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HYERS-ULAM-RASSIAS STABILITY OF A COMPOSITE

FUNCTIONAL EQUATION IN VARIOUS NORMED

SPACES

H. AZADI KENARY

Communicated by Gholam Hossein Esslamzadeh

Abstract. In this paper, we prove the generalized Hyers-Ulam (or
Hyers-Ulam-Rassias) stability of the following composite functional
equation

f(f(x)− f(y)) + f(x) + f(y) = f(x + y) + f(x− y),

in various normed spaces.

1. Introduction and preliminaries

Let Γ+ denote the set of all probability distribution functions F : R ∪
[−∞,+∞]→ [0, 1] such that F is left-continuous and nondecreasing on
R and F (0) = 0, F (+∞) = 1. It is clear that the set D+ = {F ∈ Γ+ :
l−F (−∞) = 1}, where l−f(x) = limt→x− f(t), is a subset of Γ+. The
set Γ+ is partially ordered by the usual point-wise ordering of functions,
that is, F ≤ G if and only if F (t) ≤ G(t) for all t ∈ R. For any a ≥ 0,

the element Ha(t) of D+ is defined by Ha(t) =

{
0, if t ≤ a,
1, if t > a

.

Definition 1.1. A function T : [0, 1]2 → [0, 1] is a continuous triangular
norm (briefly, a t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;
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(b) T is continuous;
(c) T (x, 1) = x for all x ∈ [0, 1];
(d) T (x, y) ≤ T (z, w) whenever x ≤ z and y ≤ w for all x, y, z, w ∈ [0, 1].

Definition 1.2. A random normed space (briefly, RN -space) is a triple
(X,µ, T ), where X is a vector space, T is a continuous t-norm and
µ : X → D+ is a mapping such that the following conditions hold:
(a) µx(t) = H0(t) for all x ∈ X and t > 0 if and only if x = 0;

(b) µαx(t) = µx

(
t
|α|

)
for all α ∈ R with α 6= 0, x ∈ X and t ≥ 0;

(c) µx+y(t+ s) ≥ T (µx(t), µy(s)) for all x, y ∈ X and t, s ≥ 0.

Definition 1.3. By a non-Archimedean field we mean a field K equipped
with a function (valuation) | · | : K → [0,∞) such that for all r, s ∈ K,
the following conditions hold:
(i) |r| = 0 if and only if r = 0;
(ii) |rs| = |r||s|;
(iii) |r + s| ≤ max{|r|, |s|}.

Remark 1.4. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N.

Definition 1.5. Let X be a vector space over a scalar field K with a non-
Archimedean non-trivial valuation |·|. A function ||·|| : X → R is a non-
Archimedean norm (valuation) if it satisfies the following conditions:
(i) ||x|| = 0 if and only if x = 0;
(ii) ||rx|| = |r|||x|| (r ∈ K, x ∈ X);
(iii) The strong triangle inequality (ultrametric); namely ||x + y|| ≤
max{||x||, ||y||}, x, y ∈ X.
Then (X, || · ||) is called a non-Archimedean space.

Definition 1.6. A sequence {xn} is Cauchy if and only if {xn+1− xn}
converges to zero in a non-Archimedean space. By a complete non-
Archimedean space we mean one in which every Cauchy sequence is
convergent.

The most important examples of non-Archimedean spaces are p-adic
numbers. A key property of p-adic numbers is that they do not satisfy
the Archimedean axiom: “for x, y > 0, there exists n ∈ N such that
x < ny”.

Example 1.7. Fix a prime number p. For any nonzero rational number
x, there exists a unique integer nx ∈ Z such that x = a

bp
nx , where a

and b are integers not divisible by p. Then |x|p := p−nx defines a non-
Archimedean norm on Q. The completion of Q with respect to the metric
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d(x, y) = |x−y|p is denoted by Qp which is called the p-adic number field.

In fact, Qp is the set of all formal series x =
∑∞

k≥nx akp
k where |ak| ≤

p − 1 are integers. The addition and multiplication between any two
elements of Qp are defined naturally. The norm |

∑∞
k≥nx akp

k|p = p−nx

is a non-Archimedean norm on Qp and it makes Qp a locally compact
filed.

Arriola and Beyer [1] investigated the Hyers-Ulam stability of approx-
imate additive functions f : Qp → R. They showed that if f : Qp → R
is a continuous function for which there exists a fixed ε:

|f(x+ y)− f(x)− f(y)| ≤ ε

for all x, y ∈ Qp, then there exists a unique additive function T : Qp → R
such that

|f(x)− T (x)| ≤ ε
for all x ∈ Qp.
However, the following example shows that similar result is not true in
non-Archimedean normed spaces.

