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ON NILPOTENT AND SOLVABLE POLYGROUPS

M. JAFARPOUR, H. AGHABOZORGI AND B. DAVVAZ∗

Communicated by Ali Reza Ashrafi

Abstract. Applications of hypergroups have mainly appeared in
special subclasses. One of the important subclasses is the class of
polygroups. In this paper, we study the notions of nilpotent and
solvable polygroups by using the notion of heart of a polygroup.
In particular, we give a necessary and sufficient condition between
nilpotency (solvability) of polygroups and fundamental groups.

1. Introduction

The concept of a hypergroup which is based on the notion of hy-
peroperation was introduced by Marty in [21] and studied extensively
by many mathematicians. Hypergroup theory extends some well-known
results in group theory and introduces new topics leading to a wide vari-
ety of applications, as well as to broadening of the fields of investigation.
Surveys of the theory can be found in the books of Corsini [5], Davvaz
and Leoreanu-Fotea [12], Corsini and Leoreanu [6] and Vougiouklis [24].
Since the beginning, several relations have been considered in groupoids
and hyperstructures such as A, An, β, βn, γ and γn, see Koskas [18],
Corsini [5, 7], Davvaz [9–11, 17], Freni [14–16], Leoreanu [19], Miglio-
rato [22], Vougiouklis [24, 25] and others. We recall here some basic
notions of hypergroup theory. Applications of hypergroups have mainly
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appeared in special subclasses. For example, polygroups which form an
important subclass of hypergroups were studied by Comer [3,4]. Quasi-
canonical hypergroups (called “polygroups” by Comer) were introduced
for the first time in [2], as a generalization of canonical hypergroups,
introduced in [23].

Let H be a non-empty set and let P∗(H) be the set of all non-empty
subsets of H. Let · be a hyperoperation (or join operation) on H, that
is, · is a function from H ×H into P∗(H). If (a, b) ∈ H ×H, its image
under · in P∗(H) is denoted by a · b. The join operation is extended
to subsets of H in a natural way, that is, for non-empty subsets A,B
of H, A · B = ∪{a · b | a ∈ A, b ∈ B}. The notation a · A is used for
{a} · A and A · a for A · {a}. Generally, the singleton {a} is identified
with its member a. The structure (H, ·) is called a semi-hypergroup if
a · (b · c) = (a · b) · c for all a, b, c ∈ H. Let (H, ·) be a semi-hypergroup
and let A be a nonempty subset of H. We say that A is a complete part
of H if for any nonzero natural number n and for all a1, . . . , an of H,
the following implication holds:

A ∩
n∏
i=1

ai 6= ∅ ⇒
n∏
i=1

ai ⊆ A.

Let A be a nonempty part of H. The intersection of the parts of H
which are complete and contain A is called the complete closure of A in
H, it will be denoted by C(A). A semi-hypergroup is a hypergroup if
a ·H = H · a = H for all a ∈ H. A nonempty subset K of a hypergroup
(H, ·) is called a subhypergroup if it is a hypergroup. An element e of H
is called an identity element if, for all x ∈ H, x ∈ x · e∩ e · x and a′ ∈ H
is called an inverse of a in H, with respect to e, if e ∈ a · a′ ∩ a′ · a.
Suppose that (H, ·) and (H ′, ◦) are two semi-hypergroups. A function

f : H // H ′ is called a homomorphism if f(a · b) ⊆ f(a)◦ f(b) for all

a and b in H. We say that f is a good homomorphism if for all a and b
in H, f(a · b) = f(a) ◦ f(b).

If (H, ·) is a hypergroup and ρ ⊆ H×H is an equivalence relation, we
set

A
=
ρ B ⇔ a ρ b, ∀a ∈ A, ∀b ∈ B,

for all pairs (A,B) of non-empty subsets of H2.
The relation ρ is called strongly regular on the left (on the right) if

x ρ y ⇒ a·x
=
ρ a·y (x ρ y ⇒ x·a

=
ρ y·a, respectively), for all (x, y, a) ∈ H3.

