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EXISTENCE OF POSITIVE SOLUTIONS FOR A

BOUNDARY VALUE PROBLEM OF A NONLINEAR

FRACTIONAL DIFFERENTIAL EQUATION

F. J. TORRES

Communicated by Mohammad Asadzadeh

Abstract. This paper presents conditions for the existence and
multiplicity of positive solutions for a boundary value problem of
a nonlinear fractional differential equation. We show that it has at
least one or two positive solutions. The main tool is Krasnosel’skii
fixed point theorem on cone and fixed point index theory.

1. Introduction

In this paper, we discuss the existence and multiplicity of positive
solutions to boundary value problem of nonlinear fractional differential
equation

(1.1) Dα
0+u(t) + a(t)f(u(t)) = 0, 0 < t < 1, 2 < α ≤ 3

(1.2) u(0) = u′′(0) = 0, u′(1) = γu′(η)

where Dα
0+ is the Caputo’s differentiation and η, γ ∈ (0, 1).

Throughout the paper, we assume that f and a satisfy the following
conditions.

(H1) f : [0,∞)→ [0,∞) is continuous.
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(H2) a ∈ L∞[0, 1] and there exists m > 0 such that a(t) ≥ m a.e.
t ∈ [0, 1].

Fractional differential equations have gained considerable importance
due to their application in various sciences, such as physics, mechan-
ics, chemistry and engineering. El-Shahed [4] used the Krasnosel’skii
fixed point theorem on cone to show the existence and non-existence of
positive solutions, and Kaufmann and Mboumi [6] studied the existence
and multiplicity of positive solutions of nonlinear fractional boundary
value problem, where Dα

0+ is the standard Riemann-Liouville fractional
derivative. Qiu and Bai [8] studied the existence by using Krasnosel’skii
fixed point theorem and nonlinear alternative of Leray-Schauder type in
cones and Benchohra et al [1] studied the existence and uniqueness by
using the non-linear alternative of Leray-Schauder type and Banach’s,
Schaefer’s and Burton and Kirk fixed point theorem, where Dα

0+ is the
Caputo fractional derivative. In [2], the authors obtained existence and
multiplicity of positive solutions for using the fixed point theorem due
to Avery and Peterson. Motivated by the above works, we obtain some
sufficient conditions for the existence of at least one and two positive
solutions for (1.1) and (1.2).
The structure of the paper is as follows. In section 2, we present some
necessary definitions and preliminary results that will be used later. In
section 3, we discuss the existence of at least one positive solution for
(1.1) and (1.2). In section 4, we analyse the existence of multiple pos-
itive solutions for (1.1) and (1.2). Finally, we give some examples to
illustrate our results in section 5.

2. Preliminaries

For the convenience of the reader, we present here the necessary def-
initions from fractional calculus theory [7].

Definition 2.1. The Riemann-Liouville fractional integral of order α >
0 of a function f : (0,∞)→ R is given by

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds

provided that the right side is pointwise defined on (0,∞).
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Definition 2.2. The Caputo’s fractional derivative of order α > 0 of a
continuous function f : (0,∞)→ R is given by

Dα
0+f(t) =

1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α−n+1
ds

where n − 1 < α ≤ n, provided that the right side is pointwise defined
on (0,∞).

Remark 2.3. If α is an integer, the derivative for order α is understood
in the sense of usual differentiation.

Lemma 2.4. ([8]) Let n− 1 < α ≤ n, u ∈ Cn[0, 1]. Then

Iα0+D
α
0+u(t) = u(t)− C1 − C2t− ....− Cntn−1

where Ci ∈ R, i = 1, 2, ..., n.

Lemma 2.5. ([8]) The relation

Iα0+I
β
0+
u(t) = Iα+β

0+
u(t)

is valid in the following case

Reβ > 0, Re(α+ β) > 0, u(t) ∈ L1(a, b)

Definition 2.6. Let E be a real Banach space. A nonempty closed
convex set K ⊂ E is called cone if

(1) x ∈ K,λ > 0 then λx ∈ K
(2) x ∈ K , −x ∈ K then x = 0

We shall consider the Banach space E = C[0, 1] equipped with stan-
dard norm

‖u‖ = max
0≤t≤1

u(t)

The proof of existence of positive solution is based upon an applications
of the following theorems.

