HYERS-ULAM-RASSIAS STABILITY OF A COMPOSITE FUNCTIONAL EQUATION IN VARIOUS NORMED SPACES

H. AZADI KENARY

Communicated by Gholam Hossein Esslamzadeh

Abstract

In this paper, we prove the generalized Hyers-Ulam (or Hyers-Ulam-Rassias) stability of the following composite functional equation $f(f(x)-f(y))+f(x)+f(y)=f(x+y)+f(x-y)$,

in various normed spaces.

1. Introduction and preliminaries

Let Γ^{+}denote the set of all probability distribution functions $F: \mathbb{R} \cup$ $[-\infty,+\infty] \rightarrow[0,1]$ such that F is left-continuous and nondecreasing on \mathbb{R} and $F(0)=0, F(+\infty)=1$. It is clear that the set $D^{+}=\left\{F \in \Gamma^{+}\right.$: $\left.l^{-} F(-\infty)=1\right\}$, where $l^{-} f(x)=\lim _{t \rightarrow x^{-}} f(t)$, is a subset of Γ^{+}. The set Γ^{+}is partially ordered by the usual point-wise ordering of functions, that is, $F \leq G$ if and only if $F(t) \leq G(t)$ for all $t \in \mathbb{R}$. For any $a \geq 0$, the element $H_{a}(t)$ of D^{+}is defined by $H_{a}(t)=\left\{\begin{array}{lll}0, & \text { if } t \leq a, \\ 1, & \text { if } t>a\end{array}\right.$.

Definition 1.1. A function $T:[0,1]^{2} \rightarrow[0,1]$ is a continuous triangular norm (briefly, a t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;

[^0](b) T is continuous;
(c) $T(x, 1)=x$ for all $x \in[0,1]$;
(d) $T(x, y) \leq T(z, w)$ whenever $x \leq z$ and $y \leq w$ for all $x, y, z, w \in[0,1]$.

Definition 1.2. A random normed space (briefly, $R N$-space) is a triple (X, μ, T), where X is a vector space, T is a continuous t-norm and $\mu: X \rightarrow D^{+}$is a mapping such that the following conditions hold:
(a) $\mu_{x}(t)=H_{0}(t)$ for all $x \in X$ and $t>0$ if and only if $x=0$;
(b) $\mu_{\alpha x}(t)=\mu_{x}\left(\frac{t}{|\alpha|}\right)$ for all $\alpha \in \mathbb{R}$ with $\alpha \neq 0, x \in X$ and $t \geq 0$;
(c) $\mu_{x+y}(t+s) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$ for all $x, y \in X$ and $t, s \geq 0$.

Definition 1.3. By a non-Archimedean field we mean a field \mathbb{K} equipped with a function (valuation) $|\cdot|: \mathbb{K} \rightarrow[0, \infty)$ such that for all $r, s \in \mathbb{K}$, the following conditions hold:
(i) $|r|=0$ if and only if $r=0$;
(ii) $|r s|=|r||s|$;
(iii) $|r+s| \leq \max \{|r|,|s|\}$.

Remark 1.4. Clearly $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$.
Definition 1.5. Let X be a vector space over a scalar field \mathbb{K} with a nonArchimedean non-trivial valuation $|\cdot|$. A function $\|\cdot\|: X \rightarrow \mathbb{R}$ is a nonArchimedean norm (valuation) if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$;
(ii) $\|r x\|=|r|\|x\|(r \in \mathbb{K}, x \in X)$;
(iii) The strong triangle inequality (ultrametric); namely $\|x+y\| \leq$ $\max \{\|x\|,\|y\|\}, x, y \in X$.
Then $(X,\|\cdot\|)$ is called a non-Archimedean space.
Definition 1.6. A sequence $\left\{x_{n}\right\}$ is Cauchy if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in a non-Archimedean space. By a complete nonArchimedean space we mean one in which every Cauchy sequence is convergent.

The most important examples of non-Archimedean spaces are p-adic numbers. A key property of p-adic numbers is that they do not satisfy the Archimedean axiom: "for $x, y>0$, there exists $n \in \mathbb{N}$ such that $x<n y$ ".
Example 1.7. Fix a prime number p. For any nonzero rational number x, there exists a unique integer $n_{x} \in \mathbb{Z}$ such that $x=\frac{a}{b} p^{n_{x}}$, where a and b are integers not divisible by p. Then $|x|_{p}:=p^{-n_{x}}$ defines a nonArchimedean norm on \mathbb{Q}. The completion of \mathbb{Q} with respect to the metric
$d(x, y)=|x-y|_{p}$ is denoted by \mathbb{Q}_{p} which is called the p-adic number field. In fact, \mathbb{Q}_{p} is the set of all formal series $x=\sum_{k>n_{x}}^{\infty} a_{k} p^{k}$ where $\left|a_{k}\right| \leq$ $p-1$ are integers. The addition and multiplication between any two elements of \mathbb{Q}_{p} are defined naturally. The norm $\left|\sum_{k \geq n_{x}}^{\infty} a_{k} p^{k}\right|_{p}=p^{-n_{x}}$ is a non-Archimedean norm on \mathbb{Q}_{p} and it makes \mathbb{Q}_{p} a locally compact filed.

Arriola and Beyer [1] investigated the Hyers-Ulam stability of approximate additive functions $f: \mathbb{Q}_{p} \rightarrow \mathbb{R}$. They showed that if $f: \mathbb{Q}_{p} \rightarrow \mathbb{R}$ is a continuous function for which there exists a fixed ϵ :

$$
|f(x+y)-f(x)-f(y)| \leq \epsilon
$$

for all $x, y \in \mathbb{Q}_{p}$, then there exists a unique additive function $T: \mathbb{Q}_{p} \rightarrow \mathbb{R}$ such that

$$
|f(x)-T(x)| \leq \epsilon
$$

for all $x \in \mathbb{Q}_{p}$.
However, the following example shows that similar result is not true in non-Archimedean normed spaces.

Example 1.8. Let $p>2$ and let $f: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ be defined by $f(x)=2$. Then for $\epsilon=1$,

$$
|f(x+y)-f(x)-f(y)|=1 \leq \epsilon
$$

for all $x, y \in \mathbb{Q}_{p}$. However, the sequences $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}_{n=1}^{\infty}$ and $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}_{n=1}^{\infty}$ are not Cauchy. In fact, by using the fact that $|2|=1$, we have

$$
\left|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{n+1} x\right)}{2^{n+1}}\right|=\left|2^{-n} \cdot 2-2^{-(n+1)} \cdot 2\right|=\left|2^{-n}\right|=1
$$

and

$$
\left|2^{n} f\left(\frac{x}{2^{n}}\right)-2^{n+1} f\left(\frac{x}{2^{n+1}}\right)\right|=\left|2^{n} \cdot 2-2^{(n+1)} \cdot 2\right|=\left|2^{n+1}\right|=1
$$

for all $x, y \in \mathbb{Q}_{p}$ and $n \in \mathbb{N}$. Hence these sequences are not convergent in \mathbb{Q}_{p}.