Moreover, ρ is called strongly regular if it is strongly regular on the right
and on the left.
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Theorem 1.1. (Theorem 31, [5]). If (H, ·) is a semi-hypergroup (hyper-
group) and ρ is a strongly regular relation on H, then the quotient H/ρ
is a semigroup (group) under the operation ρ(x)◦ρ(y) = ρ(z), for all z ∈
x · y.

We denote ρ(x) by x̄ and instead of x̄ ◦ ȳ we write x̄ȳ.
For all n > 1, we define the relation βn on a semi-hypergroup H, as

follows:

a βn b⇔ ∃(x1, . . . , xn) ∈ Hn : {a, b} ⊆
n∏
i=1

xi,

and we set β =
n⋃
i=1

βn, where β1 = {(x, x) | x ∈ H} is the diagonal

relation on H. This relation was introduced by Koskas [18] and studied
mainly by Corsini [5]. Suppose that β∗ is the transitive closure of β.
The relation β∗ is a strongly regular relation [5]. The relation β∗ is the
smallest equivalence relation on a hypergroup H, such that the quotient
H/β∗ is a group. The heart ωH of a hypergroup H is the set of all
elements x of H, for which the equivalence class β∗(x) is the identity
of the group H/β∗, i.e., if ϕ : H −→ H/β∗ is the canonical map, then
ωH = {x ∈ H | ϕ(x) = 1H/β∗}.

2. Nilpotent Polygroups

In this section, we introduce and analyze the definition of nilpotent
polygroup P and we present some results about this new concept.

A polygroup is a system ℘ =< P, ·, e,−1>, where e ∈ P , −1 is a unitary
operation on P , · maps P ×P into the non-empty subsets of P , and the
following axioms hold for all x, y, z in P :

(P1) (x · y) · z = x · (y · z),
(P2) e · x = x · e = x,
(P3) x ∈ y · z implies y ∈ x · z−1 and z ∈ y−1 · x.

The following elementary facts about polygroups follow easily from the
axioms: e ∈ x · x−1 ∩ x−1 · x, e−1 = e, (x−1)−1 = x, and (x · y)−1 =
y−1 · x−1. Denote A−1 = {a−1| a ∈ A}. A nonempty subset K of
a polygroup 〈P, ·, e,−1 〉 is a subpolygroup of P if (1) x, y ∈ K implies
x ·y ∈ K; (2) x ∈ K implies x−1 ∈ K. A subpolygroup N of a polygroup
〈P, ·, e,−1 〉 is normal in P if x−1 ·N ·x ⊆ N , for all x ∈ P. In the following
we introduce a new construction of polygroups from groups.

Let (G, ·) be a group and PG = G ∪ {a}, where a /∈ G. We define on
PG the hyperoperations ◦ as follows:
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(1) a ◦ a = e;
(2) e ◦ x = x ◦ e = x, for every x ∈ PG ;
(3) a ◦ x = x ◦ a = x, for every x ∈ PG − {e, a};
(4) x ◦ y = x · y, for every (x, y) ∈ G2 such that y 6= x−1;
(5) x ◦ x−1 = {e, a}, for every x ∈ PG − {e, a}.

Proposition 2.1. If G is a group, then 〈PG , ◦, e,−1 〉 is a polygroup.

Proof. First of all, we prove the associativity of ◦. Suppose that (x, y, z) ∈
P 3
G

.