Theorem 2.7. ([3][5]) Let E be a Banach space and let K ⊆ E be a
cone. Assume Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1 ⊆ Ω1 ⊆ Ω2

and let
T : K ∩ (Ω2\Ω1)→ K

be a completely continuous such that

(i) ‖Tu‖ ≤ ‖u‖ if u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ if u ∈ K ∩ ∂Ω2

or
(ii)‖Tu‖ ≥ ‖u‖ if u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ if u ∈ K ∩ ∂Ω2

Then T has a fixed point in K ∩ (Ω2\Ω1).
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Theorem 2.8. ([3]) Let E be a Banach space and K be a cone of E.
For r > 0, define Kr = {u ∈ K : ‖u‖ ≤ r} and assume that T : Kr → K
is a completely continuous operator such that Tu 6= u for u ∈ ∂Kr

(1) If ‖Tu‖ ≤ ‖u‖ for all u ∈ ∂Kr then i(T,Kr,K) = 1, where i is
the fixed point index on K.

(2) If ‖Tu‖ ≥ ‖u‖ for all u ∈ ∂Kr then i(T,Kr,K) = 0

Consider the boundary value problem

(2.1) Dα
0+u(t) + g(t) = 0, 0 < t < 1

(2.2) u(0) = u′′(0) = 0, u′(1) = γu′(η)

where η, γ ∈ (0, 1).

Lemma 2.9. Let γ 6= 1, g ∈ L1[0, 1]. Then the boundary value problem
(2.1) and (2.2) has a unique solution

(2.3) u(t) =

∫ 1

0
G1(t, s)g(s)ds+

γt

1− γ

∫ 1

0
G2(η, s)g(s)ds

where

G1(t, s) =

{
(α−1)t(1−s)α−2−(t−s)α−1

Γ(α) 0 ≤ s ≤ t ≤ 1
(α−1)t(1−s)α−2

Γ(α) 0 ≤ t ≤ s ≤ 1

G2(η, s) =

{
(α−1)(1−s)α−2−(α−1)(η−s)α−2

Γ(α) 0 ≤ s ≤ η ≤ 1
(α−1)(1−s)α−2

Γ(α) 0 ≤ η ≤ s ≤ 1

Proof. From Lemmas 2.4 and 2.5

u(t) = −Iα0+g(t) + C1 + C2t+ C3t
2

for some Ci ∈ R, i = 1, 2, 3.

D1u(t) = −D1Iα0+g(t) + C2 + 2C3t

= −D1I1
0+I

α−1
0+

g(t) + C2 + 2C3t

thus,

(2.4) u′(t) = −Iα−1
0+

g(t) + C2 + 2C3t

and
u′′(t) = −Iα−2

0+
g(t) + 2C3
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from (2.2), C1 = 0 and C3 = 0
From (2.4), one has

(2.5) u′(1) = −Iα−1
0+

g(1) + C2

and

(2.6) γu′(η) = −γIα−1
0+

g(η) + γC2

combining (2.5) and (2.6), we have

− Iα−1
0+

g(1) + C2 = −γIα−1
0+

g(η) + γC2

therefore

C2 =
1

(1− γ)Γ(α− 1)

∫ 1

0
(1− s)α−2g(s)ds− γ

(1− γ)Γ(α− 1)
×∫ η

0
(η − s)α−2g(s)ds

so

u(t) = − 1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds+

t

(1− γ)Γ(α− 1)
×∫ 1

0
(1− s)α−2g(s)ds− tγ

(1− γ)Γ(α− 1)

∫ η

0
(η − s)α−2g(s)ds(2.7)

splitting the second integral in two parts of the form

t

Γ(α− 1)
+

k

(1− γ)Γ(α− 1)
=

t

(1− γ)Γ(α− 1)

we have k = γt.
replacing in (2.7)

u(t) = − 1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds+

t

Γ(α− 1)

∫ 1

0
(1− s)α−2g(s)ds

+
γt

(1− γ)Γ(α− 1)

∫ 1

0
(1− s)α−2g(s)ds− tγ

(1− γ)Γ(α− 1)
×∫ η

0
(η − s)α−2g(s)ds

Now, let

A = − 1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds+

t

Γ(α− 1)

∫ 1

0
(1− s)α−2g(s)ds
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and

B =
γt

(1− γ)Γ(α− 1)