Example 1.8. Let p > 2 and let f : Qp → Qp be defined by f(x) = 2.
Then for ε = 1,

|f(x+ y)− f(x)− f(y)| = 1 ≤ ε

for all x, y ∈ Qp. However, the sequences
{
f(2nx)

2n

}∞
n=1

and
{

2nf
(
x
2n

)}∞
n=1

are not Cauchy. In fact, by using the fact that |2| = 1, we have∣∣∣∣f(2nx)

2n
− f(2n+1x)

2n+1

∣∣∣∣ = |2−n · 2− 2−(n+1) · 2| = |2−n| = 1

and ∣∣∣2nf ( x
2n

)
− 2n+1f

( x

2n+1

)∣∣∣ = |2n.2− 2(n+1).2| = |2n+1| = 1

for all x, y ∈ Qp and n ∈ N. Hence these sequences are not convergent
in Qp.

Definition 1.9. Let X be a set. A function d : X×X → [0,∞] is called
a generalized metric on X if d satisfies the following conditions:
(a) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(b) d(x, y) = d(y, x) for all x, y ∈ X;
(c) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
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Theorem 1.10. Let (X,d) be a complete generalized metric space and
let J : X → X be a strictly contractive mapping with Lipschitz constant
L < 1. Then, for all x ∈ X, either

(1.1) d(Jnx, Jn+1x) =∞

for all nonnegative integers n, or there exists a positive integer n0 such
that
(a) d(Jnx, Jn+1x) <∞ for all n0 ≥ n0;
(b) the sequence {Jnx} converges to a fixed point y∗ of J ;
(c) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) <
∞};
(d) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

A classical question in the theory of functional equations is the fol-
lowing:“When is it true that a function which approximately satisfies a
functional equation must be close to an exact solution of the equation?”.
If the problem admits a solution, we say that the equation is stable. The
first stability problem concerning group homomorphisms was raised by
Ulam [31] in 1940. In the following year, Hyers [10] gave a positive
answer to the above question for additive groups under the assump-
tion that the groups are Banach spaces. In 1978, Rassias [19] proved a
generalization of Hyers’ theorem for additive mappings. The result of
Rassias has provided a significant influence during the last three decades
in the development of a generalization of the Hyers-Ulam stability con-
cept. This new concept is known as generalized Hyers-Ulam stability or
Hyers-Ulam-Rassias stability of functional equations. Furthermore, in
1994, a generalization of Rassias’s theorem was obtained by Gǎvruta [8]
by replacing the bound ε(‖x‖p + ‖y‖p) by a general control function
ϕ(x, y). In 1897, Hensel [9] introduced a normed space which does not
have the Archimedean property. It turned out that non-Archimedean
spaces have many nice applications [11,12].

The stability problems of several functional equations have been ex-
tensively investigated by a number of authors and there are many inter-
esting results concerning this problem ( [2]- [8], [14]– [29]).

In Sections 2 and 3, we adopt the usual terminology, notions and con-
ventions of the theory of random normed spaces as in [30].
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In this paper, we prove the Hyers-Ulam-Rassias stability of the func-
tional equation

(1.2) f(f(x)− f(y)) + f(x) + f(y) = f(x+ y) + f(x− y)

in random and non-Archimedean normed spaces.

2. Random stability of the functional equation (1.2): a direct
method

In this section, using a direct method, we prove the Hyers-Ulam-
Rassias stability of the functional equation (1.2) in random normed
spaces.

Theorem 2.1. Let X be a real linear space, (Z, µ′,min) an RN-space
and ϕ : X2 → Z a function such that there exists 0 < α < 1

2 with

(2.1) µ′
ϕ(x2 ,

y
2 )(t) ≥ µ′αϕ(x,y)(t)

for all x ∈ X and t > 0 and

lim
n→∞

µ′
ϕ( x

2n
, y
2n )

(
t

2n

)
= 1

for all x, y ∈ X and t > 0. Let (Y, µ,min) be a complete RN-space. If
f : X → Y is a mapping such that

(2.2) µf(f(x)−f(y))−f(x+y)−f(x−y)+f(x)+f(y)(t) ≥ µ′ϕ(x,y)(t)

for all x, y ∈ X and t > 0. Then the limit

A(x) = lim
n→∞

2nf
( x

2n

)
exists for all x ∈ X and defines a unique additive mapping A : X → Y
such that and

(2.3) µf(x)−A(x)(t) ≥ µ′ϕ(x,x)

(
(1− 2α)t

α

)
.

for all x ∈ X and t > 0.

Proof. Putting y = x in (2.2), we see that

(2.4) µf(2x)−2f(x)(t) ≥ µ′ϕ(x,x)(t).

Replacing x by x
2 in (2.4), we obtain

(2.5) µ2f(x
2

)−f(x)(t) ≥ µ′ϕ(x2 ,
x
2 )(t)
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for all x ∈ X. Replacing x by x
2n in (2.5) and using (2.1), we obtain

µ2n+1f( x
2n+1 )−2nf( x

2n
)(t) ≥ µ′

ϕ
(

x
2n+1 ,

x
2n+1

)( t

2n

)
≥ µ′ϕ(x,x)

(
t

2nαn+1

)
and so

µ2nf( x
2n )−f(x)

(
n−1∑
k=0

2kαk+1t

)
=µ∑n−1

k=0 2k+1f
(

x

2k+1

)
−2kf

(
x

2k

)
(
n−1∑
k=0

2kαk+1t

)
≥ TM

n−1
k=0

(
µ

2k+1f
(

x

2k+1

)
−2kf

(
x

2k

)(2kαk+1t)
)

≥ TM
n−1
k=0

(
µ′ϕ(x,x)(t)

)
= µ′ϕ(x,x)(t).