(i) If {x, y, z} ∩ {e, a} = ∅, then we have the following two cases.
Case 1. x 6= y−1 6= z and x 6= z−1. In this case (x ◦ y) ◦ z =
(x · y) · z = x · (y · z) = x ◦ (y ◦ z).
Case 2. There exists {u, v} ⊆ {x, y, z} such that u = v−1.
Without loss of generality suppose that x = u, y = v. Thus,
(x◦y)◦z = {e, a}◦z. Hence, {e, a}◦z = z. On the other hand, if
y = z−1, then x◦(y◦z) = x◦{e, a} = x = y−1 = z and if y 6= z−1

we have x◦(y◦z) = x◦(y ·z) = x ·(y ·z) = (x ·x−1) ·z = e ·z = z.
(ii) If {x, y, z} ∩ {e, a} 6= ∅. Let e ∈ {x, y, z}. It is easy to see that

the associativity condition holds. Now suppose that {x, y, z} ∩
{e, a} = {a}. Without loss of generality let x = a. In this case
we have

(x ◦ y) ◦ z = x ◦ (y ◦ z) =


a if y = a, z = a
z if y = a, z 6= a
y if y 6= a, z = a
y · z if y 6= z−1, y 6= a 6= z
{e, a} if y = z−1, y 6= a 6= z.

According to the structure of ◦ we conclude that e is the identity element
of PG and the other conditions for being polygroup hold too. �

Proposition 2.2. If G is a group, then PG/β
∗ ∼= G.

Definition 2.3. (See [1]) Let H be a hypergroup. We define

(1) [x, y]r = {h ∈ H | x · y ∩ y · x · h 6= ∅} ;
(2) [x, y]

l
= {h ∈ H | x · y ∩ h · y · x 6= ∅} ;

(3) [x, y] = [x, y]r ∪ [x, y]
l
.

From now on we call [x, y]r , [x, y]
l

and [x, y] right commutator x and
y, left commutator x and y and commutator x and y, respectively. Also,
we will denote by [H,H]r , [H,H]

l
and [H,H], the set of all right com-

mutators, left commutators and commutators, respectively.
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Proposition 2.4. If H is a commutative hypergroup, then [x, y]r =
[x, y]l = [x, y], for all (x, y) ∈ H2.

Definition 2.5. Let X be a nonempty subset of a polygroup 〈P, ·, e,−1 〉.
Let {Ai| i ∈ J} be the family of all subpolygroups of P which contain X.
Then, ∩i∈JAi is called the subpolygroup generated by X. This subpoly-
group is denoted by < X > and we have < X >= ∪{xε11 · . . . · x

εk
k | xi ∈

X, k ∈ N, εi ∈ {−1, 1}}. If X = {x1, x2, . . . , xn}. Then, the sub-
polygroup < X > is denoted < x1, x2, . . . , xn >. In a special case
< [P, P ]r >, < [P, P ]

l
> and < [P, P ] > are shown by P ′

r
, P ′

l
and P ′,

respectively.

Proposition 2.6. (See [1]) Let 〈P, ·, e,−1 〉 be a polygroup and (x, y) ∈
P 2. Then,

(1) [x, y]r = [x−1, y−1]
l
;

(2) P ′ = P ′
r

= P ′
l
;

(3) x ∈ P ′ ⇒ x−1 ∈ P ′.

Form now on we call P ′ the derived subpolygroup of P which is a
subpolygroup of P.

Example 2.7. Suppose that P = {e, a, b, c}. We consider the non-
commutative polygroup 〈P, ·, e,−1 〉, where · is defined on P as fallow:

· e a b c
e e a b c
a a a P c
b b e, a, b b b, c
c c a, c c P

In this case we can see that P ′ = P .

Definition 2.8. A polygroup 〈P, ·, e,−1 〉 is said to be nilpotent if `n(P ) ⊆
ωP or equivalently `n(P ) ·ωP = ωP , for some integer n, where `0(P ) = P
and

`k+1(P ) = 〈{h ∈ P | x · y ∩ h · y · x 6= ∅, such that x ∈ `k(P ) and y ∈ P}〉.
The smallest integer c such that `c(P ) ·ωP = ωP is called the nilpotency
class or for simplicity the class of P .

Notice that P = `0(P ) ⊇ `1(P ) ⊇ `2(P ) ⊇ . . . that is {`k(P )}
k≥o is a

decreasing sequence which we call it the generalized descending central
series.
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Proposition 2.9. Every commutative polygroup is nilpotent of class 1.