∫ 1

0
(1− s)α−2g(s)ds− tγ

(1− γ)Γ(α− 1)
×∫ η

0
(η − s)α−2g(s)ds

by the above

A =

∫ t

0

[
t(1− s)α−2

Γ(α− 1)
− (t− s)α−1

Γ(α)

]
g(s)ds+

∫ 1

t

t(1− s)α−2

Γ(α− 1)
g(s)ds

and

B =
γt

1− γ

[∫ η

0

[
(1− s)α−2

Γ(α− 1)
− (η − s)α−2

Γ(α− 1)

]
g(s)ds+

∫ 1

η

(1− s)α−2

Γ(α− 1)
g(s)ds

]
Finally Γ(p + 1) = p!, with p > −1 and p ∈ R. This completes the

proof. �

Lemma 2.10. Let β ∈ (0, 1) be fixed. The kernel, G1(t, s), satisfies the
following properties.

(1) 0 ≤ G1(t, s) ≤ G1(1, s) for all s ∈ (0, 1).
(2) min

β≤t≤1
G1(t, s) ≥ βG1(1, s) for all s ∈ [0, 1]

Proof. (1) As 2 < α ≤ 3 and 0 ≤ s ≤ t ≤ 1, we have

(α− 1)t(1− s)α−2 > t(1− s)α−2 ≥ (t− s)(t− s)α−2 = (t− s)α−1

thus, G1(t, s) > 0. Note ∂G1(t,s)
∂t ≥ 0 then G1(t, s) is increasing

as a function of t, therefore

G1(t, s) ≤ G1(1, s) ∀s ∈ [0, 1]

(2) For β ≤ t ≤ 1, we have

min
β≤t≤1

G1(t, s) = G1(β, s)

where

G1(β, s) =

{
(α−1)β(1−s)α−2−(β−s)α−1

Γ(α) 0 ≤ s ≤ β
(α−1)β(1−s)α−2

Γ(α) β ≤ s ≤ 1
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(a) If 0 < s ≤ β

(2.8) min
β≤t≤1

G1(t, s) =
β(α− 1)(1− s)α−2

Γ(α)
− (β − s)α−1

Γ(α)

On the other hand

(2.9) βG1(1, s) =
β(α− 1)(1− s)α−2

Γ(α)
− β(1− s)α−1

Γ(α)

Since 2 < α ≤ 3 and
i) α− 1 > 1, β ∈ (0, 1)⇒ βα−1 < β
ii) s ≤ β ⇒ s

β ≤ 1⇒ 1− s
β ≥ 0

iii) β < 1⇒ 1 < 1
β ⇒ −s

1
β < −s⇒ 1− s 1

β < 1− s
thus, we have

(1− s

β
)α−1 < (1− s)α−1

from (2.8), we obtain

(β − s)α−1 = (β(1− s

β
))α−1

= βα−1(1− s

β
)α−1

≤ β(1− s

β
)α−1

< β(1− s)α−1(2.10)

It follows from (2.8), (2.9) and (2.10), that (2) hold.
(b) If β ≤ s < 1

(2.11) min
β≤t≤1

G1(t, s) =
β(α− 1)(1− s)α−2

Γ(α)

(2.12) βG1(1, s) =
β(α− 1)(1− s)α−2

Γ(α)
− β(1− s)α−1

Γ(α)

It follows from (2.11) and (2.12) that (2) hold.
�

Lemma 2.11. Let g(t) ∈ C[0, 1] and g ≥ 0, then the unique solution of
problem (2.1), (2.2) is nonnegative and satisfies

min
β≤t≤1

u(t) ≥ β‖u‖
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Proof. From the definition, u(t) is nonnegative. From (2.3) and Lemma
2.10 we have