This implies that

(2.6) µ2nf( x
2n )−f(x)(t) ≥ µ

′
ϕ(x,x)

(
t∑n−1

k=0 2kαk+1

)
.

Replacing x by x
2p in (2.6), we obtain

µ
2n+pf

(
x

2n+p

)
−2pf( x

2p )
(t) ≥ µ′ϕ(x,x)

(
t∑n+p−1

k=p 2kαk+1

)
→ 1 when n→ +∞,(2.7)

so
{

2nf
(
x
2n

)}∞
n=1

is a Cauchy sequence in a complete RN-space

(Y, µ,min) and so there exists a point A(x) ∈ Y such that

lim
n→∞

2nf
( x

2n

)
= A(x).

Fix x ∈ X and put p = 0 in (2.7). Then we obtain

µ2nf( x
2n )−f(x)(t) ≥ µ

′
ϕ(x,x)

(
t∑n−1

k=0 2kαk+1

)
and so, for any δ > 0,

µA(x)−f(x)(t+ δ) ≥ T
(
µA(x)−2nf( x

2n )(δ), µ2nf( x
2n )−f(x)(t)

)
≥ T

(
µA(x)−2nf( x

2n )(δ), µ′ϕ(x,x)

(
t∑n−1

k=0 2kαk+1

))
.(2.8)
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Taking n→∞ in (2.8), we get

(2.9) µA(x)−f(x)(t+ δ) ≥ µ′ϕ(x,x)

(
(1− 2α)t

α

)
.

Since δ is arbitrary, by taking δ → 0 in (2.9), we get

µA(x)−f(x)(t) ≥ µ′ϕ(x,x)

(
(1− 2α)t

α

)
.

Replacing x and y by x
2n and y

2n in (2.2), respectively, we get

µ2n[f(f( x
2n )−f( y

2n ))−f(x+y2n )−f(x−y2n )+f( x
2n )+f( y

2n )](t) ≥ µ
′
ϕ( x

2n
, y
2n

)

(
t

2n

)
for all x, y ∈ X and t > 0. Since limn→∞ µ

′
ϕ( x

2n
, y
2n

)

(
t

2n

)
= 1, we conclude

that A satisfies (1.2). On the other hand,

2A
(x

2

)
−A(x) = lim

n→∞
2n+1f

( x

2n+1

)
− lim
n→∞

2nf
( x

2n

)
= 0.

This implies that A : X → Y is an additive mapping. To prove the
uniqueness of the additive mapping A, assume that there exists another
additive mapping L : X → Y which satisfies (2.3). Then we have

µA(x)−L(x)(t)= lim
n→∞

µ2nA( x
2n )−2nL( x

2n )(t)

≥ lim
n→∞

min

{
µ2nA( x

2n )−2nf( x
2n )

(
t

2

)
, µ2nf( x

2n )−2nL( x
2n )

(
t

2

)}
≥ lim
n→∞

µ′
ϕ( x

2n
, x
2n )

(
(1− 2α)t

2n+1α

)
≥ lim

n→∞
µ′ϕ(x,x)

(
(1− 2α)t

2n+1αn+1

)
.

Since limn→∞
(1−2α)t

2n+1αn+1 = ∞, we get limn→∞ µ
′
ϕ(x,x)

(
(1−2α)t

2n+1αn+1

)
= 1.

Therefore, it follows that µA(x)−L(x)(t) = 1 for all t > 0 and so A(x) =
L(x). This completes the proof. �

Corollary 2.2. Let X be a real normed linear space, (Z, µ′,min) an
RN-space and (Y, µ,min) a complete RN-space. Let r be a positive real
number with r > 1 , z0 ∈ Z and f : X → Y a mapping satisfying

(2.10) µf(f(x)−f(y))−f(x+y)−f(x−y)+f(x)+f(y)(t) ≥ µ′(‖x‖r+‖y‖r)z0(t)

for all x, y ∈ X and t > 0. Then the limit A(x) = limn→∞ 2nf
(
x
2n

)
exists for all x ∈ X and defines a unique additive mapping A : X → Y
such that

µf(x)−A(x)(t) ≥ µ′‖x‖pz0

(
(2r − 2)t

2

)
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for all x ∈ X and t > 0.

Proof. Let α = 2−r and let ϕ : X2 → Z be a mapping defined by
ϕ(x, y) = (‖x‖r + ‖y‖r)z0. Then, from Theorem 2.1, the conclusion
follows. �

Theorem 2.3. Let X be a real linear space, (Z, µ′,min) an RN-
space and ϕ : X2 → Z a function such that there exists 0 < α <
2 such that µ′ϕ(2x,2y)(t) ≥ µ′αϕ(x,y)(t) for all x ∈ X and t > 0 and

limn→∞ µ
′
ϕ(2nx,2ny)(2

nt) = 1 for all x, y ∈ X and t > 0. Let (Y, µ,min)

be a complete RN-space. If f : X → Y is a mapping satisfying (2.2).

