if x is a p-element, then xp ∈ Z(G);
(ii) if x, y ∈ G\Z(G) are p-element and q-element, respectively, then

(p− q)|G| = q(p− 1)|CG(x)| − p(q − 1)|CG(y)|.
In particular, |CG(x)| = |CG(y)| if and only if p = q.
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Proof. (i) Let x ∈ G \ Z(G) be a p-element of order pn. We proceed by
induction on n. Cearly the result holds for n = 0, 1. Suppose that the

result holds for n− 1. Then |xp| = pn−1 and by hypothesis xp
2 ∈ Z(G).

If xp 6∈ Z(G), then by Lemma 2.2, d(〈x〉, G) = d(〈xp〉, G). On the other
hand,

d(〈x〉, G) =
1

pn|G|
(pn−2|G|+(pn−1−pn−2)|CG(xp)|+(pn−pn−1)|CG(x)|)

and

d(〈xp〉, G) =
1

pn−1|G|
(pn−2|G|+ (pn−1 − pn−2)|CG(xp)|),

from which we obtain

p = [G : CG(x)] + (p− 1)[CG(xp) : CG(x)].

Hence [G : CG(x)] = [CG(xp) : CG(x)] = 1 that is x ∈ Z(G), contradict-
ing the hypothesis.

(ii) By Lemma 2.2, d(〈x〉, G) = d(〈y〉, G). By part (i) we have

d(〈x〉, G) =
1

pm|G|
(pm−1|G|+ (pm − pm−1)|CG(x)|)

and

d(〈y〉, G) =
1

qn|G|
(qn−1|G|+ (qn − qn−1)|CG(y)|),

from which the result follows. The rest of the proof is a direct conse-
quence of the last two equations. �

3. Main results

We are now in a position to give the main theorems. The nilpotent
and non-nilpotent cases are discussed separately.

Theorem 3.1. Let G be a finite nilpotent group. Then |D(G)| = 3 if

and only if G/Z(G) ∼= Zp×Zp. In particular, D(G) = {1, 2p−1
p2

, p
2+p−1
p3
}.

Proof. Since G is nilpotent, so G = P1 × P2 × · · · × Pn, where Pi is the
Sylow pi-subgroup of G. Clearly

D(G) = D(P1)D(P2) · · · D(Pn) ⊇ D(P1) ∪ D(P2) ∪ · · · ∪ D(Pn).

Since |D(G)| = 3, there exists a Sylow pi-subgroup P = Pi such that
D(P ) = D(G) and Pj is abelian for each j 6= i. Let x, y ∈ P such
that xy 6= yx, M = CP (x) and N = CP (y). Then by Lemma 2.5(i),
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M and N are abelian maximal subgroups of P . Clearly P = MN and
M ∩N = Z(P ). Hence∣∣∣∣ P

Z(P )

∣∣∣∣ =

∣∣∣∣ MN

M ∩N

∣∣∣∣ =
|M |

|M ∩N |
· |N |
|M ∩N |

= p2.

Conversely, let H ≤ G be a proper non-central subgroup of G such that
d(H,G) 6= d(G). By Lemma 2.6, d(H,G) = d(HZ(G), G) and we may
assume that Z(G) ⊆ H. Then H/Z(G) ∼= Zp and we have

d(H,G) =
1

|H||G|
∑
h∈H
|CG(h)| = 1

|H|
∑
h∈H

1

|hG|

=
1

p|Z(G)|

(
|Z(G)|+ (p− 1)|Z(G)|1

p

)
=

2p− 1

p2
.

Similarly, it can be easily shown that d(G) = p2+p−1
p3

and consequently

D(G) = {1, 2p−1
p2

, p
2+p−1
p3
}. �

Theorem 3.2. Let G be a finite non-nilpotent group. Then |D(G)| = 3
if and only if G/Z(G) is a non-cyclic group of order pq, where p and q
are distinct primes. In particular, D(G) = {1, 1p + 1

q −
1
pq ,

1
p + 1

q2
− 1

pq2
},

whenever p > q.

Proof. Since G is not nilpotent, there exist a p-element x and a q-element
y (p 6= q) such that xy 6= yx. Clearly we may assume that q is the
smallest prime dividing |G/Z(G)|. By Lemma 2.5, M = CG(x) and
N = CG(y) are different abelian maximal subgroups of G. Moreover,
M ∩N = Z(G) and by Lemma 2.7

(3.1) (p− q)|G| = q(p− 1)|M | − p(q − 1)|N |.