u(t) =

∫ 1

0
G1(t, s)g(s)ds+

γt

1− γ

∫ 1

0
G2(η, s)g(s)ds

≤
∫ 1

0
G1(1, s)g(s)ds+

γ

1− γ

∫ 1

0
G2(η, s)g(s)ds

then

‖u‖ ≤
∫ 1

0
G1(1, s)g(s)ds+

γ

1− γ

∫ 1

0
G2(η, s)g(s)ds

on the other hand,

u(t) =

∫ 1

0
G1(t, s)g(s)ds+

γt

1− γ

∫ 1

0
G2(η, s)g(s)ds

≥
∫ 1

0
βG1(1, s)g(s)ds+

γβ

1− γ

∫ 1

0
G2(η, s)g(s)ds

≥ β

[∫ 1

0
G1(1, s)g(s)ds+

γ

1− γ

∫ 1

0
G2(η, s)g(s)ds

]
≥ β‖u‖

therefore

min
β≤t≤1

u(t) ≥ β‖u‖

�

Define the cone K by

K = {u ∈ E : u(t) ≥ 0 and min
β≤t≤1

u(t) ≥ β‖u‖}

and the map T : K → E by

Tu(t) =

∫ 1

0
G1(t, s)a(s)f(u(s))ds+

γt

1− γ

∫ 1

0
G2(η, s)a(s)f(u(s))ds

Remark 2.12. By Lemma 2.9, the problem (1.1), (1.2) has a positive
solution u(t) if and only if u(t) is a fixed point of T .

Lemma 2.13. T is completely continuous and T (K) ⊆ K.

Proof. By Lemma 2.11, T (K) ⊆ K. In view of nonnegativeness and
continuity of functions Gi(x, y) with i = 1, 2 and a(t)f(u(t)), we con-
clude that T : K → K is continuous.
Let Ω ⊆ K be bounded, that is, there exists M > 0 such that ‖u‖ ≤M
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for all u ∈ Ω.
Let

L = max
0≤u≤M

|f(u)|

then using u ∈ Ω, and by Lemmas 2.9, 2.10 and definition of a(t), we
have

|Tu(t)| = |
∫ 1

0
G1(t, s)a(s)f(u)ds+

γt

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds|

≤
∫ 1

0
G1(t, s)a(s)f(u)ds+

γ

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds

≤
∫ 1

0
G1(1, s)a(s)f(u)ds+

γ

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds

≤ (α− 1)

Γ(α)

∫ 1

0
(1− s)α−2a(s)f(u)ds+

γ(α− 1)

(1− γ)Γ(α)
×∫ 1

0
(1− s)α−2a(s)f(u)ds

≤
[

(α− 1)L‖a‖∞
Γ(α)

+
γ(α− 1)L‖a‖∞

(1− γ)Γ(α)

] ∫ 1

0
(1− s)α−2ds

≤
[

(α− 1)L‖a‖∞
Γ(α)

1

(1− γ)

] ∫ 1

0
(1− s)α−2ds

=

[
(α− 1)L‖a‖∞

Γ(α)

1

(1− γ)

]
1

α− 1

=
L‖a‖∞

(1− γ)Γ(α)

.
= l

Hence, T (Ω) is bounded.
On the other hand, let u ∈ Ω, t1, t2 ∈ [0, 1] with t1 < t2, then

|Tu(t2)− Tu(t1)| ≤ L‖a‖∞
[ ∫ 1

0
[G1(t2, s)−G1(t1, s)]ds+

|t2 − t1|γ
1− γ

×∫ 1

0
G2(η, s)ds

]
The continuity of G1 implies that the right-side of the above inequality
tends to zero if t2 → t1. Therefore, T is completely continuous by
Arzela-Ascoli Theorem. �
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We introduce the notation

fa := lim inf
u→a

f(u)
u f b := lim sup

u→b

f(u)
u

where a, b = 0+,∞
Let

N = β2m

(∫ 1

β
G1(1, s)ds+

γ

1− γ

∫ 1

β
G2(η, s)ds

)
and

M = ‖a‖∞
(∫ 1

0
G1(1, s)ds+

γ

1− γ

∫ 1

0
G2(η, s)ds

)

In what follows, we will impose the following conditions
a. f0 = 0 and f∞ =∞ e. 0 ≤ f0 < R and r < f∞ ≤ ∞
b. f0 =∞ and f∞ = 0 f. r < f0 ≤ ∞ and 0 ≤ f∞ < R
c. f0 =∞ and f∞ =∞ g. ∃ρ > 0 such that f(u) < Rρ, 0 < u ≤ ρ
d. f0 = 0 and f∞ = 0 h. ∃ρ > 0 such that f(u) > rρ, ρ < u ≤ ρ

γ

Remark 2.14. We Note that (a) corresponds to the superlinear case
and (b) corresponds to the sublinear case.

Remark 2.15. In condition (e) and (f), r = N−1 and R = M−1. It
is obvious that r > R > 0.