Definition 1.9. Let X be a set. A function $d: X \times X \rightarrow[0, \infty]$ is called a generalized metric on X if d satisfies the following conditions:
(a) $d(x, y)=0$ if and only if $x=y$ for all $x, y \in X$;
(b) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(c) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.

Theorem 1.10. Let (X, d) be a complete generalized metric space and let $J: X \rightarrow X$ be a strictly contractive mapping with Lipschitz constant $L<1$. Then, for all $x \in X$, either

$$
\begin{equation*}
d\left(J^{n} x, J^{n+1} x\right)=\infty \tag{1.1}
\end{equation*}
$$

for all nonnegative integers n, or there exists a positive integer n_{0} such that
(a) $d\left(J^{n} x, J^{n+1} x\right)<\infty$ for all $n_{0} \geq n_{0}$;
(b) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point y^{*} of J;
(c) y^{*} is the unique fixed point of J in the set $Y=\left\{y \in X: d\left(J^{n_{0}} x, y\right)<\right.$ $\infty\}$;
(d) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

A classical question in the theory of functional equations is the following:"When is it true that a function which approximately satisfies a functional equation must be close to an exact solution of the equation?". If the problem admits a solution, we say that the equation is stable. The first stability problem concerning group homomorphisms was raised by Ulam [31] in 1940. In the following year, Hyers [10] gave a positive answer to the above question for additive groups under the assumption that the groups are Banach spaces. In 1978, Rassias [19] proved a generalization of Hyers' theorem for additive mappings. The result of Rassias has provided a significant influence during the last three decades in the development of a generalization of the Hyers-Ulam stability concept. This new concept is known as generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. Furthermore, in 1994, a generalization of Rassias's theorem was obtained by Gǎvruta [8] by replacing the bound $\epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ by a general control function $\varphi(x, y)$. In 1897, Hensel [9] introduced a normed space which does not have the Archimedean property. It turned out that non-Archimedean spaces have many nice applications [11, 12].

The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem ([2]- [8], [14]- [29]).

In Sections 2 and 3, we adopt the usual terminology, notions and conventions of the theory of random normed spaces as in [30].

In this paper, we prove the Hyers-Ulam-Rassias stability of the functional equation

$$
\begin{equation*}
f(f(x)-f(y))+f(x)+f(y)=f(x+y)+f(x-y) \tag{1.2}
\end{equation*}
$$

in random and non-Archimedean normed spaces.

2. Random stability of the functional equation (1.2): a direct method

In this section, using a direct method, we prove the Hyers-UlamRassias stability of the functional equation (1.2) in random normed spaces.

Theorem 2.1. Let X be a real linear space, $\left(Z, \mu^{\prime}, \min \right)$ an $R N$-space and $\varphi: X^{2} \rightarrow Z$ a function such that there exists $0<\alpha<\frac{1}{2}$ with

$$
\begin{equation*}
\mu_{\varphi\left(\frac{x}{2}, \frac{y}{2}\right)}^{\prime}(t) \geq \mu_{\alpha \varphi(x, y)}^{\prime}(t) \tag{2.1}
\end{equation*}
$$

for all $x \in X$ and $t>0$ and

$$
\lim _{n \rightarrow \infty} \mu_{\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}^{\prime}\left(\frac{t}{2^{n}}\right)=1
$$

for all $x, y \in X$ and $t>0$. Let (Y, μ, \min) be a complete $R N$-space. If $f: X \rightarrow Y$ is a mapping such that

$$
\begin{equation*}
\mu_{f(f(x)-f(y))-f(x+y)-f(x-y)+f(x)+f(y)}(t) \geq \mu_{\varphi(x, y)}^{\prime}(t) \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Then the limit

$$
A(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

exists for all $x \in X$ and defines a unique additive mapping $A: X \rightarrow Y$ such that and

$$
\begin{equation*}
\mu_{f(x)-A(x)}(t) \geq \mu_{\varphi(x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{\alpha}\right) \tag{2.3}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Putting $y=x$ in (2.2), we see that

$$
\begin{equation*}
\mu_{f(2 x)-2 f(x)}(t) \geq \mu_{\varphi(x, x)}^{\prime}(t) \tag{2.4}
\end{equation*}
$$

Replacing x by $\frac{x}{2}$ in (2.4), we obtain

$$
\begin{equation*}
\mu_{2 f\left(\frac{x}{2}\right)-f(x)}(t) \geq \mu_{\varphi\left(\frac{x}{2}, \frac{x}{2}\right)}^{\prime}(t) \tag{2.5}
\end{equation*}
$$

for all $x \in X$. Replacing x by $\frac{x}{2^{n}}$ in (2.5) and using (2.1), we obtain

$$
\mu_{2^{n+1} f\left(\frac{x}{2^{n+1}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)}(t) \geq \mu_{\varphi\left(\frac{x}{2^{n+1}}, \frac{x}{2^{n+1}}\right)}^{\prime}\left(\frac{t}{2^{n}}\right) \geq \mu_{\varphi(x, x)}^{\prime}\left(\frac{t}{2^{n} \alpha^{n+1}}\right)
$$

and so

$$
\begin{aligned}
\mu_{2^{n} f\left(\frac{x}{2^{n}}\right)-f(x)}\left(\sum_{k=0}^{n-1} 2^{k} \alpha^{k+1} t\right) & =\mu_{\sum_{k=0}^{n-1} 2^{k+1} f\left(\frac{x}{2^{k+1}}\right)-2^{k} f\left(\frac{x}{2^{k}}\right)}\left(\sum_{k=0}^{n-1} 2^{k} \alpha^{k+1} t\right) \\
& \geq T_{M}^{n-1}\left(\mu_{2^{k+1} f\left(\frac{x}{2^{k+1}}\right)-2^{k} f\left(\frac{x}{2^{k}}\right)}\left(2^{k} \alpha^{k+1} t\right)\right) \\
& \geq T_{M}^{n-1}\left(\mu_{\varphi(x, x)}^{\prime}(t)\right)=\mu_{\varphi(x, x)}^{\prime}(t) .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\mu_{2^{n} f\left(\frac{x}{2^{n}}\right)-f(x)}(t) \geq \mu_{\varphi(x, x)}^{\prime}\left(\frac{t}{\sum_{k=0}^{n-1} 2^{k} \alpha^{k+1}}\right) . \tag{2.6}
\end{equation*}
$$

