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CONTACT CR-WARPED PRODUCT SUBMANIFOLDS
IN KENMOTSU SPACE FORMS
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ABSTRACT. In the present paper, we give a necessary and sufficient
condition for contact CR-warped product to be contact CR-product
in Kenmotsu space forms.

1. Introduction

The geometry of manifolds endowed with geometrical structures has
been intensively studied and several important results have been pub-
lished. An important class of such manifolds is formed Kenmotsu mani-
folds. In [5], K. Kenmotsu introduced and studied a new class of almost
contact manifolds called Kenmotsu manifolds. Afterward, many authors
studied the geometry of the submanifolds of a Kenmotsu manifold be-
cause the geometry of submanifolds of a Kenmotsu manifold is rich and
interesting.

The notation CR-warped product submanifolds of a Kaehler mani-
folds were introduced by B.Y. Chen [3]. Then contact CR-~submanifolds
of Sasakian manifolds with definite metric were introduced and studied
by K. Matsumoto [8] and I. Haseqawa [4] and further studied in [1,6,7,9].
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Afterward, the concept of contact CR-warped product was introduced
by many geometers in various manifold types with differential geometric
point of view [see references]. Many authors established general in-
equalities for contact CR-warped product submanifolds in Sasakian and
Kenmotsu manifolds in terms of the warping function for a contact CR-
warped submanifolds isometrically immersed in a contact metric mani-

fold.

In [4] , I. Haseqawa and I. Mihai obtained a sharp inequality for the
squared norm of the second fundamental form in terms of the warped
function for contact CR-warped products in Sasakian manifolds.

In [1] , Arslan and the other authors studied contact CR-warped prod-
ucts in Kenmotsu manifolds. They provided some necessary and suffi-
cient conditions for contact CR-warped product to be totally geodesic,
totally umbilical and space form.

In [2], we studied warped product semi-invariant submanifolds in lo-
cally Riemannian product manifolds and we gave a necessary and suffi-
cient condition for a warped product to be Riemannian product.

In the present paper, we obtain a sharp estimates for squared norm of
the second fundamental form in terms of the warping function for con-
tact CR-warped product submanifolds in Kenmotsu space forms. The
equality case is considered and some new results are derived.

For the papers in this subject, we refer to the references.

2. Preliminaries

In this section, we give some notations used throughout this paper.
We recall some necessary facts and formulas from the theory of Ken-
motsu manifolds and their submanifolds.

A (2m + 1)-dimensional Riemannian manifold (M, g) is said to be an
almost contact metric manifold if it admits an endomorphism ¢ of its
tangent bundle T'M, a vector field £ and a 1-form 7, satisfying

(21) X =-X+n(X)E ¢£=0, n(§) =1, n(¢X)=0
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and

(2.2)  g(¢X,9Y) =g(X,Y) —n(X)n(Y), n(X)=g(X,E)

for any vector fields X, Y tangent to M. Furthermore, an almost contact
metric manifold is called a Kenmotsu manifold if ¢ and £ satisfy;

(Vxo)Y = g(¢X,Y)§—n(Y)pX
(2.3) Vxé = —¢*X =X —n(X)&,

where V denotes the Levi-Civita connection on M [7].

Now, let M be a (2n+ 1)-dimensional Kenmotsu manifold with struc-
ture tensors (¢,&,7n,9) and let M be an m-dimensional isometrically
immersed submanifold in M. Moreover, we denote the Levi-Civita con-
nection on M by V and let V be the induced connection on M by V.
Then the Gauss and Weingarten formula’s for M in M are, respectively,
given by

(2.4) VxY =VxY +h(X,Y)

(2.5) VxV = -AyX + VxV

for any vector fields X,Y tangent to M and vector V normal to M,
where V* is the normal connection on T+ M, h and A denote the second
fundamental form and shape operator of M in M, respectively. It is well
known that A and h are related by

(2.6) g(h(X,Y),V) = g(AyX,Y).