Proof. Suppose that 〈P, ·, e,−1 〉 is a commutative polygroup and h ∈
`1(P ). Then, there exists (x, y) ∈ P 2 such that x · y ∩ h · y · x 6= ∅. Since
P is commutative we have x ·y∩h ·x ·y 6= ∅. So, x̄ȳ = h̄x̄ȳ and so h̄ = e
which means that h ∈ ωP . Therefore, `1(P ) · ωP = ωP �

Remark 2.10. The converse of the previous proposition holds for the
class of groups but Example 2.7. shows that it is not valid for the class
of polygroups.

A polygroup is called proper if it not a group.

Proposition 2.11. Every proper polygroup of order less than 7 is nilpo-
tent of class 1.

Proof. Suppose that 〈P, ·, e,−1 〉 is a polygroup of order less than 7.
Then, P/β∗ is an abelian group of order less that 6. Now, let h ∈ `1(P ).
Then, there exists (x, y) ∈ P 2 such that x · y ∩ h · x · y 6= ∅. Thus,
x̄ȳ = h̄ȳx̄ = h̄x̄ȳ which implies that h ∈ ωP . Therefore, `1(P ) ⊆ ωP and
consequently `1(P ) · ωP = ωP . �

Corollary 2.12. The symmetric group S3 is the smallest non-nilpotent
polygroup.

Example 2.13. Let P = {e, a, b, c, d, f, g}. We consider the proper non-
commutative polygroup 〈P, ·, e,−1 〉, where · is defined on P as follows:

· e a b c d f g
e e a b c d f g
a a e b c d f g
b b b e, a g f d c
c c c f e, a g b d
d d d g f e, a c b
f f f c d b g e, a
g g g d b c e, a f

It is easy to see that ωP = {e, a} while `n(P ) = {e, a, f, g} and hence
`n(P ) · ωP 6= ωP for all n ∈ N. Thus, P is not a nilpotent polygroup of
order 7.

Proposition 2.14. Let 〈P, ·, e,−1 〉 be a polygroup and consider the fun-
damental quotient as G = P

β∗ . Then, for all k ≥ 1

`k(G) = 〈t̄ | t ∈ `k(P )〉.
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Proof. Suppose that 〈P, ·, e,−1 〉 is a polygroup and the fundamental
quotient as G = P

β∗ . Then, we do the proof by induction on k. For

k = 0, we have 〈t̄ | t ∈ `0(P ) = P 〉 = `0(G). Now, suppose that
ā ∈ 〈t̄ | t ∈ `k+1(P )〉. Then, a ∈ `k+1(P ) and so there exist x ∈ `k(P ) and
y ∈ P such that xy∩ayx 6= ∅. Thus, x̄ȳ = āȳx̄. By the induction hypoth-
esis we conclude that ā ∈ `k+1(G). Conversely, let ā ∈ `k+1(G). Without
loss of generality suppose that ā = x̄ȳx̄−1ȳ−1, where x̄ ∈ `k(G), ȳ ∈ G,
which implies that x̄ȳ = āȳx̄. Thus, there exist c ∈ xy and d ∈ ayx
such that c̄ = d̄. Since P is a polygroup there exists u ∈ P such that
c ∈ xy ∩ uyx. From x̄ ∈ `k(G), ȳ ∈ G and the induction hypothesis we
have x ∈ `k(P ), y ∈ P . Thus, u ∈ `k+1(P ) and āȳx̄ = d̄ = c̄ = x̄ȳ = ūȳx̄.
Therefore, ā = ū ∈ 〈t̄ | t ∈ `k+1(P )〉. �

Theorem 2.15. Let 〈P, ·, e,−1 〉 be a polygroup. Then, P is nilpotent if
and only if the fundamental quotient as G = P

β∗ is nilpotent.