Replacing x by $\frac{x}{2^{p}}$ in (2.6), we obtain

$$
\begin{align*}
\mu_{2^{n+p} f\left(\frac{x}{2^{n+p}}\right)-2^{p} f\left(\frac{x}{2^{p}}\right)}(t) & \geq \mu_{\varphi(x, x)}^{\prime}\left(\frac{t}{\sum_{k=p}^{n+p-1} 2^{k} \alpha^{k+1}}\right) \\
& \rightarrow 1 \text { when } n \rightarrow+\infty \tag{2.7}
\end{align*}
$$

so $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence in a complete RN-space (Y, μ, \min) and so there exists a point $A(x) \in Y$ such that

$$
\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)=A(x)
$$

Fix $x \in X$ and put $p=0$ in (2.7). Then we obtain

$$
\mu_{2^{n} f\left(\frac{x}{2^{n}}\right)-f(x)}(t) \geq \mu_{\varphi(x, x)}^{\prime}\left(\frac{t}{\sum_{k=0}^{n-1} 2^{k} \alpha^{k+1}}\right)
$$

and so, for any $\delta>0$,

$$
\begin{array}{ll}
\mu_{A(x)-f(x)}(t+\delta) & \geq T\left(\mu_{A(x)-2^{n} f\left(\frac{x}{2^{n}}\right)}(\delta), \mu_{2^{n} f\left(\frac{x}{2^{n}}\right)-f(x)}(t)\right) \\
(2.8) & \geq T\left(\mu_{A(x)-2^{n} f\left(\frac{x}{2^{n}}\right)}(\delta), \mu_{\varphi(x, x)}^{\prime}\left(\frac{t}{\sum_{k=0}^{n-1} 2^{k} \alpha^{k+1}}\right)\right) . \tag{2.8}
\end{array}
$$

Taking $n \rightarrow \infty$ in (2.8), we get

$$
\begin{equation*}
\mu_{A(x)-f(x)}(t+\delta) \geq \mu_{\varphi(x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{\alpha}\right) . \tag{2.9}
\end{equation*}
$$

Since δ is arbitrary, by taking $\delta \rightarrow 0$ in (2.9), we get

$$
\mu_{A(x)-f(x)}(t) \geq \mu_{\varphi(x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{\alpha}\right)
$$

Replacing x and y by $\frac{x}{2^{n}}$ and $\frac{y}{2^{n}}$ in (2.2), respectively, we get

$$
\mu_{2^{n}\left[f\left(f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right)-f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x-y}{2^{n}}\right)+f\left(\frac{x}{2^{n}}\right)+f\left(\frac{y}{2^{n}}\right)\right]}(t) \geq \mu_{\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}^{\prime}\left(\frac{t}{2^{n}}\right)
$$

for all $x, y \in X$ and $t>0$. Since $\lim _{n \rightarrow \infty} \mu_{\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}^{\prime}\left(\frac{t}{2^{n}}\right)=1$, we conclude that A satisfies (1.2). On the other hand,

$$
2 A\left(\frac{x}{2}\right)-A(x)=\lim _{n \rightarrow \infty} 2^{n+1} f\left(\frac{x}{2^{n+1}}\right)-\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)=0 .
$$

This implies that $A: X \rightarrow Y$ is an additive mapping. To prove the uniqueness of the additive mapping A, assume that there exists another additive mapping $L: X \rightarrow Y$ which satisfies (2.3). Then we have

$$
\begin{aligned}
\mu_{A(x)-L(x)}(t) & =\lim _{n \rightarrow \infty} \mu_{2^{n} A\left(\frac{x}{2^{n}}\right)-2^{n} L\left(\frac{x}{2^{n}}\right)}(t) \\
& \geq \lim _{n \rightarrow \infty} \min \left\{\mu_{2^{n} A\left(\frac{x}{2^{n}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)}\left(\frac{t}{2}\right), \mu_{2^{n} f\left(\frac{x}{2^{n}}\right)-2^{n} L\left(\frac{x}{2^{n}}\right)}\left(\frac{t}{2}\right)\right\} \\
& \geq \lim _{n \rightarrow \infty} \mu_{\varphi\left(\frac{x}{2^{n}}, \frac{x}{2^{n}}\right)}^{\prime}\left(\frac{(1-2 \alpha) t}{2^{n+1} \alpha}\right) \geq \lim _{n \rightarrow \infty} \mu_{\varphi(x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{2^{n+1} \alpha^{n+1}}\right) .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \frac{(1-2 \alpha) t}{2^{n+1} \alpha^{n+1}}=\infty$, we get $\lim _{n \rightarrow \infty} \mu_{\varphi(x, x)}^{\prime}\left(\frac{(1-2 \alpha) t}{2^{n+1} \alpha^{n+1}}\right)=1$. Therefore, it follows that $\mu_{A(x)-L(x)}(t)=1$ for all $t>0$ and so $A(x)=$ $L(x)$. This completes the proof.

Corollary 2.2. Let X be a real normed linear space, $\left(Z, \mu^{\prime}, \min \right)$ an $R N$-space and (Y, μ, \min) a complete $R N$-space. Let r be a positive real number with $r>1, z_{0} \in Z$ and $f: X \rightarrow Y$ a mapping satisfying

$$
\begin{equation*}
\mu_{f(f(x)-f(y))-f(x+y)-f(x-y)+f(x)+f(y)}(t) \geq \mu_{\left(\|x\|^{r}+\|y\|^{r}\right) z_{0}}^{\prime}(t) \tag{2.10}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Then the limit $A(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ exists for all $x \in X$ and defines a unique additive mapping $A: X \rightarrow Y$ such that

$$
\mu_{f(x)-A(x)}(t) \geq \mu_{\|x\|^{p} z_{0}}^{\prime}\left(\frac{\left(2^{r}-2\right) t}{2}\right)
$$

for all $x \in X$ and $t>0$.
Proof. Let $\alpha=2^{-r}$ and let $\varphi: X^{2} \rightarrow Z$ be a mapping defined by $\varphi(x, y)=\left(\|x\|^{r}+\|y\|^{r}\right) z_{0}$. Then, from Theorem 2.1, the conclusion follows.

Theorem 2.3. Let X be a real linear space, ($Z, \mu^{\prime}, \mathrm{min}$) an $R N$ space and $\varphi: X^{2} \rightarrow Z \quad a$ function such that there exists $0<\alpha<$ 2 such that $\mu_{\varphi(2 x, 2 y)}^{\prime}(t) \geq \mu_{\alpha \varphi(x, y)}^{\prime}(t)$ for all $x \in X$ and $t>0$ and $\lim _{n \rightarrow \infty} \mu_{\varphi\left(2^{n} x, 2^{n} y\right)}^{\prime}\left(2^{n} t\right)=1$ for all $x, y \in X$ and $t>0$. Let (Y, μ, \min) be a complete $R N$-space. If $f: X \rightarrow Y$ is a mapping satisfying (2.2). Then the limit $A(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in X$ and defines a unique additive mapping $A: X \rightarrow Y$ such that and

$$
\begin{equation*}
\mu_{f(x)-A(x)}(t) \geq \mu_{\varphi(x, x)}^{\prime}((2-\alpha) t) \tag{2.11}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Putting $y=x$ in (2.2), we see that

$$
\begin{equation*}
\mu_{\frac{f(2 x)}{2}-f(x)}(t) \geq \mu_{\varphi(x, x)}^{\prime}(2 t) . \tag{2.12}
\end{equation*}
$$