We denote the Riemannian curvature tensors of V and the induced
connection V by R and R, respectively. Then the Gauss and Codazzi
equations are, respectively, given by

2.7 (RX,Y)Z)" =R(X,Y)Z+ Apx.2)Y — Any X
and
(2.8) (R(X,Y)Z)" = (Vxh)(Y,Z) = (Vyh)(X, Z)

for any vector fields X, Y, Z tangent to M, where the covariant derivative
of h is defined by

(2.9) (Vxh)(Y,Z)=V%h(Y,Z) — h(VxY,Z) — h(Y,VxZ)

for any vector fields X,Y,Z tangent to M, and, (R(X, Y)Z)L and
(R(X,Y)Z)" denote the normal and tangent components of R(X,Y)Z,
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respectively, with respect to the submanifold M [3].

For any vector field X tangent to M, we set
(2.10) pX = fX +wX,

where fX and wX are the tangential and normal components of ¢.X,
respectively. Then f is an endomorphism of TM and w is a normal-
bundle valued 1-form of TM. For the same reason, for any vector field
V normal to M, we set

(2.11) ¢V = BV +CV,

where BV and CV are the tangential and normal components of ¢V,
respectively. Then B is an endomorphism of the normal bundle T-M
to TM and C is a normal-bundle valued 1-form of T+M.

A Kenmotsu manifold with constant ¢-holomorphic sectional curva-
ture c is called a Kenmotsu space form and is denoted by M(c). Then
its curvature tensor R is expressed by

REXY)Z = S )X — o(X, 2)Y} + S (X m(2)Y
— n(Y)(Z2)X +n(Y)g(X, Z2)§ —n(X)g(Y, Z)§
(2.12) + 9(X,02)0Y — g(Y,0Z)pX + 29(X, 9Y )92}

for any vector fields X,Y, Z tangent to M [6].

3. Contact CR-Warped Product Submanifolds in Kenmotsu
Manifolds

In this section, we define contact CR-submanifolds in a Kenmotsu
manifold and study their fundamental properties from the view point of
theory of submanifolds.

Let M7 and M> be two Riemannian manifolds with Riemannian met-
rics g1 and g9, respectively, and let f be a positive definite smooth
function on M;. We consider the product manifold M; x M, with its
projections w : My X My — My and n : My X My — M. The warped
product M = M; Xy My is a manifold M; x Ms equipped with the
Riemannian metric such that

9g(X,Y) = gi(m X, mY) + (fOW)ZQQ(H*Xv n:Y),
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for any X,Y € I'(TM), where * stands for differential of map and
['(T'M) denotes the set of the differentiable vector fields on M. Thus
we have g = g1 + f2g2. The function f is called warping function of the
warped product manifold M = M; x ; M. If we denote the Levi Civita
connection on M by V, then we have the following Proposition for the
warped product manifold [3].

Proposition 3.1. Let M = My x; Ma be a warped product manifold.
For XY € I'(TM1) and Z,V € I'(T'Ms), we have

(1) VxY € T'(TMy) is the lift of VxY on M;

(2) VxV =VyX = X(In f)V

(8) norN zV = —g(Z,V)gradln f

(4) tanV 7V = V,V € T(TMy) is the lift of V,V on My, where V'
denotes the Levi-Civita connection of go.

If the warping function f is constant, then the warped product is said
to be a Riemannian product.

Let M be a m-dimensional Riemannian manifold with Riemannian
metric g and let {e1,ea,...,en} be an orthonormal basis for I'(TM).
For a smooth function f on M, the gradient and Hessian of f are,
respectively, defined by

(3.1) X[ =g(gradf, X)

and

(32)  HI(X,Y)=XY[—(VxY)f=g(Vxgradf,Y)

for any X,Y € I'(T'M). The Laplacian of f is defined by

(3.3) Af= Z{(Veiei)f —eieif} =— Zg(Veigmdf, €i).
i=1 i=1

From (3.2) and (3.3), it is easily seen that the Laplacian is the negative
of the trace of the Hessian.