Then the limit A(x) = limn→∞
f(2nx)

2n exists for all x ∈ X and defines a
unique additive mapping A : X → Y such that and

(2.11) µf(x)−A(x)(t) ≥ µ′ϕ(x,x)((2− α)t)

for all x ∈ X and t > 0.

Proof. Putting y = x in (2.2), we see that

(2.12) µ f(2x)
2
−f(x)

(t) ≥ µ′ϕ(x,x)(2t).

Replacing x by 2nx in (2.12), we obtain that

(2.13) µ f(2n+1x)

2n+1 − f(2
nx)

2n
(t) ≥ µ′ϕ(2nx,2nx)(2

n+1t) ≥ µϕ(x,x)

(
2n+1t

αn

)
.

The rest of the proof is similar to the proof of Theorem 2.1. �

Corollary 2.4. Let X be a real normed linear space, (Z, µ′,min) an
RN-space and (Y, µ,min) a complete RN-space. Let r be a positive real
number with 0 < r < 1 , z0 ∈ Z and f : X → Y a mapping satisfying

(2.10). Then the limit A(x) = limn→∞
f(2nx)

2n exists for all x ∈ X and
defines a unique additive mapping A : X → Y such that

µf(x)−A(x)(t) ≥ µ′‖x‖pz0

(
(2− 2r)t

2

)
for all x ∈ X and t > 0.

Proof. Let α = 2r and let ϕ : X2 → Z be a mapping defined by ϕ(x, y) =
(‖x‖r + ‖y‖r)z0. Then, from Theorem 2.3, the conclusion follows. �
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3. Random stability of the functional equation (1.2): a fixed
point method

Throughout this section, using a fixed point method, we prove Hyers-
Ulam-Rassias stability of functional equation (1.2) in RN-spaces.

Theorem 3.1. Let X be a linear space, (Y, µ, TM ) a complete RN-space
and Φ a mapping from X2 to D+ such that there exists 0 < α < 1

2 such
that

(3.1) Φ2x,2y(t) ≤ Φx,y(αt)

for all x, y ∈ X and t > 0 (Φ(x, y)is denoted byΦx,y). Let f : X → Y be
a mapping satisfying

(3.2) µf(f(x)−f(y))−f(x+y)−f(x−y)+f(x)+f(y)(t) ≥ Φx,y(t)

for all x, y ∈ X and t > 0. Then, for all x ∈ X

A(x) := lim
n→∞

2nf
( x

2n

)
exists and A : X → Y is a unique additive mapping such that

(3.3) µf(x)−A(x)(t) ≥ Φx,x

(
(1− 2α)t

α

)
for all x ∈ X and t > 0.

Proof. Putting y = x in (3.2) and replacing x by x
2 , we have

(3.4) µ2f(x
2

)−f(x)(t) ≥ Φx
2
,x
2
(t)

for all x ∈ X and t > 0. Consider the set S := {g : X → Y } and the
generalized metric d in S defined by

(3.5) d(f, g) = inf
u∈(0,∞)

{
µg(x)−h(x)(ut) ≥ Φx,x(t), ∀x ∈ X, t > 0

}
,

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [14],
Lemma 2.1). Now, we consider a linear mapping J : (S, d)→ (S, d) such
that

(3.6) Jh(x) := 2h
(x

2

)
for all x ∈ X.

First, we prove that J is a strictly contractive mapping with the
Lipschitz constant 2α. In fact, let g, h ∈ S be such that d(g, h) < ε.
Then we have

µg(x)−h(x)(εt) ≥ Φx,x(t)
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for all x ∈ X and t > 0 and so

µJg(x)−Jh(x)(2αεt) = µ2g(x
2

)−2h(x
2

)(2αεt) = µg(x
2

)−h(x
2

)(αεt)

≥ Φx
2
,x
2
(αt)

≥ Φx,x(t)

for all x ∈ X and t > 0. Thus d(g, h) < ε implies that d(Jg, Jh) < 2αε.
This means that d(Jg, Jh) ≤ 2αd(g, h) for all g, h ∈ S. It follows from
(3.4) that

d(f, Jf) ≤ α.
By Theorem 1.10, there exists a mapping A : X → Y satisfying the
following:
(1) A is a fixed point of J , that is,

(3.7) A
(x

2

)
=

1

2
A(x)

for all x ∈ X. The mapping A is a unique fixed point of J in the
set Ω = {h ∈ S : d(g, h) < ∞}. This implies that A is a unique
mapping satisfying (3.7) such that there exists u ∈ (0,∞) satisfying
µf(x)−A(x)(ut) ≥ Φx,x(t) for all x ∈ X and t > 0.
(2) d(Jnf,A)→ 0 as n→∞. This implies the equality

lim
n→∞

2nf
( x

2n

)
= A(x)

for all x ∈ X.
(3) d(f,A) ≤ d(f,Jf)