Replacing x by $2^{n} x$ in (2.12), we obtain that

$$
\begin{equation*}
\mu_{\frac{f\left(2^{n+1} x\right)}{2^{n+1}}-\frac{f\left(2^{n} x\right)}{2^{n}}}(t) \geq \mu_{\varphi\left(2^{n} x, 2^{n} x\right)}^{\prime}\left(2^{n+1} t\right) \geq \mu_{\varphi(x, x)}\left(\frac{2^{n+1} t}{\alpha^{n}}\right) . \tag{2.13}
\end{equation*}
$$

The rest of the proof is similar to the proof of Theorem 2.1.
Corollary 2.4. Let X be a real normed linear space, $\left(Z, \mu^{\prime}, \min \right)$ an $R N$-space and (Y, μ, \min) a complete $R N$-space. Let r be a positive real number with $0<r<1, z_{0} \in Z$ and $f: X \rightarrow Y$ a mapping satisfying (2.10). Then the limit $A(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in X$ and defines a unique additive mapping $A: X \rightarrow Y$ such that

$$
\mu_{f(x)-A(x)}(t) \geq \mu_{\|x\|^{p} z_{0}}^{\prime}\left(\frac{\left(2-2^{r}\right) t}{2}\right)
$$

for all $x \in X$ and $t>0$.
Proof. Let $\alpha=2^{r}$ and let $\varphi: X^{2} \rightarrow Z$ be a mapping defined by $\varphi(x, y)=$ $\left(\|x\|^{r}+\|y\|^{r}\right) z_{0}$. Then, from Theorem 2.3, the conclusion follows.

3. Random stability of the functional equation (1.2): a fixed point method

Throughout this section, using a fixed point method, we prove Hyers-Ulam-Rassias stability of functional equation (1.2) in RN-spaces.

Theorem 3.1. Let X be a linear space, $\left(Y, \mu, T_{M}\right)$ a complete $R N$-space and Φ a mapping from X^{2} to D^{+}such that there exists $0<\alpha<\frac{1}{2}$ such that

$$
\begin{equation*}
\Phi_{2 x, 2 y}(t) \leq \Phi_{x, y}(\alpha t) \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$ and $t>0\left(\Phi(x, y)\right.$ is denoted by $\left.\Phi_{x, y}\right)$. Let $f: X \rightarrow Y$ be a mapping satisfying

$$
\begin{equation*}
\mu_{f(f(x)-f(y))-f(x+y)-f(x-y)+f(x)+f(y)}(t) \geq \Phi_{x, y}(t) \tag{3.2}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Then, for all $x \in X$

$$
A(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

exists and $A: X \rightarrow Y$ is a unique additive mapping such that

$$
\begin{equation*}
\mu_{f(x)-A(x)}(t) \geq \Phi_{x, x}\left(\frac{(1-2 \alpha) t}{\alpha}\right) \tag{3.3}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Putting $y=x$ in (3.2) and replacing x by $\frac{x}{2}$, we have

$$
\begin{equation*}
\mu_{2 f\left(\frac{x}{2}\right)-f(x)}(t) \geq \Phi_{\frac{x}{2}, \frac{x}{2}}(t) \tag{3.4}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Consider the set $S:=\{g: X \rightarrow Y\}$ and the generalized metric d in S defined by

$$
\begin{equation*}
d(f, g)=\inf _{u \in(0, \infty)}\left\{\mu_{g(x)-h(x)}(u t) \geq \Phi_{x, x}(t), \forall x \in X, t>0\right\} \tag{3.5}
\end{equation*}
$$

where $\inf \emptyset=+\infty$. It is easy to show that (S, d) is complete (see [14], Lemma 2.1). Now, we consider a linear mapping $J:(S, d) \rightarrow(S, d)$ such that

$$
\begin{equation*}
J h(x):=2 h\left(\frac{x}{2}\right) \tag{3.6}
\end{equation*}
$$

for all $x \in X$.
First, we prove that J is a strictly contractive mapping with the Lipschitz constant 2α. In fact, let $g, h \in S$ be such that $d(g, h)<\epsilon$. Then we have

$$
\mu_{g(x)-h(x)}(\epsilon t) \geq \Phi_{x, x}(t)
$$

for all $x \in X$ and $t>0$ and so

$$
\begin{aligned}
\mu_{J g(x)-J h(x)}(2 \alpha \epsilon t)=\mu_{2 g\left(\frac{x}{2}\right)-2 h\left(\frac{x}{2}\right)}(2 \alpha \epsilon t) & =\mu_{g\left(\frac{x}{2}\right)-h\left(\frac{x}{2}\right)}(\alpha \epsilon t) \\
& \geq \Phi_{\frac{x}{2}, \frac{x}{2}}(\alpha t) \\
& \geq \Phi_{x, x}(t)
\end{aligned}
$$

for all $x \in X$ and $t>0$. Thus $d(g, h)<\epsilon$ implies that $d(J g, J h)<2 \alpha \epsilon$. This means that $d(J g, J h) \leq 2 \alpha d(g, h)$ for all $g, h \in S$. It follows from (3.4) that

$$
d(f, J f) \leq \alpha
$$

By Theorem 1.10, there exists a mapping $A: X \rightarrow Y$ satisfying the following:
(1) A is a fixed point of J, that is,

$$
\begin{equation*}
A\left(\frac{x}{2}\right)=\frac{1}{2} A(x) \tag{3.7}
\end{equation*}
$$

for all $x \in X$. The mapping A is a unique fixed point of J in the set $\Omega=\{h \in S: d(g, h)<\infty\}$. This implies that A is a unique mapping satisfying (3.7) such that there exists $u \in(0, \infty)$ satisfying $\mu_{f(x)-A(x)}(u t) \geq \Phi_{x, x}(t)$ for all $x \in X$ and $t>0$.
(2) $d\left(J^{n} f, A\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)=A(x)
$$

for all $x \in X$.
(3) $d(f, A) \leq \frac{d(f, J f)}{1-2 \alpha}$ with $f \in \Omega$, which implies the inequality

$$
d(f, A) \leq \frac{\alpha}{1-2 \alpha}
$$

and so

$$
\mu_{f(x)-A(x)}\left(\frac{\alpha t}{1-2 \alpha}\right) \geq \Phi_{x, x}(t)
$$

for all $x \in X$ and $t>0$. This implies that the inequality (3.3) holds. On the other hand, replacing x, y by $\frac{x}{2^{n}}$ and $\frac{y}{2^{n}}$, respectively, in (3.2), we have