From the integration theory on manifolds, since M is a compact ori-
entable Riemannian manifold without boundary, we have

(3.4) /M AfdV =0,

where dV is the volume element of M [2].



420 Atceken

Definition 3.2. Let M be an isometrically immersed submanifold of a
Kenmotsu manifold M such that M is tangent to €. Then M is said to
be a contact CR-submanifold if there exists a pair of orthogonal differ-
entiable distributions such as D and D+ on M such that

1.) TM = D @ D+ @ {¢}, where {£} is the 1-dimesional distribution
spanned by &.

2.) D is an invariant distribution with respect to ¢, that is, D, C D,,
forallp e M,

3.) Dt is an anti-invariant distribution with respect to ¢, that is,
¢Dy C T;-M, for allp € M [1].

In this paper, we consider warped product manifolds which are of the
form M = Mrx M, in a Kenmotsu manifold M such that M is tangent
to &, where Mp is an invariant submanifold and M is an anti-invariant
submanifold of M and we call it contact CR-warped product, where My
and M| denote the integral manifolds of the distributions of D and D=,
respectively, in Definition 3.2.

We give an example of contact CR-warped product submanifold of
type M = My x;y M, in Kenmotsu manifold with § tangent to Mr.

Example 3.3. Let R? = C* x R be the 9-dimensional Fuclidean space
endowed with the almost contact metric structure (¢,&,n,g) defined by

¢($17 X2,T3,T4,T5,T6,L7,T8, t) = (-%5, —T6, — L7, —T8,T1,T2,T3, T4, 0)7
0
t t 2t
626&7 n:edta g=e <7>7
where (z1, 22,23, 24, X5, Te, T7,28,t) and <,> denote the cartesian co-

ordinates and the Euclidean metric tensor of RY, respectively. It is well
known that R? is a Kenmotsu manifold.

Now, we define a submanifold by
M = {(z1,0,3,0,22,0,0,74,t) € R}

and choose a frame {e1,ea, e3,eq4,e5} of orthogonal vector fields on M
as

L0 8 o 0.0 . 0
Y0 U0 By’ 0 B Ot Bxg’ 0 T ot
Then it is easy to observe that Dy = span{ey, ez, e5} and D+ = span{es, es}
define the invariant and anti-invariant differentiable distributions on
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Kenmotsu manifold R°. If we denote the integral manifolds of Dr
and D+ by Mp and M|, respectively, then it is easy to check that
M = My x ¢ M| is a contact CR-warped product submanifold with warp-
ing function f(t) = e’.
4. Two Theorems For Contact CR Warped Product
Submanifolds

In this section, we give the main results of this paper. Firstly, we give
the following two lemmas and a theorem for later use.

Lemma 4.1. Let M = My Xy M, be a contact CR-warped product sub-
manifold of a Kenmotsu manifold M. Then we have

(4.1) g(h(X,Y),8Y) = —||Y|*¢X In f
and
(4.2) g(h($X,Y),0Y) = |Y|*X In f

for any X € (T Mr) andY € I'(TM, ).
Proof. For any X € I'(TMr) and Y € I'(T M, ), using (2.3), (2.4) and

considering Proposition 3.1 (2), we have
g(M(X,Y),9Y) = g(VyX,¢Y)=—g(¢VyX,Y)

= —g9(Vy¢X — (Vy9)X,Y)
= —g(Vy¢X.Y) +g(g(oY, X)§ —n(X)eY,Y)
— —g(V,Y)pXInf

and

g(h(¢X,Y),0Y) = g(VyoX,8Y)=g((Vyd)X + ¢Vy X, ¢Y)

= g(9(8Y, X)¢ — n(X)oY, 6Y) + g(6Vy X, V)
= g(6h(X,Y) + ¢Vy X, 6Y) = g(#Y,6Y) X In f
— gV, Y)XInf

which prove our assertions. O

Lemma 4.2. Let M = Mg xy M, be a contact CR-warped product
submanifold of a Kenmotsu manifold M. Then we have