Proof. Suppose that P is a nilpotent polygroup so there exists k ∈ N
such that `k(P ) ⊆ ωp. According to the previous proposition, we have
`k(G) = 〈t̄ | t ∈ `k(P ) ⊆ ωp〉 = {eG} = ωG, and so the fundamental
quotient is a nilpotent group. Similarly, we can see the converse. �

Corollary 2.16. Let G be a group. Then, PG is nilpotent if and only if
G is nilpotent.

Theorem 2.17. Let 〈P, ·, e,−1 〉 be a polygroup and let N be a normal

subpolygroup of P . Then, `n( PN ) = `n(P )·N
N , for all n ≥ 0.

Proof. By induction on n we show that `n( PN ) ⊆ `n(P )·N
N and `n(P )·N

N ⊆
`n( PN ). For n = 0, the inclusions are obvious. Now, suppose that yN ∈
`n+1(

P
N ). Then, yN ∈ [aN, bN ], where aN ∈ `n( PN ) and bN ∈ P

N .
By the induction hypothesis we have aN = a′N , where a′ ∈ `n(P ).

Therefore, yN = y′N , where y′ ∈ [a′, b]. Thus, yN ∈ `n+1(P )·N
N . If

yN ∈ `n+1(P )·N
N , then yN = y′′N, where y′′ ∈ `n+1(P ). So, there exist

a ∈ `n(P ) and b ∈ P such that y′′ ∈ [a, b]. Hence, aN = yN ∈ [aN, bN ],
where aN ∈ `n( PN ) which means that yN ∈ `n+1(

P
N ) and our proof is

completed. �

Corollary 2.18. If 〈P, ·, e,−1 〉 is a nilpotent polygroup, then

(1) every subpolygroup of P is nilpotent;
(2) if N is a normal subpolygroup of P , then P

N is nilpotent.
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Definition 2.19. Let 〈P, ·, e,−1 〉 be a polygroup. We define Z0(P ) = ωP
and Zn(P ) = 〈{x | x · y · Zn−1(P ) = y · x · Zn−1(P ), ∀y ∈ P}〉, for all
n ∈ N.

Notice that ωP = Z0(P ) ⊆ Z1(P ) ⊆ Z2(P ) ⊆ . . . , that is, {Zm(P )}
m≥0

is an increasing sequence which we call it the generalized ascending cen-
tral series. Moreover, Zn(P ) is a subpolygroup of P , for every n ≥ 0.

Proposition 2.20. If 〈P, ·, e,−1 〉 is a polygroup and n ≥ 0, then

(1) Zn(P ) is a complete subpolygroup of P ;
(2) g · g−1 ⊆ Zn(P ), for every g ∈ P ;
(3) Zn(P ) is a normal subpolygroup of P.

Proof. (1) Since ωP ⊆ Zn(P ), we conclude that C(Zn(P )) = Zn(P ) ·
ωP = Zn(P ), which means that Zn(P ) is complete.

(2) Let g ∈ P . Since e ∈ g · g−1 ∩ Zn(P ) and Zn(P ) is complete,
g · g−1 ⊆ Zn(P ).

(3) Let g ∈ P be an arbitrary element and x ∈ Zn(P ). Then, g · x ·
g−1 · Zn−1(P ) = g · g−1 · x · Zn−1(P ) ⊆ g · g−1 · Zn(P ) = Zn(P ). Hence,
g · x · g−1 ⊆ Zn(P ). �

Theorem 2.21. Let 〈P, ·, e,−1 〉 be a polygroup. Then, P is nilpotent if
and only if there exists r ≥ 0 such that Zr(P ) = P .