$$
\mu_{2^{n}\left[f\left(f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right)-f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x-y}{2^{n}}\right)+f\left(\frac{x}{2^{n}}\right)+f\left(\frac{y}{2^{n}}\right)\right]}(t) \geq \Phi_{\frac{x}{2^{n}}, \frac{y}{2^{n}}}\left(\frac{t}{2^{n}}\right)
$$

for all $x, y \in X, t>0$ and $n \geq 1$ and so, from (3.1), it follows that

$$
\Phi_{\frac{x}{2^{n}}, \frac{y}{2^{n}}}\left(\frac{t}{2^{n}}\right) \geq \Phi_{x, y}\left(\frac{t}{2^{n} \alpha^{n}}\right) \rightarrow 1 \quad \text { as } \quad n \rightarrow+\infty
$$

for all $x, y \in X$ and $t>0$. Therefore

$$
\mu_{A(A(x)-A(y))-A(x+y)-A(x-y)+A(x)+A(y)}(t)=1
$$

for all $x, y \in X$ and $t>0$. Thus the mapping $A: X \rightarrow Y$ satisfies (1.2). Furthermore, since for all $x, y \in X$, we have

$$
\begin{aligned}
A(2 x)-2 A(x) & =\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n-1}}\right)-2 \lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right) \\
& =2\left[\lim _{n \rightarrow \infty} 2^{n-1} f\left(\frac{x}{2^{n-1}}\right)-\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)\right] \\
& =0,
\end{aligned}
$$

we conclude that $A: X \rightarrow Y$ is additive. This completes the proof.
Corollary 3.2. Let X be a real normed space, $\theta \geq 0$ and let r be a real number with $r>1$. Let $f: X \rightarrow Y$ be a mapping satisfying

$$
\begin{equation*}
\mu_{f(f(x)-f(y))-f(x+y)-f(x-y)+f(x)+f(y)}(t) \geq \frac{t}{t+\theta\left(\|x\|^{r}+\|y\|^{r}\right)} \tag{3.8}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Then $A(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ exists for all $x \in X$ and $A: X \rightarrow Y$ is a unique additive mapping such that

$$
\mu_{f(x)-A(x)}(t) \geq \frac{\left(2^{r}-2\right) t}{\left(2^{r}-2\right) t+2 \theta\|x\|^{r}}
$$

for all $x \in X$ and $t>0$.
Proof. The proof follows from Theorem 3.1 if we take

$$
\Phi_{x, y}(t)=\frac{t}{t+\theta\left(\|x\|^{r}+\|y\|^{r}\right)}
$$

for all $x, y \in X$ and $t>0$. In fact, if we choose $\alpha=2^{-r}$, then we get the desired result.

Theorem 3.3. Let X be a linear space, $\left(Y, \mu, T_{M}\right)$ a complete $R N$ space and Φ a mapping from X^{2} to D^{+}such that for some $0<\alpha<2$, $\Phi_{\frac{x}{2}, \frac{y}{2}}(t) \leq \Phi_{x, y}(\alpha t)$ for all $x, y \in X$ and $t>0$. Let $f: X \rightarrow Y$ be a mapping satisfying (3.2). Then the limit $A(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in X$ and $A: X \rightarrow Y$ is a unique additive mapping such that

$$
\begin{equation*}
\mu_{f(x)-A(x)}(t) \geq \Phi_{x, x}((2-\alpha) t) \tag{3.9}
\end{equation*}
$$

for all $x \in X$ and $t>0$.

Proof. Putting $y=x$ in (3.2), we have

$$
\begin{equation*}
\mu_{\frac{f(2 x)}{2}-f(x)}(t) \geq \Phi_{x, x}(2 t) \tag{3.10}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1. Now, we consider a linear mapping $J:(S, d) \rightarrow(S, d)$ such that $J h(x):=\frac{1}{2} h(2 x)$ for all $x \in X$. It follows from (3.10) that

$$
d(f, J f) \leq \frac{1}{2}
$$

By Theorem 1.10, there exists a mapping $A: X \rightarrow Y$ satisfying the following:
(1) A is a fixed point of J, that is,

$$
\begin{equation*}
A(2 x)=2 A(x) \tag{3.11}
\end{equation*}
$$

for all $x \in X$. The mapping A is a unique fixed point of J in the set $\Omega=\{h \in S: d(g, h)<\infty\}$. This implies that A is a unique mapping satisfying (3.11) such that there exists $u \in(0, \infty)$ satisfying $\mu_{f(x)-A(x)}(u t) \geq \Phi_{x, x}(t)$ for all $x \in X$ and $t>0$.
(2) $d\left(J^{n} f, A\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}=A(x)
$$

for all $x \in X$.
(3) $d(f, A) \leq \frac{d(f, J f)}{1-\frac{\alpha}{2}}$ with $f \in \Omega$, which implies the inequality

$$
\mu_{f(x)-A(x)}\left(\frac{t}{2-\alpha}\right) \geq \Phi_{x, x}(t)
$$

for all $x \in X$ and $t>0$. This implies that the inequality (3.9) holds. The rest of the proof is similar to the proof of Theorem 3.1.

Corollary 3.4. Let X be a real normed space, $\theta \geq 0$ and let r be a real number with $0<r<1$. Let $f: X \rightarrow Y$ be a mapping satisfying (3.8). Then the limit $A(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in X$ and $A: X \rightarrow Y$ is a unique additive mapping such that

$$
\mu_{f(x)-A(x)}(t) \geq \frac{\left(2-2^{r}\right) t}{\left(2-2^{r}\right) t+2 \theta\|x\|^{r}}
$$

for all $x \in X$ and $t>0$.

Proof. The proof follows from Theorem 3.3 if we take

$$
\Phi_{x, y}(t)=\frac{t}{t+\theta\left(\|x\|^{r}+\|y\|^{r}\right)}
$$

for all $x, y \in X$ and $t>0$. In fact, if we choose $\alpha=2^{r}$, then we get the desired result.

4. Non-Archimedean stability of functional equation (1.2): a fixed point method

In this section, using a fixed point approach, we prove the Hyers-Ulam-Rassias stability of functional equation (1.2) in non-Archimedean normed spaces.
Throughout this section, X is a non-Archimedean normed spaces and that Y is a complete non-Archimedean normed spaces. Also we assume that $|2| \neq 1$.