(43)[M(X, V)| = g(h(¢X.Y), 9h(X,Y)) + g(Y,Y)(¢X In f)?,
for any X € T(TMr) andY € T'(TM,).
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Proof. Making use of (2.3), (2.4) and considering Proposition 3.1 and
Lemma 4.1 we have

g(h(96X,Y),0h(X,Y)) = g(¢h(X,Y),VyoX — Vy¢X)
= g(Ph(X.Y), (Vy@)X + ¢VyX — (¢X In f)Y)
= g(h(X,Y), g(¢Y, X)§ — n(X)$Y + ¢Vy X)
+ g(h(X,Y),¢X In foY)

(X,Y),
g(h(X,Y> VyX) +g(h(X,Y),¢Y)pX In f
(X,Y),h(X,Y)) + g(VyX,¢Y)pX In f
= ||h< )2 - g9(¢VyX,Y)¢XIn f
= [|M(X,Y)|* - g(VyoX — (Vy¢)X,Y)pX In f
(X,Y)

= [MXY)IIP — 9(VyoX — g(oY, X)¢
+ n(X)eY,Y)pX In f
= WX, V)|? - g((¢X In /)Y, V)X In f
= [M(X.Y)|? - g(Y,Y)(¢X In f)*.
This completes the proof of the lemma. O

Theorem 4.3. Let M = Mrp x5 M, be a contact CR-warped product

submanifold of a Kenmotsu space form M(c). Then we have

c—3
2

2[h(X,Y)? = {H"(X,X)+H" (¢X,0X) + (
(44) + 26X I f)*}g(Y,Y),
for any X € (T Mr) andY € T'(TM,).

)9(X; X)

Proof. Using (2.8), (2.9) and considering V, the Levi-Civita connection,
we have

g(R(X,9X)Y,0Y) = g((Vxh)(¢X,Y)— (Vexh)(X,Y),¢Y)
= g(Vxh(¢X,Y) - h(VxoX,Y) — h(VxY,$X),4Y)
— g(Vexh(X,Y) = h(Vex X,Y) — h(VyxY, X), ¢Y)
= Xg(M¢X,Y),0Y) = g(Vx oY, h(¢X,Y))
g(MVxdX,Y),9Y) — g(h(VxY,¢X),$Y)
- ¢Xg(M(X,Y),9Y) +g(h(X,Y),Vsx oY)
+ g(M(VexX,Y),0Y) + g(h(VexY, X), ¢Y).
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On the other hand, considering Lemma 4.1 and Proposition 3.1, we have

9(R(X,¢X)Y,9Y)

m+ + 1 + I

|+ o+ o+

+ o+

X[(X1n fg(Y,Y)] — g(h(¢X,Y),(Vx®)Y
$(VxY)) = g(M(VxdpX,Y),¢Y)

Xn fg(h(¢X,Y),9Y) — ¢X[-¢pX In fg(Y.Y)]
g(h(X,Y), (Vexd)Y + ¢(VxY))
9(h(VexX,Y),0Y) + ¢X In fg(h(X,Y), #Y)
X(XInfgV,Y)+29(VxY,Y)X1Inf
g(h(¢X,Y),oh(X,Y)) — g(h(¢X,Y), ¢VxY)
dVxoXInfg(V,Y)— Xn f(X1In f)g(Y,Y)
pX(¢XIn fg(Y,Y) + 26X In fg(VexY,Y)
g(h(X,Y),0h(¢X,Y)) + g(h(X,Y),¢X In foY)
PVexXInfg(Y,Y) + ¢XIn f(—¢X1n f)g(Y,Y)
X(XInfgV,Y)+2XIn f(X1n fg(Y,Y)
29(h(¢X,Y),9h(X,Y)) — X In fg(h(¢X,Y), 9Y)
PVx¢XIn fg(Y,Y) — ¢VexX1n fg(Y,Y)
pX(¢X 1In f)g(Y,Y) +2¢X In f(¢X In f)g(Y.Y)
(XIn f)?g(Y,Y) = 2(¢X In f)*g(Y,Y).