Proof. Suppose that there exists r ≥ 0 such that Zr(P ) = P . In order to
prove `r(P ) ⊆ ωP , by induction we show that `i(P ) ⊆ Zr−i(P ). For i = 0
we have `0(P ) = P ⊆ P = Zr(P ). Now, if a ∈ `i+1(P ), then without
loss of generality suppose that x · y ∩ a · y · x 6= ∅, where x ∈ `i(P ) and
y ∈ P . By the hypothesis of induction we conclude that x ∈ Zr−i(P ).
Hence, x · y · Zr−i−1(P ) = y · x · Zr−i−1(P ) and so a ∈ Zr−i−1(P ).
Now if i = r, then `r(P ) ⊆ Z0(P ) = ωP . For the converse, suppose
that `r(P ) ⊆ ωP . It is enough to show that `r−i(P ) ⊆ Zi(P ), for all
0 ≤ i ≤ n. For i = 0, we have `r(P ) ⊆ ωP = Z0(P ). Let a ∈ `r−i−1(P )
and b ∈ P . Then, [a, b] ⊆ `r−i(P ). By using the induction hypothesis,
we have [a, b] ⊆ Zi(P ). Therefore, a · b · Zi(P ) = b · a · Zi(P ) and so
a ∈ Zi+1(P ) as we need. If we take i = r, then we get our claim. �

Corollary 2.22. Let 〈P, ·, e,−1 〉 be a polygroup. Then, `c(P ) ⊆ ωP if
and only if Zc(P ) = P, that is, P is nilpotent of class c if and only if
Zc(P ) = P.

Definition 2.23. Let 〈P1, ·, e1,−1 〉 and 〈P2, ◦, e2,−I 〉 be two polygroups.
Then, on P1 × P2 we can define a hyperproduct as follows: (x1, y1) ∗
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(x2, y2) = {(x, y) | x ∈ x1 · x2, y ∈ y1 ◦ y2}. We call this the direct
hyperproduct of P1 and P2. Clearly, P1 × P2 equipped with the usual
direct hyperproduct becomes a polygroup.

Proposition 2.24. (See [8]) Let ωP1 , ωP2 and ωP1×P2 be the hearts of
P1, P2 and P1 × P2, respectively. Then, ωP1×P2 = ωP1 × ωP2 .

Proposition 2.25. Let P1 and P2 be two polygroups. Then, for all
k > 0

`k(P1 × P2) = `k(P1)× `k(P2).

Proof. We prove our claim by induction on k. For k = 0, it is obvious.
Now, suppose that (a, b) ∈ `k+1(P1 × P2). Then, there exist (u, v) ∈
`k(P1 × P2) and (s, t) ∈ P1 × P2 such that (u, v) ∗ (s, t) ∩ (a, b) ∗ (s, t) ∗
(u, v) 6= ∅, that is, u · s∩a · s ·u 6= ∅ and v ◦ t∩ b ◦ t ◦ v 6= ∅. By using the
induction hypothesis, we conclude that a ∈ `k+1(P1) and b ∈ `k+1(P2).
Thus, (a, b) ∈ `k+1(P1)×`k+1(P2). Similarly, we obtain the converse. �

Proposition 2.26. Let P1, P2 be two polygroups. Then, P1 × P2 is
nilpotent if and only if P1 and P2 are nilpotent.

Proof. If P1, P2 are nilpotent, then there exist k1 and k2 such that
`k1(P1) ⊆ ωP1 and `k2(P2) ⊆ ωP2 . Suppose that k = lcm(k1, k2). Hence,

`k(P1) ⊆ `k1(P1) and `k(P2) ⊆ `k2(P2) and so we obtain `k(P1 × P2) =
`k(P1) × `k(P2) ⊆ `k1(P1) × `k2(P2) ⊆ ωP1 × ωP2 = ωP1×P2 . Conversely,

suppose that P1×P2 is nilpotent. Then, there exists k such that `k(P1)×
`k(P2) = `k(P1 × P2) ⊆ ωP1×P2 = ωP1 × ωP2 . Hence, `k(P1) ⊆ ωP1 and

`k(P2) ⊆ ωP2 . Therefore, P1 and P2 are nilpotent. �

Example 2.27. Let P1 = {e, a, b, c} be the polygroup in Example 2.7.
and let P2 = {0, 1} be the cyclic group of order two. Consider the non-
commutative polygroup P ∼= P1×P2, where · is defined on P as follows:

· e a b c d f g h
e e a b c d f g h
a a e c b f d h g
b b c b c e, b, d, g a, c, f, h g h
c c b c b a, c, f, h e, b, d, g h g
d d f e, b, d a, c, f d f d, g f, h
f f d a, c, f e, b, d f d f, h d, g
g g h b, g c, h g h e, b, d, g a, c, f, h
h h g c, h b, g h g a, c, f, h e, b, d, g
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It is easy to see that `1(P1) = P ′1 = ωP1 and `1(P2) = ωP2 = {0}. Hence,
P is a nilpotent polygroup of class 1.