Theorem 4.1. Let $\zeta: X^{2} \rightarrow[0, \infty)$ be a function such that there exists $L<1$ with

$$
\begin{equation*}
|2| \zeta\left(\frac{x}{2}, \frac{y}{2}\right) \leq L \zeta(x, y) \tag{4.1}
\end{equation*}
$$

for all $x, y \in X$. If $f: X \rightarrow Y$ is a mapping satisfying

$$
\begin{equation*}
\|f(f(x)-f(y))-f(x+y)-f(x-y)+f(x)+f(y)\| \leq \zeta(x, y) \tag{4.2}
\end{equation*}
$$

for all $x, y \in X$, then there is a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{L \zeta(x, x)}{|2|-|2| L} \tag{4.3}
\end{equation*}
$$

Proof. Putting $y=x$ in (4.2), we have

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leq \zeta(x, x) \tag{4.4}
\end{equation*}
$$

for all $x \in X$. Replacing x by $\frac{x}{2}$ in (4.4), we obtain

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leq \zeta\left(\frac{x}{2}, \frac{x}{2}\right) \tag{4.5}
\end{equation*}
$$

for all $x \in X$. Consider the set $S^{*}:=\{g: X \rightarrow Y\}$ and the generalized metric d^{*} in S^{*} defined by

$$
\begin{equation*}
d^{*}(f, g)=\inf \left\{\mu \in \mathbb{R}^{+}:\|g(x)-h(x)\| \leq \mu \zeta(x, x), \forall x \in X\right\} \tag{4.6}
\end{equation*}
$$

where $\inf \emptyset=+\infty$. It is easy to show that $\left(S^{*}, d^{*}\right)$ is complete (see [14], Lemma 2.1). Now, we consider a linear mapping $J^{*}: S^{*} \rightarrow S^{*}$ such that

$$
\begin{equation*}
J^{*} h(x):=2 h\left(\frac{x}{2}\right) \tag{4.7}
\end{equation*}
$$

for all $x \in X$. Let $g, h \in S^{*}$ be such that $d^{*}(g, h)=\epsilon$. Then we have $\|g(x)-h(x)\| \leq \epsilon \zeta(x, x)$ for all $x \in X$ and so

$$
\begin{aligned}
\left\|J^{*} g(x)-J^{*} h(x)\right\|=\left\|2 g\left(\frac{x}{2}\right)-2 h\left(\frac{x}{2}\right)\right\| & \leq|2| \epsilon \zeta\left(\frac{x}{2}, \frac{x}{2}\right) \\
& \leq|2| \epsilon \frac{L}{|2|} \zeta(x, x)
\end{aligned}
$$

for all $x \in X$. Thus $d^{*}(g, h)=\epsilon$ implies that $d^{*}\left(J^{*} g, J^{*} h\right) \leq L \epsilon$. This means that $d^{*}\left(J^{*} g, J^{*} h\right) \leq L d^{*}(g, h)$ for all $g, h \in S^{*}$. It follows from (4.5) that

$$
\begin{equation*}
d^{*}\left(f, J^{*} f\right) \leq \frac{L}{|2|} \tag{4.8}
\end{equation*}
$$

By Theorem 1.10, there exists a mapping $A: X \rightarrow Y$ satisfying the following:
(1) A is a fixed point of J^{*}, that is,

$$
\begin{equation*}
A\left(\frac{x}{2}\right)=\frac{1}{2} A(x) \tag{4.9}
\end{equation*}
$$

for all $x \in X$. The mapping A is a unique fixed point of J^{*} in the set $\Omega=\left\{h \in S^{*}: d^{*}(g, h)<\infty\right\}$. This implies that A is a unique mapping satisfying (4.9) such that there exists $\mu \in(0, \infty)$ satisfying $\|f(x)-A(x)\| \leq \mu \zeta(x, x)$ for all $x \in X$.
(2) $d^{*}\left(J^{* n} f, A\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)=A(x)
$$

for all $x \in X$.
(3) $d^{*}(f, A) \leq \frac{d^{*}\left(f, J^{*} f\right)}{1-L}$ with $f \in \Omega$, which implies the inequality

$$
\begin{equation*}
d^{*}(f, A) \leq \frac{L}{|2|-|2| L} . \tag{4.10}
\end{equation*}
$$

This implies that the inequality (4.3) holds. By (4.2), we have

$$
\begin{gathered}
\left\|2^{n}\left[f\left(f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right)-f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x-y}{2^{n}}\right)+f\left(\frac{x}{2^{n}}\right)+f\left(\frac{y}{2^{n}}\right)\right]\right\| \\
\leq|2|^{n} \zeta\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right) \leq|2|^{n} \cdot \frac{L^{n}}{\mid 2^{n}} \zeta(x, y)
\end{gathered}
$$

for all $x, y \in X$ and $n \geq 1$ and so $\| f(f(x)-f(y))-f(x+y)-f(x-$ $y)+f(x)+f(y) \|=0$ for all $x, y \in X$. On the other hand

$$
2 A\left(\frac{x}{2}\right)-A(x)=\lim _{n \rightarrow \infty} 2^{n+1} f\left(\frac{x}{2^{n+1}}\right)-\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)=0 .
$$

Therefore, the mapping $A: X \rightarrow Y$ is additive. This completes the proof.

Corollary 4.2. Let $\theta \geq 0$ and let p be a real number with $0<p<1$. Let $f: X \rightarrow Y$ be a mapping satisfying (4.11)
$\|f(f(x)-f(y))-f(x+y)-f(x-y)+f(x)+f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)$
for all $x, y \in X$. Then the limit $A(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ exists for all $x \in X$ and $A: X \rightarrow Y$ is a unique additive mapping such that

$$
\|f(x)-A(x)\| \leq \frac{2|2| \theta\|x\|^{p}}{|2|^{p+1}-|2|^{2}}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 4.1 if we take $\zeta(x, y)=\theta\left(\|x\|^{p}+\right.$ $\|y\|^{p}$) for all $x, y \in X$. In fact, if we choose $L=|2|^{1-p}$, then we get the desired result.

Similarly, we have the following results for which we sketch the proofs.
Theorem 4.3. Let $\zeta: X^{2} \rightarrow[0, \infty)$ be a function such that there exists an $L<1$ with $\zeta(2 x, 2 y) \leq|2| L \zeta(x, y)$ for all $x, y \in X$. Let $f: X \rightarrow Y$ be a mapping satisfying (4.2). Then there is a unique additive mapping $A: X \rightarrow Y$ such that

$$
\|f(x)-A(x)\| \leq \frac{\zeta(x, x)}{|2|-|2| L}
$$

Proof. It follows from (4.4) that

$$
\left\|f(x)-\frac{f(2 x)}{2}\right\| \leq \frac{\zeta(x, x)}{|2|}
$$

for all $x \in X$. The rest of the proof is similar to the proof of Theorem 4.1.

Corollary 4.4. Let $\theta \geq 0$ and let p be a real number with $p>1$. Let $f: X \rightarrow Y$ be a mapping satisfying (4.11). Then the limit $A(x)=$
$\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in X$ and $A: X \rightarrow Y$ is a unique additive mapping such that

$$
\|f(x)-A(x)\| \leq \frac{2 \theta\|x\|^{p}}{|2|-|2|^{p}}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 4.3 if we take $\zeta(x, y)=\theta\left(\|x\|^{p}+\right.$ $\|y\|^{p}$) for all $x, y \in X$. In fact, if we choose $L=|2|^{p-1}$, then we get the desired result.