Summing up, we conclude

9(R(X,¢X)Y,¢Y)

(4.5)

m+ + 1

X(XInf)g(Y,Y) —2g9(h(¢X,Y), ph(X,Y))
PVx¢XIn fg(Y,Y) = ¢Vex X In fg(Y,Y)
¢X(¢X In f)g(Y,Y)
{X(XInf)+¢X(dXInf)+ ¢VxopXInf
PVex X In frg(V,Y) —29(h(¢X,Y), dh(X,Y)).

From (4.5) and Lemma 4.2, we arrive to

9(R(X,¢X)Y,¢Y) = {X(XIn f) + ¢X(¢X In f) + ¢Vx¢X In f

— ¢Vex X In f+2(¢X In )’ }g(Y,Y) — 2| (X, V).
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On the other hand, considering Proposition 3.1, My is totally geodesic
in M and gradln f € I'(T'M7). Thus by direct calculations, we have

9(¢Vx ¢ X, gradln f) = —g(Vx¢X, pgradIn f)
—9(Vx X, dgradin f) = —g((Vx$)X, ¢gradn f)
g(6Vx X, pgradln f)

—9(9(¢X, X)§ —n(X)pX, pgradn f)

9(6Vx X, pgradln f)

n(X)g(¢X, pgradin f) + g(Vx X, $*gradIn f)
9(Vx X, —gradln f +n(gradn f)§) = =Vx X In f
§In fg(VxE, X)

~VxXInf—g(X,X)¢In f.

In the same way, we have

PVxoXInf =

(4.6) -

PVyxX1n f

(4.7)

=g ¢@¢XX,gradlnf

( )
9(Vex X — (Vox¢)X, gradln f)
9(Vex 9 X, gradln f)

9(9(6*X, X)& — n(X)$* X, gradn f)
VixoXIn f+ g(¢X,¢X)g(€, gradin f)
n(X)g(¢* X, gradln f)

Vex¢X1In f 4 g(¢X, ¢ X)EIn f
Vex¢XInf+ g(X,X)En f.

In [1] , it was proved {In f = 1. So by substituting (4.6) and (4.7) into

(4.5), we find
9(R(X,$X)Y, ¢Y)

(X(XInf)+¢X(¢XInf) - VxXInf

— VexoX —29(X, X) +2(¢X In f)*}g(Y,Y)

2[|R(X,Y)|?
{H"/(X,X) + H™ (X, ¢X)

(4.8) — 29(X, X) 4+ 2(¢X In f)*}g(Y,Y) — 2[|n(X,Y)]|]*.
Moreover, using (2.12), we get
_ 1
GR(X,6X)Y,6Y) = —“1=g(6X,6X)g(Y,Y)
c+1

(4.9)

= 9 g(X,X)g(Y,Y),
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for any X € I'(TMr) and Y € I'(T'M, ). Finally, from (4.8) and (4.9)
we conclude that

(c+1
2

)9(X, X)g(Y,Y) = {H"™/(X,X)+H"(¢X,¢X)

— 29(X,X)+2(¢X In f)*}g(Y,Y)
(4.10) - 2(X, V),

which is equivalent to (4.4). O

Now, let {e, = &, e1, €2, ..., ep, de1, Pea, ..., pep, ety e?, ... e} be an or-
thonormal basis of I'(T'M) such that e,, e1, e, ..., ey, Pe1, Pea, ..., pe, are
tangent to I'(T' M) and e!, e?, ..., e? are tangent to I'(T' M ). Moreover,
let
{¢et, pe?, ..., pe9, N1, No, ..., Na,} be an orthonormal basis of I'(T M)
such that {ge!, ¢e?, ..., pel} are tangent to ¢T' M, and {Ni, Na, ..., No,.}
are tangent to I'(v), where v denote the orthogonal distribution of ¢.D*
in T+ M.

Now we can give the main theorem of this paper.