Note that by Lemma 2.7(ii), |M | 6= |N | so that M and N are not
conjugate.

Let − : G→ G/Z(G) be the natural homomorphism. If M and N are
non-normal subgroups of G, then NG(M) = M , NG(N) = N and the
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conjugates of M and N all have trivial intersection. Thus

|G| ≥

∣∣∣∣∣∣
⋃
g∈G

M
g ∪

⋃
g∈G

N
g

∣∣∣∣∣∣
= 1 + [G : M ](|M | − 1) + [G : N ](|N | − 1)

≥ 1 +
|G|
2

+
|G|
2

> |G|,

which is a contradiction. Thus M or N is a normal subgroup of G, which
implies that G = MN . If M,N E G, then G ∼= M × N is abelian and
hence G is nilpotent, a contradiction. Therefore G is a Frobenius group
with M and N as its Frobenius kernel and complement in some order.
Moreover, gcd(|M |, |N |) = 1.

From the equation (3.1) it follows that |M | divides p(q−1)|N |, which
implies that |M | divides p. Hence |M | = p and, using the equation (3.1)
once more, we obtain |N | = q. Therefore |G| = pq, as required.

Conversely, suppose that G is a finite non-nilpotent group such that
|G/Z(G)| = pq for some primes. Clearly G/Z(G) is non-abelian, p 6= q
and we may assume that p > q. Let H be a proper non-central subgroup
of G. Then by Lemma 2.6, we may assume that Z(G) ⊆ H. Thus
H/Z(G) ∼= Zp or Zq. In the first case

d(H,G) =
1

|H|

(
|Z(G)|+ (p− 1)|Z(G)|1

q

)
=

1

p
+

1

q
− 1

pq

and in the second case

d(H,G) =
1

|H|

(
|Z(G)|+ (q − 1)|Z(G)|1

p

)
=

1

p
+

1

q
− 1

pq
.

On the other hand G/Z(G) is a Frobenius group with Frobenius kernel
and complement isomorphic to cyclic groups of orders p and q, respec-
tively. Thus

d(G) =
1

|G|

(
|Z(G)|+ (p− 1)|Z(G)|1

q
+ (pq − p)|Z(G)|1

p

)
=

1

p
+

1

q2
− 1

pq2
.

Therefore D(G) = {1, 1p + 1
q −

1
pq ,

1
p + 1

q2
− 1
pq2
} and the proof is complete.

�
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4. Examples

This subsection is devoted to the determination of the set of all rel-
ative commutativity degrees of some classes of isoclinic finite groups.
First, we compute the set of all relative commutativity degrees of di-
hedral groups, then we apply isoclinism between groups to obtain the
relative commutativity degrees for some other classes of groups.

Theorem 4.1. Let G = D2n = 〈a, b : an = b2 = 1, ab = a−1〉 be the
dihedral group of order 2n. Then

|D(G)| =
{

2τ(n)− 1, n odd,
2kτ(m)− 1, n = 2km, k ≥ 1 and m odd.

where τ(m) is the number of divisors of m.

Proof. It is known that an arbitrary subgroup of G = D2n has the form
〈ak〉, 〈atb〉 or 〈ak, alb〉, where t = 0, · · · , n−1, k|n and l = 0, 1, 2, . . . , nk−
1. We proceed in two steps.

First suppose that n is odd. Then

d(〈ak〉, G) =
1

|〈ak〉|
∑
h∈〈ak〉

1

|hG|
=
k

n

1 +

n
k
−1∑
i=1

1

|(aki)G|


=
k

n

(
1 +

1

2
(
n

k
− 1)

)
=

1

2
+

k

2n
,

d(〈atb〉, G) =
1

|〈atb〉|
∑

h∈〈alb〉

1

|hG|
=

1

2

(
1 +

1

n

)
=

1

2
+

1

2n
,

d(〈ak, alb〉 =
1

|〈ak, alb〉|
∑

h∈〈ak,alb〉

1

|hG|

=
k

2n

1 +

n
k
−1∑
i=1

1

|(aki)G|
+

n
k∑
i=1

1

|(aki+lb)G|


=

k

2n

(
1 +

1

2

(n
k
− 1
)

+
1

n

(
2n

k
− n

k

))
=

1

4
+

1

2n
+

k

4n
,

where k|n and l = 0, 1, 2, . . . , nk − 1.