5. Non-Archimedean stability of functional equation (1.2): a direct method

In this section, using a direct method, we prove the Hyers-UlamRassias stability of the functional equation (1.2) in non-Archimedean space. Throughout this section, G is an additive semigroup and X is a non-Archimedean Banach space.

Theorem 5.1. Let $\zeta: G \times G \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|2|^{n} \zeta\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0 \tag{5.1}
\end{equation*}
$$

for all $x, y \in G$. Suppose that, for any $x \in G$, the limit

$$
\begin{equation*}
\Psi(x)=\lim _{n \rightarrow \infty} \max \left\{|2|^{k+1} \zeta\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k+1}}\right): 0 \leq k<n\right\} \tag{5.2}
\end{equation*}
$$

exists and $f: G \rightarrow X$ is a mapping satisfying

$$
\begin{equation*}
\|f(f(x)-f(y))-f(x+y)-f(x-y)+f(x)+f(y)\| \leq \zeta(x, y) \tag{5.3}
\end{equation*}
$$

Then, for all $x \in G, T(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ exists and satisfies the inequality

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{|2|} \Psi(x) \tag{5.4}
\end{equation*}
$$

Moreover, if

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{|2|^{k+1} \zeta\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k+1}}\right): j \leq k<n+j\right\}=0 \tag{5.5}
\end{equation*}
$$

then T is the unique additive mapping satisfying (5.4).

Proof. By (4.5), we get

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leq \zeta\left(\frac{x}{2}, \frac{x}{2}\right) \tag{5.6}
\end{equation*}
$$

for all $x \in G$. Replacing x by $\frac{x}{2^{n}}$ in (5.6), we obtain

$$
\begin{equation*}
\left\|2^{n+1} f\left(\frac{x}{2^{n+1}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)\right\| \leq|2|^{n} \zeta\left(\frac{x}{2^{n+1}}, \frac{x}{2^{n+1}}\right) . \tag{5.7}
\end{equation*}
$$

Thus, it follows from (5.1) and (5.7) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}_{n>1}$ is a Cauchy sequence. Since X is complete, it follows that $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}_{n \geq 1}$ is convergent. Set $T(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$. By induction, one can show that

$$
\begin{equation*}
\left\|2^{n} f\left(\frac{x}{2^{n}}\right)-f(x)\right\| \leq \frac{\max \left\{|2|^{k+1} \zeta\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k+1}}\right): 0 \leq k<n\right\}}{|2|} \tag{5.8}
\end{equation*}
$$

for all $n \geq 1$ and $x \in G$. By taking $n \rightarrow \infty$ in (5.8) and using (5.2), one obtains (5.4). By (5.1) and (5.3), we get

$$
\begin{aligned}
& \|T(T(x)-T(y))-T(x+y)-T(x-y)+T(x)+T(y)\| \\
& =\lim _{n \rightarrow \infty} \| 2^{n}\left[f\left(f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right)-f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x-y}{2^{n}}\right)\right. \\
& \left.+f\left(\frac{x}{2^{n}}\right)+f\left(\frac{y}{2^{n}}\right)\right] \\
& \leq \lim _{n \rightarrow \infty}|2|^{n} \zeta\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0
\end{aligned}
$$

for all $x, y \in G$. Therefore, the mapping $T: G \rightarrow X$ satisfies (1.2).
To prove the uniqueness property of T, let S be another mapping satisfying (5.4). Then we have

$$
\begin{aligned}
\|T(x)-S(x)\| & =\lim _{j \rightarrow \infty}|2|^{j}\left\|T\left(\frac{x}{2^{j}}\right)-S\left(\frac{x}{2^{j}}\right)\right\| \\
& \leq \lim _{j \rightarrow \infty}|2|^{j} \max \left\{\left\|T\left(\frac{x}{2^{j}}\right)-f\left(\frac{x}{2^{j}}\right)\right\|,\left\|f\left(\frac{x}{2^{j}}\right)-S\left(\frac{x}{2^{j}}\right)\right\|\right\} \\
& \leq \lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{1}{|2|} \max \left\{|2|^{k+1} \zeta\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k+1}}\right): j \leq k<n+j\right\} \\
& =0
\end{aligned}
$$

for all $x \in G$. Therefore, $T=S$. This completes the proof.

Corollary 5.2. Let $\xi:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying

$$
\xi\left(\frac{t}{|2|}\right) \leq \xi\left(\frac{1}{|2|}\right) \xi(t), \quad \xi\left(\frac{1}{|2|}\right)<\frac{1}{|2|}
$$

for all $t \geq 0$. Let $\kappa>0$ and $f: G \rightarrow X$ be a mapping such that (5.9)
$\|f(f(x)-f(y))-f(x+y)-f(x-y)+f(x)+f(y)\| \leq \kappa(\xi(|x|)+\xi(|y|))$
for all $x, y \in G$. Then there exists a unique additive mapping $T: G \rightarrow X$ such that

$$
\|f(x)-T(x)\| \leq 2 \kappa \frac{\xi(|x|)}{|2|}
$$

Proof. If we define $\zeta: G \times G \rightarrow[0, \infty)$ by $\zeta(x, y):=\kappa(\xi(|x|)+\xi(|y|))$, then we have

$$
\lim _{n \rightarrow \infty}|2|^{n} \zeta\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right) \leq \lim _{n \rightarrow \infty}\left(|2| \xi\left(\frac{1}{|2|}\right)\right)^{n}[\kappa(\xi(|x|)+\xi(|y|))]=0
$$

for all $x, y \in G$. On the other hand, for all $x \in G$,

$$
\begin{aligned}
\Psi(x) & =\lim _{n \rightarrow \infty} \max \left\{|2|^{k+1} \zeta\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k+1}}\right): 0 \leq k<n\right\} \\
& =|2| \zeta\left(\frac{x}{2}, \frac{x}{2}\right)=2 \kappa \xi(|x|)
\end{aligned}
$$

exists. Also, we have

$$
\begin{aligned}
& \lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{|2|^{k+1} \zeta\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k+1}}\right) ; j \leq k<n+j\right\} \\
& =\lim _{j \rightarrow \infty}|2|^{j+1} \zeta\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}\right)=0
\end{aligned}
$$

Thus, applying Theorem 5.1, we have the conclusion. This completes the proof.