Theorem 4.4. Let M = My xy M| be a compact orientaible contact
CR-warped product submanifold of a Kenmotsu space form M (c). Then
M is a contact CR-product if

p q

(111) S lhaten )P 2 (<P

i=1 j=1

where hy denotes the component of h in I'(v).

Proof. Using (3.3), the Laplacian of In f is given by

p

9(Vegradn f,e;) + " g(Vge,gradln f, ge;)
=1

—Alnf =

M-

@
I
—

NE

-+ (Vigradln f,e) + g(Vegradln f,§).

<.
Il
_

Here, considering V to be the Levi-Civita connection, Mr is totally
geodesic in M. Hence gradln f € I'(T'Mr) and by Proposition 3.1, we
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have

p

—Alnf = Z{Hlnf(ei, ei) + Hlnf(¢ei, oei)}

i=1

q
+ > {(dg(gradln f,e) = g(V.iel, gradln f)})
Jj=1

+ g(Vegradln f,§)

p
= D {H™ (er,e) + H™ (¢es, pe)}
=1

q
— > {~g9(¢/,¢))g(gradln f, gradln )} + Eg(gradn f,€)
j=1

— g(Ve&, gradin f)
P

(4.12) = Y {H" (e i) + H™ (¢ei, pei)} + qllgradin [,
i=1

In (4.10) let X =e;and Y =¢/, 1 <i<pand1 < j<gq. Then by
direct calculations, we have

p
(T hpe = (™ (o) + H™ (er, 6600} — 2
Z:pl p q )
£ 23 el - 2203 hder, o)
i=1 i=1 j=1

From (4.12) and the last equation, we arrive at

c+1

_(2

p
Jpg = {—Alnf—gllgradin f|* —2p+2) (¢eiln f)*}q

p q ] =
— 2 e )

i=1 j=1
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that is,
p
Alnf = 22 de;In f)? )p qllgradin f|?
(4.13) - = ZZ |h(ei, e?)||
i=1 j=1

Furthermore, from linear algebra rules, we know that h can be written
as

P
h(e;, e’) Zg (e5,€7), ), pe” qbe —i—Zg (es,€7), Ng)No.
k=1

(=1

Also, making use of (4.1), we have

p p q
Zzg(h(eivej)ﬂh(ei7ej)) = Z Z g 617 k)2
i=1 j=1 i=1 k,j=1
p q 2r
+ ZZ g 6“ Né)
i=1 j=1 ¢=1
p
(4.14) = q) (¢e lnf)2+ZZHh2(€z’,€j)ll
i=1 i=1 j=1

Finally, substituting (4.14) into (4.13), we get

C —
—qunf—2ZZHh2 (es )| = (—— )pq+qugmd1nf\|2-

=1 j=1
From (3.4), we conclude that

[ XS e — 5w

=1 j=1
(4.15) + ¢¥lgradin f||>}dV = 0.

Here, if

p q ] c—3
>3 liha(en ) = (S e,
i=1 j=1
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which implies ||gradIn f|| = 0 because ¢ # 0, that is, the warping func-
tion f is constant. So contact CR-warped product becomes a contact
CR-product. O

From the integral formula (4.15) we derive the following corollaries.

Corollary 4.5. Let M = My Xy M, be a compact orientable contact
CR-warped product submanifold of a Kenmotsu space form M (c). Then
M is a contact CR-product if and only if

(116) S e )P = (< v
i=1 j=1

Proof. 1f (4.16) is satisfied, then (4.15) implies that f = constant, that
is, M is a contact CR-~product.

Conversely, if M is a contact CR-product, from Lemma 4.1 we know
that h(X,Y) € T'(v), for any X € I'(T'Mr) and Y € I'(T'M ). So the
equality (4.16) is satisfied O

Corollary 4.6. There exist no compact orientable contact CR-warped
products in Kenmotsu space forms M (c) such that ¢ < 3.

Corollary 4.7. There exist no compact orientable contact CR-warped
products in R2" T with a usual almost contact metric structure

(¢7 57 /’77 <7 >)'
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