Thus D(G) = {12 + k
2n ,

1
4 + 1

2n + k′

4n : k, k′|n} and a simple verification
shows that |D(G)| = 2τ(n)− 1.
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Now suppose that n = 2km is even, where k ≥ 1 and m is odd. Then

d(〈ak〉, G) =
1

|〈ak〉|
∑
h∈〈ak〉

1

|hG|
=


k
n

(
1 + 1

2(nk − 1)
)

= 1
2 + k

2n ,
n
k odd,

k
n

(
2 + 1

2(nk − 2)
)

= 1
2 + k

n ,
n
k even.

Since (alb)G = {al+2ib : 0 ≤ i ≤ n
2 } we have d(〈alb〉, G) = 1

2(1 + 1
n
2

) =
1
2 + 1

n . Also

d(〈ak, alb〉, G) =


1
4 + k

4n + 1
n ,

n
k odd,

1
4 + k

2n + 1
n ,

n
k even.

Therefore

D(D2n) =

{
1

2
+
k1
n
,
1

2
+
k2
2n
,
1

4
+

1

n
+
k3
2n
,
1

4
+

1

n
+
k4
4n

:

k1, k2, k3, k4|n,
n

k1
,
n

k3
are even and

n

k2
,
n

k4
are odd

}
,

where k3, k4 6= n. We consider the following cases:
(1) If 1

2 + k1
n = 1

4 + 1
n+ k3

2n , then n
2 = k3+2(1−k1) and k3+2(1−k1) < 0

if k1 > 1. Thus k1 = 1 and k3 = n
2 .

(2) If 1
2 + k1

n = 1
4 + 1

n+ k4
4n , then n = k4+4(1−k1) and k4+2(1−k1) < 0

if k1 > 1. Thus k1 = 1 and k4 = n, which is a contradiction.
(3) If 1

2 + k2
2n = 1

4 + 1
n + k3

2n , then n
2 = k3 + 2− k2 and k3 + 2− k2 < 0

if k2 > 2. Thus k2 ≤ 2. Since n
k2

is odd we should have k2 = 2, hence
k3 = n

2 .

(4) If 1
2 + k2

2n = 1
4 + 1

n + k4
4n , then n = k4 + 4−2k2 and k4 + 4−2k2 < 0

if k2 > 2. Thus k2 ≤ 2, which is a contradiction.
(5) If 1

2 + k1
n = 1

2 + k2
2n , then k2 = 2k1.

(6) If 1
4 + 1

n + k3
2n = 1

4 + 1
n + k4

4n , then k4 = 2k3.
Now, by utilizing the cases (1)-(6), the result follows. �

Corollary 4.2. |D(D2n)| = 3 if and only if n = p or 2p, where p is a
prime.

Definition 4.3. Let G1 and G2 be two groups and H1 and H2 be sub-
group of G1 and G2, respectively. Suppose that α is an isomorphism
from G1/Z(G1) to G2/Z(G2) such that its restriction to H1/H1∩Z(G1)
is an isomorphism from H1/H1 ∩Z(G1) to H2/H2 ∩Z(G2) and β is an
isomorphism from [H1, G1] to [H2, G2]. Then the pair (α, β) is called a
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relative isoclinism from (H1, G1) to (H2, G2) if the following diagram is
commutative:

H1
H1∩Z(G1)

× G1
Z(G1)

α2
//

γ1

��

H2
H2∩Z(G2)

× G2
Z(G2)

γ2

��
[H1, G1]

β // [H2, G2]

where

γ1(h1(H1 ∩ Z(G1)), g1Z(G1)) = [h1, g1]

and

γ2(h2(H2 ∩ Z(G2)), g2Z(G2)) = [h2, g2]

for each h1 ∈ H1, h2 ∈ H2, g1 ∈ G1 and g2 ∈ G2. If H1 = G1 and
H2 = G2, then we say that G1 and G2 are isoclinic.

As an immediate consequent of the above definition we have the fol-
lowing result.

Lemma 4.4. If G1 and G2 are two isoclinic groups, then D(G1) =
D(G2).

Using Lemma 4.4 and Theorem 4.1 we obtain the following results.
Note that the generalized quarernion groups Q4n and quasi-dihedral
groups QD2n (n ≥ 3) are isoclinic with the groups D4n and D2n , respec-
tively.

Corollary 4.5. If n = 2km (m odd), then |D(Q4n)| = 2(k+1)τ(m)−1.

Corollary 4.6. If n ≥ 3, then |D(QD2n)| = 2n− 3.
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