Theorem 5.3. Let $\zeta: G \times G \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\zeta\left(2^{n} x, 2^{n} y\right)}{|2|^{n}}=0 \tag{5.10}
\end{equation*}
$$

for all $x, y \in G$. Suppose that, for every $x \in G$, the limit

$$
\begin{equation*}
\Psi(x)=\lim _{n \rightarrow \infty} \max \left\{\frac{\zeta\left(2^{k} x, 2^{k} x\right)}{|2|^{k}}: 0 \leq k<n\right\} \tag{5.11}
\end{equation*}
$$

exists and let $f: G \rightarrow X$ be a mapping satisfying (5.3), then, the limit $T(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in G$ and satisfies the inequality

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{|2|} \Psi(x) \tag{5.12}
\end{equation*}
$$

Moreover, if

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac{\zeta\left(2^{k} x, 2^{k} x\right)}{|2|^{k}} ; j \leq k<n+j\right\}=0 \tag{5.13}
\end{equation*}
$$

then T is the unique mapping satisfying (5.12).
Proof. By (4.4), we have

$$
\begin{equation*}
\left\|f(x)-\frac{f(2 x)}{2}\right\| \leq \frac{\zeta(x, x)}{|2|} \tag{5.14}
\end{equation*}
$$

for all $x \in G$. Replacing x by $2^{n} x$ in (5.14), we obtain

$$
\begin{equation*}
\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{n+1} x\right)}{2^{n+1}}\right\| \leq \frac{\zeta\left(2^{n} x, 2^{n} x\right)}{|2|^{n+1}} . \tag{5.15}
\end{equation*}
$$

Thus it follows from (5.10) and (5.15) that the sequence $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}_{n \geq 1}$ is convergent. Set $T(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$. On the other hand, it follows from (5.15) that

$$
\begin{aligned}
\left\|\frac{f\left(2^{p} x\right)}{2^{p}}-\frac{f\left(2^{q} x\right)}{2^{q}}\right\| & =\left\|\sum_{k=p}^{q-1} \frac{f\left(2^{k} x\right)}{2^{k}}-\frac{f\left(2^{k+1} x\right)}{2^{k+1}}\right\| \\
& \leq \max \left\{\left\|\frac{f\left(2^{k} x\right)}{2^{k}}-\frac{f\left(2^{k+1} x\right)}{2^{k+1}}\right\|: p \leq k<q\right\} \\
& \leq \frac{1}{|2|} \max \left\{\frac{\zeta\left(2^{k} x, 2^{k} x\right)}{|2|^{k}}: p \leq k<q\right\}
\end{aligned}
$$

for all $x \in G$ and all integers $p, q \geq 0$ with $q>p \geq 0$. Letting $p=0$, taking $q \rightarrow \infty$ in the last inequality and using (5.11), we obtain (5.12).

The rest of the proof is similar to the proof of Theorem 5.1. This completes the proof.

Corollary 5.4. Let $\xi:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying

$$
\xi(|2| t) \leq \xi(|2|) \xi(t), \quad \xi(|2|)<|2|
$$

for all $t \geq 0$. Let $\kappa>0$ and let $f: G \rightarrow X$ be a mapping satisfying (5.9). Then there exists a unique additive mapping $T: G \rightarrow X$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \kappa \xi(|x|)}{|2|} .
$$

Proof. If we define $\zeta: G \times G \rightarrow[0, \infty)$ by $\zeta(x, y):=\kappa(\xi(|x|)+\xi(|y|))$ and apply Theorem 5.3, then we get the conclusion.

References

[1] L. M. Arriola and W. A. Beyer, Stability of the Cauchy functional equation over p-adic fields, Real Anal. Exchange 31 (2005), no. 1, 125-132.
[2] H. Azadi Kenary, Stability of a Pexiderial functional equation in random normed spaces, Rend. Circ. Mat. Palermo (2) 60 (2011), no. 1-2, 59-68.
[3] H. Azadi Kenary, Non-Archimedean stability of Cauchy-Jensen type functional equation, Int. J. Nonlinear Anal. Appl. 1 (2010), no.2, 1-10.
[4] M. Eshaghi-Gordji, S. Abbaszadeh and C. Park, On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces, J. Inequal. Appl. 2009 (2009), Article ID 153084, 26 pages.
[5] M. Eshaghi Gordji and M. Bavand Savadkouhi, Stability of mixed type cubic and quartic functional equations in random normed spaces, J. Inequal. Appl. 2009 (2009), Article ID 527462, 9 pages.
[6] M. Eshaghi Gordji and M. Bavand Savadkouhi and Choonkil Park, Quadraticquartic functional equations in RN-spaces, J. Inequal. Appl. 2009 (2009), Article ID 868423, 14 pages.
[7] W. Fechner, Stability of a composite functional equation related to idempotent mappings, J. Approx. Theory 163 (2010), no. 3, 328-335.
[8] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.
[9] K. Hensel, Uber eine news begrundung der theorie der algebraischen zahlen, Jahresber. Deutsch. Math. Verein 6 (1897), 83-88.
[10] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941) 222-224.
[11] A. K. Katsaras and A. Beoyiannis, Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian Math. J. 6 (1999), no. 1, 33-44.
[12] A. Khrennikov, Non-Archimedean Analysis: quantum paradoxes, dynamical systems and biological models, Mathematics and its Applications, 427, Kluwer Academic Publishers, Dordrecht, 1997.
[13] Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math. 22 (1989), no. 2, 499-507.
[14] D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), no. 1, 567-572.
[15] C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy Sets and Systems 160 (2009), no. 11, 1632-1642.
[16] C. Park, Generalized Hyers-Ulam-Rassias stability of n-sesquilinear-quadratic mappings on Banach modules over C^{*}-algebras, J. Comput. Appl. Math. 180 (2005), no. 2, 279-291.
[17] C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory Appl. (2007), Article ID 50175, 15 pages.
[18] C. Park, Generalized Hyers-Ulam stability of quadratic functional equations: a fixed point approach, Fixed Point Theory Appl. (2008) Art. ID 493751, 9 pages.
[19] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
[20] Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 2003.
[21] Th. M. Rassias, Problem 16;2, Report of the 27th International Symp. on Functional Equations, Aequations Math. 39 (1990), 292-293.
[22] Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai Math. 43 (1998), no. 3, 89-124.
[23] Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), no. 2, 352-378.
[24] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284.
[25] Th. M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993.
[26] Th. M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993) 325-338.
[27] R. Saadati and C. Park, Non-Archimedian \mathcal{L}-fuzzy normed spaces and stability of functional equations, Comput. Math. Appl. 60 (2010), no. 8, 2488-2496.
[28] R. Saadati, M. Vaezpour and Y. J. Cho, A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces", J. Inequal. Appl. (2009), Article ID 214530, 6 pages.
[29] Reza Saadati, M. M. Zohdi, and S. M. Vaezpour, Nonlinear L-Random Stability of an ACQ Functional Equation, J. Inequal. Appl. (2011) Article ID 194394, 23 pages.
[30] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York, 1983.
[31] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley \& Sons, Inc., New York, 1964.

Hassan Azadi Kenary
Department of Mathematics, Beyza Branch, Islamic Azad University, Beyza, Iran
Email: azadi@mail.yu.ac.ir

[^0]: MSC(2010): Primary: 39B82; Secondary: 39B52.
 Keywords: Generalized Hyers-Ulam stability, random normed space, non-Archimedean normed spaces, fixed point method.
 Received: 24 July 2011, Accepted: 12 April 2012.
 (C) 2013 Iranian Mathematical Society.