1−2α with f ∈ Ω, which implies the inequality

d(f,A) ≤ α

1− 2α

and so

µf(x)−A(x)

(
αt

1− 2α

)
≥ Φx,x(t)

for all x ∈ X and t > 0. This implies that the inequality (3.3) holds.
On the other hand, replacing x, y by x

2n and y
2n , respectively, in (3.2),

we have

µ2n[f(f( x
2n )−f( y

2n ))−f(x+y2n )−f(x−y2n )+f( x
2n )+f( y

2n )](t) ≥ Φ x
2n
, y
2n

( t

2n

)
for all x, y ∈ X, t > 0 and n ≥ 1 and so, from (3.1), it follows that

Φ x
2n
, y
2n

(
t

2n

)
≥ Φx,y

(
t

2nαn

)
→ 1 as n→ +∞
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for all x, y ∈ X and t > 0. Therefore

µA(A(x)−A(y))−A(x+y)−A(x−y)+A(x)+A(y)(t) = 1

for all x, y ∈ X and t > 0. Thus the mapping A : X → Y satisfies (1.2).
Furthermore, since for all x, y ∈ X, we have

A(2x)− 2A(x) = lim
n→∞

2nf
( x

2n−1

)
− 2 lim

n→∞
2nf

( x
2n

)
= 2

[
lim
n→∞

2n−1f
( x

2n−1

)
− lim
n→∞

2nf
( x

2n

)]
= 0,

we conclude that A : X → Y is additive. This completes the proof. �

Corollary 3.2. Let X be a real normed space, θ ≥ 0 and let r be a real
number with r > 1. Let f : X → Y be a mapping satisfying

(3.8) µf(f(x)−f(y))−f(x+y)−f(x−y)+f(x)+f(y)(t) ≥
t

t+ θ
(
‖x‖r + ‖y‖r

)
for all x, y ∈ X and t > 0. Then A(x) = limn→∞ 2nf

(
x
2n

)
exists for all

x ∈ X and A : X → Y is a unique additive mapping such that

µf(x)−A(x)(t) ≥
(2r − 2)t

(2r − 2)t+ 2θ‖x‖r

for all x ∈ X and t > 0.

Proof. The proof follows from Theorem 3.1 if we take

Φx,y(t) =
t

t+ θ
(
‖x‖r + ‖y‖r

)
for all x, y ∈ X and t > 0. In fact, if we choose α = 2−r, then we get
the desired result. �

Theorem 3.3. Let X be a linear space, (Y, µ, TM ) a complete RN-
space and Φ a mapping from X2 to D+ such that for some 0 < α < 2,
Φx

2
, y
2
(t) ≤ Φx,y(αt) for all x, y ∈ X and t > 0. Let f : X → Y be a

mapping satisfying (3.2). Then the limit A(x) := limn→∞
f(2nx)

2n exists
for all x ∈ X and A : X → Y is a unique additive mapping such that

(3.9) µf(x)−A(x)(t) ≥ Φx,x((2− α)t)

for all x ∈ X and t > 0.
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Proof. Putting y = x in (3.2), we have

(3.10) µ f(2x)
2
−f(x)

(t) ≥ Φx,x(2t)

for all x ∈ X and t > 0. Let (S, d) be the generalized metric space
defined in the proof of Theorem 2.1. Now, we consider a linear mapping
J : (S, d) → (S, d) such that Jh(x) := 1

2h(2x) for all x ∈ X. It follows
from (3.10) that

d(f, Jf) ≤ 1

2
.

By Theorem 1.10, there exists a mapping A : X → Y satisfying the
following:

(1) A is a fixed point of J , that is,

(3.11) A(2x) = 2A(x)

for all x ∈ X. The mapping A is a unique fixed point of J in the
set Ω = {h ∈ S : d(g, h) < ∞}. This implies that A is a unique
mapping satisfying (3.11) such that there exists u ∈ (0,∞) satisfying
µf(x)−A(x)(ut) ≥ Φx,x(t) for all x ∈ X and t > 0.
(2) d(Jnf,A)→ 0 as n→∞. This implies the equality

lim
n→∞

f(2nx)

2n
= A(x)

for all x ∈ X.
(3) d(f,A) ≤ d(f,Jf)

1−α
2

with f ∈ Ω, which implies the inequality

µf(x)−A(x)

(
t

2− α

)
≥ Φx,x(t)

for all x ∈ X and t > 0. This implies that the inequality (3.9) holds.
The rest of the proof is similar to the proof of Theorem 3.1. �

Corollary 3.4. Let X be a real normed space, θ ≥ 0 and let r be a
real number with 0 < r < 1. Let f : X → Y be a mapping satisfying

(3.8). Then the limit A(x) = limn→∞
f(2nx)

2n exists for all x ∈ X and
A : X → Y is a unique additive mapping such that

µf(x)−A(x)(t) ≥
(2− 2r)t

(2− 2r)t+ 2θ‖x‖r

for all x ∈ X and t > 0.
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Proof. The proof follows from Theorem 3.3 if we take

Φx,y(t) =
t

t+ θ(‖x‖r + ‖y‖r)
for all x, y ∈ X and t > 0. In fact, if we choose α = 2r, then we get the
desired result. �

4. Non-Archimedean stability of functional equation (1.2): a
fixed point method

In this section, using a fixed point approach, we prove the Hyers-
Ulam-Rassias stability of functional equation (1.2) in non-Archimedean
normed spaces.
Throughout this section, X is a non-Archimedean normed spaces and
that Y is a complete non-Archimedean normed spaces. Also we assume
that |2| 6= 1.