Definition 2.28. (see [5]) Let H be a regular hypergroup. For n ∈ N,
let a1, . . . , an be elements in H, and let a′1, . . . , a

′
n be their inverses in H,

respectively. The set a1a2 . . . ana
′
na
′
n−1 . . . a

′
1 is called a product of type

zero. The union of all products of type 0 is denoted by N(0).

Theorem 2.29. (see [5]) If H is a regular and reversible hypergroup,
then the heart is the union of the products of type zero (i.e., ωH = N(0)).

Proposition 2.30. Let 〈P1, ·, e1,−1 〉 and 〈P2, ◦, e2,−I 〉 be two polygroups,

and let φ : P1
// P2 be a good homomorphism. Then, we have

(1) if K1 is a subpolygroup of P1, then φ(K1) is a subpolygroup of
P2;

(2) if K2 is a subpolygroup of P2, then φ−1(K2) is a subpolygroup of
P1;

(3) if φ is one to one and K1 is a nilpotent subpolygroup of P1, then
φ(K1) is a nilpotent subpolygroup of P2.

Proof. (1) Suppose that u, v ∈ φ(K1). Then, there exist x, y ∈ K1 such
that φ(x) = u and φ(y) = v. We have u ◦ v = φ(x) ◦ φ(y) = φ(x · y) ⊆
φ(K1). Now, suppose that u ∈ φ(K1). Then, there exists x ∈ K1 such
that φ(x) = u. We have u−1 = φ(x)−1 = φ(x−1) ∈ φ(K1). Thus, φ(K1)
is a subpolygroup of P2.

(2) This is obvious.
(3) By induction on n we show that `n(φ(K1)) = φ(`n(K1)). For n = 0

it is obvious. Let z ∈ `n+1(φ(K1)). Then, there exist x ∈ `n(φ(K1)) and
y ∈ φ(K1) such that x ◦ y ∩ z ◦ y ◦ x 6= ∅. Since {x, y, z} ⊆ φ(K1), there
exist a ∈ `n(φ(K1)), b ∈ K1 and c ∈ K1 such that φ(a) = x, φ(b) =
y, φ(c) = z. Therefore, we have

x◦ y∩ z ◦ y ◦x = φ(a)◦φ(b)∩φ(c)◦φ(b)◦φ(a) = φ(a · b)∩φ(c · b ·a) 6= ∅.
Since φ is one to one, we conclude that φ(a·b∩c·b·a) 6= ∅, so a·b∩c·b·a 6= ∅.
By the induction hypothesis we have c ∈ `n+1(K1). Thus, z = φ(c) ∈
φ(`n+1(K1).

Conversely, let z ∈ φ(`n+1(K1)). Then, there exists c ∈ `n+1(K1)
such that φ(c) = z. So, from c ∈ `n+1(K1) we conclude that there
exist a ∈ `n(K1) and b ∈ K1 such that a · b ∩ c · b · a 6= ∅. Thus,
φ(a) ◦ φ(b) ∩ φ(c) ◦ φ(b) ◦ φ(a) 6= ∅. By the induction hypothesis we
have φ(a) ∈ φ(`n(K1) = `n(φ(K1)) and φ(b) ∈ φ(K1). So, z = φ(c) ∈
`n+1(φ(K1)).
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Now, let K1 be a nilpotent subpolygroup of P1. Then, there ex-
ists m such that `m(K1) ⊆ ωK1

. By the previous theorem, we have

`m(φ(K1)) = φ(`m(K1) ⊆ φ(ωK1
) ⊆ ω

φ(K1)
, and the proof is com-

pleted. �

3. On solvable polygroups

In this section, we introduce and probe solvable polygroups.