3. Existence of positive solutions

Theorem 3.1. Assume that (H1−H2) hold.
If (a), (b), (e) or (f) holds, then (1.1), (1.2) has at least one positive

solution.

Proof. (a)
(a1). Since f0 = 0, ∃H1 > 0 such that f(u) ≤ εu where 0 < u ≤ H1 and
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ε > 0. Then for u ∈ K ∩ ∂Ω1, where Ω1 = {u ∈ X : ‖u‖ < H1}, we have

Tu(t) =

∫ 1

0
G1(t, s)a(s)f(u)ds+

γt

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds

≤
∫ 1

0
G1(1, s)a(s)f(u)ds+

γ

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds

≤
∫ 1

0
G1(1, s)‖a‖∞εuds+

γ

1− γ

∫ 1

0
G2(η, s)‖a‖∞εuds

≤ ε

[
‖a‖∞

(∫ 1

0
G1(1, s)ds+

γ

1− γ

∫ 1

0
G2(η, s)ds

)]
‖u‖

= εM‖u‖

if εM ≤ 1 and taking the maximum in 0 ≤ t ≤ 1, we have

‖Tu‖ ≤ ‖u‖

(a2). since f∞ = ∞, ∃H̄2 > 0 such that f(u) ≥ δu with H̄2 ≤ u,
t ∈ [β, 1] and δ > 0. For u ∈ K ∩ ∂Ω2, where Ω2 = {u ∈ X : ‖u‖ < H2}
with H2 = max{2H1,

H̄2
β }. Then u ∈ K ∩ ∂Ω2 implies that min

β≤t≤1
u(t) ≥

β‖u‖ = βH2 > H̄2. we have

Tu(t) =

∫ 1

0
G1(t, s)a(s)f(u)ds+

γt

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds

≥
∫ 1

β
G1(t, s)a(s)f(u)ds+

γt

1− γ

∫ 1

β
G2(η, s)a(s)f(u)ds

≥
∫ 1

β
βG1(1, s)mδuds+

γβ

1− γ

∫ 1

β
G2(η, s)mδuds

≥
∫ 1

β
β2G1(1, s)mδ‖u‖ds+

γβ2

1− γ

∫ 1

β
G2(η, s)mδ‖u‖ds

= δ

[
β2m

(∫ 1

β
G1(1, s)ds+

γ

1− γ

∫ 1

β
G2(η, s)ds

)]
‖u‖

= δN‖u‖

if δN ≥ 1 and taking the maximum of Tu(t) with respect to t 0 ≤
t ≤ 1, we have

‖Tu‖ ≥ ‖u‖
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Therefore, by Theorem 2.7, T has at least one fixed point, which is a
positive solution of (1.1), (1.2). �

Proof. (b)
(b1). The proof is similar to that of (a2), so we omit it.
(b2). Since f∞ = 0, ∃H̄2 > 0 such that f(u) ≤ λu where u ≥ H̄2 and
λ > 0 satisfies that

λM ≤ 1

we consider two cases

(a) Suppose that f is bounded, ∃L > 0 such that f(u) < L and
Ω2 = {u ∈ X : ‖u‖ < H2} where H2 = max{2H1, LM}. If
u ∈ K ∩ ∂Ω1, then by Lemma 2.10, we have

Tu(t) ≤
∫ 1

0
G1(1, s)a(s)f(u)ds+

γ

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds

≤
∫ 1

0
G1(1, s)‖a‖∞Luds+

γ

1− γ

∫ 1

0
G2(η, s)‖a‖∞Luds

≤ L

[
‖a‖∞

(∫ 1

0
G1(1, s)ds+

γ

1− γ

∫ 1

0
G2(η, s)ds

)]
≤ H2 = ‖u‖

therefore

‖Tu‖ ≤ ‖u‖
(b) Suppose f is unbounded , by (H1), ∃H2 > 0 such that H2 >

max{2H1,
H̄2
β } and f(u) ≤ f(H2) for 0 < u ≤ H2 and let Ω2 =

{u ∈ X : ‖u‖ < H2}. If u ∈ K ∩ ∂Ω2, then, by Lemma 2.10 we
have

Tu(t) ≤
∫ 1

0
G1(1, s)a(s)f(u)ds+

γ

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds

≤
∫ 1

0
G1(1, s)‖a‖∞f(H2)ds+

γ

1− γ

∫ 1

0
G2(η, s)‖a‖∞f(H2)ds

≤ λ

[
‖a‖∞

(∫ 1

0
G1(1, s)ds+

γ

1− γ

∫ 1

0
G2(η, s)ds

)]
H2

≤ H2 = ‖u‖

therefore

‖Tu‖ ≤ ‖u‖
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by Theorem 2.7, T has at least one fixed point, which is a positive
solution of (1.1), (1.2). �

Proof. (e)
(e1). Since 0 ≤ f0 < R, ∃H1 > 0, 0 < ε1 < R such that f(u) ≤ (R−ε1)u,
if 0 < u ≤ H1 and t ∈ [0, 1]. Let Ω1 = {u ∈ X : ‖u‖ < H1}. So for any
u ∈ K ∩ ∂Ω1, by Lemma 2.10, we have

Tu(t) =

∫ 1

0
G1(t, s)a(s)f(u)ds+

γt

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds

≤
∫ 1

0
G1(1, s)a(s)f(u)ds+

γ

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds

≤
∫ 1

0
G1(1, s)‖a‖∞(R− ε1)uds+

γ

1− γ
×∫ 1

0
G2(η, s)‖a‖∞(R− ε1)uds

≤ (R− ε1)

[
‖a‖∞

(∫ 1

0
G1(1, s)ds+

γ

1− γ

∫ 1

0
G2(η, s)ds

)]
‖u‖

= (R− ε1)M‖u‖
< ‖u‖

Thus,

‖Tu‖ < ‖u‖

(e2). Since r < f∞ ≤ ∞, ∃H̄2 > 0, ε2 > 0 such that f(u) ≥ (r+ε2)u, for

u ≥ H̄2 and β ≤ t ≤ 1. Let H2 > max{2H1,
H̄2
β } and Ω2 = {u ∈ X :

‖u‖ < H2}. Then for u ∈ K∩Ω2 implies min
β≤t≤1

u(t) ≥ β‖u‖ = βH2 > H̄2.

By Lemma 2.10 , we have

Tu(t) =

∫ 1

0
G1(t, s)a(s)f(u)ds+

γt

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds

≥
∫ 1

β
βG1(1, s)a(s)f(u)ds+

γβ

1− γ

∫ 1

β
G2(η, s)a(s)f(u)ds

≥
∫ 1

β
βG1(1, s)m(r + ε2)uds+

γβ

1− γ

∫ 1

β
G2(η, s)m(r + ε2)uds
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≥
∫ 1

β
βG1(1, s)m(r + ε2)β‖u‖ds+

γβ

1− γ
×∫ 1

β
G2(η, s)m(r + ε2)β‖u‖ds

≥ (r + ε2)

[
β2m

(∫ 1

β
G1(1, s)ds+

γ

1− γ

∫ 1

β
G2(η, s)ds

)]
‖u‖

= (r + ε2)N‖u‖
> ‖u‖

Thus,

‖Tu‖ > ‖u‖
by Theorem 2.7, T has at least one fixed point, which is a positive
solution of (1.1), (1.2). �

Proof. (f)
The proof is similar to that of (e), so we skip it. �

4. Multiplicity results

Theorem 4.1. Assume that (H1−H2), (c) and (g) hold, then (1.1),
(1.2) has at least two positive solutions.

Proof. Since f0 = ∞, ∃H1 > 0, 0 < H1 < ρ such that f(u) > ru with
0 < u ≤ H1 and t ∈ [β, 1]. For u ∈ K ∩ ∂Ω1 where Ω1 = {u ∈ X : ‖u‖ <
H1} by Lemma 2.10 , we have that

Tu(t) =

∫ 1

0
G1(t, s)a(s)f(u)ds+

γt

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds

>

∫ 1

β
βG1(t, s)mruds+

γβ

1− γ

∫ 1

β
G2(η, s)mruds

≥
∫ 1

β
β2G1(1, s)mr‖u‖ds+

γβ2

1− γ

∫ 1

β
G2(η, s)mr‖u‖ds

= r

[
β2m

(∫ 1

β
G1(1, s)ds+

γ

1− γ

∫ 1

β
G2(η, s)ds

)]
‖u‖

= rN‖u‖ = ‖u‖

then

‖Tu‖ > ‖u‖
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By Theorem 2.8
i(T,KH1 ,K) = 0