Theorem 4.1. Let ζ : X2 → [0,∞) be a function such that there exists
L < 1 with

(4.1) |2|ζ
(x

2
,
y

2

)
≤ Lζ(x, y)

for all x, y ∈ X. If f : X → Y is a mapping satisfying

(4.2)
∥∥∥f(f(x)− f(y))− f(x+ y)− f(x− y) + f(x) + f(y)

∥∥∥ ≤ ζ(x, y)

for all x, y ∈ X, then there is a unique additive mapping A : X → Y
such that

(4.3) ‖f(x)−A(x)‖ ≤ Lζ(x, x)

|2| − |2|L
.

Proof. Putting y = x in (4.2), we have

(4.4)
∥∥∥f(2x)− 2f(x)

∥∥∥ ≤ ζ (x, x)

for all x ∈ X. Replacing x by x
2 in (4.4), we obtain

(4.5)
∥∥∥2f

(x
2

)
− f(x)

∥∥∥ ≤ ζ (x
2
,
x

2

)
for all x ∈ X. Consider the set S∗ := {g : X → Y } and the generalized
metric d∗ in S∗ defined by

(4.6) d∗(f, g) = inf
{
µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µζ(x, x), ∀x ∈ X

}
,
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where inf ∅ = +∞. It is easy to show that (S∗, d∗) is complete (see [14],
Lemma 2.1). Now, we consider a linear mapping J∗ : S∗ → S∗ such that

(4.7) J∗h(x) := 2h
(x

2

)
for all x ∈ X. Let g, h ∈ S∗ be such that d∗(g, h) = ε. Then we have
‖g(x)− h(x)‖ ≤ εζ(x, x) for all x ∈ X and so

‖J∗g(x)− J∗h(x)‖ =
∥∥∥2g

(x
2

)
− 2h

(x
2

)∥∥∥ ≤ |2|εζ
(x

2
,
x

2

)
≤ |2|ε L

|2|
ζ(x, x)

for all x ∈ X. Thus d∗(g, h) = ε implies that d∗(J∗g, J∗h) ≤ Lε. This
means that d∗(J∗g, J∗h) ≤ Ld∗(g, h) for all g, h ∈ S∗. It follows from
(4.5) that

(4.8) d∗(f, J∗f) ≤ L

|2|
.

By Theorem 1.10, there exists a mapping A : X → Y satisfying the
following:
(1) A is a fixed point of J∗, that is,

(4.9) A
(x

2

)
=

1

2
A(x)

for all x ∈ X. The mapping A is a unique fixed point of J∗ in the
set Ω = {h ∈ S∗ : d∗(g, h) < ∞}. This implies that A is a unique
mapping satisfying (4.9) such that there exists µ ∈ (0,∞) satisfying
‖f(x)−A(x)‖ ≤ µζ(x, x) for all x ∈ X.
(2) d∗(J∗nf,A)→ 0 as n→∞. This implies the equality

lim
n→∞

2nf
( x

2n

)
= A(x)

for all x ∈ X.
(3) d∗(f,A) ≤ d∗(f,J∗f)

1−L with f ∈ Ω, which implies the inequality

(4.10) d∗(f,A) ≤ L

|2| − |2|L
.

This implies that the inequality (4.3) holds. By (4.2), we have∥∥2n
[
f
(
f
(
x
2n

)
− f

( y
2n

))
− f

(x+y
2n

)
− f

(x−y
2n

)
+ f

(
x
2n

)
+ f

( y
2n

)]∥∥
≤ |2|nζ

(
x
2n ,

y
2n

)
≤ |2|n · Ln|2|n ζ(x, y)
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for all x, y ∈ X and n ≥ 1 and so ‖f(f(x) − f(y)) − f(x + y) − f(x −
y) + f(x) + f(y)‖ = 0 for all x, y ∈ X. On the other hand

2A
(x

2

)
−A(x) = lim

n→∞
2n+1f

( x

2n+1

)
− lim
n→∞

2nf
( x

2n

)
= 0.

Therefore, the mapping A : X → Y is additive. This completes the
proof. �

Corollary 4.2. Let θ ≥ 0 and let p be a real number with 0 < p < 1.
Let f : X → Y be a mapping satisfying
(4.11)
‖f(f(x)− f(y))− f(x+ y)− f(x− y) + f(x) + f(y)‖ ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then the limit A(x) = limn→∞ 2nf
(
x
2n

)
exists for all

x ∈ X and A : X → Y is a unique additive mapping such that

‖f(x)−A(x)‖ ≤ 2|2|θ‖x‖p

|2|p+1 − |2|2

for all x ∈ X.