Definition 3.1. A polygroup 〈P, ·, e,−1 〉 is said to be solvable if ın(P ) ⊆
ωP or equivalently ın(P ) ·ωP = ωP , for some integer n, where ı0(P ) = P
and

ık+1(P ) = 〈{h ∈ P | x · y ∩ h · y · x 6= ∅, such that x, y ∈ ık(P )}〉.
The smallest integer c such that ıc(P ) · ωP = ωP is called the length of
P . Notice that {ık(P )}

k≥o is a decreasing sequence.

Proposition 3.2. Every commutative polygroup is solvable of length 1.

Proposition 3.3. Let P be a polygroup and G = P
β∗ . Then, for all

k ≥ 1
ık(G) = 〈t̄ | t ∈ ık(P )〉.

Proof. Suppose that P is a polygroup and G = P
β∗ . Then, we do the

proof by induction on k. For k = 0, we have 〈t̄ | t ∈ ı0(P ) = P 〉 = ı0(G).
Now, suppose that ā ∈ 〈t̄ | t ∈ ık+1(P )〉. Then, a ∈ ık+1(P ) and so
there exist x, y ∈ ık(P ) such that xy ∩ ayx 6= ∅. Thus, x̄ȳ = āȳx̄. By
the induction hypothesis we conclude that ā ∈ ık+1(G). Conversely, let
ā ∈ ık+1(G). Without loss of generality suppose that ā = x̄ȳx̄−1ȳ−1,
where x̄, ȳ ∈ ık(G), which implies that x̄ȳ = āȳx̄. Thus, there exist
c ∈ xy and d ∈ ayx such that c̄ = d̄. Since P is a polygroup, there exists
u ∈ P such that c ∈ xy ∩ uyx. By the induction hypothesis we have
x, y ∈ ık(P ) which implies that u ∈ ık+1(P ) and āȳx̄ = d̄ = c̄ = x̄ȳ =
ūȳx̄, so ā = ū ∈ 〈t̄ | t ∈ ık+1(P )〉. �

Theorem 3.4. Let P be a polygroup. Then, P is solvable if and only if
G = P

β∗ is solvable.

Proof. Suppose that P is a solvable polygroup. Then, there exists k ∈ N
such that ık(P ) ⊆ ωp. According to the previous proposition, we have

ık(G) = 〈t̄ | t ∈ ık(P )〉 = {eG} = ωG, and so G = P
β∗ is a nilpotent

group. Similarly, we can see the converse. �

Corollary 3.5. Every nilpotent polygroup is solvable.
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Proposition 3.6. Every proper polygroup of order less than 61 is solv-
able.

Proof. Suppose that 〈P, ·, e,−1 〉 is a proper polygroup of order less than
61. Then, P/β∗ is a group of order less that 60. Thus, P/β∗ is not
isomorphic to the smallest non-solvable group A5 (alternating group of
degree 5). Hence, P is solvable. �

In the following example, we introduce one of the smallest proper
polygroups of order 61.

Example 3.7. Let A5 be the alternating group of degree 5 and P =
A5 ∪ {a}, where a /∈ A5. We define on P the hyperoperations ◦, as
follows:

(1) a ◦ a = {e, a};
(2) e ◦ x = x ◦ e = x, for every x ∈ P ;
(3) a ◦ x = x ◦ a = x, for every x ∈ P − {e, a};
(4) x ◦ y = x · y, for every x, y ∈ A5 such that y 6= x−1;
(5) x ◦ x−1 = {e, a}, for every x ∈ P − {e, a}.

It is easy to see that (P, ◦) is a polygroup. Moreover, P/β∗ ∼= A5 and
hence P is not solvable.
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