Since f∞ = ∞, ∃H̄2 > ρ such that f(u) > ru, u ≥ H̄2 > 0 and

t ∈ [β, 1]. Let H2 = H̄2
β and Ω2 = {u ∈ X : ‖u‖ < H2}. For u ∈ K∩∂Ω2,

min
β≤t≤1

u(t) ≥ β‖u‖ = βH2 = H̄2. By Lemma 2.10, we have

Tu(t) =

∫ 1

0
G1(t, s)a(s)f(u)ds+

γt

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds

>

∫ 1

β
βG1(t, s)mruds+

γβ

1− γ

∫ 1

β
G2(η, s)mruds

≥
∫ 1

β
β2G1(1, s)mr‖u‖ds+

γβ2

1− γ

∫ 1

β
G2(η, s)mr‖u‖ds

= r

[
β2m

(∫ 1

β
G1(1, s)ds+

γ

1− γ

∫ 1

β
G2(η, s)ds

)]
‖u‖

= rN‖u‖ = ‖u‖
so

‖Tu‖ > ‖u‖
By Theorem 2.8

i(T,KH2 ,K) = 0

Now, let Ω3 = {u ∈ X : ‖u‖ < ρ}, thus, for u ∈ K ∩ ∂Ω3, we get from
(g) that f(u) < Rρ for t ∈ [0, 1], then

Tu(t) =

∫ 1

0
G1(t, s)a(s)f(u)ds+

γt

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds

≤
∫ 1

0
G1(1, s)a(s)f(u)ds+

γ

1− γ

∫ 1

0
G2(η, s)a(s)f(u)ds

<

∫ 1

0
G1(1, s)‖a‖∞Rρds+

γ

1− γ

∫ 1

0
G2(η, s)‖a‖∞Rρds

≤ R

[
‖a‖∞

(∫ 1

0
G1(1, s)ds+

γ

1− γ

∫ 1

0
G2(η, s)ds

)]
ρ

= RMρ = ‖u‖
then

‖Tu‖ < ‖u‖
By Theorem 2.8

i(T,Kρ,K) = 1
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Therefore

i(T,KH2 \Kρ,K) = i(T,KH2 ,K)− i(T,Kρ,K) = 0− 1 = −1

i(T,Kρ \KH1 ,K) = i(T,Kρ,K)− i(T,KH1 ,K) = 1− 0 = 1

Then there exist at least two positive solutions u1 ∈ K ∩ (Ω̄3\Ω1) and
u2 ∈ K ∩ (Ω̄2\Ω3) of (1.1),(1.2) in K, such that

0 < ‖u1‖ < ρ < ‖u2‖
�

Theorem 4.2. Assume that (H1−H2), (d) and (h) hold, then (1.1),
(1.2) has at least two positive solutions.

Proof. The proof of Theorem 4.2 is similar to that of Theorem 4.1, so
we skip it. �

5. Examples

Example 1. Superlinear and Sublinear Case

a) If f(u) = uα, α > 1, the conclusions of Theorem 3.1(a), hold.
b) If f(u) = 1 + uα, α ∈ (0, 1) the conclusions of Theorem 3.1(b),

hold.

Example 2. Let f(u) = λ ln (1 + u) + u2, fix λ > 0, sufficiently small.
Clearly f0 = λ and f∞ =∞. By Theorem 3.1(e), (1.1) and 1.2 have at
least one positive solution.

Example 3. Let f(u) = u2e−u + µ sinu, fix µ > 0 sufficiently large.
Then f0 = µ and f∞ = 0. By Theorem 3.1(f), (1.1) and (1.2) have at
least one positive solution.

Example 4. Let f(u) = ub + uc − 1, a(t) = 1, α = 5
2 , b ∈ (0, 1),

c > 1, γ = 1
4 and η = 1

2 then f0 = ∞ and f∞ = ∞. By a simple

calculation, M =
∫ 1

0 G1(1, s)ds+ 1
3

∫ 1
0 G2(1

2 , s)ds = 4
3
√
π

[
14
15 −

√
2

12

]
then

R ≈ 1.633012.
On the other hand, we could choose ρ = 1, then f(u) ≤ 1 < Rρ for
u ∈ [0, 1]. By Theorem 4.1, (1.1) and (1.2) have at least two positive
solutions u1 , u2 and 0 < ‖u1‖ < 1 < ‖u2‖.
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