Proof. The proof follows from Theorem 4.1 if we take ζ(x, y) = θ(‖x‖p+
‖y‖p) for all x, y ∈ X. In fact, if we choose L = |2|1−p, then we get the
desired result. �

Similarly, we have the following results for which we sketch the proofs.

Theorem 4.3. Let ζ : X2 → [0,∞) be a function such that there exists
an L < 1 with ζ(2x, 2y) ≤ |2|Lζ(x, y) for all x, y ∈ X. Let f : X → Y
be a mapping satisfying (4.2). Then there is a unique additive mapping
A : X → Y such that

‖f(x)−A(x)‖ ≤ ζ(x, x)

|2| − |2|L
.

Proof. It follows from (4.4) that∥∥∥∥f(x)− f(2x)

2

∥∥∥∥ ≤ ζ(x, x)

|2|
for all x ∈ X. The rest of the proof is similar to the proof of Theorem
4.1. �

Corollary 4.4. Let θ ≥ 0 and let p be a real number with p > 1. Let
f : X → Y be a mapping satisfying (4.11). Then the limit A(x) =



398 Azadi Kenary

limn→∞
f(2nx)

2n exists for all x ∈ X and A : X → Y is a unique additive
mapping such that

‖f(x)−A(x)‖ ≤ 2θ‖x‖p

|2| − |2|p

for all x ∈ X.

Proof. The proof follows from Theorem 4.3 if we take ζ(x, y) = θ(‖x‖p+
‖y‖p) for all x, y ∈ X. In fact, if we choose L = |2|p−1, then we get the
desired result. �

5. Non-Archimedean stability of functional equation (1.2): a
direct method

In this section, using a direct method, we prove the Hyers-Ulam-
Rassias stability of the functional equation (1.2) in non-Archimedean
space. Throughout this section, G is an additive semigroup and X is a
non-Archimedean Banach space.

Theorem 5.1. Let ζ : G×G→ [0,+∞) be a function such that

(5.1) lim
n→∞

|2|nζ
( x

2n
,
y

2n

)
= 0

for all x, y ∈ G. Suppose that, for any x ∈ G, the limit

(5.2) Ψ(x) = lim
n→∞

max
{
|2|k+1ζ

( x

2k+1
,
x

2k+1

)
: 0 ≤ k < n

}
exists and f : G→ X is a mapping satisfying

(5.3)
∥∥∥f(f(x)− f(y))− f(x+ y)− f(x− y) + f(x) + f(y)

∥∥∥ ≤ ζ(x, y).

Then, for all x ∈ G, T (x) := limn→∞ 2nf
(
x
2n

)
exists and satisfies the

inequality

(5.4) ‖f(x)− T (x)‖ ≤ 1

|2|
Ψ(x).

Moreover, if

(5.5) lim
j→∞

lim
n→∞

max
{
|2|k+1ζ

( x

2k+1
,
x

2k+1

)
: j ≤ k < n+ j

}
= 0,

then T is the unique additive mapping satisfying (5.4).
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Proof. By (4.5), we get

(5.6)
∥∥∥2f

(x
2

)
− f(x)

∥∥∥ ≤ ζ (x
2
,
x

2

)
for all x ∈ G. Replacing x by x

2n in (5.6), we obtain

(5.7)
∥∥∥2n+1f

( x

2n+1

)
− 2nf

( x
2n

)∥∥∥ ≤ |2|nζ ( x

2n+1
,
x

2n+1

)
.

Thus, it follows from (5.1) and (5.7) that the sequence
{

2nf
(
x
2n

)}
n≥1

is

a Cauchy sequence. Since X is complete, it follows that
{

2nf
(
x
2n

)}
n≥1

is convergent. Set T (x) := limn→∞ 2nf( x
2n ). By induction, one can show

that

(5.8)
∥∥∥2nf

( x
2n

)
− f(x)

∥∥∥ ≤ max
{
|2|k+1ζ

(
x

2k+1 ,
x

2k+1

)
: 0 ≤ k < n

}
|2|

for all n ≥ 1 and x ∈ G. By taking n→∞ in (5.8) and using (5.2), one
obtains (5.4). By (5.1) and (5.3), we get

∥∥∥T (T (x)− T (y))− T (x+ y)− T (x− y) + T (x) + T (y)
∥∥∥

= lim
n→∞

‖2n
[
f
(
f
( x

2n

)
− f

( y
2n

))
− f

(
x+ y

2n

)
− f

(
x− y

2n

)
+f
( x

2n

)
+ f

( y
2n

)]
≤ lim

n→∞
|2|nζ

( x
2n
,
y

2n

)
= 0

for all x, y ∈ G. Therefore, the mapping T : G→ X satisfies (1.2).
To prove the uniqueness property of T , let S be another mapping satis-
fying (5.4). Then we have∥∥∥T (x)− S(x)

∥∥∥ = lim
j→∞

|2|j
∥∥∥T( x

2j

)
− S

( x
2j

)∥∥∥
≤ lim

j→∞
|2|j max

{∥∥∥T( x
2j

)
− f

( x
2j

)∥∥∥, ∥∥∥f( x
2j

)
− S

( x
2j

)∥∥∥}
≤ lim

j→∞
lim
n→∞

1

|2|
max

{
|2|k+1ζ

( x

2k+1
,
x

2k+1

)
: j≤k<n+ j

}
= 0

for all x ∈ G. Therefore, T = S. This completes the proof. �
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Corollary 5.2. Let ξ : [0,∞)→ [0,∞) be a function satisfying

ξ

(
t

|2|

)
≤ ξ

(
1

|2|

)
ξ(t), ξ

(
1

|2|

)
<

1

|2|

for all t ≥ 0. Let κ > 0 and f : G→ X be a mapping such that
(5.9)∥∥∥f(f(x)− f(y))− f(x+ y)− f(x− y) + f(x) + f(y)

∥∥∥ ≤ κ(ξ(|x|) + ξ(|y|))

for all x, y ∈ G. Then there exists a unique additive mapping T : G→ X
such that

‖f(x)− T (x)‖ ≤ 2κ
ξ(|x|)
|2|

.

Proof. If we define ζ : G × G → [0,∞) by ζ(x, y) := κ(ξ(|x|) + ξ(|y|)),
then we have

lim
n→∞

|2|nζ
( x

2n
,
y

2n

)
≤ lim

n→∞

(
|2|ξ

(
1

|2|

))n [
κ(ξ(|x|) + ξ(|y|))

]
= 0

for all x, y ∈ G. On the other hand, for all x ∈ G,

Ψ(x) = lim
n→∞

max
{
|2|k+1ζ

( x

2k+1
,
x

2k+1

)
: 0 ≤ k < n

}
= |2|ζ

(x
2
,
x

2

)
= 2κξ(|x|)

exists. Also, we have

lim
j→∞

lim
n→∞

max
{
|2|k+1ζ

( x

2k+1
,
x

2k+1

)
; j ≤ k < n+ j

}
= lim

j→∞
|2|j+1ζ

( x

2j+1
,
x

2j+1

)
= 0.

Thus, applying Theorem 5.1, we have the conclusion. This completes
the proof. �

Theorem 5.3. Let ζ : G×G→ [0,+∞) be a function such that

(5.10) lim
n→∞

ζ(2nx, 2ny)

|2|n
= 0

for all x, y ∈ G. Suppose that, for every x ∈ G, the limit

(5.11) Ψ(x) = lim
n→∞

max

{
ζ(2kx, 2kx)

|2|k
: 0 ≤ k < n

}
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exists and let f : G → X be a mapping satisfying (5.3), then, the limit

T (x) := limn→∞
f(2nx)

2n exists for all x ∈ G and satisfies the inequality

(5.12) ‖f(x)− T (x)‖ ≤ 1

|2|
Ψ(x).

Moreover, if

(5.13) lim
j→∞

lim
n→∞

max

{
ζ(2kx, 2kx)

|2|k
; j ≤ k < n+ j

}
= 0,

then T is the unique mapping satisfying (5.12).

Proof. By (4.4), we have

(5.14)

∥∥∥∥f(x)− f(2x)

2

∥∥∥∥ ≤ ζ(x, x)

|2|

for all x ∈ G. Replacing x by 2nx in (5.14), we obtain

(5.15)

∥∥∥∥f(2nx)

2n
− f(2n+1x)

2n+1

∥∥∥∥ ≤ ζ(2nx, 2nx)

|2|n+1
.

Thus it follows from (5.10) and (5.15) that the sequence
{
f(2nx)

2n

}
n≥1

is

convergent. Set T (x) := limn→∞
f(2nx)

2n . On the other hand, it follows
from (5.15) that∥∥∥∥f(2px)

2p
− f(2qx)

2q

∥∥∥∥ =

∥∥∥∥∥∥
q−1∑
k=p

f(2kx)

2k
− f(2k+1x)

2k+1

∥∥∥∥∥∥
≤ max

{∥∥∥∥f(2kx)

2k
− f(2k+1x)

2k+1

∥∥∥∥ : p ≤ k < q

}
≤ 1

|2|
max

{
ζ(2kx, 2kx)

|2|k
: p ≤ k < q

}
for all x ∈ G and all integers p, q ≥ 0 with q > p ≥ 0. Letting p = 0,
taking q →∞ in the last inequality and using (5.11), we obtain (5.12).

The rest of the proof is similar to the proof of Theorem 5.1. This
completes the proof. �

Corollary 5.4. Let ξ : [0,∞)→ [0,∞) be a function satisfying

ξ(|2|t) ≤ ξ(|2|)ξ(t), ξ(|2|) < |2|
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for all t ≥ 0. Let κ > 0 and let f : G → X be a mapping satisfying
(5.9). Then there exists a unique additive mapping T : G → X such
that

‖f(x)− T (x)‖ ≤ 2κξ(|x|)
|2|

.

Proof. If we define ζ : G × G → [0,∞) by ζ(x, y) := κ(ξ(|x|) + ξ(|y|))
and apply Theorem 5.3, then we get the conclusion. �
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